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1. Introduction
Statistical analysis involving any considerable number of variates leads

usually to calculations which, if not well organized and conducted with the
help of suitable machines, may be excessively laborious. The great possibili-
ties opened up by the advances in the theory of multivariate statistical analysis
will gain in accessibility as computational methods improve in this domain.
The computations most needed involve matrices. This is true, for example, in
the method of least squares and in calculating multiple correlation coefficients;
it is true in the calculation of the generalized Student ratio and figurative dis-
tance that has become the modern substitute for Karl Pearson's coefficient of
racial likeness; also in studying the relations between two or more sets of
variates, and the principal components of one set.
The same computational problems arise also in many fields outside of sta-

tistics-if indeed we can speak of any field as being outside of statistics! Thus
the study of vibrations in airplanes and other machines and structures; the
analysis of stresses and strains in bridges, of electrical networks, of mass spec-
troscopy of petroleum products; and many other subjects of importance re-
quire calculations of the same kinds as multivariate analysis in statistics.
The calculations principally needed are of three main types:
a) Multiplication of matrices, that is, formation of sums of products.
b) Inversion of matrices and solution of systems of linear equations.
c) Determination of latent roots and latent vectors, also known as charac-

teristic roots and vectors, as principal components, and by such mongrel
terms as eigenvectors and eigenvalues. More generally, determination of
values of x1, * * , x, X satisfying

E
3

-Xbi)xi = O. i, j = 1, P.

In addition there are special matrix computational problems such as those en-
countered by Koopmans [8].1 It might be thought that the calculation of
determinants should have an important place here. However, in most prob-
lems of practical importance of which I am aware, if a determinant occurs in a
formula it is associated with other determinants in such a way that all that is
really needed is one or more of the ratios of determinants forming the inverse
of a matrix. Hence these problems come under (b). For example, one of the

* A revision of a Symposium lecture, taking account of developments in the subject down
to May, 1946, and, with an added note, to June, 1948.

Boldface numbers in brackets refer to references at the end of the paper (p. 293).
[275]
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expressions for the multiple correlation coefficient involves the ratio of two de-
terminants, of which one is a principal minor of the other. This ratio, or its
reciprocal, is one of the elements of the inverse of the matrix of the larger
determinant, which is easier to compute than the two separate determinants.
The reason is essentially the repetition of labor involved in computing sepa-
rately two determinants many of whose elements are common. Furthermore,
if the multiple correlation coefficient is wanted, there is generally a need also
for several other things that can be found easily from the inverse of this same
matrix.

In a paper [5] published in 1943 I went over the subject of matrix calcula-
tion in much more detail than is possible in a single lecture. I shall try not to
repeat what I then wrote except insofar as is necessary for intelligibility and
continuity. Instead, I shall concentrate mainly on developments of which I
have learned more recently, while including some slight revision of the former
treatment at certain critical points and a little speculation about future de-
velopments.
The interesting questions regarding calculation with matrices pertain to

those with large numbers of rows and columns. For matrices of two, three, and
often four rows there appears to be little or no gain in any methods departing
materially from the straightforward use of the definition of the function to
be computed. But the labor of inverting a matrix or evaluating a determinant
or solving a system of linear equations by direct methods increases approxi-
mately as the cube of the number of rows or of unknowns, and when this
number is large the advantage of oblique and iterative methods may be very
great.

2. Mechanical and electrical devices

Choice of methods is inevitably connected with the machines available or
capable of being made available. One fundamental desideratum is a better
digital device for multiplying large matrices than any now available. Multipli-
cation of matrices is essentially what is needed to get the covariances and cor-
relations among a set of observed variates. It is also important in connection
with our other two fundamental classes (b) and (c) of problems, since some
of the leading methods of dealing with these involve matrix multiplication.

Machines of the Monroe, Marchant, and Frid6n types I propose to call
"calculators" until a better name is found, to distinguish them on the one hand
from adding machines and on the other from more complicated machines,
electrical networks, and other kinds of devices. For finding single isolated
sums of products or correlation coefficients it does not appear that anything
better than a modern calculator is now or is likely soon to become available.
These calculators also have an advantage over alternative methods of com-
puting all the sums of squares and of products for two or three variates. Recent
Monroe models have for this purpose a distinct advantage over the others in
the squaring lock. Unfortunately these modern high-speed machines seem to
break down rather frequently, requiring a good deal of repair work.
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The disadvantage of calculators of this type when matrices of any size are
to be multiplied is that the same rows of numbers must be set in by hand
again and again as multipliers, and columns of numbers must be set in likewise
as multiplicands without taking advantage of the fact that the same columns
are used over and over. In other words, the calculator has too limited a memory
for such work. In order to improve its memory, numbers may be stored in the
form of holes at suitable places in tapes or cards, or in some other form that
can be recalled en masse and read and utilized by the machine again and again.
The chance of human error is then confined to the correct copying of each num-
ber only once.
The first utilization of number-storage for matrix calculation seems to have

been in a machine reported in 1925 by Clark L. Hull [7]. Punched tapes were
used in conjunction with a device attached to a calculator. The machine read
the numbers by poking steel fingers through the holes. While a sum of prod-
ucts was being formed, the operator could go out to lunch, leaving the
machine alone in a locked room to stop itself at the conclusion of the operation.
Two of these machines were built, one for the University of Wisconsin and one
for the National Research Council. The cost of a future machine of this kind
was estimated at $1200. However, the idea was abandoned in favor of punched-
card machines. A source of trouble seems to have been the tearing of the tapes,
though these were of tough kraft paper.

Hollerith cards are capable of carrying as many as ninety variates on a card.
With suitable equipment the product of any two of these variates can be
formed, summed over a large number of cards at very high speed, and pre-
sented simultaneously on dials, in print, and in the form of other card punches.
This seems to offer almost an ideal solution of the problem of matrix multipli-
cation except for the cost and ponderous character of the machines, and the
fact that after each product-sum is formed it is necessary to do a good deal of
resetting of the machine to prepare for the next. There are also other ways of
forming product-sums with punched cards, but they all have these difficulties.
The next step forward in this direction would appear to be the development of
a device for automatically resetting the machine so as to get the product ma-
trix without any human intervention between placing two sets of cards repre-
senting the factors in the machine and getting out a printed and punched-card
product matrix.
With such a device, which does not seem out of the question in the near

future, and which may be actually available in the punched-tape Aiken ma-
chine at Harvard, the multiplication of large matrices may become a trifling
detail. Mechanical developments of this kind seem capable also of easily
forming linear functions of matrices and therefore, in conjunction with the
matrix multiplication, polynomials in matrices. But the formation of inverses
or principal components is of another order of difficulty, and Hollerith-type
machines do not appear to lend themselves readily to direct determinations of
these. We must therefore look to other types of mechanical and electrical aids,
which, however, may be supplemented by ready matrix multiplication with
punched cards or tapes.
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A matrix-multiplier designed by L. R. Tucker and built by the International
Business Machines Corporation is now in use in the University of Chicago
laboratory of L. L. Thurstone. This uses two-digit entries, represented for one
factor by wirings of a plug-board and for the other by lengths of soft pencil
mark on a sheet of paper. These latter act as resistances when the paper is
pressed by a set of contacts, and the product-sum is read to two significant
figures on an ammeter. This is a degree of accuracy insufficient for many
purposes.

For solving systems of linear equations several electrical devices have been
built. One of these is now actually being put on the market by the Consolidated
Engineering Company of Pasadena. It is arranged so as to solve as many as
twelve linear equations in twelve unknowns, and is essentially an electrical
network of resistances alone, in contrast with the earlier Mallock device
(reference in [5]), which relies on induction. After setting in the coefficients
the operator must try different combinations of settings for twelve knobs,
representing the unknowns, until a pointer reaches a zero position indicat-
ing that the trial values of the unknowns satisfy the equations. There
may be some question whether this process might not require an exces-
sive amount of time with a large number of unknowns, but data supplied by
the company regarding the operation of the Pasadena device with certain
examples indicate that problems with no more than twelve unknowns can be
solved with very satisfactory speed in a few minutes. The coefficients are set
in as four-digit numbers, and in the examples given the results are correct to
four significant figures except sometimes in the last place. Developing this
device and making it generally available represent an important advance.

Various other electrical equation-solvers have been devised but not mar-
keted. The Mallock device previously referred to is a unique specimen at
Cambridge, England, for solving ten or fewer equations. It has an iron ring
for each unknown, and on the ring ten coils representing the coefficients of this
unknown in the ten equations, arranged so that the number of turns actually
used in each coil can be set in as the coefficient, with a reversing switch to make
possible the use of negative as well as positive numbers. The ten coils repre-
senting each equation are connected in series to form a closed and electrically
isolated circuit. Alternating current is supplied to an additional coil on one of
the rings. The unknowns are proportional to the magnetic flux in the several
rings, which may be read off by means of still another coil on each ring, at-
tached to a galvanometer.
At Columbia University Julian Bigelow, of the Division of War Research,

has designed an electrical network involving resistances and vacuum tubes
only; and F. J. Murray of the Mathematics Department has built a small-scale
model of a device in which, as in the Consolidated's computer, trial values are
set on knobs and a pointer brought to a minimum position by repeated trials
utilizing something like the classical Gauss-Seidel iterative method of solving
equations. Both Bigelow's and Murray's computers use only standard parts,
which are produced in quantities and can easily be assembled.
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In a manuscript and letter dated May 10, 1946, Cecil E. Leith and Quentin
A. Kerns, of Oak Ridge, Tennessee, describe an electronic solution-finder for
simultaneous linear equations, of which they have built a model for solving
five equations in five unknowns.
Numerous mechanical, hydraulic, and electrical devices for solving sys-

tems of linear equations have been designed in the past. The older schemes
encountered many practical difficulties such as stretching of tapes, leaking of
fluids, excessive stresses, strains, and space requirements in systems of jointed
rods, and changes in electrical resistances, capacities, and inductances and in
magnetic properties with temperature and time.

All these equation-solvers give answers valid only to a limited degree of
accuracy. This feature is inherent in the nature of the problem; for even though
all the coefficients and constant terms in a set of equations are integers, this
may not be true of the solution, which if presented as a decimal may have an
infinite number of places of which only the first few can actually be read.
Moreover the accuracy of the solution cannot readily be predicted, and the
same device may give quite different degrees of accuracy in different problems.
Formulas for predicting accuracy involve determinants which are no easier to
compute than the solution sought. All this is connected with the fact that the
determinant of the given system may be arbitrarily close to zero without its
smallness being apparent in advance.

3. Iteration and error control

An alleged solution of a system of linear equations, whether obtained from
an electrical network or otherwise, may therefore be regarded with some sus-
picion until satisfactorily checked. The most obvious check is to substitute the
values found in the equations and to inspect the discrepancies between left-
and right-hand members. If these discrepancies are all exactly zero the result
is certainly satisfactory. But if, as is almost always the case, they are not
exactly zero, what can be said about the accuracy of the solution? With some
systems of equations very large errors in the unknowns are consistent with very
small discrepancies. A check can hardly be called fully satisfactory unless it
provides definite upper bounds for the errors in the unknowns. It is further
desirable to have a procedure that not only supplies limits to the errors, but
when these are too large provides means of cutting them down. Indeed, for
any kind of computation it is highly desirable that the routine shall make pro-
vision for these two steps:

1. Find a definite and moderate upper bound for the error in each result.
2. Have an iterative method for obtaining greater accuracy when it is

needed, while utilizing the approximate results aready reached.

The first of these criteria may in certain cases be varied to require only an
upper bound of measurable probability (cf. [ 11 ]).
These two criteria should always be kept in view in devising numerical pro-

cedures. The first has a certain analogy with the demands of mathematical
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statisticians in the last few decades for limits of error expressed, not in terms
of unknown "nuisance" parameters or of a priori probabilities, but as definite
numbers. In the computational as in the statistical problem we demand a limit
for the error in the value we assign an unknown, and we want this limit to be
a definite number, not a function of something as uncertain and hard to find
as is the principal unknown itself.
Only one method of dealing with systems of linear equations is known to

satisfy both the criteria 1 and 2. This method is fundamentally concerned with
the inverse of the matrix of coefficients, whose calculation is not strictly neces-
sary for the solution of the equations. However, the practical situation giving
rise to the linear equations frequently requires the inverse matrix also, as in
the method of least squares and in certain problems in civil and electrical engi-
neering. Since the solution of the linear equations can be found directly and
simply from the inverse matrix, the latter should in all such cases be computed
first. Any electrical or other method of solving linear equations can be applied
to find the inverse of a matrix; for if a i is the element in the ith row and jth
column of the p-rowed square matrix A and cii the element in like position in
C = A-1, the unknowns

Cl*, C2k, , Cpk

corresponding to any particular value of k will satisfy the p linear equations

Za,.cik = 1 ifi=k,
= Oifi Fdk, i=1,2,***p.

This means that each column of C may be determined by solving a system of
linear equations whose right-hand members consist of zeros and a single 1,
and whose left-hand members have as coefficients the elements of the given
non-singular matrix A.
The method satisfying our two criteria of definite limits of error and of

iterative improvement was set forth in the seventh and eighth sections of the
writer's paper [5]. However, there has been an improvement in the limit of
error there used as a result of a suggestion by A. T. Lonseth (cf. [6]). The
method is as follows:

Starting with an approximation Co to the desired inverse of A, calculate

D = 1- ACo,

where 1 stands for the identical or unit matrix of p rows. The labor of calculat-
ing D is merely that of substituting the values found for the unknowns cii back
in the equations and finding the discrepancies. The norm of a matrix is defined
as the positive square root of the sum of products of the elements by their com-
plex conjugates. For a real matrix this is the same as the square root of the sum
of the squares of the elements. The norm of a matrix L is denoted by N(L),
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and obviously cannot be exceeded in absolute value by any element of L. Let
N(D) = k. Then if k < 1 it may be proved that

N(Co- A-1) < N(Co)k/(l- k),

and this sets a definite upper limit for the greatest error in any element of CO.
If greater accuracy is needed the following iterative method may be applied.

Let

Cm+, = Cm(2-ACm), m= O,1,2,*-

The error in the approximation Cm to A-1 is limited by the inequality

N(Cm- A-1) < N(Co)k2m/(1 - k),

provided k < 1. The occurrence of the exponential of the exponential on the
right means that the number of decimal places of sure accuracy is approxi-
mately doubled with each iteration. This geometric increase is in contrast with
the behavior of the errors in the better-known classical Gauss-Seidel iteration,
where the number of decimal places of accuracy increases in an irregular fash-
ion which on the average is in arithmetic rather than geometric progression,
and for which no suitable limits of error are available.

These advantages are gained at the expense, first, of insisting on the use of
the inverse matrix, and, second, of a certain risk that the initial approxima-
tion may be so poor that the process will not converge at all. In the event of
non-convergence, k will come out greater than unity; but also in some cases
of convergence k is greater than unity, though similar error norms at later
stages become less than unity. When the initial approximation is too poor for
convergence, several courses are open for getting a better one. The Gauss-
Seidel method may be applied a few times if it seems that the errors are not
too great to be corrected in a moderate number of repetitions. A review of the
preliminary solution may reveal some gross error whose correction will bring
the solution within the necessary limits for convergence. In an extreme case it
may be necessary to repeat a straightforward Doolittle solution with an
increased number of decimal places. The risk of this most unfortunate contin-
gency is present, however, with any method, since no matter how many deci-
mal places are carried there is always a possibility that the result will show a
larger number to have been needed. Another possibility is in partitioning
(sec. 4 below).
The probability of convergence in certain cases has been investigated by

J. Ullman [11 ]. A proof of the foregoing limits of error is as follows. From the
definition of the norm may be obtained fairly easily the two "triangular" in-
equalities

N(A + B) _ N(A) + N(B) ,
N(AB) _ N(A)N(B),
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where A and B are any matrices, whether square, or not, for which the expres-
sions written have meaning in either case. From the last inequality it follows
that, for any positive integer m,

N(Am) < [N(A)]m.

Since N(D) was denoted by k, the identity

(1-D)-'D D + (1-D)-1D2

shows that
N[ (1 - D)-'D] _ k + kN[ (1 -D)-D],

whence, if k < 1,
N[ (1-D)-ID] _k/(l-k),

and for any positive integer n,

N [ (1 - D)-D ] _ k/(l - k).
Now put

Dm= 1-ACm, m=O,1,2,*
whence

Cm = A-'(1 - Di).

Substitution of this in the equation of iteration,

Cm+, = Cm(2 - ACm),
gives

Cm+, = A-(1 - D,)(1 + Di) = A-1(1 - Din2).
Then

Dm+, = 1- ACm+l = Dmi2

and since Do = D this gives by induction

Dm =-D2m.

Thus we have for the error matrix,

C- A-' -A-'D
whence

N(Cm- A-') _ N(A-1)k2'.

Since this limit decreases fairly rapidly when k is materially less than unity,
we might be tempted to stop here and to estimate the factor N(A-1) as N(Cm).
Certainly this would be in keeping with much that is done, but it would violate
our first criterion, which requires that the limit of error be definite. So long as
we are seeking A-' we do not know its norm exactly, and take a chance of



MATRIX CALCULATION 283

going badly wrong if we replace this by an approximation of uncertain accu-
racy. In order to remedy the difficulty we recall the definition D = 1 - ACo,
whence

A-' = Co(l-D)-'.

Substitution of this in the expression above for the error matrix gives

Cm- A-' = -Co(l-D)-D

Applying to this the inequality for the norm of (1 - D)-'Dn, we have

N(Cm- A-') < N(Co)k/(1 -k),

which was to be proved.
This limit of error, in addition to being definite and simply expressible in

terms of known quantities, and converging rapidly to zero whenever k is ap-
preciably less than unity, has another advantage. It may be used to provide
a safe estimate of m, the number of iterations required to attain any required
degree of accuracy, as soon as k is known.

In some cases an initial approximation Co will not need to be specially cal-
culated but is available from previous work. This is true, for example, if A
is a correlation matrix which differs only a little from one whose inverse has
previously been found, perhaps because of the inclusion of additional obser-
vations or the discovery of errors in previous observations or calculations.
Similarly if an 'electrical or civil engineering design for which the inverse
matrix has been calculated is changed slightly, the old inverse supplies a
starting-point for iteration to obtain the new one. See also p. 292.
A good matrix-multiplying device will evidently be a great help in iterations

of this kind. However, the method has proved its value in numerous problems
in which ordinary calculators were the only equipment used. It has been used
extensively in the Statistical Research Group devoted to war research at
Columbia University, and also by students in my classes since 1936. The orders
of the matrices inverted by this method have varied from three to fourteen,
though its advantages are usually slight for matrices of fewer than five rows.
The principal equipment appropriate to any place in which any considerable

number of matrices are to be inverted or systems of linear equations solved will
evidently consist in the future of an electrical equation-solving device to-
gether with some means of multiplying matrices. The equation-solver will give
quick and easy approximations to the inverse of a matrix, which will then be
improved to any desired degree of accuracy, with a check at every stage
through the D matrix, by using the matrix-multiplier to substitute in the fore-
going iterative formulas.

4. Partitioning
When the order of the matrix to be inverted exceeds the capacity of the

electric equation-solver, and in some other cases as suggested above, par-
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titioning can be used. If a matrix is partitioned into four submatrices in the
form

[:n 1
_c d_

with a and d square and non-singular, and if its inverse is similarly partitioned
in the form

A C

-B D

then, as remarked by Waugh [121, the inverse may be found by calculating in
turn

D = (d -ca-1b)- B = -Dca-1
C = -albD A = a- -a-lbB.

If each of these submatrices is of p rows and p columns, use of these formulas
means two inversions of p-rowed matrices, together with six multiplications
and two subtractions of p-rowed matrices. Since the labor of inversion by
direct methods (cf. [13]) varies approximately as the cube of the order of a
matrix, the direct inversion of two p-rowed matrices will require only about a
quarter of the work of a direct inversion of a single matrix of 2p rows. How
this saving should be weighed in comparison with the additional multiplica-
tions and subtractions and the increased complexity in the arrangement of the
work is problematical. The answer must be sought in terms of the equipment
available. A good matrix-multiplier is favorable to partitioning, whereas a good
electric network of sufficient size to invert the original matrix provides a strong
argument against partitioning. But partitioning will be needed when the order
of the matrix exceeds the number of equations the network was built to solve
directly.

Other methods involving partitioned matrices, including the use of nine
instead of four submatrices, have been discussed by W. J. Duncan [2]. A
special use of partitioned matrices for solving certain systems of equations,
particularly when some but not all of the unknowns are required, was de-
veloped by the writer ([6], pp. 22 and 23).

Louis Guttman in a forthcoming paper presents methods of inverting a
matrix based on inversion of matrices of successively higher orders. After
inverting a two-rowed matrix Guttman performs a series of inversions, using
at each stage the inverse already computed of a submatrix of the one currently
inverted. He presents three techniques, involving respectively enlargement by
a single row and column at a time, enlargement by two rows and two columns
at a time, and enlargement by doubling the number of rows and columns.
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5. Possible tables of inverse matrices
A table of inverse matrices might possibly be a convenient adjunct, par-

ticularly in providing a starting-point for iteration, and for use in connection
with partitioning. However, a little consideration shows that a table arranged
in the more obvious ways would either be impossibly large or virtually useless
because of the wide intervals necessary in the arguments. If a useful table is
ever to be produced it must be designed with great finesse.

If each argument is given with a fixed number m of different values, the
number of different square matrices of p rows to be listed is my. This is too
large, even when p = 3, if the arguments range, say, from -.9 to +.9 by
steps of .1. In this case the number of matrices to be taken as arguments is 199,
or about 322,670,000,000. If twenty of these matrices with their inverses are
put on a page, with a thousand pages per volume, this would require about
16,133,500 volumes, enough to fill several very large libraries, and requiring
some 500 miles of shelf space.

In order to cut down the number of entries such a table might be limited to
correlation matrices of three rows, which are symmetric, positive definite, and
have unit elements in the principal diagonal. The inversion of any non-singular
matrix A can be reduced by multiplication to that of a positive definite ma-
trix; for

A-' = (A'A)-'A',

and A'A is positive definite. The unit diagonal elements can be obtained from
any positive definite matrix by dividing each element by the geometric mean
of the diagonal elements in its row and in its column; this same number is
later multiplied into the element in the corresponding place of the inverse of
the correlation matrix to obtain the inverse of the original matrix.
The number of independent variables in a three-rowed matrix is now re-

duced to three. We may omit for the moment the requirement of definiteness
and consider a table of all three-rowed correlation matrices. If all three correla-
tions vary independently from -.9 to +.9 by steps of .1, the number of en-
tries is 193 = 6859. This would still fill a fair-sized volume.
A considerable further reduction in the number of entries will be obtainable

by permutation of the rows, and correspondingly of the columns to maintain
symmetry, and by changing the signs of some of the rows and of the corre-
sponding columns. All these operations may be applied in reverse to the inverse
of the standardized matrix obtained, so as to yield the inverse of the original
matrix. By these operations it may be arranged that r1 is that one of the cor-
relations having maximum absolute value, and that both r12 and ri3 are posi-
tive. Then with the same interval .1 as before, we have the following numbers
of matrices to be listed with their inverses:
When r2 = .9, the possible values of r13 are 0, .1, * * , .9, and those of r23 are

-.9, -.8, * , +.9. If these last two correlations are regarded as varying
with mutual independence, the total number of entries with r12 = .9 is 10 X 19
= 190. Similarly for r12 = .8 the total number of matrices to be listed with
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their inverses is 9 X 17 = 153. For all the values .9, .8, , .1, 0 of r12 the
aggregate is

(1 X 1) + (2 X 3) + (3 X 5) +* + (10 X 19)=715.

This is a relatively moderate number, and such a table could easily be put into
about 36 pages. Elimination of those matrices which are not positive definite
would reduce the size of the table still further.
We must, however, consider whether the values obtained from such a table

can be relied upon to provide sufficiently good first approximations to cause
the iterative method to converge. For this a sufficient condition (and appar-
ently the only condition easy to apply) is that N(D) < 1, where D = 1 - ACo,
A is the matrix to be inverted, and CO is the initial approximation to its inverse.
Now suppose that Ao is a matrix listed in the table and is used as an approxima-
tion to A, so that Co = Ao-1 is obtained from the table. Then

D = (Ao-A)Ao-1 = (Ao-A)Co,

and the process converges if

N(Ao-A) N(Co) < 1.

Since no element of Ao need differ from the corresponding element of A by
more than .05 when the maximum correlation in A does not exceed .95, while
the diagonal elements are the same in both cases, we have

N(Ao-A) < .V/6Xo52 = .122.

Hence the process will converge if N(Co) < 1/.122 = 8.2.
This may fail to assure adequate convergence in some cases, since N(Co)

may exceed 8.2. For example, if all the correlations in a three-rowed matrix
have the common value r, the inverse is

1 + r -r r

(1 -r)(1 + 2r)-r1+r-

-r -r 1 + r

as may be verified by inspection upon multiplying by the original matrix. The
squared norm of Co is

3(1 + 2r + 3r2)
(1 - r)2 (1 + 2r)2

This is within the specified limit only if r is either between -1 and -.5613 or
between -.4383 and +.8225. The former of these intervals may, however, be
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disregarded if the table is to be confined to correlation matrices, since these are
positive definite, as our matrix is only when r >-a. Since the matrix is singu-
lar when r = 1 or-a, the iterative method based on a table fails when r is
brought too close to either of these values relatively to any fixed tabular inter-
val. But the domain of convergence may be extended considerably if tabular
intervals are reduced near the singularities, that is, near the boundaries of the
regions within which the determinant is positive. On the other hand, when the
correlations are small and the determinant therefore near unity, much broader
tabular intervals are appropriate than when the determinant is near zero; and
this fact may be used to keep down the size of the table.

In order to illustrate this situation, suppose that

p p

A= p 1 p

-P p 12

is to be inverted, and that the matrix Co written above is taken as a first
approximation to A-'. Then

2r -1 -1

D 1 A~~o (1 -r)(1 +2r) -1 2r -1.

_-1 -1 2r

Since the determinant of the matrix last written equals

(2r- 2) (2r + 1)2,

and since its characteristic equation is found by replacing 2r by 2r - X, the
latent roots of this matrix are obvious. In order to obtain those of D it is only
necessary to multiply them by the scalar multiplier of the matrix last written,
obtaining

2(r-p) and p-r
1 + 2r 1-r '

of which the second is a double root. A necessary and sufficient condition for
the convergence of the iterative process is known to be that all the latent roots
of D be less than unity in absolute value. When r = 0 in the present case, this
condition is satisfied for -a < p < a; and when r = a it is satisfied for
0 < p < 1. Thus, so far as positive definite matrices of this particular type are
concerned, a table of inverses of matrices need have only two entries, corre-
sponding to r = 0 and r = a, to ensure that an entry can be found from which
the iterative process will converge to the true inverse matrix. The test by
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means of the norm, which is cruder than that by means of the latent roots
though more convenient, guarantees convergence on the basis of such a two-
entry table only over the more restricted range of p from - 1/-"/ = -.41
to +5/6.
To devise a useful and feasible table of inverse matrices, if possible at all,

is thus largely a matter of suitable selection of the entries in relation to singu-
larities. Provision of a method of convenient interpolation specially adapted
to such a table might also help. An adequate and useful table of this kind may
not be at all out of the question, in spite of the preposterous size suggested
by a first consideration of the problem.

6. Solution of determinantal and associated linear equations
The p homogeneous linear equations

E (aii -Xbii)xi = 0, i = 1, 2, * py
j

will possess a solution xli , , px, for each value of the parameter X satisfying
the determinantal equation

IA-XBI = 0,

where A and B are respectively the matrices of elements aii and bi,. Direct
determination of the p roots X is laborious, and with the additional work of
finding solutions for the linear equations corresponding to each root is very for-
bidding, when the order p of the matrices is large. However, iterative methods
cut down the work substantially, and it will be possible to accelerate their
convergence greatly when a satisfactory matrix-multiplying machine is
achieved.
The most important, though by no means the only, case occurring in prac-

tice is that in which A is symmetric and B = 1, so that the latent roots and
vectors of A are to be determined. The latent roots of a symmetric matrix are
all real, and those of its square are all positive or zero. They may be found
iteratively in the following manner. Let Xo be a column vector (a matrix
consisting of a single column of p elements), and let X, = AX,-1 be a sequence
of column vectors found by repeated premultiplication by A. Since X, = Ato,
this process may be speeded up by raising A to a high power by repeated squar-
ing; this will be particularly advantageous when an efficient matrix-squaring
machine becomes available. It is known that the ratio of any element in Xt to
the corresponding element in Xt-1 converges, as t increases, to a latent root Xi of
A having greatest absolute value. This root will be unambiguous if all the roots
ofA are positive or zero, as we mayassume, for instead ofA we may consider A2.
Let us suppose, then, that we are dealing with a symmetric matrix all of whose
latent roots are positive or zero.
At the same time that the ratio of corresponding elements of successive vec-

tors is approaching X, the ratios among the elements of a vector are approach-
ing those among values satisfying the corresponding linear equations. These
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values are components of a latent vector associated with X1. They are not
unique, for they may be multiplied by an arbitrary constant. If a constant
factor is chosen so as to make the sum of the squares of the elements of the
vector unity, it is said to be normalized. The normalized vector is unique
except for sign, provided Xi is a simple root of the determinantal equation. Let
us here for simplicity consider only this case.

After the greatest root ), and the corresponding normalized vector X have
been determined with satisfactory accuracy (which remains to be verified),
we may form a new matrix A1 whose latent roots and vectors are the same as
those of A excepting that X1i is replaced by zero. That these are properties of
the matrix

A, = A-X1XX'

may be verified as follows. If Y is a latent vector of A different from X, then,
as is well known, they are orthogonal, so that X'Y = 0. Furthermore, if Y
corresponds to the latent root Xk of A, then AY = XkY. Consequently, upon
postmultiplying by Y the equation defining A1, we have

A1Y = AY = XkY,

so that Y is a latent vector of A, associated with the same value Xk with which
it was associated as a latent vector of A. If the equation defining A, is post-
multiplied by X, we obtain

A1X = AX-X1XX'X.

But AX = X1X; and since X is normalized, X'X = 1. Therefore A1X = 0
verifying that zero is a latent root of A,, whereas the others are X2, * * , X,i.

If now we start with an arbitrary vector and apply the same process of
iteration with A1 as that used previously with A, we shall approach the second
greatest root, say X2, of A and its associated vector, say Y, simply because
these are the same as the greatest latent root of A1 and its vector. We may then
go on to form a second reduced matrix

A2 = A - X2YY' = A - X1XX' - X2YY',

and by the same method find the third greatest root of A; and so on. This
process has been referred to as "deflation."
A power of the matrix A obtained to accelerate the convergence may be

used to obtain in a very simple manner the same powers of A,, A2, and so
forth. Let us introduce a matrix

S1 = XX'.

Since X has been normalized, S12 = XX'XX' = XX' = S,; and it follows
that any positive integral power of S1 equals S1 itself. Also, since AX = X1X
and because the symmetry of A means that A = A', we have

AS1 = AXX' = X1XX' = Xi1S1; S1A = XX'A = X1Si.
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From these results it follows at once that for every positive integer t

AIS, = S1At = X1tS1.

Since A, = A - X1S1, it is easy to deduce from these relations that

Alt = At -xlSl.

Similarly, if S2 = YY', we find

A2t = A1l - VS2,

and so forth.
A numerical illustration of the application of this method to a set of mental

tests was given in the first number of Psychometrika [4] .
Close and readily calculated limits of error for Xi are available. In the last

section of [5] it is shown that, for every positive integer t,

Xi . (trA9)1It,

where "tr" stands for the trace of a matrix, the sum of its diagonal elements.
We also have the choice of two lower bounds:

X1_ (trAt/p)llt,
x1 _ Xtxt~Xtt-lxt,

where Xt is the vector reached at the tth stage of the iteration. All these
bounds converge to X1 as t increases.

Limits of error for the components of the latent vectors, and for the latent
roots after the first, are not in quite so satisfactory a state. The former have
been investigated in the final section just referred to (see also corrections in
16]), with some unexpected help arising from an analogy between

vkt = Xt Xt-k/Xt Xt

and the kth moment of a probability distribution in which the variate takes
only p discrete values equal to the reciprocals of the latent roots. The proba-
bility to be associated with the least value of this variate was shown to be a
function of the norm of the difference between the true and the obtained vec-
tors X. The Tchebychef inequality then led to an upper bound for this norm.
This upper bound is a function of the observable first and second moments,
but also of the second greatest root X2. This is unfortunate, since we do not yet
have entirely satisfactory limits for any of the roots but the greatest. However,
a thorough investigation along these lines seems a promising approach to a
fully adequate set of limits of error.
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One fairly obvious adaptation of the iterative method should perhaps be
mentioned. This method determines the roots in the order of their absolute
values. If some but not all the roots are wanted, and these not the roots of
greatest absolute value, it may still be possible to obtain them by the iterative
process without computing the others if a suitable transformation of the matrix
can be found. If f(A) is a rational function of a matrix A, its roots are f(Xi),
where Xi are the roots of A, and the latent vectors are the same as those of A.
For example, if it is desired to find the two roots of A of least absolute value
and their associated vectors, A-' may be calculated and the iterative process
applied with it; the two greatest roots of A-' are the reciprocals of the values
desired. For A positive definite we might takef(A) = A - tr A.
Four other methods, based on quite different principles, for determination

of latent roots and vectors have come to my attention since the publication of
the 1943 paper. Limits of error remain to be studied in each case. One of these
is the "escalator" method of Morris and Head [9, 10], which deals with the
more general symmetric determinantal equation A - XB | = 0 and the asso-
ciated linear equations. The roots and vectors of a matrix are found with the
help of those of a submatrix of order less by unity. These are found with the
help of roots and vectors of a still smaller submatrix, and so on. The calculation
begins by obtaining these quantities for a submatrix of order 2, then for one
of order 3 containing the first, and so forth.
An unpublished note by A. R. Collar refers to a method ascribed to Jahn

which appears promising. Still different is the earlier method of M. M. Flood
[3 ], which uses the Cayley-Hamilton theorem.

Finally, an ingenious method likely to have great value in certain cases was
transmitted to me on April 4, 1946, by Rollin F. Bennett. This also uses the
Cayley-Hamilton theorem. It requires qualification of the first full paragraph
on page 27 of [ 5] . Mr. Bennett's method is as follows:

Let fr(X) denote the polynomial function f(X)/(Xr- X), where f(X) is the
characteristic function of the matrix A, and X,. is the rth root. Note that
f(A) _ (X - A)(X2- A). . . (X, - A). Since f(A) = 0, (X, - A)fr(A) _ 0.
This implies that every column of the matrixfr(A) is proportional to the latent
unit vector X, of A corresponding to X, because this vector is defined by

(Xr -A)Xr,=0.

Hence, to compute Xr, the following steps suffice:
1. Obtain A2, A3, A-'1 by matrix multiplication.
2. Obtain the coefficients el, * e*, off(X), from the traces of A2, * * ,AP-l,

using Newton's identities. (Cf. [5], p. 24.)
3. Determine the roots X1, . . , Xp off(X) = 0.
4. By division, obtain the coefficients of the reduced polynomial fr(X) =

OX)I (XI -X) -
5. Compute any column of the matrix f7(A) by use of the coefficients found

in step 4 above and the appropriate columns of the matrices A, A2,
AP-' found in step 1.
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Convergence of the iterative inversion of a positive definite matrix A can
always be assured by taking as the initial approximation C0 the scalar matrix
(tr A)-', since the latent roots of D = 1 - AC then lie between 0 and 1. But
the convergence is slow unless a better approximation to A-' is available. The
introduction of very high-speed electronic computers capable of multiplication
of large matrices in a few minutes reduces the importance of the slowness of
convergence. Methods for inversion with such computers are given in a pam-
phlet by V. Bargmann, D. Montgomery, and J. von Neumann, "Solution of
Linear Systems of High Order," a 1946 report under a contract of the Navy
Department, Bureau of Ordnance, with the Institute for Advanced Study. An
extended discussion of related problems is given by von Neumann and H. H.
Goldstine in "Numerical Inverting of Matrices of High Order," Bulletin of the
American Mathematical Society, vol. 53 (1947), pp. 1021-1099. Other recent
notes on matrix calculation and solution of equations are listed in Mathematical
Reviews. [This paragraph was added in proof.]
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