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GENERAL INTRODUCTION

The paper summarizes the results obtained by the authors in a cooperative study
extending over several years and outlines a program of future work. Theoretical
results which are not yet published include (i) extension of the model of simple
clustering of galaxies, originally developed for a static universe, to cover the possi-
bility that the universe is expanding (sections 6 and 8), (ii) a model of multiple
clustering (section 11), and (iii) formulas relating to the distributions of certain
characteristics of images of clusters on the photographic plate (section 12). New
empirical results, given in section 9, indicate that, probably, the model of simple
clustering of galaxies in a stationary universe does not correspond to reality.

While the title of this paper is “Statistics of Images of Galaxies’’ and while this
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title corresponds exactly to the contents of the paper, it must be realized that the
ultimate aim of the study is to bring out plausible conclusions about the distribu-
tion of galaxies in space. The distribution of images of galaxies on a photographic
plate is no more than the adopted means leading to a more distant goal. In these
circumstances it is natural that the study fall under three separate headings.

First there is the observational aspect of the problem, consisting in the accumu-
lation of facts. This includes not only the taking of the photographs of the sky, the
identifying and counting of images of galaxies but also the study of the various
physical factors, other than the distribution of galaxies in space, which influence
the appearance of the distribution of images of galaxies on the photographic plate.
This observational aspect of the study is wholly within the domain of activities of
an astronomer.

The second aspect of the problem is that of a stochastic model of the spatial dis-
tribution of galaxies and of the theory of that model. To construct a stochastic
model means to build a plausible system of mutually consistent hypotheses, or of
postulates, regarding the distribution of galaxies in space and here a close coopera-
tion between astronomers and statisticians is most essential. The theory of the
model is the responsibility of the statistician and includes not only the problem of
mutual consistency of the postulates but also the deduction of their various conse-
quences, such as the formulas connecting the properties of the distribution of images
of galaxies on a photographic plate with what was postulated to be happening in
space.

Finally, there is the third aspect of the general problem. It consists in establishing
a bridge between the general theoretical formulas deduced to characterize the dis-
tribution of images of galaxies on a photographic plate and the actual counts of
these images. Here again, in order to attain success, a close cooperation between
astronomers and statisticians is necessary. The questions falling under this heading
may be exemplified by the following.

In order to deduce the relation between the postulated distribution of galaxies
in space and the corresponding distribution of images, the statistician cannot avoid
dealing with a probability 6(¢) defined as follows. Consider a galaxy that emitted a
light signal that reaches the photographic plate at the time when the photograph
of the sky is taken. Denote by 7 the moment at which this light signal was emitted
and by £ the distance which at that same moment r separated the galaxy from the
observer. Then 6(f) represents the probability that the photograph will contain a
noticeable image of the galaxy concerned.

In his work the statistician need not know the exact form of the function 8(¢)
representing the probability just defined. However, in this case, the statistician’s
results will contain the symbol 8(¢) and, so long as nothing specific is substituted
for this symbol, his formulas will not be usable for numerical calculations. In other
words, these formulas will not be ready for a comparison with the observational
material. Thus, in order to be able to verify whether or not a given stochastic model
is consistent with the body of empirical data, it is necessary to substitute for 8(¢)
some specifically defined function and here the advice of an astronomer, perhaps the
advice of an expert group of astronomers and physicists, is most essential. Unfor-
tunately, as things stand now, even the most expert group is likely to give only a
very tentative answer regarding 8(¢). The point is that, as is well known, a change
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in the distance ¢ influences not only the intensity of light received from a galaxy
but also the distribution of the total energy over the spectrum. The larger the value
of £, the greater proportion of the total energy of light appears concentrated in the
red section of the spectrum (red-shift). Since the photographic plate does not re-
spond equally to light of different wave lengths, the phenomenon of reddening of
distant galaxies must have an effect on the chances of their being recorded on a
photographic plate and, therefore, must be reflected in the formula selected to
represent 6(¢). However, as will be seen below, this is not all there is to the problem
of selecting a realistic function to represent 8(%).

Out of the above three aspects of the general problem considered, the first differs
from the other two by the fact that it is entirely beyond the sphere of competence
of a statistician. For this reason, the present paper is split into two parts, the obser-
vational and the statistical.

PART 1. OBSERVATIONAL STUDIES OF THE DISTRIBUTION
OF IMAGES OF GALAXIES

1. Introductory remarks

Although a number of surveys of galaxies have been made and have led to impor-
tant conclusions, the totality of this material leaves much to be desired if the capa-
bilities of existing instruments and the resources of modern statistical methods are
to be developed adequately. We shall mention here the principal counts of images
of galaxies, either completed or in progress, that are currently useful for distribution
studies. Those made for special or limited purposes are omitted. Following this
discussion we shall outline the requirements for counts that would seem to meet
most of the present needs and at the same time represent an attainable goal.

2. Existing surveys of galaxies

The surveys of current importance may be listed under the names of the investi-
gators as follows:

(1) Harlow Shapley and Adelaide Ames [1] have published a catalogue of 1249
external galaxies brighter than magnitude 13.4. In addition to the equatorial and
galactic coordinates of each galaxy the catalogue contains its photographic mag-
nitude, its maximum and minimum diameters and its classification. The list is
probably complete to about magnitude 12.6. The systematic errors in magnitude
are satisfyingly small, though the individual magnitudes are subject to the almost
inevitable large errors arising from photographic methods as applied to objects of
this kind. For studies of the distribution of the brighter galaxies this catalogue is
by far the most valuable source of data.

(2) Harlow Shapley and some of his associates [2] have published counts of
galaxies on plates taken with the Bruce telescope at Bloemfontein and with the
Metcalf telescope at Harvard. The limiting magnitude is variable because of the
nonuniform conditions under which the plates were obtained, but in general it is
near magnitude 18. As one result of these investigations it was demonstrated that
clustering is a general characteristic among galaxies. The counts on the Bruce plates
supply practically our only information concerning the distribution of the fainter
galaxies in high southern declinations. The results of these surveys are not very



78 THIRD BERKELEY SYMPOSIUM: NEYMAN, SCOTT, SHANE

well adapted to statistical study because the plates were taken under nonuniform
conditions, they are not systematically spaced over the sky, and the images at the
greater distances from the optical axis are in general poor.

(3) E. P. Hubble [3] published in 1934 the first carefully planned general survey
for statistical purposes. It consisted of counts of galaxies on 1283 plates north of
—30° declination taken with the 60-inch and the 100-inch reflectors on Mount Wil-
son. 765 of the plates were spaced systematically over the sky. The remaining plates
were taken for other purposes but they were used in the discussion. The exposure
times were not all the same, and this circumstance combined with the two different
telescope apertures and other varying conditions required the application of rather
large corrections to reduce the counts to the adopted standard. This standard was
the limiting magnitude at the central region of a 100" plate on an Eastman 40
emulsion for a one hour exposure under good conditions of seeing and transparency.
The limiting magnitude under these conditions was determined by Hubble to be
20.0. Subsequently [4] these data, together with the counts on additional plates
of long exposure with 100-inch telescope, and counts by Mayall [5] with the
Crossley reflector of 36-inch aperture, were used by Hubble to determine the num-
bers of galaxies per square degree to different limiting magnitudes ranging from
18.5 to 21.0. The circumstance that the surveys give only the numbers of galaxies
in small disconnected areas of the sky permits their being used only for studies of
the largest features of distribution. The actual counts on the plates were made with
great care so that it would be difficult to improve on their accuracy. A large amount
of careful labor also went into the determination of the limiting magnitudes. But
it is now recognized that the stellar magnitude standards available at the time as
well as the photographic methods employed for comparing stellar and nebular
images introduced substantial errors in the limiting magnitudes. Moreover the large
corrections applied to compensate for effects of coma, seeing, etc., materially reduce
the value of the observations for some statistical purposes.

(4) Nicholas U. Mayall [5] investigated the distribution of galaxies on 489 plates
taken with the Crossley reflector of the Lick Observatory. Of these plates 305 were
obtained by earlier observers and 184 by Mayall to fill in gaps and to provide proper
standardization. The methods of counting and the general treatment of the ma-
terial are similar to those used by Hubble. The results of the investigation were in
conformity with the general conclusions of Hubble and they provided an additional
datum for his relation between numbers of galaxies and apparent magnitudes.

(5) Anders Reiz [6] measured photographically 4666 galaxies within 40° of the
north galactic pole. The data are almost entirely based on plates taken with the
Bruce telescope at Heidelberg. The magnitudes estimated by direct comparison
with stars reach to approximately 16.5 on the faint side but the catalogue is not com-
plete beyond magnitude 14.5. The magnitudes suffer from the rather large errors
inherent in the adopted method of measurement. Unfortunately there are some
small areas totaling about 4 per cent of the region studied that are not covered by
the catalogue. These omissions are not important for the type of analysis carried
out by the author but for some other statistical purposes they constitute a serious
defect.

(6) C. D. Shane and C. A. Wirtanen [7] are currently conducting a survey to the
18th magnitude based on astrometric plates takerr with the Carnegie 20-inch astro-



CLUSTERING OF GALAXIES 79

graph of the Lick Observatory. The survey covers the sky from the north celestial
pole to 23° south declination. The plates are systematically spaced and overlap at
least one degree on each side. Galaxies are counted in areas 10’ square to the plate
limit of about magnitude 18.4. The plate overlaps permit the determination of cor-
rections for the most important types of systematic error. The results for an area
comprising one-ninth of the total region have been published. Counts on fewer than
one half of the plates still remain to be made.

To supplement this 18th magnitude survey Shane and Wirtanen have started a
15th magnitude survey with a 5-inch Ross lens used on a photographic telescope
loaned to the Lick Observatory by the Mount Wilson and Palomar Observatories.
As with the 18th magnitude survey the plates are taken with adequate overlaps
and on as nearly a uniform basis as possible.

(7) Fritz Zwicky [8] has under way a project to determine from images obtained
by schraffier methods with the 18-inch Mount Palomar Schmidt telescope the
magnitudes of all galaxies to the 15th. When completed the resulting some 15,000
objects should provide an exceptionally complete catalogue of individual galaxies.
It is also understood that a catalogue of about 2,000 galaxies is in preparation by
K. Lundmark of the Lund Observatory.

The surveys of galaxies described here provide only a very incomplete answer to
the statistical requirements. The means are now at hand, however, to obtain obser-
vations rather ideally suited to our needs.

3. Suggested programs of surveys

A very adequate answer to the observational problem would be provided by a
program along the following lines.

(1) A catalogue of galaxies complete to about the 14th magnitude in which are
listed the types as well as the photoelectric colors in two wave lengths would be a
fundamental requirement. A difficulty lies in defining ‘“magnitude” especially for
elliptical galaxies since according to current observations it has not yet been possible
to determine a limiting brightness for these objects with increasing size of the area
measured. William B. Baum of the Mount Wilson and Palomar Observatories is
now studying this difficulty. If it can be overcome a catalogue of the approximately
4,000 objects to magnitude 14 could be prepared without prohibitive labor.

(2) A continuous survey over the sky to about the 18th magnitude should provide
the material for studying the small scale irregularities in distribution. The counts
should be available by squares 10’ or 20’ on a side, the plates should overlap and
should be taken on as uniform a system as possible. It is doubtful if the amount of
work necessary to make continuous counts over the whole sky to a magnitude
fainter than 18.5 would be justified. The limiting magnitudes for different types of
galaxies should be carefully determined by comparison with the magnitudes of a
list of galaxies measured photoelectrically.

(3) There are good reasons for extending a continuous survey over a limited area
to magnitudes fainter than 18.5 in order to increase our understanding of the phe-
nomenon of clustering. It would be well worthwhile to count galaxies in 10’ squares
to magnitude 19.5 over an area of perhaps 1500 square degrees around the north
galactic pole. The plates already taken with the 48-inch Schmidt telescope at Mount
Palomar might be used in this connection. Zwicky [8] has counted galaxies on these
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plates but to the best of our knowledge the counts are for special purposes and do
not yield a continuous survey. ‘

(4) For extended studies of distribution in depth and possible large-scale inhomo-
geneities in distribution the fainter galaxies should be studied by sample surveys
following the general procedures of Hubble. Perhaps two such surveys using the
same sample areas to magnitudes 20.5 and 22.5, or fainter if possible, would be
best. The current work at Mount Palomar on magnitude scales to faint limits
should form the basis for accurately determining the limiting magnitudes.

(5) The color system of the counts should have its wave length range in the region
6000-7000A.. This longer wave length compared to the blue region used in existing
surveys permits better penetration of obscuring matter in our own galaxy and in
view of the observed reddening of distant galaxies it increases greatly the observable
volume of space. But far more important it improves the accuracy of the magnitude
corrections for red-shift and reduces their size as follows: First, for blue magnitudes
and large red-shifts the correction depends on the very poorly known or even con-
jectured energy distribution for nearby galaxies in the ultraviolet. For red magni-
tudes the better known blue, green and yellow portions of the spectrum are used,
thus yielding more reliable values of the corrections. Second, when blue magnitudes
are used the effect of red-shift is calculated along the steep portion of the spectral
energy curve with resulting large corrections. The red magnitudes on the other
hand use the curve along the flatter portion near its maximum and thus require
much smaller corrections. It was a part of Hubble’s [9] plan for future work to use
red magnitudes as suggested here. This procedure would enormously enhance the
value of the surveys.

The suggested program may be summarized as follows:

(1) A two color catalogue to the 14th magnitude.

(2) Complete counts in the red to magnitude 18.5.

(3) A continuous partial survey in the red to magnitude 19.5.

(4) Sample surveys in the red to two fainter magnitudes, of which one should be
near the limit of the largest modern telescopes.

If the surveys are to be used to the best advantage in statistical investigations,
a knowledge of the errors is necessary. It is important, therefore, that with each
survey there be a special study of the errors determined by such methods as the
counting of duplicate plates and counts of the same plates by all of the observers
participating in the program.

The amount of labor entailed in this program is not prohibitive with reasonable
cooperation between a few observatories, and for a statistical investigation of the
structure of the visible universe the results would be invaluable.

PART II. PROBABILISTIC STUDIES OF THE DISTRIBUTION
OF IMAGES OF GALAXIES

4. General remarks

The probabilistic studies of the spatial distribution of galaxies conducted thus
far by the authors refer to two different stochastic models. Most of the work done
concerns the original model ([10] through [17]) in which the over-all distribution
of galaxies is visualized as an agglomeration of clusters, the centers of which are
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distributed in space uniformly or quasi-uniformly. Thus, this particular model may
be labeled the model of simple clustering. The same subject was recently treated
[18] by McVittie from the point of view of relativity theory. In addition, however,
some further work was done on a more general model which may be labeled the
model of fluctuations [33], [34]. Finally, some recent results refer to yet another
model, the model of multiple clustering.

At this moment it may be useful to mention an important difference between the
theoretical approach of the present studies and that of the great majority of others.
In the latter, as exemplified by the important work of Hubble, it is frequently recog-
nized that the numbers of images of galaxies in squares on a photographic plate,
and also the numbers of galaxies located in unit volumes in space are subject to
some sort of random variation. However, no clear-cut statement is given to explain
the postulated properties of this variation. Instead, scattered throughout the study,
there are assumptions regarding the methods of eliminating the undesirable effects
of the random variation on the various averages that are being computed.

There are several disadvantages in this approach. The main one is the lack of
clarity: after a study of a paper it is difficult, if not impossible, to visualize the
details of the spatial distribution of galaxies implied by the hypotheses adopted. As
a consequence of this lack of clarity, it is difficult to avoid inconsistencies in the
results.

For the above reasons, the present authors adopted the policy of collecting to-
gether all the basic assumptions and of formulating them at the outset of the study
into several postulates with as much clarity and precision as practicable. By this
device, it may be found easier to test each of the postulates separately. Because of
the multiplicity of circumstances that have to be taken under consideration, it is
convenient to classify the postulates into three groups: those relating to the distri-
bution of galaxies in space, those establishing the connection between what happens
in space and what may be seen on a photographic plate and those relating to what
is briefly called “errors in counting.” Actually, this last term includes all factors
which cause differences between independently made counts on two different plates
taken of the same area of the sky and intended to be to the same limiting magnitude.

5. Postulates underlying the stochastic model of simple clustering of galaxies

The first stochastic model considered by the authors [10] is no more than the
result of an effort to put into exact terms the ideas about the spatial distribution of
galaxies that for some time have been more or less generally adopted in the astro-
nomical literature. These ideas may be exemplified by the following quotation from
a paper by Hubble [4] published in 1936. This quotation was selected because, as
is well known, originally Hubble rather favored the assumption that the galaxies
are uniformly distributed in space.

“While the large-scale distribution (of galaxies) appears to be essentially uniform,
the small-scale distribution is very appreciably influenced by the well-known tend-
ency toward clustering. The phenomena might be roughly represented by an orig-
inally uniform distribution from which nebulae have tended to gather about var-
ious points until now they are found in all stages from random scattering, through
groups of various sizes, up to occasional great clusters. ...

““This representation is purely formal and has no genetic implications. For pur-
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poses of speculation, the reverse development seems preferable, namely, that nebu-
lae were formed in great clusters whose gradual evaporation has populated the
general field.”

In accordance with the above purely qualitative suggestions, the postulates of
the theory of simple clustering of galaxies are as follows, assuming ordinary Euclid-
ean space and Newtonian mechanics.

(i) Galaxies occur only in clusters.

(ii) To every cluster there corresponds a random variable » which represents the
number of galaxies belonging to this cluster. The variables » corresponding to differ-
ent clusters are mutually independent and have the same distribution characterized
by a probability generating function G,(¢). The general model does not involve any
limitation on the distribution of » except, of course, that it is capable of assuming
only positive integer values» = 1,2, - - -. The variables » are completely independ-
ent from all other variables considered in the model.

(iii) The distribution of positions of galaxies within a cluster is random and is
subject to a probabilistic law which is the same for all clusters. More precisely, given
a moment T in time and given the coordinates u:(T"), ua(T), us(T) of the position
occupied at that time by a cluster center, there exists a function f*(y, T) which
represents the conditional probability density of the coordinates X:(T), Xu(T),
Xs(T) of the galaxy. For a fixed T this probability density is postulated to be a
continuous function of the distance n between any given point z;, 2, zs and the
center of the cluster. This function f* may depend on 7. Also it is postulated that,
given T and the coordinates of all the clusters at that time, a triplet of random co-
ordinates of one galaxy is stochastically independent from that of any other galaxy,
and is independent of any other variable considered in the model.

(iv) At each moment 7', to every region R in the space (really: to every Borel set)
there corresponds a random variable v(R, T) which represents the number of cluster
centers which, at time 7', are situated in R. The distribution of v(R, T') depends only
on the volume (really: measure) of R. If Ry, Rs, - + -, R,, - - - is a sequence of dis-
joint regions, then the variables v(R;, T'), corresponding to the same moment 7', are
completely independent. Let R be a region of finite volume and R* a measurable
subset of R. It is postulated that, given that R contains exactly n > 1 cluster centers
¢y, Cy, - « -, C,, the probability that R* will contain some specified m < n of these
clusters, say Ca, Co,, + + -, Cs., depends only on m, n and the measures of B and R*
but not on the particular numbers a;, as, - - -, @n.

The above four postulates determine the general structure of the stochastic model
of the spatial distribution of galaxies. So long as the probability generating functions
G,(t) of », and that of v(R, T) remain unspecified, as well as the probability density
f*(n, T), we shall speak of the general model of simple clustering. Here the word
“simple” indicates the exclusion of clustering of clusters. It is easy to see how the
model of simple clustering may be generalized allowing for clusters of second, third,
ete. orders (see section 11). Whenever any one of the three functions postulated is
ascribed a specific form, perhaps with some adjustable parameters, then the result-
ing model will be called a specific model [11].

One of the early interesting results is that, so long as G,(t) remains unspecified,
no generality of the model is lost by the assumption that the variables v(E, T) are
Poisson distributed,
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M G‘y(tlT, V(R)) = g MDVEA-0)

where \(T) stands for the average number of the cluster centers per unit volume
at time 7 and V(R) for the measure of the region R to which the variable v refers.

All the earlier papers [10] through [14] contemplated a static universe. Thus,
the symbol T referring to a particular moment in time did not appear in the
formulas.

6. Generalization to a possibly expanding universe

The originally static model was recently generalized [15], [16], [17] to allow
for the possibility of expansion of the universe. This generalization required an
assumption regarding the motions of cluster centers and also another assumption
regarding the motions of galaxies within a cluster. These assumptions were formu-
lated in accordance with the ‘“cosmological principle” [19] which excludes the
possibility of any sort of “privileged” position in the universe. In application to
cluster centers, this principle asserts that at every moment T and for every pair
C, and C; of such centers, the velocity of C, with respect to C, is the same con-
tinuous function of the distance between C; and C:. As is well known, for this to
be true it is both necessary and sufficient that, with «;(7T") representing the coordi-
nate of a cluster center with respect to an orthogonal system of axes centered at
one of them, 7 = 1, 2, 3,

@) wll) = WO, G5 = u O
with
&) H(T) = exp{j; hl(t)dt} .

Thus, a function k;(T") characterizes the process of recession of clusters. Similarly,
if the cosmological principle is applied to the motions of galaxies within a cluster,
then the coordinates z:(T) of a galaxy belonging to a cluster centered at w:(7T),
t = 1, 2, 3, must satisfy the condition

4) z(T) — ui(T) = [2:0) — u:(0) | HT)
or

) zi(T) = z(0)Ho(T) + u:(0) [H(T) — Ho(T)]
where

6) H)T) = exp{ J;T hz(t)dt}

and the function h,(f) characterizes the phenomenon of the expansion of clusters.
It will be noticed that, if hy(f) = he(t) = 0, then the universe is static. Thus, all
formulas which relate to the generalized model, admitting the possibility of expan-
sion of the universe in accordance with the assumptions just formulated, reduce to
corresponding formulas of the static theory merely by the substitution of zeros for
the two functions h,(t) and ha(t).

Formulas (1) through (6) imply that the motions of cluster centers and those of
galaxies within clusters are deterministic. For any given moment 7 the randomness
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in the positions of cluster centers and of galaxies is reducible to the randomness at
one standard point, for example, at 7 = 0. Since the origin from which time is
measured is arbitrary, we may agree to place it at ‘‘the present,” that is to say,
at the moment of taking a photograph of the sky.

The development of the theory leading to the distribution of images on the photo-
graphic plate required the consideration of a particular system of coordinates Y3,
Y,, Y3, of a galaxy, labeled the “apparent” coordinates. These are defined as follows.
Denote by X, X,, X; the (random) coordinates of a galaxy referring to ‘“‘the pres-
ent,” that is to say, to T = 0 and let — 7 be the moment in the past at which the
galaxy emitted the light signal that reaches the photographic plate at ' = 0. Then
the “apparent’ coordinates Y, Y,, Y; are the coordinates of the position occupied
by the same galaxy at time — 7. If u;, us, u; are the ‘“present” coordinates of a
cluster center then it is found that the conditional probability density of the appar-
ent coordinates Yy, Y, Y; of a galaxy belonging to the corresponding cluster is
given by, say,

(7N T, 2, Y3 ws, us, us) = f*() |J |,
where
2 : (y; - Hl‘lti)z
(8) nt = z_:l Hz
_ 1 i; HiHs — HiHj wy) + usys + uaya}

Here the functions H; and H, and their derivatives H,’ and H,’ are evaluated at the
point —£/c where c is the velocity of light and

(10) E={yi+ i + 43}

represents the ‘“‘apparent’’ distance between the galaxy and the observer.

In the absence of theoretical considerations ascribing specific forms to the func-
tions hy(f) and h.(t) one would probably consider the simplest hypothesis a(f) =
ha(t). If the Doppler-like shifts in the spectral lines of distant galaxies found by
Hubble and Humason [20], [21] to be proportional to distance are interpreted as
indicating velocities, then one might put k:(¢f) = hy(f) = h = constant. Under these
assumptions formula (8) reduces to

3

(¢8)) 7= 3yt — )’
7=1

and formula (9) to

(12) J =" {1 + g¢)

where, for the sake of brevity, we have put g = h/c.

7. Postulate regarding the “visibility”’ of a galaxy on a photographic plate

As mentioned in the Introduction, in order to connect the postulated properties
of the spatial distribution of galaxies with what might be observed on a photo-
graphic plate it is necessary to introduce a special postulate. Such a postulate may
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or may not take into account the possible presence of galactic absorbing clouds
tending to dim larger or smaller areas of the sky. Thus far, for the sake of simplicity,
the authors have been working on the assumption that the available empirical data
refer to regions in the sky somewhat affected by uniform galactic absorption but
not affected by irregular absorbing clouds. In its simplest form, the postulate
adopted regarding the “visibility” of a galaxy on a photographic plate is as follows.

Given an observational setup, with the limiting magnitude m, for identifying and
counting galaxies, and given that the apparent distance of a galaxy is £, there exists
a probability 6(¢, m,) that a properly oriented photograph will contain an image of
the galaxy concerned. Given the distances &, %, - - -, & of any s galaxies, their
“visibilities” on plates having the same limiting magnitude m;, are mutually inde-
pendent.

For a given type of galaxies (spirals, elliptical, ete.) and for an “idealized” photo-
graphic plate, with strictly constant limiting magnitude, say m;, over its whole
area, the structure of the function (¢, m;) may be described as follows. Consider
the absolute magnitude M of a galaxy concerned and treat it as a random variable
with a probability density pa(x). Assume that the absolute magnitude M of one
galaxy is independent from that of any other and from its position within a cluster.
Let m(t, M) be the photographic apparent magnitude of a galaxy at distance ¢
whose absolute magnitude is M. Including the effect of the familiar phenomenon of
reddening of distant galaxies, the relation between M, £ and m(¢, M) may be written
as

(13) m(§, M) = M — 5+ 5logié + x(£)

where x(£) represents the effects of reddening and depends on several factors such
as the spectral response of the plates and the type of galaxy considered. The exact
nature of the function x(£) is uncertain. However, it may be hoped that the series
of studies initiated by Stebbins and Whitford will eventually lead to its precise
determination. In any case, the assumptions made imply that 6(¢, m;) coincides
with the probability that the absolute magnitude of a galaxy is less (brighter) than
the limit ,

(14) mi+ 5 — 5logif — x(§) .
Thus
my+5-5logygf- x (§)
(15) o, my) = f pu(z)dz .

-3

This applies to a single type of galaxies to which the density px(z) and the redden-
ing effect x(£) refer. The corresponding quantity referring to a galaxy chosen at
random would be represented by a weighted mean of the same quantities referring
to all the several types of galaxies.

We should mention that the postulate that the absolute magnitudes of galaxies
are independent of their positions within a cluster may be an open question. For
example, Zwicky [22] has interpreted his counts of nebulae in the Coma cluster
as showing that ‘“The fainter nebulae are relatively more frequent as the distance
from the center of the cluster increases.” On the other hand, Mayall [23] has
observed several bright nebulae which are more than 1?5 distant from the center
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of the cluster and which have red-shifts within the range of those near the center.

In an effort to apply the general model of simple clustering [11], the authors
used the suggestion of Hubble that the function px(z) may be approximated by a
normal probability density with a mean M, and a variance ¢%,. An easy transforma-
tion then gives

1 Ly
(16) 6¢, m) = —— f e "t
V2t
where
(17) L) = (my — Mo+ 5 — 5logief — 5.19 X 107°£) /oy

and £ is measured in parsees. It will be seen that (£, m) depends not so much on m;
as on the difference m; — M. Since the values of m; and M, are uncertain, the differ-
ence m; — M, was taken to be an adjustable parameter, as well as o). A comparison
of the consequences of the model with the data of the Lick Observatory gave good
agreement for 1 < oy < 2 combined with all the values! considered of m, — M,,
namely,

(18)

1o 2.

8. Basic formulas of the theory of simple clustering of galaxies
We reproduce here two formulas which are basic in the theory of simple clustering

of galaxies. First, consider s arbitrary disjoint regions in space, say Ry, Ry, - - -, R.,
and denote by N; the number of galaxies whose present positions lie.in B;, ¢ = 1,
2, - - -, 8. The first of the two basic formulas gives the joint probability generating
function of the random variables Ny, Na, - - -, N,, namely,

(19) Gy Ny, N (b, by - 0 oy L)

= exp{ —A f(l - @, I:l - g P,)(1 — t,-):l)du}

where the single letter u stands for the triplet of coordinates of a cluster center
u1, Us, Uz and the single integral sign for the triple integral extending from — « to
+ o for each of the three coordinates u;, u; and u;. The symbol P(u) represents the
conditional probability that the present position of a galaxy will be in R; given that
it belongs to a cluster centered at u = {us, us, us}. Thus

(20) Piu) = f f I ()dmdaades
with
1) = D (i — u)?.

=1

1 The numerical values given in this paper are in terms of the distance scale employed up to 1952.
If this scale is revised, as suggested by %V Baade, by multiplying the distance to all objects outside
the Milky Way system by a factor k, with a corresponding correction in brightness, then the values
of the parameters in this paper are automatically revised. Thus, in equation (17), the parameter
m1 — M, + 5 is increased by 5 logiok because M, is decreased (made brighter) by 5 logik. At the
same time, oy is unchanged while the revised value of the coefficient of £ is 5.19 X 107% . Instead
of writing, for example, m; — M, = 31.5, we would write a new value equal to 31.5 + 5 logu k.
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Formula (19) will be used below in the summary of results concerned with the
possible phenomenon of superclustering of galaxies and also in the comparison of
the theory of simple clustering of galaxies with the theory of fluctuations.

The second fundamental formula of the theory of simple clustering refers to the
distribution of images of galaxies on photographic plates. Denote by w; and w; two
arbitrary regions, overlapping or not. Let m; < m, be the limiting magnitudes of
the photographs of these regions. Finally, denote by n, and n, the numbers of images
of galaxies in w; and w, respectively. Then the joint probability generating function
of n, and n, is given by

(22) Gnl.nz(tl, tz)
= exp{——kf{ 1-G,[1—=p1(w)(1 — t1) —p2(u)(1 — t2) —ps(w)(1 — trt2)] }du}

where pi(u), p:(u) and ps(w) represent, respectively, the conditional probabilities
that a galaxy from a cluster centered at v = {ui, u,, us} will be visible in w;, but not
in w,, that it will be visible in w; but not in «; and that it will be visible in both
w; and w.. Thus, with obvious notation

23) p(w) = f 0(¢, m1) fdy:dyqdys + f {0, m1) — 0(, ms)} fdy:dy.dys

W) ~wywg wiwg

(24) p(w) = f 0(, mo) fdy:dy+dys
wz--w]w2

(25) ps(w) = f 6(¢, mo) fdy:dydys

wla)

where f stands for the conditional probability density (7) of the apparent coordi-
nates of a galaxy belonging to a cluster with its present position at w = {uy, us, us}.
Even with the most simplifying assumptions regarding all the intervening func-
tions, formula (22) is too complicated for direct evaluation of the probabilities of
particular combinations of values of n, and n,. However, the expressions for the
moments of the joint distribution of n, and n, are easily derived from (22), naturally,
under the assumption that the moments of » are finite. In particular, we have

(26) = Eny) = MR , 0‘31 = MR + MW(C — 1)Rso0
where, in general,

@7 Rimn = f(pl + p3)*(p2 + pa)"pidu ,

where 7 stands for the expectation of v and C = E(»?)/».
The covariance o,,,, of the variables n; and n. is
28) Oning = NRoon1 + M(C — DR -

Two special cases of these formulas are of particular interest. One is when w; and
w; are two disjoint equal and similarly oriented squares on the same photographic
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plate or on two such plates with the same limiting magnitude m. Then w,w, is empty
and p;(u) = Ron = 0. In this case the quotient

- Inymy Rigo
(29) Q - 0,'2”_ i1 - Rzoo ’
labeled the quasi correlation between n, and n,, is independent of A and of the mo-
ments of the variable v. Also, using the counts of images of galaxies in equal squares
w1, wp separated by a fixed angular distance, say B, it is possible to obtain estimates
Q*(B) for several values of 8. These estimates can then be compared with the cor-
responding quotients of integrals Ri0 and Ra00 computed on tentative assumption
regarding the function 8. A comparison of this kind gives, then, an indication
whether or not the hypotheses regarding f and 6 are at all tenable.

The other interesting particular case of the formulas for moments of n, and n,
corresponds to the assumption that w; and w. coincide but m, > m,. Here w; — wiwe
and w; — ww. are empty and thus p.(u) = 0. Also Roip = Ron. Here again X and
the moments of » can be eliminated to obtain the quotient

Ri1o _ Tnpng — T2

(30) Qd = = ’
\/RzooRuzo \/(U,’fl - fh)(tf,z,2 — 7i2)

to be termed the quasi correlation in depth. The quasi correlation in depth can be
estimated empirically from counts of images of galaxies in the same solid angles w
but taken to varying limiting magnitudes. A comparison with the theoretical values
of Q; may then eliminate unsuccessful guesses regarding the function f. In particu-
lar, it is hoped that the comparisons of the empirical and theoretical values of (29)
and (30) computed for varying sizes of w will serve to choose between the two
alternative hypotheses regarding the expansion of the universe. Some results of
such empirical studies are already available and are reproduced in the next section.

9. Some numerical results

Numerical investigations involve many important details which are difficult to
summarize in a paper like the present. For this reason only the briefest account is
given here and the reader is referred to the original publications [11], [13] and [14].

The main numerical results concern the empirical quasi correlations (29) which
were computed using Shane and Wirtanen’s counts [7] first in 1° X 1° and then in
10’ X 10’ squares on the plates of the Lick Observatory. The first set of these quasi
correlations, for the larger squares, were then compared with the theoretical quasi
correlations computed on the specific assumptions that the universe is static and
that the probability density

31) £ =( 1 ) v

o\ 2m

where o was treated as an adjustable parameter. The process of adjusting the value
of ¢ is illustrated in figure 1. Here filled circles represent the empirical quasi correla-
tions for successive values of 8 = k°, k = 1, 2, 3, 4, 5. The five curves represent the
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theoretical values computed as quotients of the integrals Rj;0/Rs00 using trial values
of ¢ indicated in figure 1. Since the two integrals depend on m; — M, and oy, it was
necessary to substitute numerical values for these parameters and the curves shown
in figure 1 correspond to m; — M, = 32.5 and o» = 0.85 mag, which is Hubble’s
original estimate. The trial values of ¢ characterizing the particular curves are
measured in units of 10° parsecs.

s£0=100
1.0 .t-{{ 2z Qe OB —ee o 0
8] N N TOowmg=20
Ql( .“.‘k \Q\.\ " O
° "Q \\ o
4. . N.s0=10
. | \ \o\.
. ~
2 K N o
. <~ ©®
o=25 g, “O~_ o=4
o ———— -O- == o
0 | 2 3 4 K@ 5
FIcure 1

Process of fitting the value of o.

It will be seen that ¢ = 4 X 10° parsecs gives a very good fit and appears to be
reasonably well determined. The difficulty is that the best fitting value of ¢ depends
very much on the assumptions made regarding the values of m; — M, and of oar.
The situation is illustrated in figure 2. We find that the empirical quasi correlations
are fitted about equally well by assuming any one of the following combinations
of the three parameters.

TABLE 1

THE VALUES OF ¢, FOR VARIOUS COMBINATIONS OF VALUES OF PARAMETERS m; — Mo
AND ou, WHICH PROVIDE EXCELLENT AGREEMENT WITH EMPIRICAL QUASI CORRE-

LATIONS
oM
m — Mo
0.85 1.25 2.00
3 2.8 3.7 7.5
32.5. .. 4.2 5.4 10.0
33.5. . . 6.4 7.5 14.0

As mentioned, all the above corresponds to counts in 1° X 1° squares on the Lick
Observatory plates.
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If the theoretical model with the indicated specialization corresponds to reslity,
then a system of values of the three parameters m; — M, ox and ¢ must exist with
which the theoretical quasi correlations would fit the empirical ones computed not
only for 1° X 1° squares but for squares of any other given size, for example for
10’ X 10’ for which the counts are available. A conscientious search for such values
of the three parameters was conducted in the Statistical Laboratory and figure 3

ot m, ~Me =315 10 m, - Mo =315
0{8 Oy =2.00
6
4
2 o=
0
10 K
- m, - M, =325
8 \ \K ~0=20 Oy =2.00
Q'.s \ N\
4
2
o
10
O.B , 0y =200
6
4
2
o

FiGure 2

Best fitting theoretical quasi correlations.

exhibits a sample of the results obtained. It will be seen that the adopted value of
ou = 1.25is the same in each of the four panels of the figure. On the other hand, the
panels differ in the trial values of m; — M. In each case the quantity measured on
the axis of abscissae is the angular distance between the centers of squares. The
quantity measured on the axis of ordinates is the quasi correlation. The filled circles
represent the empirical quasi correlations computed for 1° X 1° squares, and the
crosses give the empirical quasi correlations for 10’ X 10" squares. In each panel
there are also two pairs of curves representing the theoretical quasi correlations.
One pair corresponds to the numerical value of o that fits satisfactorily the empirical
quasi correlations for 1° X 1° squares. The other pair corresponds to the value of o
which fits approximately the data for the 10’ X 10’ squares. The upper curve within
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each pair corresponds to the formula for 1° X 1° squares and the lower curve corre-
sponds to the formula for 10’ X 10’ squares.

It will be seen that none of the pairs of trial values of m; — M, and ¢ gives any-
thing like a satisfactory fit to both series of empirical quasi correlations, and that,
invariably, the value of ¢ that fits the data for 10’ X 10’ squares is substantially
smaller than that fitting the quasi correlations for 1° X 1° squares.

This lack of consistency indicates that something is wrong with the model on
which the curves in figure 3 were computed. Qualitatively one might perhaps say
that the analysis of the 10’ X 10’ data indicates the presence on the Lick Observa-
tory plates of an excessive (compared to the prediction of the model) number of
clusters of galaxies with small angular dimensions (small ¢). The same general con-
clusion was reached on different grounds, as a result of the analysis published in
[13]. The modification of the original model which might remove the inconsistency
noted is currently the subject of numerical studies. The particular hypotheses
within the model that attract the authors’ special attention are (i) the status of the
universe, stationary versus expanding; (ii) the simple versus the multiple clustering
of galaxies (see section 11) and (iii) the hypothetical model of “errors” in counting
images of galaxies (section 16).

A separate paper [14] was given to the analysis of a statistic K, suggested by
Zwicky [24] for the study of the expansion of the universe and for the verification
of the hypothesis of intergalactic absorbing clouds. It was found that, qualitatively,
the behavior of K is very much the same whether the universe is expanding or not.
Also, at least over the 3 mag. range of limiting apparent magnitudes covered by
numerical study, the behavior of K is consistent with the assumption that no inter-
galactic absorbing clouds are present.

10. Expected number of images of galaxies per square degree

The classical attempts by Hubble and others to study whether the Doppler-like
shifts in the spectra of galaxies indicate actual velocities of recession were all based
on counts of images of galaxies on plates taken to increasing limiting magnitudes.
This circumstance justifies a closer examination of the first formula (26) giving the
expected number of images of galaxies within a region w on an idealized plate with
a fixed limiting magnitude. The properties of this formula do not correspond exactly
to some of the widespread beliefs. In the following analysis we shall assume that v is
a square with angular dimensions 2a X 2, that the expansion of clusters, if any,
is going on at the same rate as the recession of cluster centers, so that 5 (¢) = ha(t),
and that counts are made of only one type of galaxies, characterized by a definite
function x(£) representing the effect of reddening and by a single function 6(¢, m.)
exhibited in (15). The generalization of our conclusions to the case of several differ-
ent types of galaxies will be immediate.

Because of the assumption k() = hy(f) = h(¢), say, we have H,(t) = H.(t) =
H(t), say, and formulas (8) and (9) reduce to

" v b [ (<) -]

=1 C

(-t (-9}

(33) J
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Changing the notation for the expected number of galaxies brighter than the
limit m, from 7, to 7(m,) and using formula (26) we obtain

(34) i(my) = o f_ m { f f )T, m,)dyldyzdys} dudusdus

or, changing the order of integration and noticing that the integral of f*(n) with
respect to u;, s, %s from — o to + « must be equal to unity,

(35) almy) = W fff J 6, my)dydy.dys .

Since the integrand depends only on £ while w represents a solid angle 2a X 2a with
its vertex at the observer, a change to polar coordinates gives

(36) Aa(m,) = 4\ asin a ];w £2J6(¢, m,)d¢

where J is given by (33) and 6(¢, m,) by (15). Here \v is equal to the average number
of galaxies per unit volume in space and we note that 7(m,;) does not depend on
whether the galaxies are uniformly distributed in space or are clustered.

As is well known, formula (36) has the remarkable property that, if x(¢§) = h(t) =
0, that is to say, in the absence of reddening and in a stationary universe, then the
substitution

37 m-—+5—5logit =1
leads to
+oo ¢
(38) logoi(m) = 3 m + logie(\») + log;o{C e 2! pu(x)dz dtg
5 - -

where C and D are known positive constants. This equation indicates that, if counts
of images of galaxies are made on plates with increasing limiting magnitudes m,,
me, + + +, M,, then the empirical values of logie7%i(m;) plotted against the correspond-
ing m; must align themselves about a straight line with its slope equal to 0.6 and
with its intercept depending on A7 and on the luminosity function py(z). It is
occasionally believed that this alignment of empirical points along a line with 0.6
slope can be treated as an indication not only of the stationarity of the universe,
but also of the absence of clustering. However, the above analysis [ 10] shows that,
in the absence of expansion and of red shift, the phenomenon would be observed
irrespective of whether the galaxies are clustered or not.

Formula (15) combined with (36) indicates that, in the presence of reddening
which causes the function x(¢) to be positive, but in the absence of expansion, the
empirical points (m;, logio7i(m:)) would fall somewhat below the line (38), probably
aligning themselves about a curve. Also, formula (33) combined with (15) and (36)
indicates that, if reddening were absent and yet expansion present, so that x(¢) = 0
but k(f) > 0, then the empirical points (m;, logie7i(m;)) would fall above the line
(38), also probably about a curve. In recognition of the phenomenon of reddening,
this suggested the following method of studying the problem of expansion.

Let m; be the limiting magnitude of a plate corresponding to the light of a galaxy
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not affected by reddening. Owing to reddening, a galaxy with its apparent magni-
tude exactly equal to m; will be too faint to be identified on the plate. Thus, one
may think of determining for the same plate another limiting magnitude, say
m*(m;), to be labeled the limiting magnitude corrected for the effect of reddening,
such that the galaxies affected by reddening but brighter than m*(m.) would be
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Fi1GURE 4
Effect on various assumptions regarding reddening of galaxies and the state of the universe on

the expected number of images of galaxies per square degree on a plate taken to a limiting magni-
tude m;.

visible on this plate. Unfortunately the quantity m*(m;) so defined would also
depend on the intensity of reddening, that is to say, on the distance of the galaxy.
However, one might attempt another definition of m*(m;) by means of the equation

o m+5-8 logyoé—x (%) o m*+5-5 logyoé
(39) j; Ezf pulz)dr di = j; Ezj; pu(x)dx dt .

With reference to (36), (15) and (33) it will be seen that this equation requires
that, in the absence of expansion, the corrected limiting magnitude m*(m;) ascribe
to ii[m*(m;)], evaluated on the assumption of no reddening, the same value 7(m,)
which corresponds to the limiting magnitude m; with the effect of reddening. If
efforts to evaluate m*(m,;) with the above properties were successful, then one
might think of plotting the empirical logio7i(m;) against m*(m;). If the plotted
points significantly deviate from the line (38) with slope 0.6, then this may be con-
sidered as indicating the expansion of the universe.

Unfortunately, as is visible from (39), the corrected limiting magnitude m*(m.)
must depend not only upon the effect of reddening x(¢) but also upon the luminosity
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function pu(z) of the galaxies. Figure 4 illustrates the dependence of logie7i(m;) on
m; when the luminosity function px(z) conforms with the ideas of Hubble, that is
to say, is normal with mean M, = —14.2 and with standard deviation equal to
0.85. The straight line corresponds to the assumptions of no reddening effect and
a static universe. The lower curve corresponds to the assumption that the effect
of reddening is represented by

(40) x(&) = 5.15 X 10~%

but there is no expansion. Finally, the upper curve is based on assumption (40)
and, in addition, that the universe is expanding, namely [25] that h(z) = 530
km/sec/10® parsecs. Surprisingly, this upper curve is hardly distinguishable from
a straight line. In all cases, the region w is a square degree and it is assumed that
Av = 107Y per cubic parsec.

It is interesting to note that, while significant deviations of the empirical points
[m*(m;), logieii(m,)] from line (38) do indicate either that the universe is expand-
ing, or that the effect of reddening was not entirely accounted for by the function
x(£) used in the computations, or that the function m*(m;) was not properly ad-
justed to the density pu(z), the reverse conclusion need not be true. In fact, situa-
tions are possible in which the empirical points [m;, logiei(m:)] align themselves
around a straight line with the slope 0.6 even though the apparent photographic
magnitudes are affected by the reddening of galaxies and even though the universe
is expanding. The authors were not able to produce an example in which this align-
ment is exact. On the other hand, it is easy to indicate one in which the lack of
exact alignment is so insignificant as to defy empirical detection.

In constructing this example we shall make no assumption regarding the function
h(t) and no assumption regarding x(£). After leaving this much arbitrary, we shall
make a specific assumption regarding the luminosity function py(z). Namely we
shall assume that it corresponds approximately to the ideas of Zwicky [24] and
that, for values of ¢ not exceeding a certain limit u, the distribution of absolute mag-
nitude is exponential,

t
(41) f pu(@)dr = &4,

For values of t > u the above integral will have to be assumed equal to unity. Here
a is a positive number. Upon substituting (41) into (36), we obtain

o . E(my)
(42) A(m) = 4N« sina{e“""i”-“) ﬁ g2 g oBloatotx®l g 4 ]; £J dz}

(m;)

where £(m;) is determined by the equation

(43) m; + 5 — u = 5logit(m:) + x[£(m.)].
Since x(¢) = 0, it follows that
(44) E(m;) < 10707078

and, provided u is a rather large number, £(m;) is very small. In these circumstances
the second integral in (42) will be negligible and it will be seen that, for all values
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of the limiting apparent magnitude m; that may come under consideration, the
loge7i(m:) will depend linearly on m;, the coefficient of m; being equal to a logyee.
Thus, with an appropriate value of a and with u of order of 42 or so, the empirical
points [m;, logie7i(m;)] corresponding to m; < 22 will lie close to a straight line
with its slope equal to 0.6, quite irrespective of whether the effect of reddening was
eliminated or not and whether the universe is expanding, contracting or static.

The above conclusions apply to the particular luminosity function given by (41)
and may perhaps be used in order to verify whether or not this function, with arbi-
trary a > 0, could be used to represent pu(x).

Simple Clustering Clustering of second order
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Ficure 5
Concepts of simple clustering and of clustering of second order.

11. Generalization of the original model: Model of multiple clustering

Because of the observations, originally made by Shapley [26] and more fully
confirmed by Shane and Wirtanen [7], that the clusters of galaxies tend to congre-
gate in small groups, it appeared interesting to deduce formulas allowing for the
possibility of “‘superclustering” or “multiple” clustering. Actually formulas of this
kind were deduced [27] and the relevant theory is being prepared for publication.
This theory is concerned with clustering of an arbitrary sth order. For the sake of
brevity we give below only the basic formula referring to clustering of the second
order. This formula corresponds to formula (22) of the theory of simple clustering.

In order to visualize the model of clustering of the second order, it is convenient
to return to that of simple clustering as described above and to begin by making a
few substitutions of terms. Here the inspection of figure 5 may be helpful.

(i) Instead of the old term “cluster center’’ use “center of supercluster.”

(i) Instead of speaking of a variable » = number of galaxies per cluster, consider
the variable », = number of clusters per supercluster.

(iii) Instead of speaking of galaxies within a cluster, speak of cluster centers
within a supercluster.
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(iv) Instead of the function f*(5) representing the conditional probability density
of the present coordinates of a galaxy given the present coordinates of the center
of the cluster to which this galaxy belongs, use the function f,* to represent the con-
ditional probability density of the coordinates of a cluster center, given the coordi-
nates of the center of the supercluster to which the cluster belongs.

The coordinates of the center of a supercluster will be denoted by w = {u1, uy, us},
and those of a cluster center by v = {uv1, v, v3}. Accordingly, it will be convenient
to complete the symbol for f;* by writing f,* (v, u). The hypotheses originally adopted
for cluster centers and galaxies will now be transferred without change to centers
of superclusters and cluster centers respectively.

In addition, we attach to each cluster a random variable », representing the num-
ber of galaxies belonging to this cluster. Also we introduce another probability
density, say f2*(z, v). This will be the conditional probability density of the present
coordinates of a galaxy, given the coordinates » of the center of cluster to which
this galaxy belongs. The original postulates regarding the distribution of galaxies
within a cluster are transferred to the present model and, in particular, it is assumed
that the arguments of fi* and f,* are distances between points » and « and between
z and v, respectively. Naturally, the distributions of » and », need not coincide.
Also fi* and f,* need not be the same functions. The symbol f.(y, v) will be used to
denote the conditional probability density of the apparent coordinates of a galaxy
given that it belongs to a cluster with the present coordinates of its center equal to v.

With these postulates and notation, the probability generating function of the
variables n, and n, representing the numbers of images of galaxies in regions w, and
w; on two photographic plates is given by

(45)  log Ghj.ny (81, to)
= —)\f{l —Gyl[ffx* 0, WG, {1 —p1(1 — 1) —pa(1 —t2) —ps(1 — tity) }dv]}du

where p,(v), p2(v) and ps(v) are obtained from formulas (23), (24) and (25) by sub-
stituting in them v instead of « and f; instead of f. Both integrals in (45) are triple
integrals extending from — « to 4 = for each variable of integration.

Although the idea of multiple clustering is interesting, the model of second order
clustering is less attractive than the original model of simple clustering because,
even with the most simplifying specializations, the new model is likely to depend on
at least six adjustable parameters. It will be noticed that, according to the hypoth-
eses adopted regarding the functions &, () and he(?), formulas (45) will apply either
to the static or the expanding universe. However, this formula is deduced on the
assumption that, if the universe is expanding at all, then the rate of expansion of the
superclusters coincides with that of the recession of centers of superclusters.

In the deduction of formula (45) an essential role is played by formula (19) which
is used to characterize the spatial distribution of cluster centers.

Thus far, only the general theoretical model of multiple clustering was studied
and very little was done to adjust this model to the observable phenomena. This
adjustment, and also the relevant numerical results, must be relegated to a future
publication. However, certain qualitative considerations, which may be considered
as evidence in favor of the hypothesis of multiple clustering, deserve recording in the
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present paper. These considerations indicate the possibility that the assumption of
multiple clustering of galaxies will account for certain numerical discrepancies
which caused the authors a considerable amount of grief.

The discrepancies in question concern the function f*() which, in the theory of
simple clustering, represents the density of galaxies per unit volume as a function
of the distance from the cluster center. This function can be estimated by two inde-
pendent methods, directly [7] through the analysis of identified clusters (see sec-
tion 11), and indirectly through the analysis of quasi correlations (see section 8)
on the basis of the theory of simple clustering [11]. The two estimates disagree and

of cluster

Center

Center of
supercluster

Ficure 6
Flatness of the function f3*.

the function obtained by the method of quasi correlations appears much flatter
than that obtained by the direct method. The construction of a synthetic plate [13]
provided further evidence that the function f*(5) obtained by the method of quasi
correlations may be too flat.

Originally it was thought that the discrepancy might be due to an unlucky choice
of specialization of f*(4) used in paper [11]. However, subsequent numerical work
indicated that, even if one adopts an alternative specialization (a weighted average
of several normal densities rather than a single normal density), the indicated dis-
crepancy continued to persist. Now it is easy to see that, qualitatively at least, the
phenomenon of multiple clustering tends to account for this discrepancy.

In order to see this, assume that the actual distribution of images of galaxies on
a photographic plate reflects multiple clustering and conforms with formula (45).
Assume further that this fact is ignored and that formula (29), based on the theory
of simple clustering, is used to estimate the density f*(n). Starting with formula (45)
it is easy to deduce that the left hand side of equation (29) is a weighted mean of
two quasi correlations Q. and Q,, one depending on the actual clustering of galaxies
and the other on the clustering of clusters. More specifically, we may write

(46) Q = chc + waQa .
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Here Q. stands for the quasi correlation that would have been observed if (i) v, = 1,
so that there is no multiple clustering and (ii) if the internal structure of the clus-
ters were governed by the density fo*(x, v), so that

_ [ p1)ps(v)dy
7 9 ="7 piv)dv

with
(48) piv) = _f; 8¢, m) faly, v)dy -

In order to explain the meaning of ., we must introduce two new symbols. The
first of these is f3*(x, w) which represents the conditional probability density of the
present coordinates X;, X,, X; of a galaxy, given that it belongs to a supercluster
centered at u = {uy, us, us}. We have

(49) 5@ w = [f}e, v, v)dv .

It will be noticed that, most probably, the density fi*(v, u), governing the struc-
ture of a supercluster, is very substantially flatter than the density f,*(z, v) govern-
ing the structure of a cluster. Formula (49) implies that fi*(x, ) is even flatter
than fi*(v, u). Also, this fact can be seen intuitively in figure 6. Using f3*(z, u) and
the formulas of section 6, it is easy to obtain the corresponding probability density
fs(y, u) of the apparent coordinates Y1, Y3, Y3 of a galaxy, given that this galaxy
belongs to a supercluster centered at u. Now, denote by m;(u) the conditional proba-
bility

that a galaxy belonging to a supercluster centered at u will have an image visible
within the square «; on the photographic plate. Then,

_ [ m@)me(u)du
0 = " rwa

In other words, Q, represents the quasi-correlation that would have been observed
if there were no multiple clustering and if the structure of the clusters were gov-
erned by the very flat density f*(z, u).

The weights w. and w, = 1 — w, in (46) are proportional to

(52) EG)EG) — E@)] [ piwdu and  [EG}) — EG)]E @) [ wi(w)du ,

respectively.

It must now be obvious that, if an effort is made to use the formulas of simple
clustering and to adjust a single probability density f*(n) so that the quasi correla-
tions defined by it fit the weighted mean (46) of the quasi correlations, one defined
by f*(z, v) and the other by a much flatter density f:*(x, u), then the adjusted
function f*(x) will be intermediate between fo*(z, v) and f3*(z, w) and probably quite
substantially flatter than f,*(z, v). Therefore, the observed difference in the flatness
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of the two independent estimates of f*(n) is indirect evidence in favor of the hypoth-
esis that superclustering is a real phenomenon. In addition, it is possible that the
same phenomenon of superclustering will account for the discrepancy exhibited in
figure 3 between the theoretical and the empirical quasi correlations computed for
the 10’ X 10’ squares.

12. Probability distributions of certain characteristics of images of clusters

Up to the present time, a few empirical distributions of the characteristics of
clusters have been published, mainly by Shapley and by Zwicky. However, as the
technique of identifying images of clusters is developed and larger telescopes are
made available, the publication of the relevant empirical data is likely to increase.
In fact, something of this sort appears foreshadowed in the recent paper [24] by
Zwicky. One would hope that such data would be very powerful in studying the
phenomena of clustering. Therefore, a study was undertaken [16], [28] to develop
formulas, based on the model of simple clustering, giving the distributions of several
important characteristics of images of clusters. Only the briefest account of one of
the results obtained can be given here.

Consider a cluster of galaxies with its center at the present distance u. In accord-
ance with the above theory, this cluster has a random number » of galaxies. How-
ever, not all of these galaxies need have visible images which can be identified as
galaxies on a photographic plate taken at a given limiting magnitude m,. Thus, it is
necessary to consider a new random variable, say »*, representing, for the same clus-
ter, the number of galaxies that have images visible and countable on the plate
(“visible” galaxies, for short). We shall say that a cluster itself is “‘visible’’ only if
the corresponding value of »* = 1. Naturally, the distribution of »* must depend on
that of », as well as on the structure of clusters as determined by the density f*(n)
and on whether the universe is expanding or not.

Denote by 6+(u, m;) the conditional probability, given the present distance u of
a cluster center (rather than the distance £ to the galaxy itself), that a galaxy be-
longing to this cluster will be ‘“visible”” on the photographic plate with the limiting
magnitude m,. We have

(53) 6 (u, m)) = fff (¢, m1) f(y1, Y2, ¥s; 1, 0, 0)dy1dysdys .

This integral may be somewhat simplified by a change to polar coordinates.
The probability generating function of v*, conditioned by »* 1, is then given by

f Tl — Gl — 67, m)(1 — Ol)du
(54) Gath*21) =1 —=" .

fo "l — Gl — @, my))}du

Now consider a cluster with »* visible galaxies. Denote by ® the angular distance
between the direction from the observer towards the center of the cluster and the
direction from the observer to the apparent position of one of the visible galaxies.
The v* distances & may be ordered in decreasing order so that ®, = ® = Py = - - -
= ®,.. Now denote by p the value of ®,, the largest of the angles, and describe it as
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the apparent angular radius of the cluster. For any positive number z denote by
F,(z) the conditional distribution function of p, given »* = 1, that is to say, the
conditional probability, given that the cluster contains at least one visible galaxy,
that the apparent angular radius p will not exceed the number z. It is found that

(55) Fy(x) = P{p < zp* 2 1}

f., o (1 — G{1 — 6+, m)[1 — F;(xm)]}) du

I
b

’

j; Tl — Gl — 65, m)]}du

where

(56) Fi(zlw) = 0:@}“%_‘) fffo(f, m) f(y1, Y2, Y3; %, 0, 0)dy:dydys ,

w(z)

is the conditional distribution function of the angular distance ® of a galaxy from
its cluster center, given that this galaxy is visible and given that the cluster center
is at distance u from the observer. It is just this observable function Fg(z|u) that
provides the “direct” estimate (mentioned in section 10) of the function f3(n) for
any cluster whose distance u is known. The symbol w(z) appearing in (56) repre-
sents the circular cone defined by 0 < ® < rand0 £ ¢ < «.

As is to be expected, the distribution of the apparent radius of a visible cluster
depends upon that of the number of galaxies per cluster and on the internal struc-
ture of clusters as characterized by the density f*(n). Also, the distributions (55)
and (56) depend on whether or not the universe is expanding.

Formulas analogous to (55) and (56) but applying specifically to static universe
were reported by one of the present authors at the Cleveland meeting of the
American Astronomical Society in December, 1951. A formula for the distribution
of p (with different notation) was recently published by Zwicky [24]. However,
Zwicky’s formula was deduced without taking into account the randomness of the
number of galaxies per cluster and the effect of dimming with distance.

13. Problem of interlocking of clusters

In all the studies reported above, the central problem was to deduce the various
properties of the distribution of images of galaxies or of images of clusters on photo-
graphic plates from what was assumed to be happening in space. The theory so
developed may be used for comparison with the results of observation in order to
verify certain of the hypotheses made or in order to estimate some parameters
involved in a specific model. In addition to these studies, a certain amount of atten-
tion was given to problems of an entirely different kind, concerned, so to speak,
with the external appearance of the spatial distribution of galaxies.

Although the model studied was built up using the concept of a cluster as a basis,
the actual role of this concept is not predetermined, and depends upon the actual
phenomena. Consider two extreme possibilities. One extreme is that galaxies are
grouped in fairly tight systems separated from each other by great distances. The
other extreme possibility is that such groupings of galaxies as exist are loose and
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interlocking, and that the situation would be more adequately described by the
term continuous field of galaxies with numerous local concentrations. These two
possibilities are illustrated in figure 7.

In the first case, the “conceptual cluster’” as postulated in the model would have
an identifiable phenomenal counterpart and would be an important element in any
theory of the distribution of galaxies. In the second case, the role of the concept of a
cluster would dwindle to that of an easily replaceable element in an interpolatory
structure invented to approximate the actual distribution of galaxies. The question
as to whether or not one should use the theory of clustering to represent the distri-

© O

Isolated Clusters Interlocking Clusters
Figure 7

Concept of interlocking of clusters.

bution of galaxies would then be the same kind of question as to whether one should
use a polynomial (rather than, say, a trigonometric polynomial) to approximate a
function of which the real nature is unknown.

It follows that, in order to elucidate the actual role of clustering and also in order
to gain a clearer picture of the spatial distribution of galaxies, it is interesting (i) to
fit the theory of clustering to the observational data just as accurately as possible
and (ii) to obtain from the fitted model numerical characteristics describing the
degree to which the individual clusters interlock or overlap.

Among the many difficulties involved in this problem there is the conceptual one
of formulating a mathematical problem so that its solution would provide an answer
to the astronomical question about the degree of interlocking of clusters. In papers
[12] and [17] the following problems were treated.

Consider a particular cluster to be termed the selected cluster I' with its center
at a point C. Denote by », the (random) number of galaxies belonging to I'. We shall
number these galaxies in the decreasing order of their distances from the center C.
Thus the most distant galaxy will be called the first, and the least distant the »;-st.
Let 7: denote the (random) distance of the 7th galaxy from C. Thusqpy = 7. = - - - =
7y, = 0. For any positive number = denote by S(z) the sphere of radius = centered

at C.



CLUSTERING OF GALAXIES 103

If a galaxy not belonging to the cluster T happens to be within the sphere S(n;)
then we shall say that this galaxy is imbedded in I" to the depth k.

In order to characterize the degree of interlocking of clusters, the following ran-
dom variables were studied.

(1) The variable p; = number of galaxies belonging to the cluster Iy, which is
nearest to I itself, that are imbedded in T to the depth k.

(ii) The variable 7, = number of clusters having at least one galaxy imbedded in
I to the depth k.

(iii) The variable &, = number of clusters with all of their galaxies imbedded in T
to the depth k.

For each of these three variables it was possible to deduce the probability
generating functions based on the theory of simple clustering.

It will be seen that the three variables ux, 71 and ¢ do characterize the degree of
interlocking of clusters. Thus, for example, if 71 = 0 then the selected cluster is
entirely isolated. Now, if we should find that the estimates obtained from a reason-
ably fitting specialized model imply that P{r, = 0} = .99, then, confronted with
the choice between the two extreme possibilities envisaged in figure 7, we would
probably have no hesitation in choosing the one on the left, corresponding to tight
clustering. On the other hand, if, for example, P{r; = 0} = 10~ we would choose
the alternative on the right.

As was mentioned before, the present estimates of the constants involved in the
particularized model [11] are extremely shaky, mainly because of the uncertainty
regarding the luminosity function of the galaxies. Furthermore, it is not impossible
that several of the assumptions underlying these estimates are not true. The assump-
tions of a static universe and of a quasi-uniform distribution of cluster centers are
particularly doubtful. Thus at the present time nothing like a reliable indication
is available as to which of the two alternatives exhibited in figure 7 is closer to
reality. In particular, on the original estimates obtained in [11] the probability
P{r; = 0} = .0017. However, the results obtained in [13] and also those illustrated
in figure 4 indicate that the original estimate of what may be called the ‘“‘size” of a
cluster is too large and that about one-half of its value would be more realistic. If
we adopt this value, then we obtain P{r, = 0} = .204, and it is seen that, after
allowing for the possibility of multiple clustering, we may well arrive at an estimate
of the probability P{r; = 0} which is more favorable to the concept of an isolated
cluster than the ones already calculated.

While the three variables ux, 7 and e do characterize the degree of interlocking
of clusters, it is obvious that this characterization is incomplete. Consider for exam-
ple a large cluster T', of some 1000 galaxies, in which there are imbedded a dozen

small clusters, Ty, Ty, - - -, Ty, of 5 to 10 galaxies each. Further, assume that no
other cluster ‘‘invades” the above cluster I'. In these circumstances the small
clusters Ty, Ty, - - -, T would probably be considered as local irregularities in the

structure of I' and there would be no objection to treating T as an isolated cluster.
Yet, for this particular cluster r, = 12 and ¢ = 12. Thus, it appears that for a more
satisfactory characterization of the degree of interlocking of clusters some other
random variables need be studied. Accordingly, a forthcoming paper [29] gives the
probability generating function of two such additional variables, of which one, ¥,
is defined as the number of clusters that contain at least one galaxy within S(y;)
and at least one galaxy outside of S(».).
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14. Model of fluctuating density of galaxies

The numerical data reproduced in the preceding section indicate that the con-
cept of a cluster of galaxies, at least the concept of an isolated cluster, may have
no identifiable phenomenal counterpart. In this connection, it is natural to consider
a theory of the spatial distribution of galaxies independent of the concept of a
cluster but leaving room for the existence of local concentrations. The development
of such a theory was initiated by Chandrasekhar, Miinch and Limber [30], [31],
[32]. Unfortunately [33], certain of the formulas advanced for the purpose of
estimating the unknown parameters of the theory contain some misunderstanding.
The formulas in question refer to the numbers n(w) of images of galaxies in squares w
on the photographic plate and ascribe to n(w) impossible properties. Thus, for
example, the formulas for the expectations E[n(w)] and E[n*w)] of n(w) and of
n?(w), respectively, require that, as w —> 0, these two quantities tend to zero but
that the quotient

(67) C(w) = E[n*(w)]/E*[n(w)]

tend to a finite limit, which is impossible. In fact, since n(w) is necessarily a nonnega-
tive integer number, the first power of n(w) cannot be greater than the second, and
we have

(58) n(w) < n¥(w),

(59) Efnw)] S Bint)] or 13 Fell,

and the quotient (57) can never be less than the reciprocal of E[n(w)], that is,
_ 1  En*w)] 1

(60 C) = Fa@)] Bnw) = Ep@)] -

Thus, if E{n(w)] tends to zero as w — 0, then at the same time the quotient C(w)
must tend to infinity. This point is quite important, because the formulas of the
theory discussed are supposed to hold good for small squares w and the function of
the unknown parameters which is equated to C(w) for purposes of estimation, is
independent of w. If the estimation of these parameters is attempted on a number
of sets of data, with different sizes of w, say w; > ws > ws > - - -, then the same
function of the parameters will be equated to corresponding quantities C(w;),
C(ws), - - - which will tend to infinity. Consequently, the estimates obtained will
reflect the fortuitous circumstance that in the particular sets of data the counts of
images of galaxies were made in 3° X 3° squares or in 1° X 1° squares, or in 10" X 10’
squares, etc. Similar remarks apply to some other formulas involved in the theory
discussed.

Because of the above circumstances, an independent attempt was made [34] to
build up the theory of fluctuations. The basic assumptions adopted are as follows.

(i) Ezistence postulate. To every region S in space (really, to every Borel set S)
there corresponds a random variable N(S) representing the number of galaxies
contained in 8. Thus N(S) is necessarily a nonnegative integer.

(ii) Postulate of stationarity. If two systems of regions Sy, S, - - -, Sim and Sy,
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S, + - -, Sem are congruent, then the joint distribution of N(Su), N(Sw), -« - -,

N(8:») is identical with that of N (Sa), N(Sz), * - -, N(Sem), irrespecitve of the rela-
tive locations of the two systems of regions.
(iii) Postulate of complete additivity. If the regions S;, S;, + + +, Sm, + + - are all dis-

joint, then the variable N(3_S,), corresponding to their union, is equal to the sum
of the numbers N(S;), so that N(2_S:) = D N(S.).

(iv) Postulate of finiteness of momenis. If a region S has a finite volume (measure)
V, then the variable N(S) has a finite expectation and a finite variance o}, ..

(v) Postulate of positiveness and monotonicity of correlation. Let L be an arbitrary
line in space and P; and P, two points on L separated by a distance £ > 0. Let
C(P;, V,) be a cube of volume V; centered at P;, for z = 1, 2. It is postulated that
the correlation R(¢, V1, V2) between N[C(Py, V1)] and N[C(P,, V3)] is never nega-
tive. Also it is postulated that for fixed ¥, and V; and for fixed orientations of the
two cubes, R(¢, V1, Vs) is a nonincreasing function of £.

The above postulates imply that

(61) E[N(S)] = 2V(S),

where p is a constant and V(S) represents the volume of S, that
2
(62) lim ————"”[C(If’ il w8,

V-0

where 2 is a constant at least equal to unity, and also that

(63) tim 2& Vo V) _ 1y 20,

V=0 V.17
v;:o ‘\/Vle

where I'(¢) is a finite nonincreasing function defined for all £ > 0. In turn, for every
region S; and S, the variances of N(S;) and N(S;) and their correlation are express-
able in terms of p, 8 and I'(¢). Also, it is easy to deduce formulas for the moments
of the first two orders of the random variables n(w).

The theory of fluctuations as sketched above contains the theories of simple and
of multiple clustering as particular cases. In fact, if the actual distribution of gal-
axies conforms with the postulates of the theory of simple clustering then, using
formula (19), it is easy to find that

(64) =N, B=1

and

(65) re = 2r v V_ Y j; T f*@) f_ 1 /B = 2tzy + z0dy dx .

Similarly, if the actual distribution of galaxies conforms with the postulates of
the theory of multiple clustering of the second order, then

(66) P = N2, g=1
and
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2 — 3 o) +1
67) T = 2w, fo 22 f¥(z) f B = 2y + oP)dy da

2 — oo +1 o
+2r Zg—:ﬂf i [ BWE =2y £ 2)dy da

Ve

with

(68) 5 x) = 2= j; i} A A9 fjl f,*(\/ 2 — 2zyt + )dy dt .

A slight change in notation has been introduced in formulas (65), (67) and (68).
Previously the symbol f:*(a, b) was used to denote the probability density f* de-
pending on the distance between two points @ = {ai, as, as} and b = {by, by, bs},
for ¢ = 1, 2. In the three formulas mentioned, instead of f;*(a, b) we wrote
Fa*( \/m) and it is hoped that this change will not cause confusion.

The authors are indebted to Professor John W. Tukey for the suggestion that
the equality 8 = 1 will hold good for all spatial distributions of dimensionless par-
ticles which satisfy the following condition. Suppose that a region S is known to
contain n = 2 particles. In order that 8 = 1 it is necessary and sufficient that the
conditional probability that the positions of any two particles in S coincide be
equal to zero. The proof of this proposition is immediate.

15. Test for the expansion of clusters of galaxies

In connection with the discussion of section 6 regarding the possibility that the
universe is expanding, the question arose whether or not it is possible to test the
expansion of clusters. A test was actually developed and published [35]. It is based
on the following assumptions. (i) The peculiar velocities of galaxies within a cluster
have random components following a symmetrical normal law. It was shown that
this assumption, combined with an appropriate distribution of positions of galaxies,
is consistent with the assumption that this latter distribution of positions is con-
stant in time, so that the cluster neither expands nor contracts. (ii) It was postu-
lated that in addition to the above random components, the peculiar velocities of
galaxies within a cluster may have a nonrandom component, directed away from
the center of the cluster and, for each galaxy, proportional to the distance between
that galaxy and the center of the cluster. The coefficient of proportionality was
denoted by h. The hypothesis tested was that A = 0, the alternatives being that
h>0.

For each cluster of galaxies the observable (approximately) random variables
may be (a) the angular distances, say ¢, of particular galaxies from the estimated
direction towards the center of the cluster, (b) the apparent magnitudes of the gal-
axies and (c) their radial velocities. Using these variables and the above assumptions
(i) and (ii) a locally best test of the hypothesis & = 0 was deduced. The power of
this test is being investigated.

16. Concluding section: Some important outstanding problems

In an effort to formulate a brief summary of the studies outlined above, the
authors arrive at the following description. All the studies already published, and
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those still in progress, have for their general purpose the invention of a chance
machinery of the spatial distribution of galaxies which, combined with the adopted
mechanisms of transmission of light and of other relevant phenomena, could account
for the observable characteristics of the distribution of images of galaxies on the
photographic plates.While some progress in this general direction has been achieved,
there are still many outstanding problems which, probably, will require the efforts
of more than one generation.

(1) Probably the most difficult and at the same time the most important outstand-
ing problem was mentioned in the Introduction and then again in section 7. It
concerns the dependence of the apparent photographic magnitude m(M, £) of a
galaxy on its absolute magnitude M and on its distance £ The expression for
m(M, £) is needed on the alternative assumptions that the universe is static and
that it is expanding. Obviously, this problem is one in astrophysics rather than in
statistics.

(ii) The next important problem we wish to mention may be labeled the problem
of stochastization of the theory of relativity. This problem was already attacked
by McVittie [18] and it is understood that further work in this direction is con-
templated.

(iii) The third outstanding important problem is purely statistical and consists
in developing a convincing stochastic model of the distribution of the light absorbing
clouds that are present within the Milky Way galaxy. Interesting contributions to
this subject are due to Ambartzumian [36] and to Chandrasekhar and Miinch [37].
Also, it may be mentioned that at the Lick Observatory there is work in progress on
counts of stars made on the same plates on which the images of galaxies have already
been counted. The comparison of the two systems of counts is likely to lead to
interesting conclusions.

(iv) The last outstanding problem we wish to mention is somewhat less inspiring
than the preceding ones, but is just as important. In fact, a satisfactory solution of
this last problem is a prerequisite to the success of any statistical treatment of the
distribution of images of galaxies on photographic plates.

The problem consists in building a convincing stochastic model of the machinery
of “‘errors of counting” images of galaxies. We include the words ‘‘errors of counting”
in quotation marks because this term is meant to cover not only the errors of count-
ing in the strict sense of the words, but also the effects of the night-to-night varia-
tion of the transparency of the atmosphere, the variation in the quality of emulsion
from one plate to the next, the variation in the emulsion from one part of the plate
to another part and, finally, all the complexities involved in the performance of the
telescope. The details of the latter, named the off-center effect and the east-west
effect, are described in [7].

Whenever a statistician is faced with the situation of studying some variables
£ and g that are not directly observable but for which there are given the values X
and Y of measurements of £ and 7, the customary procedure is to assume that X =
¢4+ uand Y = 4 + v, where u and v are “‘errors of measurement.” It is customary
to postulate that these errors of measurement are independent of the quantities
measured and independent of each other. Finally, there usually is the ubiquitous
assumption of normality.

This kind of error model (error model I) was tried [11] by the authors in relation
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to counts of images of galaxies. The same model was used by Limber [32]. The
undisputed advantage of this model is its simplicity. However, if one is interested
not so much in obtaining from calculations just a number, but 2 number connected
in an intelligible way with the phenomena studied, then the mere simplicity of
the formulas is not enough and the adequacy of the model becomes important.

Model I was tested and had to be abandoned because its consequences are in
conflict with the observations. For example, denote by £ and » the numbers of images
of galaxies in two adjoining 10’ X 10’ squares on the photographic plates and by
zi, y: the estimates of these quantities obtained on the 7th count performed on the
same plate, for ¢ = 1, 2. If model I corresponded to reality then z; — z;and y; — 2
would be independent. In actual fact, these differences are dependent and the effect
of this dependence is felt quite strongly when one considers simultaneously [14]
counts made in 10’ X 10’ squares and in 1° X 1° squares. Yet, in order to make a
comprehensive test of any hypothesis regarding the spatial distribution of galaxies,
it is essential to compare its consequences with the observations relating to varying
sizes of the squares in which the counts are made and to varying limiting magni-
tudes. Thus, for example, with reference to figure 3 it is essential to know whether
the discrepancies illustrated indicate the inadequacy of the model of simple clus-
tering in a stationary universe or to the inadequacy of the error model applied.

Also the second error model considered had to be abandoned immediately. Here
it was assumed that to every image of a galaxy, present on the photographic plate,
there corresponds a constant probability of this image being counted. Also, it was
assumed that the counting of one galaxy is independent of the counting of any
other.

The next model, labeled model I1, is a modification of the preceding one. Here it
is postulated that if a square degree on a photographic plate contains N images of
galaxies then the number X of images counted in that square is a binomial variable
with exponent equal to N and with a probability § that is treated as a random vari-
able. In fact, it is postulated that to each of 36 one degree squares on a photographic
plate and to each ‘‘session” of counting there corresponds & random variable §,
independent of all others and following the same Beta distribution.

In the early period, when the authors dealt only with counts in 1° X 1° squares,
corrected as indicated in [7], no contradictions were found between model II and
the observations. However, when more data were accumulated and, particularly,
when the authors became concerned with counts in 10’ X 10’ squares, this model
also broke down because it appeared that the Beta distribution applicable to counts
made during one period of some six months will not fit the counts made during
another such period. Still, in the absence of anything better, model II continues to
be used, with misgivings.

In principle, it is possible to count all, or practically all, the images of galaxies
present on a photographic plate. This has been done in the past and a good descrip-
tion of the results is to be found in a paper [5] by Mayall. The process is illustrated
in figure 8 reproducing sections of two different photographic plates taken from the
same region in the sky. The plate below has a fainter limiting magnitude than the
plate above. Thus all the objects, stars and galaxies, visible on the upper plate
appear also on the one below and their images are much more distinct. By making
a reasonably complete census of images of galaxies on the plate with the larger



Ficure 8a
Section of a plate taken by the 20” astrographic telescope of the Lick Observatory.



Ficure 8b
Section of a plate taken by the 48” Schmidt telescope of the Mount Palomar Observatory.
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limiting magnitude and by measuring the coordinates of these images, it is possible
to inspect the corresponding places on the plate with the brighter limiting magni-
tude and to trace the faint images of galaxies that may have been originally over-
looked. Also, this method allows one to weed out the images of faint stars or imper-
fections of the emulsion that may have been counted as galaxies. Table II, based
on data taken from Mayall, indicates the order of magnitude of mistakes in count-
ing.
TABLE I1
ERRoORs IN CoUNTING IMAGES OF GALAXIES

Total images of galaxies on 47 plates......................... 1228
Imagesmissed.................. .. ... 571
Spurious images counted............... .. ... ... 81

It will be seen that, of the 1228 images of galaxies actually present on the photo-
graphic plates taken to a smaller limiting magnitude, over 46 per cent were missed
on the original count. The inspection of figure 8 indicates that it is unrealistic to
assume that the probability of being counted is the same for every image of a
galaxy. Thus, for example, the two bright spiral galaxies in the central portions of
two parts of figure 8 could hardly be missed by any observer. On the other hand
(see arrows) the figure exhibits some very faint objects which can be detected on
the “weaker” plate after it is compared with the ‘“‘stronger” one but not so easily
without such comparison. The conclusion is that a more realistic model might be
built up by assuming that the probability of an image of a galaxy being counted is
not constant but depends on this galaxy’s apparent magnitude or surface brightness.
Also, the results of counts and recounts of the same plates indicate the desirability
of including in the model of the concept of “personal” limiting magnitude of the
observer which should be considered as random, varying in value from one day to
the next. Another necessary assumption within a realistic model must concern the
variability of the limiting magnitude of the plate, caused by variation in observing
conditions.

The assumptions that might be profitably included in a realistic model of errors
in counting could be further multiplied. However, in so doing it is necessary to
remember two paramount requirements. One is that, in order to be useful, the model
must be sufficiently uncomplicated (this word ‘“‘uncomplicated” fits the situation
better than the customary word “‘simple’) so as to lend itself to numerical compu-
tations. The other requirement is that a model be experimentally justifiable. In
order to determine whether a given model is justifiable or not, it is unavoidable to
compare it with relevant observations. In the present case, the adequacy of an error
model might be tested on a reasonable number of duplicate plates taken from the
same region of the sky, to the same intended limiting magnitude and counted inde-
pendently at least twice. With this kind of data it may be possible to evaluate
separately the component error due to the plate and the component error due to
the observer. The work on this problem is in progress.

The authors are very grateful to several persons in the Statistical Laboratory
who have carried out the computations described in this paper. They are especially
indebted to Mrs. Jeanne Lovasich and Mrs. Marija Vasilevskis.
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