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11. RESISTANCE OF RANDOM ELECTRICAL NETWORKS.

11.1 Bounds for resistances of networks.
Many people have studied the electrical resistance of a network 

made up of random resistors. It was realized quite early that critical 
phenomena occur, and that there is a close relation with percolation 
theory, in special cases where the individual resistors can have in
finite resistance (or zero resistance). We refer the reader to 
Kirkpatrick (1978) and Stauffer (1979) for a survey of much of this 
work. In these introductory paragraphs we shall assume that the reader 

knows what the resistance of a network is, but we shall come back to a 
description of resistance in Sect. 11.3.

A typical problem in which the relation with percolation is appar
ent is the following. Consider the graph , with vertices the in
tegral vectors in 3Rd , and edges between two vertices v-j and v2 iff 
|v-|-v2 | = 1. Assume each edge of TL̂  is a resistance of 1 ohm with 
probability p, and is removed with probability q = 1-p. As usual all 
edges are assumed independent of each other. Let & be the restric- 

tion of the resulting random network to the cube of size n, Bn = [0 ,n] . 
What is the behavior for large n of the resistance in &n between 
the left and right face of Bn? More precisely let

(11.1) A0 = aJ = {v = ( v ( l ) ........v (d)): v ( l )  = 0,0 < v ( i )  < n,
2 < i < d}

be the left face of Bn and

(11.2) A1 = Aj = {v = (v(l)....v(d)): v(l) = n,0 < v(i) < n,

2 < i < d}

the right face. Form a new network from & by identifying as one
d O ' *vertex an all vertices of Tl in A , and by identifying all ver-u d i

tices of Tl in A as another vertex a-|. This means that we view 
all edges of &n which run between the hyperplanes x(l) = 0 and 
x(l) = 1 as having the common endpoint in x(l) = 0. In "reality"
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one would have to connect all vertices in A^ by wires made from some 
super material which has zero electrical resistance. The same has to 
be done for the vertices in A1. Rn is the resistance in W between 
ag and â  after this identification of vertices.

For small p there will with high probability be no path at all in 
connecting A^ with A^. Of course Rn = °° if no such path exists. 

Therefore

Pp{Rn = as n -* °° for small p.

On the other extreme, if p = 1, &n becomes the restriction of Z d
to B . One easily verifies that in this situation V(x) := x(l)/n is 

n 0 1
the potential at x when An (An) is given the potential 0(1) by 
means of an external voltage source. Indeed Kirchhoff's and Ohm's laws 
give that V(-) is the unique function which satisfied

I (V(y)-V(x)) = 0. x e B \  A° U aJ 
yeBn:y n n

adjacent to x

(i.e., V(-) is harmonic on Bn\  A^ U A^) and which has boundary value

0(1) on A^ (A^) (see Feynman et al (1963), Sect. 1.25.4,5 and II.22.3,
Nerode and Shank (1961) or Slepian (1968), Ch. 7.3; also Sect. 11.3
below). Thus, by Ohm's law the current leaving A^ equals (n+l)d_^

d 1 o n
(There are (n+l)a~ edges of resistance 1 ohm between ^  and the
hyperplane x(1) = 1 in B ; the potential difference across each edge

n i h
is 1/n.) Thus, if p = 1, R = n(n+l) . It is therefore reasonable

d 2 ^to conjecture that na” Kn converges in some sense to a finite and
non-zero (random) limit as n -* °°, at least when p is large enough.
We do not know how to prove such a result, but the results in this

2 dchapter establish that n^~ gives the correct order of magnitude of 
Rn when p > j . For d = 2 we obtain much more precise information 

on Rn for all p.
Of course removing an edge e is equivalent to giving e an in

finite resistance. A dual problem arises when each edge of Z d is a 
resistor of 1 ohm (has zero resistance) with probability p(q 
= 1-p). The resistance Rn between A^ and A^ of the restriction
to B of ZZd will now be zero as soon as there exists a single path

n 0 in Bn containing only edges of zero resistance and connecting A^
with a!,. The probability of {R =0} will therefore tend to one as 

n n cj_2
n ■* °° for large enough p, but for small p na’^Rn should be bounded

away from zero.
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In the theorems below we shall combine both situations. In fact
we shall allow for an arbitrary distribution of the resistances of the
individual edges. We restrict ourselves to the graph Z d , and for most

2
of the results even to TL . It is clear, however, that a good part of

2 2the method of proof used for TL will work when TL is replaced by
2

another graph Q imbedded in 1R which is one of a matching pair 

(Q,Q*) for which pT(Q) = ps(Q) = l-pT(Q*).
Before formulating our results we point out that continuum analog

ues of the resistance problem have been studied as well. For instance 
Papanicolaou and Varadhan (1979) and Golden and Papanicolaou (1982)
(see especially Appendix) assume that the conductivity of a certain 
material is a random process, indexed by position in ]Rd (rather than 
time). This process is assumed stationary. Under suitable assumptions
the asymptotic behavior of the conductivity of B between Pp and •j n n

for the random medium is the same as that of a certain deterministic 
"effective" medium. Golden and Papanicolaou (1982) give bounds for the 
conductivity of the effective medium. A related sequence of bounds for 
the conductivity in a composite medium can be found in Milton (1981). 
However, these bounds seem to apply only for a material of two compon
ents, both of which have a finite non-zero conductivity.

We turn to the precise formulation of our theorems. It turns out
that in the first mentioned problem a good way to estimate R is to

n n
find a lower bound for the number of disjoint paths in W from A 1 n n
to A^. In other words, we try to find many disjoint conducting paths
(i.e., paths each of whose edges has finite resistance) in Bn from the 
left to the right face. This part of the analysis is pure percolation 
theory. For a closer match with the previous chapters we treat this 

part as a site percolation problem. Let Q be a periodic graph imbed
ded in K d . By definition of p^ = p$(Q) (see (3.65)) the probability
under P that there exists any occupied path on Q in B from pP 1 P n n
to A tends to zero (as n -> °°) whenever p < pq. For many of the
graphs in IT which we considered the same probability tends to one
when p > pr. We now define a new critical probability as the dividing

5 0 1 
point where lots of disjoint occupied paths in B̂  from A^ to An
begin to appear. Specifically, we want of the order of n such paths.
With Pp the one-parameter probability measure defined by (3.22) and
(3.61) and i-crossings as in Def. 3.1 we define
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(11.3) pR = pR(Q) = inf{p: 3 C(p) > 0 such that

Pp{ 3 C(p)n disjoint occupied 1-crossings of [0 ^]°* 

for all large n} = 1} .

Clearly pR > p$. 

(1.16))

It is also not hard to show that in general (cf. 

Pr i  Pr •

This is an easy consequence of the fact that the harmonic mean is less 
than or equal to the arithmetic mean. The proof of this relation between 
pR and pR is implicit in the proof of Theorem 11.2 (see the lines 

preceding (11.81) . We shall not make this proof any more explicit. 

Instead we concentrate on the much harder and more crucial relation

PR = PS *

2
which holds for many graphs in ]R . Since we are also interested in an 

estimate for C(p) in (11.3) in terms of powers of (p-pH(Q)) we want 
to appeal to the results of Ch. 8. We therefore restrict ourselves to 
proving pR = p^ only for the graphs Qq , Q-j , Qq and Q| introduced 
in Ex. 2.1(i) 9 2.1 (ii), 2.2(i) and 2.2(ii). (See, however, Remark (i) 

below.)

Theorem 11.1. Let Q be one of the graphs Qq, Q^, Q* or Q* and let 

Pp be the one-parameter probability measure on the occupancy configura
tions of Q of the form (3.22) and specified by (3.61), Then for some 
universal constants 0 < C ., 6 . < °° one has

(11-4) Pp( 3 at least C-j(p-pH(Q) n disjoint occupied 

horizontal crossings on Q of [0 ,m]x[0 ,n]}

> l-C2(m+l)exp{-C3(p-pH(Q)) n} ,

whenever p >_ PH(Q) -

Remarks.

(i) The proof given below can be used to show that for any Q
?

which is one of a matching pair of periodic graphs in 1R there exist 

constants 0 < = C^(p,Q) < 00 for which

(11.5) Pp{ 3 at least C-̂ n occupied horizontal crossings on 

Q of [0,m]x[0,n], no pair of which has a vertex in

common} >_ 1-C2m exp-C^n,
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whenever p > l-pT(Q*).

(ii) The proof below for Theorem 11.1 is largely taken from 

Grimmett and Kesten (1982). The estimate in the latter paper does, 
however, differ slightly from (11.4). It replaces C-j (p-pH(Q)) n̂ 

inside the braces in (11.4) by (y-e)n, where y is the time constant 
of a certain first-passage percolation problem (see Smythe and Wierman 
(1978) for such problems) and then shows that on TL the number of 
edge disjoint occupied crossings of [0 ,m]x[0 9n] is actually of the 

order yn for n~^log m small. The fact that one can give a lower
^1bound of the form C-j (p-pH(Q)) for the time constant y of the first 

passage percolation under consideration was pointed out to the author by 

J. T. Cox (private communication ). It is this observation which leads
^1to the C-|(p-p^(Q)) n in the left hand side of (11.4). Grimmett and 

Kesten (1982) do not pursue the dependence on p of the various con
stants, but instead are interested in the exponential bound (11.5) with
C-, as large as possible (all the way up to y). ///

dWe return to the resistance problem on H Q . We shall assume that 
each edge has a resistance R(e) with all R(e), e an edge of ,
independent random variables, all with the same distribution given as 

follows:

(11.6) P{R(e) = 0} = p(0),

(11.7) P(R(e) = oo} = p(oo), 

and for any Borel set B c (0,°°)

(11.8) P{R(e) e B} = / dF(x)
B

for some measure F on (0,°°) with total mass l-p(0)-p(°°).

In the next two theorems ed(p) will denote the percolation prob
ability for bond-percolation on TlA under the measure Pp according 
to which all edges are independently open or passable (blocked) with 
probability p(q = 1-p). Thus, for any edge e of

6d(p) = Pp{e belongs to an infinite open cluster}.

Also p<* d will be the critical probability of (3.65) for bond-percola

tion on . In Theorem 11.2 we take d = 2 so that in (11.11) 02(p)
also equals the percolation probability for site-percolation on Q-j,
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^*e,,02 ^p ^ = Pp^v belon9s to an infinite occupied cluster on Q-j} for 
v any vertex of Q-| and Pp given by (3.22) and (3.61) with \s the 
vertex s e t  of Q-j (compare Ch. 3.1; Q-| is introduced in Ex. 2.1 (ii)).

2
Theorem 11.2. Assume the edges of TL have independent resistances

with distribution given by (11.6)-(11.8). Let Rn be the resistance-------  ---- g--------1— -----------------------  n -----------------
between A n and Ap of the network in Bn- Then

(11.9) P{Rn = 0 eventually} = 1 if p(0) > j ,

(11.10) P{Rp = 00 eventually} = 1 if p(«) > 1 .

Moreover there exist constants 0 < C., 6 . < °° such that if------- —»-------------- -̂------- i i ------------
p(0) < and p H  < j , then

1 26i

(11.1 1) p^ 4 " O l - p H )  U  , x dF(x)} £ lim inf R
2 ' (0 ,°°) n-*»

9o(l-p(0))
< lim sup R < Cr ---------or—  / x dF(x)} = 1,

■ " "  (1 - p W )  ’ (»•">

(<5 is the same as in (11.4)).

Coro! 1 ary 11.1. Let the set up be the same as in Theorem 11.2. Then 
there exist constants 0 < C4, 6,. < 00 such that for p(0) = 0, 
p (00) < j  one has

— 2
(11.12) p(C6([-p(-)) 3{/ } dF(x) } ' 1 < lim inf R

( 0 , “ )

1 -26i< lim sup R < C,-(y-p(°o)) / x dF(x)} = 1.
( 0 ,°°)

If, on the other hand, p(0) < 1  , p(°°) = 0 , then

(11.13) P(C4(^-p(0)) ]{/ } dF(x)}"1 < lim inf Rn
(0 ,°o)
1  ̂O

< lim sup R < C7(y-p(0)) j x dF(x)} = 1.
n 7 2 (o,°°)

Remarks.

(iii) If / — dF(x) = °° then
(0 ,») x

{/ } dF(x) } " 1 is to be
(0 .-) X
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interpreted as zero, and the lower bounds for Rp in (11.11)-(11.13)

become vacuous. Similarly the upper bounds become vacuous if
/ x dF(x) = 00 . Nevertheless it is possible to use Theorem 11.2 to

( 0 ,°°)

obtain non-trivial bounds for Rn in such cases by truncation.
u 1 I

example, assume that /x dF(x) = °° and p(0) < j > p(°°) < j
m as the unique finite number for which

F((m.-)) < ^ J - p W )  < F([m,-)).

For

Define

Now take for each edge e

R'(e) = R(e) if R(e) < m,

R ‘(e) = °° if R(e) > m (including R(e) = °°) .

If R(e) = m, then randomize again for R‘(e) and take

R ‘(e) = m with probability F([m,°°)) - P(°°))

and
R ‘(e) = 00 with probability \(^~ p(°°))-F((m,°°)).

Again the randomizations for R‘(e) when R(e) = m are done indepen

dently for all edges. Then R‘(e) > R(e) for all e, and if R‘ de-
0 1 n notes the resistance between An and An in Bn when we use the

R‘(e) instead of the R(e) then (see Lemma 11.4 below)

Rn •

Since
P{R'(e) = °°} = p(“ ) p(°°)),

we obtain from (11.11) applied to

(11.14) P{lim sup Rn <_ 1 im sup R̂

26, 02(l-p(O))
< Cr2 1 -------- /

d - p H p i  (0’m]

x dF(x)} = 1

whenever m > 0. In a similar way one can truncate R(e) near zero to 

obtain a nonzero lower bound for lim inf Rn when p(0) < j and 
J 1 dF(x) = » .

(iv) Theorem 11.2 as stated gives no information when p(0) = |- 

or p(°°) = j • Actually, from (11.11) and simple monotonicity arguments 

one obtains
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and

(11.16)
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P{1 im Rn = °°} = 1 if p(0) < j = p(°o)

P{lim Rn = 0} = 1 if p(0) = 1 > p(oo).

For example, to obtain (11.15) one merely has to randomize R(e) when 
R(e) = °° and to take

R"(e)

1
<

CO

with probability e 

with probability 1-e ,

but to take R"(e) = R(e) when R(e) < °° (11.15) is then obtained by

applying (11.11) to the R"(e) instead of R(e) and taking the limit 
as e T 0 .

Finally, when p(0) = p(°°) = j , F = zero measure, then

(11.17) lim PfR = 0} = lim P{R = °°} = i .
n-»co n-*» L

We shall not prove (11.17), but merely note that if each R(e) = 0 or
then also Rn = 0 or and

0 ,1
Rn = ° if and only if there is a 

path in Bn from to all of whose edges have zero resistance. 
The probability of this event is precisely the sponge-crossing prob

ability S y 2(n+^’n+^) Seymour and Welsh (1978) and Seymour and 
Welsh (1978, pp.233, 234) already show S.^2(n+1 ,n+l) ^ S ^ 2(n,n+l) = -̂ .

(v) When p(0) = p(°°) = 0 percolation theory does not really 
enter. One can then trivially estimate Rp from above by the resistance 
of the network consisting of the (n+1) parallel (disjoint) paths 
{k}x[o,n], k = 0,...,n+l. A very much simplified version of the proofs 
of Theorems 11.2 and 11.3 then yields

(11.18) j dF(x)} < lim inf Rn 5  lim sup R < / xdF(x).
(0 ,oo)

This bound has apparently been known for a long time (see Milton (1981) 
and its references).

d 2(vi) It seems very likely that lim n exists in some sense.
Golden and Papanicolaou (1982), Appendix, show that Rn converges in
2 ^L (P) when d = 2, p(0) = p(°°) = 0 and F concentrated on an interval
[a,b], 0 < a < b < °°. Their proof actually deals with the continuum

analogue but appears to apply as well in our set up. Straley (1977)
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uses duality arguments to discuss the case d = 2 , p(0) = p(°o) ■- 0 ,
P{R(e) = a} = P{R(e) = b} = j for some 0 < a < b < °°. These arguments

show that in whatever sense R has a limit, the value of the limit 
1/2 nshould be (a b) ' . In particular by the above result of Golden and 

Papanicolaou E{Rn-(ab)^}^ ->0 as n °° . ///
For d > 2 our results are quite incomplete.

Theorem 11.3. Assume the edges of TL ̂  have independent resistances 
with distribution given by (11,6)-(l 1.8). Let Rn be the resistance
----------n--------"I-------------------------- n -----------------
between and An of the network in Bn. Then

(11.19) P{Rn = 0 eventually} = 1 if p(0) >_ j 

and

(11.20) P{Rn = 00 eventually} = 1 if l-p(°°) < ps d .

Moreover, there exist constants 0 < C.., 6.. < °° such that

(11.21) Pflim inf nd" \  > ^ - ^ y y  {/(o^  IdF(x)}-1} = 1

and

( 11. 22)

if P (0) = 0,

H O
P{ 1 im sup " <.

i 26i
(J-p W )  1

/ x dF(x)} = 1
( 0 , “ )

if p(0) < j and p(°°) < j .

(6  ̂ is the same as in (11.4).)

11.2 Proof of Theorem 11.1.
We shall only prove a weakened version of (11.4). This will suf- 

fice for Theorems 11.2 and 11.3. Instead of obtaining C-j(p-p^(Q)) n̂ 
disjoint occupied crossings of [0,m]x[0,n] as desired in (11.4) we 

only obtain this many crossings no pair of which has a vertex in common. 
Thus the occupied crossings are only vertex-disjoint. For a planar 
graph such as Qq this means that the crossings are actually disjoint, 
but not for a non-planar graph such as . To obtain disjoint crossings 

one should carry out the argument below (with a number of complicating 
modifications) on Qp^ .

Now for the proof of the weakened version of (11.4). We restrict 
ourselves to the case Q = Q-j, the other cases being quite similar. We
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take for Ik-, the zig zag curve strictly to the left of (0}x[0,n], 

starting at (-l,^ going to (-pi), then to (-1 ,j) and extended 

periodically, with final point (-l,n-|-)- Similarly A3 is a zig-zag 
curve strictly to the right of {m}x[o,n], from (m+1 ,p) to (m+l,n-^-) 
(see Fig. 11.1). Also A2 is a zig-zag curve from (-1,̂ -) to 

(m+1 ,i) lying strictly above [0 ,m]x{0} and obtained by periodic 
repetition of the segments from (-1 ,j) to (-pi) to (0 ,̂-) etc. A^ 
is a similar path strictly below [0 ,m]x{n} from (-l,n-i) to 
(m+ljn-^-). The composition of A-|-Â  is a Jordan curve on ft, where 

ft is the mosaic on which Q-j is based [ft is rotated over 45° and

V  >
<

>
< A 

> 3
<

/S >

Figure 11.1 The solid rectangle is [0,m] x [0,n] 
The dashed curve is J .

translated by (p0). Q1 is imbedded as in Ex. 2.1(ii); see Fig.2.3). 

Any path on Q-j in J = J U int(J) from a vertex on A-j to a vertex 
on Ag, and with all its sites in J\A-| U a 3 occupied, contains an 

occupied crossing on Q-j of [0,m]x[o,n]. Moreover, if two such paths 
in J have no vertex in common in J \ Â  U A3 , then they have no 
vertex in common in [0,m]x[0,n]. It therefore suffices to find a lower 
bound on the maximal number of paths on Q-j in J from A-| to A3 
with only occupied vertices in J\A-| U A3, and such that any pair of 
these paths has no common vertices in J \A-̂  U Â .

To find the desired lower bound fix an occupancy configuration a) 
and form the graph Qj(u)), which is basically the restriction of the 
occupied part of Q to J, with the vertices on A-j identified as one
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vertex 1, and similarly for the vertices on Ag. More precisely, the 
vertex set of Qj(u)) consists of the collection of vertices v of Q 
in U\A-| U Ag which are occupied in co plus two vertices which we 

denote by 1 and 3. There is an edge between two vertices v1 and 
v" of Q ( cjo) (other than t and 3) iff there is an edge between them 
in Q. There is no edge between 1 and 3, and there is an edge be

tween v and 1(3) if there is an edge in Q between v and some 
vertex on A-j(Ag). We shall now apply Menger's Theorem - which is a 
version of the max flow-min cut theorem, see Bollobas (1979), Theorem 
111.5 (i) - to Qj (oj). In the terminology of Bollobas, the number of 

independent paths from 1 to 3 in Qj(u)) equals the maximal number 
of paths on Qj(w) from A-j to Ag which are pairwise vertex-disjoint
on J\A-| U Ag. In turn, this is precisely the maximal number of paths

on Q-| in J from Â  to Ag all of whose vertices in J\A-| U Ag 
are occupied and which are pairwise vertex-disjoint on J \A-| U Ag.
By Menger's Theorem this number equals the minimum of the cardinalities 
of sets of vertices of Qj(oo) which separate 1 from 3. (A set V 
of vertices in Qj (w )\ {1,3} separates 1 from 3 if after removal of
V there no longer exists a path from 1 to 3 on Qj(io)). Let us
denote by L this minimum cardinality of separating sets. Now consider 
the collection of all paths r* = (vg,e^,...,e*,v*) on Q* which 

satisfy

(11.23) r* <= J \ A 1 U A3

and
o o

(11.24) vg lies on Ag, vg lies on A^ .

Denote by M the minimal number of occupied vertices on any such path. 

We shall use Prop. 2.2 to show that

L = M.

First pick a path r* which satisfies (11.23) and (11.24) and which 
contains only M occupied vertices. If we modify w by making these 
M vertices vacant, then r* becomes vacant and then by Prop. 2.2 there 

is no longer a path on Q in J from A-j to Ag with all its ver
tices in T \ A 1 U Ag occupied. Equivalently, removal of the M 
occupied vertices on r* separates A-j from Ag, so that the occupied 

vertices on r* form a set which separates 1 from 3 in Qj(io), 
whence L < M. Conversely, let V be a set of L vertices which



346

separates 1 from 3 on Qj(w)- View V also as a set of vertices 

of Q-j and let o> be the occupancy configuration obtained by making 
the vertices in V vacant. Making the vertices of V vacant amounts 
to removing them from Qj(o)), i.e. 9 Qj(w) does not contain any vertex 
from V. Since V was a separating set 1 and 3 are not connected 
by a path on Qj (go). Therefore, in the configuration 63, A-| and A^ 
are not connected by a path on Q-| in J with all its vertices on 
T\A-| U A3 occupied. By Prop. 2.2 this means that there exists a path 
r* on Q* which satisfies (11.23) and (11.24) and which is vacant in 
the configuration to. Since w differs from oo only on the vertices 
of V, it follows that r* has at most #V = L occupied vertices in 
the configuration w. Thus, M < L and M = L as claimed.

So far we have shown that

(11.25) number of vertex-disjoint occupied horizontal crossings 

on Q of [0 ,m]x[0 ,n] in the configurationA ^
>_ maximal number of paths on Qj(u)) from 1 to 3, 
such that no pair has a vertex in common in J \A-j U A^ 
= L = M.

5
Thus, the left hand side of (11.25) can be less than C^(p-p^(Q-|))

l ^1 i 5i
= Cn(p-i-) n only if also M < C-,(p-y) n. Now note that A* lies

 ̂  ̂ , In5!on or above the horizontal line ]Rx{n-l}. Therefore, M < C^p-^-) "
can happen only if one of the (2m+3) vertices v* of A2 is connect

ed to the horizontal line PNx{n-l} by a path on containing fewer 
1 ^1than C-^p-^-) n occupied vertices. Consequently

(11.26) Pp{maximal number of vertex-disjoint occupied horizontal 
crossings on Q-. of [0 ,m]x[0 ,n] is less than 

1 ^1
c-i(p -1“) 'n}

< (2m+3) max P A  3 path on Q? from v* to the 
v*(2)<l p 1

half plane JRx[n-l,°°) which contains fewer than

C-j(p-2") n occupied vertices},

To estimate the right frand side of (11.26) we use a slightly strengthen
ed verions of (5.48) or Lemma 1 of Kesten (1980b). For a closer agree
ment with the notation of Lemma 5.4 we interchange the role of Q and 
Q* as well as the role of "occupied" and "vacant" and the role of the
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first and second coordinate. Theorem 11.1 is then immediate from

(11.26) and the Proposition below. (Recall that p^(Q*) = 1~PH(Q) for 
Q = Qq or Q-j by Applications 3.4(iv) and (ii).) fl

Proposition 11.1. Let Q be one of the graphs Qq , Q-|, Qg or Q| 
and let Pp be the one-parameter probability measure on the occupancy 
configurations of Q of the form (3.22) and specified by (3.61). Then 

for some universal constants 0 < , 6  ̂ < 00 one has for any vertex

v of Q with v(l) 1 0 and p < pH = PH(Q)

(11.27) P { 3 path from v to [n,°°)x]R on Q which contains
 ̂ 6-i

fewer than Cg(p^-p) n vacant vertices)
60

< 10 exp-C7(pH-p) n.

Proof: As in Lemma 5.4 we set for any vertex u of Q and integer M

Sq = Sp(v,M) = {w a vertex of Q:|w(j)-v(j) | < M, j = 1,2},

Si = Sq U bSq = {w a vertex of Q: w e Sq or w adjacent to 
a vertex in Sq } .

Instead of A(u,m) in (5.47) we now define for positive integers n 

and k the event

A(v,n,k) = { 3 a path on Q from a neighbor of v to a w 
with w(l) >_ n which contains at most k vacant 

vertices}.

We repeat the definition of g from Lemma 5.4.

g(vsw sM) = Pp{ 3 occupied path (wQ,e^,...sep,wp) on Q

with WqQv , wp t Sq (v ,M) one of the ŵ  equal 
to w} .

The principal estimate is the following strengthened version of (5.48).^ 

For v(l) < n-M and k :> 0,

1) One could also use the argument of Lemma 1 in Kesten (1980b), which 
avoids the use of the random set R. However, the present argument 
is a closer parallel to Ch. 5 and needs essentially no new steps.
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(11.28) P {A(v,n,k)} < Y g(v,w,M)P {A(w,n,k)} 
p weS1(v,M) p

+ Y P {A(w,n,k-l)} . 
weS-|(v,M) P

To prove (11.28) let E be the event

E = U A(w,n,k-1). 
weS-j (v,M)

Clearly the second term in the right hand side of (11.28) is an upper 
bound for Pp{E} so that we only have to estimate Pp{A(v,n,k)\ E}. 
Assume then that A(v,n,k)\ E occurs and that r = (Vg,e.|,... ,ev ,v̂ ) 
is a path on Q with Vq adjacent to v, v^(l) >_n and such that r 
contains at most k vacant vertices. Since v^(l) £ n  > v(l)+M, v^

must lie outside Sq (v ,M) and there exists a smallest index a with

va  ̂ Since va_i e Sg(v>M) we still have vfl e 9Sq ^ S-|.

Since E does not occur (va+] >ea+25 ’ * ’ ,ev ,vv^ must contain more than 
(k-1) vacant vertices (otherwise A(va ,n,k-1) would occur). But then 
(Vg,e^,...5ea_^svQ) cannot contain any vacant vertex, because r con
tains at most k vacant vertices. Consequently with R defined as in 
Lemma 5.4 va £ R. As in Lemma 5.4 let b > a be the last index with

vb e R. Then the path (vb+i,eb+25’"  ,ev ,vv̂  has lts vert1ces 
outside R, its initial point, vb+-|, is adjacent to vb e R and its 
final point vv satisfies v^(l) £ n. Moreover this path is a subpath 
of r and therefore contains at most k vacant sites so that 
A(vb,n,k) occurs. Thus, as in (5.49)

P {A(v,n,k)\ E} £ l P {w £ R and 3 a path 
p weS1 p

(wQ,f1...fp,wp) on G with wo^w ’ wp^^ - n ’ wi * R

for 0 £ i £ p and at most k of the w., 0 £ i £ p, are 
vacant}.

One can now copy the argument following (5.48) practically word for word 

to obtain

(11.29) P {A(v,n,k)\E} £ l g(v,w,M)P {A(w,n,k)h
p weS-j p

one only has to replace "occupied path" in the definition (5.50) of J 
by "path with at most k vacant vertices". The right hand side of
(11.29) is just the first sum in the right hand side of (11.28) so that 

(11.28) follows.
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In order to exploit (11.28) we must now choose M such that 
(5.51) holds. This time we must also keep track of the dependence of 

M on p. But, for every v, w, M

g(v,w,M) £ PpCsome neighbor of v is connected by an occupied 

path on Q to BSq (v ,M)} £ Pp{ 3 on occupied horizontal 
crossing of [v(1)-M,v(l)-l] x [v(2)-M,v(2)+M] or of 
[v(1)+l,v(l)+M]x [v(2)-M,v(2)+M] +Pp{ 3 an occupied vertical 
crossing of [v(1)-M,v(l)+M]x [v(2)-M,v(2)-l] or of 
[v(l )-M,v(l)+M]x [v(2)+l,v(2)+M] ,

since any path from a neighbor of v to 3Sg(v,M) must cross either the 
left or right "half", or the bottom or top "half" of SQ(v,M). With the 
notation of (5.5) we therefore conclude from Comment 3.3(v) and Lemma 

8.3 that

(11.30) g(v,w,M) £ 2t ((M-l,M-1);1,P)+2t ((M-l,M-1);2,p)
al£ 4 exp-C-j3(pH-p) (M-l)

p
Since S-j(v,M) contains at most 2(2M+3) vertices of Q-j we have

OL
(11.31) I g(v,w,M) < 8(2M+3)2exp-C13(pH-p)(M-1) 1 < | 

weS-j (v,M)

for

(11.32)
-2/ou

M = Cg(pH-p)

for some suitable Cg, which depends on C^3 only (C^3 is as in Lemma 

8.3).
From here on the proof is identical with that of Prop. 1 of Kesten 

(1980b). We choose M such that (11.32) and hence (11.31) hold. We 

rewrite (11.28) as

(11.33) P (A(v,n,k)} £ l h(v,w,,y])P {A(v+w],n,k-y,)},
P w. .V. I I H

where w-j runs over those points in the square [-M-1 ,M+1 ] x [-M-1 ,M+1 ] 
for which v+w-| e S-j(v,M) and y-j takes the values 0 or 1. Finally

h(v,w] ,y]) =
i if y-, = i ,

<

g(v,v+w1,M) if y1 = 0 .

Next we observe that
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Pp{A(w,n,-l)} = 0 if w(l) < n

since no non-empty path from w to [n,°°)x]R can have a negative 

number of vertical sites. Consequently, by iterating (11.33) we obtain 
for any £ >_ 1

(11.34) P{A(v,n,k)}< J h(v,w1.y1)
P V *1

w1(l)>n-M,y1<k

wi *i 
w1(l)<n-M,y1<k

l h f v . w ^ )  l h(v+w] ,w2 ,y2)
^2 ’^2

• Pp{A(v+w1+w2 ,n,k-y1-y2)}

< .
£

1 I I 
j = l

(j)
3
n

i = l
h(v+w1+--.+wi_1,wi,y.)

(1)+ • •-+wt(1)<n-M 
for t<£, and y-| + ,,+y£lk

£
^h(v+w1 + ...+wi_1,w.Jy.) s

where is the sum over w^,... ,ŵ  ,y^,... ,ŷ  with

< n-M for t < j but ŵ  (1)+.. .+w.(l) >_ n-M and ŷ  + .. 
Of course all sums in (11.34) are also restricted to ŵ  
x [-M-1 ,M+1 ], v+w-1 + ...+w^ e S-j (v+w-| + .. .+w-j _] >M) and y. e

w1(1)+— +wt(l)
Ay. < k.

J “
e [-M-1,M+1] 
{0,1}. Next

we take
X = log 16 + 2 log(2M+3)

so that, by (11.31)

4>(X) := max l h(u,w,y)e"Xy 
u u+weS^(u,M)

ye{0,l }

£ max l g(u,u+w,M)+e”^2(2M+3)2 
u u+weS-|(u,M)

< |+2(2M+3)VX = | .

For this choice of X
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_n h(v+w-| + .. •+wi _1 ,wi .y^)

< e\k l
j -Ay,

yie{0 ,1}
n {e 1h(v+w1 + .. .+w. ,,w. ,y.)} 
i=l l i - l i i

v+w-| +.. ,+w^eS^ (V+W-J + .. •+w1-.1 >M)

< eAk(*(A))j < eAk(|)J ,

■(j)because y-| + ...+yj £ k  in . Similarly the last term in (11.34) is

at most

eAk(|)£ .

Finally, observe that w. (1) £ M+l, so that for v(l) £0, v(l )+w-, (1)
■ -1

+ ...+Wj(l) £ n-M can occur only for j > (n-M)(M+l) . Consequently,

by virtue of (11.34)

n rn, .N-, i. Xk r /7J  ̂ ,A Xk,7\n/(M+1)P (A(v,n,k)} < lim e l («) < lOe (p) 7 v
p ” a-** n-M ^  o — b

m  ̂
whenever v(l) £ 0 . 

If we take

2/ouI n  p o i
k = 2X^M+T^109 7 {8CT lo3(y)(pH-p) (-log(PH-P))’ >n, p + PH ,

8

then we find for v(l) £ 0  and suitable C
n

9

Pn{A(v,n,Cg(pH-p)3/ain)} < 10(|)2(M+1) < l O ^ f ' 8

2/a

4C„^PH'P  ̂ n

This is just (11.27) with 6n = —  , 59 = —  and suitable CA , C7. QI 06 -j l 06 D /

11.3. Properties of resistances.
Before we start the proof of Theorem 11.2 we describe how the 

resistance of a network is related to the resistances of the individual 
edges. As we have done all along we assume that there are no loops 
(i.e., edges whose endpoints coincide) in the graph. If v is a vertex 
and e an edge incident to v then we write w(e,v) for the endpoint 
other than v of e. R(e) is the resistance of the edge e. To find 

the resistance between the sets of vertices and Â  of a finite
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graph Q one wants to find a potential function V(-) on the vertices 

of Q, which equals 0 on fp and one on a \ and corresponding 
currents through the edges. The size of the resistance between A^ 
and Â  is then equal to the reciprocal of the total current flowing 
out of A^. If v and w are the endpoint of an edge e let I(v,e) 
denote the current flowing from v to w along e. Ohm's and 
Kirchhoff's laws (see Feynman et al (1963), Sect. 1.25.4,5 and 11.22.3, 

Slepian (1968)) say that the potential and currents have to satisfy

(11.35) I(v,e) = -I(w(e,v),e),

(11.36) V(w(e,v))-V(v) = R(e)-I(v,e),

(11.37) I I(v,e) = 0 if v t A0 U A1 . 
e incident
to v

Finally, there is the boundary condition which we imposed

(11.38) V(v) = 0 if v e A0 and V(v) = 1 if v e A1.

To discuss the uniqueness and existence of V and I assume 
first that R(e) > 0 for all e. R(e) = °° is allowed, in which case 
we have to interpret (11.36) as

(11.39) I(v,e) = 0.

In this case (11.36) makes no statement about the potential difference 
between the endpoints of e. However, if R(e) i 0 we can rewrite 

(11.36) as

(11.40) I(v.e) = V(w(e,v)j-V(v)

and substitution of (11.40) into (11.37) shows that (11.37) is equiva

lent to
y V(w(e,v))
e R(®) n ]

(11.41) V(v) = £----- 1----- , v t KJ U A 1 ,

l Rlil

where the sums in numerator and denominator of (11.41) run over edges 
e incident to v. Therefore, w(e,v) runs over all neighbors of v 
and (11.41) says that V(v) is a weighted average over the values of 
V(-) at the neighbors of v. V(w)/R(e) and 1/R(e) are interpreted 

as zero if R(e) = °°. Thus, V(v) is really an average of V(-) over
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those neighbors of v which are connected to v by an edge of finite 
resistance. (If no such edges exist, then V(v) is not determined by

(11.35)-(11.37), but this will turn out to be unimportant.) It is well 
known from the theory of harmonic functions that the mean value property
(11.41) implies a maximum principle; many of the proofs of this fact in 
the continuous case can be transcribed easily for our situation (see 
for instance Helms (1969), Theorem 1.12 and also Doyle and Snell (1982), 
Sect. 2.2). We shall use the following formulation of the maximum 
principle. Let C be a collection of vertices disjoint from pP U
and let denote the set of vertices of w t c which are connected
to a vertex in C by an edge of finite resistance. Then

(11.42) min V(w) < V(v) < max V(w)
we3fC we3fC

for every vertex v in C which is connected to 3^C by a conducting 
path. Here, and in the remainder of this chapter, a conducting path 
is a path all of whose edges have finite resistance. If we take for C 

the set
CQ = set of all vertices outside A0 U p} ,

then (11.42) implies that there is at most one possible value for V(v) 
at any v connected to pP U Â  by a conducting path (apply (11.42) to 
the difference V'-V" of a pair of solutions to (11.35)-(11.39); V'-V" 
has to vanish on 3^Cq c; a  ̂U A^). The fact that there exists a solu

tion of (11.38) and (11.41) is well known (see Slepian (1968), Ch.7) 
and is also very easy to prove probabilistically, since V(v) can be 
interpreted as the probability of hitting Â  before P p when start
ing at v, for a certain Markov chain (see Doyle and Snell (1982),

Sect. 2.7). Once we have V(-)> (11.39) and (11.40) give us I(‘)* The 
resistance R between pP and Â  is then defined as the reciprocal 
of the total current flowing out of pP , i.e.,

(11.43) R = (I Kv.e ) } ’ 1 = {£ .

The sums in (11.43) run over all edges e with one endpoint v e A^ 
and the other endpoint w(e,v) t A^. Note that the right hand side of
(11.43) is uniquely determined, despite the fact that V(w) is not 
unique for a vertex w which is not connected to A^ U Â  by a con
ducting path. Indeed if w(e,v) is such a vertex, then necessarily 
R(e) = 00 and the corresponding contribution to (11.43) is zero, no
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matter how V(w) is chosen.
There are some complications when we allow R(e) = 0 for some 

edges. For such edges e (11.40) is no longer meaningful, and (11.36) 

merely says

(11.44) V(w(e,v))-V(v) = 0.

In this case one can proceed as follows. Sum (11.37) over v e C for 
any set C disjoint from U . If one takes into account that for 
v,w e C connected by an edge e the sum will contain I(v,e)+I(w,e)

= 0 , one obtains

(11.45) l I(v.e) = 0, C n (A0 U A1) = 0, 
e

where the sum in (11.45) runs over all e with one endpoint v e C 

and the other endpoint w(e,v) t c- In words (11.45) says that the net 
current flowing out of any set C disjoint from Fp U Â  must equal 
zero. Now define two vertices v-j and v^ of Q as equivalent iff 
v-j = v2 or v̂  and v2 are connected by a path all of whose edges 

have zero resistance (i.e., iff there is a short circuit between v-| 
and v2). Let C^,C2,... be the equivalence classes of vertices with 
respect to this equivalence relation. By (11.36), or (11.44), all 

vertices v in a single class C must have the same potential V(v).
We shall write V(C) for this value. Now form a new graph K by 
identifying the vertices in an equivalence class. Thus K has vertex 

set {Ci ,C2,...} and the edges of K between and Ĉ. are in one 
to one correspondence with the edges of Q connecting a vertex of 
with a vertex of Cy  From the above observations we obtain the follow

ing analogue for (11.36)-(11.38).

(11.46) V(Cj)-V(C,j) = R(e)-I(v,e), when v e is connected 

to w e C . by e, i f j.
J

(11.47) l I(v,e) = 0, wherever fi (A^ U A^) = 0 and the 
e
sum is over all edges e with one endpoint v in C.. 

and the other endpoint w(e,v) t .

(11.48) V(Ci) = 0 when Ci fl A0 f 0 

V(Ci) = 1 when Ci n A1 f 0 .(11.49)
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(11.35) remains unchanged, and (11.46) again is interpreted as (11.39)

when R(e) = °°. Of course (11.48) and (11.49) can be simultaneously
valid only if there exists no C. which intersects both Fp and .

1 0 1However, this case can arise only if A and A are connected by a 
path all of whose edges have zero resistance. (We shall call such a 

path a short circuit between A® and A^.) In this case the resistance
between /P and Â  is taken to be zero. If there is no C. which

0 1 1 intersects A and A , then solving (11.46)-(11.49) just amounts to
solving on K the problem which we solved above for Q. We merely
have to replace A^ (A^) by the collection of C. which intersect
n 1 'A (A ). Note that by definition of the any edge from to

C., i i j, has a strictly positive resistance. Thus, as before V(C.)
3 "I
is uniquely determined for any C- which contains a vertex which is 

0 1 1connected to A U A by a conducting path. For any choice of V(C.)
we then find I(v,e) for v e C., e incident to v, but with

' 0 1w(e,v) e C. with j i i. The resistance between A and A in Q
J

can now be defined as the reciprocal of the current flowing out of the 
union of all which intersect P  . In analogy to (11.43) this 

becomes
■j V(C ) -1

(11.50) {£ I(v,e)} 1 = {\ ,

where the sum is over all edges e, having one end point in some C.
0 1 which intersects A while its other endpoint lies in some C. with

0 JCj Fl A = 0; in the left hand side v is the endpoint of e in C..,
and C. in the right hand side is the class which contains w(e,v).

J
Just as in (11.43) the sums in (11.50) are uniquely determined.

Even though (11.50) does define the resistance between A^ and 
A^, when R(e) can vanish for some edges e, it would be more intuitive 
if one could use the middle expression in (11.43) to define the resis
tance, also in the present case. This is indeed possible, but some more 
observations are required to see this. The currents between a pair of 
vertices in the same C. have not yet been determined, and in fact are 
not uniquely determined by the equations (11.35)-(11.38). If there are 
several paths of zero resistance between two vertices there is no reason 
why the current should be divided into any particular way between these 

paths. However, there do exist solutions to (11.35)-(11.38). We merely 
have to take
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01.51) V(v) = \I{C.) when v e C. ,

where V(C.j) satisfies (11.46)-(11.49). Then (11.38) is automatically 

true. Next define

(11.52) I(v,e) V(w(e,v))-V(v) _ v(c,j)-v(ci) 
Rle) R(e) when e is an

edge with endpoints v e C.. and w(e,v) e with i f j.

(11.52) makes sense since R(e) f 0 for an edge e with endpoints in 

different C. and C.. (11.51) and (11.52) guarantee that (11.36)
J

holds, no matter how we choose I(v,e) for an edge e with both end

points in the same C. and (11.35) is already satisfied for v and 
w(e,v) in different C. and C.. We now merely have to choose I(v,e)

’ J
for edges e with both endpoints in one C., in such a way that (11.35) 
and (11.37) hold. (11.37) can be written as

01.53) l I(v,e) = - l I(v.e).
e such that e such that
w(e,v) e Ci w(e,v) t

for v e C^\ U ,

for all which contain at least two vertices. The right hand side 
of (11.53) has already been determined in (11.52). To satisfy (11.35) 
we choose for each edge e with endpoints v, w in one of the
endpoints as the first one, v say. Then we take I(v,e) as an inde
pendent variable and set I(w,e) = -I(v,e). Then for each C. which

0 1 1 does not intersect A U A the expressions obtained in the left hand
side of (11.53) as v ranges over C.., contain each independent 
variable exactly twice, once with coefficient +1 and once with coef

ficient -1. Thus, the sum of the left hand side of (11.53) over v 
in vanishes. The same is true for the sum of the right hand sides, 
by virtue of (11.47) if H (A0 U A1) = 0. By induction on the number 

of variables one easily sees that (11.53) has at least one solution 
which satisfies (11.35), and (11.37). If intersects A^ U a\  
then rewrite (11.37) or (11.53) as

(11.54) l Kv,e) =
e such that

w(e,v)eCl.\ A ^ A 1

l I(v,e) 
e such that 
w(e,v)tfC.
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l I(v,e), v e C.\(A° U A1)-
e such that

w(e ,v)eC1.n(A^UA^)

The above argument used for (11.53) now shows that (11.54) has a solu
tion satisfying (11.35) if and only if the sum of the right hand sides 
of (11.54) over v e C-\ (A0 U A1) vanishes, i.e., iff we choose 
I(v,e) for v e C.j\ A^ U A1, and w(e,v) e C.. fl (A0 U A1) such that

(11.55)

veCi\  (A^A1)
l I(v,e)

e such that
w(e,v)eC1.n(A°UA1)

weCin(A°UA1)
l I(w,e)

e such that
v(e,w)eC1.\ (A°UA1)

i
„ r v , A0i ,A1 % e such that veCA (A UA } w(e,v)^C.

I(v9e).

Thus we can always solve (11.35)-(11.38), and any solution has to be 

chosen such that (11.55) holds.
Now that we have shown that there is a solution to (11.35)-(11.38) 

we can show that the left hand side of (11.50) equals the middle expres
sion in (11.43) by the following general argument. Let $ be any set 

of vertices which contains A^ and is disjoint from A^. We claim 
that for any such &

(11.56) R = {\& I(v,e) } _1 = {l 0 Kv.e ) } ' 1 ,
A

where ^  runs over all edges e with one endpoint v e & and the 

other endpoint w(e,v) outside $. In accordance with this notation, 

the last member of (11.56) is just the middle member of (11.43)
I(v,e) represents the current flowing out of To prove (11.56) 

we apply (11.45) with C =  &\A°. By our choice of &, C is disjoint 
from A^ U a I  (11.45) can now be rewritten as

(11.57) ^  I(v,e) = - £-| I(w(e,v) ,e) = l2 I(v,e)

where ^  runs over all edges e with one endpoint v in pP and the
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other endpoint w(e,v) in $\A^, while runs over all edges e 
with one endpoint v in $ \ A U and the other endpoint w(e,v) outside 

Now add to both sides of (11.57) the sum ^  I(v,e) over all edges 
e with one endpoint v in Aq and the other endpoint w(e,v) outside 

&. Then

I(v,e)+ l3 I(v,e)

is just the sum in the middle member of (11.43). On the other hand

l2 I(v,e) + 23 I(v,e)

is just I(v,e), so that (11.56) follows.
We return to (11.50). Take & = U c. where the union is over

0 1all C. which intersect A . We ruled out the case in which some C.
1 0 1 0 1 1 intersects A and A ; we took the resistance between A and A

zero in this case. With this case ruled out we see that $ = U C. is
1 i

indeed disjoint from A so that (11.56) applies. But for this $,
is just the sum in the left hand side of (11.50). Thus the middle

member of (11.43) can be used to define R, even if R(e) can vanish
for some e (as long as there is no short circuit between pP and Â ).

It is worth pointing out that for a finite graph Q the above

definition of R implies

(11.58) R = 0 if and only if there is a short circuit
between pP and Â  

and

(11.59) R = oo if and only if there is no conducting path

from A^ to A^.

(11.58) is immediate from (11.56), since we have taken all currents 

finite, as long as there is no path from pP to Â  with all its edqes 
of zero resistance. For (11.59), assume first that 
r =  (vn ,e-,,... ,e ,v ) is a conducting path from pP to A^, i.e.,

u 1 n v v n
with vn e A , v e A . By going over to a subpath we may assume 

nu 1 vv. i Au U A for 1 £ i £ v -1 . Of course r is also self-avoiding. 

Then £{V(vi+1 M ( v-j)} = V(vv)-V(vQ) = 1 by (11.38)). Thus for some 
j V(v.+1)-V(vj) > 0, and since R(ej+]) < °o also T(vj»ej+1) > 0.
If we take jB = AQ U {Vq ,...,v .} then the middle sum in (11.56) con

tains the term I(vj ’ej+]) > so that R < 00 • Conversely, if
R < take & = Pp U {v: v is connected to A^ by a conducting path}.
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Then & must contain a vertex on A^. Indeed all edges e with one 

endpoint v in jB and the other endpoint w(e,v) outside & must have 
infinite resistance (otherwise we should add w(esv) to &). But then
Y.q I(v,e) = 0, which contradicts R < °°, unless & D i 0. But &
^ 1  ointersects A if and only if there is a conducting path from A to

Â *. This proves (11.59).
With these preparations it is not hard to prove the following four 

lemmas. The first two and the fourth lemma are intuitively obvious 
from their electrical interpretation and reading of their proofs should 
be postponed. In all four lemmas we take the assignment of resistances 
to the edges as fixed, i.e., non-random.

Lemma 11.1. Let Q be a finite planar graph and R the resistance

between two disjoint subsets pP and A1 of Q. Assume that eg i_s_
an edge of Q such that eg is surrounded by a circuit
r = (vQ ,e1,... ,ev ,vv) (with vi j v., i j j , except for vQ = vj with

R(ej) = 1 £ 1 £ v >

and such that A^ U Â  contains no vertex in the interior of r. Then 
R is unchanged if R(eQ) is replaced by zero.

Proof: As before we may exclude the case in which A^ and Â  are
connected by a path of zero resistance. In that case R = 0 and this 
is even more true when R(e) is set equal to zero. Thus in this case 
there is nothing to prove. In the other case let V(r) be the poten
tial at v when all vertices of Fp (A^) are given the potential zero 
(one). R can then be calculated as the resistance between pP and Â  
on the graph K obtained by identifying vertices in a single equiva
lence class C all of whose vertices are connected by paths of zero 
resistance; see the argument preceding (11.50). By assumption all 
vertices on r will belong to one such equivalence class, say C. .

Moreover, the vertices inside the circuit r either belong to C. or
0 1 ®to some 0̂  which can be connected to A U A only via (by the

'0
planarity of Q). Let C. ,...,C. be the classes other than C.iJ 1 J ̂  *'1 X '0
which contain vertices inside r. Then all vertices of Q in
X
U C. lie in int(r). The boundary on K of the set of vertices

■̂ao f !

{C. ,...,C. } of K is the one point C. (see Def. 2.8). By the
’1 ■X 0
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maximum principle (11.42) applied to K it follows that

(11.60) V(C, ) = V(C. ) 
Ja n0

for all C.
J ,

which are connected to C. by a conducting path,
'a "*0

1 1 a 1 * • We shall now show that this implies that R is unchanged
if all vertices in the interior of r are removed from Q. Then

C . , . . . 5 C.j are removed from K , and C. becomes the class of ver-
0

tices on r or outside r, but connected to r by a path of zero 

resistance. To see that this removal does not effect R note that 

(11.46)-(11.49) remain satisfied with the values of V(C1-) and I(v,e) 
unchanged as long as i and j are restricted to the complement of 

and of course e such that its endpoints v and w do 
not belong to the interior of r. This is so because an edge from some

and v i int(r) to some w e int(r)

In this
v e with i t {j-j,...,
can exist only if v is a vertex on r and hence v e C.

0
case I(v,e) is zero anyway, either because R(e) = °° , or by virtue
of (11.60). Thus the term corresponding to e be dropped from (11.47)
without changing the left hand side of (11.47). But, then the right

hand side of (11.50) does not change either when the vertices inside r
are removed, again because C. ,...,C. do not contribute to the sum

Ji h
in the right hand side of (11.50). Indeed if C. contains a vertex

J,a
w connected to some v e Aq by an edge e and C. H A  = 0 , then v

must belong to C. , and V(C. ) = 0 by (11.48). The term 
n0 n0

V(C. ) /R(e) again vanishes, either because R(e) = °° or because of

(11.60). Thus R is indeed unchanged if all vertices in the interior 
of r are removed, and this has been proven without any reference to 
the value of R(eQ). Since eg is no longer part of the network after 
removal of the vertices in int(r), the value of R is independent of 

R(e0). □
Lemma 11.2. Let Q, flP, and R be as in Lemma 11.1, and let

C.j = A^ U Â  U {v e Q:v is connected to A^ by a 

conducting path} .

Then R is unchanged if we replace R(e) by infinity for each edge e 

which does not have both endpoints in .
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Proof: Since the current is zero in any edge with infinite resistance,

the right hand sides of (11.43) and (11.50) involve only the values of
V(w) with w e - terms which do not involve such w give zero
contributions. It therefore suffices to show that V(’) is uniquely
determined on , and that its values on are unchanged if we take
R(e) = 00 for each edge e which does not have both endpoints in .
Let us first assume R(f) > 0 for all edges f. Then the restriction
of V(-) to C-| satisfies (11.41) and (11.38) on . Moreover, for
v e C^ 5 an edge e incident to v only gives a non-zero contribution
to the sums in the right hand side of (11.41) if its second endpoint
w(e,v) also lies in . Consequently we can view the restriction of
V(-) to C, as the solution for the potential on the graph Q,n say,1 | ̂
whose vertex set is and whose edge set is the set of edges of Q
between two points of . Under (11.38) this problem on Qjc has a

unique solution for the same reasons as in the original problem on Q. 

(Note that the maximum principle (11.42) only involves edges of (L n
IL1

when C c Cj.) Thus V| c does not change if we change the resistance

of edges which do not have both endpoints in , provided we do not 
change . In particular does hot change if we set R(e) = °°
for some of these edges. This proves the lemma if all edges have a 
strictly positive resistance.

To prove the lemma when some R(e) may vanish we merely have to 
apply the preceding argument to the graph K whose vertices are the 
equivalence classes introduced after (11.45). (Note that if Cj 
has any point in , then Cj c  ,) Q

For the next lemma we remind the reader that as a planar graph,
2 2Z has a dual graph, (Z )H (see Sect. 2.6, especially Ex. 2.6(i)).
2 a 1 1  (Z ), can be thought of as the graph with vertices at (i+o-J + o'),

a 1 1 1 1 £
i,j e Z , and (i-|+pj-j+^-) > (i' 2 + + 2) connected by an ed9e if

and only if I ̂ i 2 ̂ + = ^ac*1 eĉ e e* inter“'
sects exactly one edge e of Z^ and vice versa. If e and e* are
associated in this manner we shall assign to e* the resistance

p
S(e*) = 1/R(e). In this way, each assignment of resistances on Z

2
induces a unique assignment of resistances on (Z )d . Finally, let 
R([a-| ,a2] x [>i ,b2]) (S([a-j ,a2] x [b-j,b2])) be the resistance between
the left and right edge (top and bottom edge) of [a-j ,a2] x [b̂  ,b2] of 

the network consisting of the edges of Z^ ((Z^)^) in [â  sâ Il x Cb-| jb̂ ]-
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Lemma 11.3 which is taken from Straley (1977) oives a duality relation 
between resistances on Z and (Z )d .

Lemma 11.3. If S(e*) = 1/R(e) for all pairs of edges e of Z 2 and 
e* _of (Z2)̂  which intersect, then for integral a-j < a2, < b2 ,

(11.61) R([ar a2]x[br b2]) = {S([a1 + l a 2 -l]x[b1 - l b 2 + } ] ) } ' 1 .

Proof: For the time being assume

(11.62) 0 < R([ar a2]x [b1 ,b2]) < «, .

Let V(v) denote the potential at v and I(v,e) the current from v 
to w(e,v) along e in the network consisting of the restriction of 
Z  to [a-| ,a2] x [b̂  ,b2] when all vertices on A := {a-j} x [b-| ,b2] 
are given potential zero, and all vertices on := {a2> x [b-̂ »b23 are 
given potential one. As explained, V(-) and I(-,-) have to satisfy
(11.35)-(11.38) on [a-j ,a2] x [b-j ,b2]. Even though this may not uniquely 

determine V and I, R([a^ ,a2] x [b-j ,b2]) is uniquely given by (11.43), 
with Q = restriction of Z 2 to [a-| ,a2] x [b-j ,b2]. We first extend 
V(-) also to the points [a^+1,a2~l] x {b^-1} and [a^+1,a2»l] x{b2+l}, 
just below and just above [a-| ,a2] x [b-j ,b2]. We do this by setting

(11.63) V((i,br l)) = V((i,b1)), V((i,b2+1)) = V((i,b2)), 

a-j+1 <_ i £ a2+l .

To maintain (11.35)-(11.37) we also set

(11.64) I(v,e) = I(w,e) = 0 when v = (i,b-|-l), w = (i,b-|)

or v = (i,b2+l), w = (i,b2), and e the edge between 
v and w.

2 2
Now let e and e* be a pair of edges of Z and (Z , respec
tively, which intersect in their common midpoint m. Let the endpoints 
of e be v and w. When e is rotated counterclockwise over an 
angle j , then e goes over into e*. Let v (w) go over into 
v* (w*) under this rotation (see Fig. 11.2 for some illustrations).
We then set for e* c [a-j + p a 2 - j] x [b-j - p b 2 +1]

(11.65) J(v*,e*) = -J(w*,e*) = V(w)-V(v)

(11.66) W(w*)-W(v*) = I(v,e),
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w*

-w*

v* w

Figure 11.2

(11.67) W(v*) = 0 for v* = (i+ 2-,^-1), a] < i < a2-l.

We claim that (11.65)-(11.67) define a potential W and current 

J on the network (Z2)̂  restricted to [â  + p a 2 ”^  x + ^ ’
Moreover

(11.68) W(•) = 0 on [ a ^ p a 2-l]x -1}

and W(-) — ^ on

where R = R([a-j ,a2] x [b̂  ,b2]). To substantiate this claim we must 
first show that (11.66) and (11.67) are consistent and define the func
tion W(-) unambiguously. First, we obtain from (11.64) that if e* 
is the edge from v* = (i-j - -) to w* = (î  + j>b^ - which
intersects the edge e from v = (i^,b^-l) to w = (i-|,b-|) then 
I(v,e) = 0. Hence (11.66) tells us to take W(w*) = W(v*) in this 
case. This is in agreement with the constancy of W(-) on 

[a-j + l ,a2 ” 2^ X ̂ 1 ” aS reclu^rec* by (11.67). Next we must verify 
that if r* = (v*,e£,...,e*,v*) (with v* = v£) is a simple closed

« U I  v V i V -i U 1 1
path on ( Z ^  restricted to [â  + |-,a2 - ■-] x [b] - ~,b2 + -], then

v-1
I {W(vt )-W(vf)} 
i=0 1 1 1

as defined by (11.66) indeed has the value zero. In other words, if 
v| (v|+-j) the image of v.. (w^) after rotating the edge e^-j 
from v̂  to ŵ  counterclockwise over ^ around the common midpoint 
of et+.j and e^-j, then we must show

]lQ ^ vi*ei+i) = °-(11.69)
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Once we prove this we can define W(v*) as

A-l A-l
(11.70) W(v*) = l {W(v* ,)-H(v|)} = l Kv^w.)

i=0 11 1 i=0 1 1

for any path (vg,e*....e*,v*) in âl + b a2 ' ̂  x b̂l " J ’b2 with

vg on [a1 + p a 2 - j] x {b-j - j} and = v*; all the sums in (11.70) 
will have the same value. To prove (11.69) whenever r = (vg,e*,...>e*,v*) 
is a simple closed curve is easy. Since the interior of r* is the 
union of a finite number of unit squares of the form (c-i,c + l) 

x (d“ 2-,d + 2-) it follows from standard topological arguments (see 
Newman (1951), Ch.V.l-V.5, especially Theorem V.21) that it suffices to 

verify (11.69) if r* describes the perimeter of such a unit square.
Thus, it suffices to take v = 4, vg = v* = (c-pd-l), v* = (c + |-,d-|-), 
v* = (c + p d  + ̂-), v* = (c-l,d + l) (see Fig. 11.3) and e*+i = the edge 

from v* to vt+i. However, in this case e*^ is obtained by rota
ting the edge e.^ from v to ŵ. counterclockwise over where

V3

>

V*

V

vo

w.

Figure 11.3

v = (c,d), and Wi>...,w^ runs over the four neighbors of v. Thus
(11.69) reduces to

I I(v,e) = 0 , 
e incident

2
to v on 2

which is just Kirchhoff's law (11.37). Thus (11.69) holds, and W(-) 

is well defined. It satisfies the first relation in (11.68) by virtue 
of (11.67). The second rotation in (11.68) is verified as follows.
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For v* = (i-j+pb2 + 1) and ê  the edge from (i^b^+j) to 

(i1+l,b1+j) we obtain from (11.70)

1 1 V i
01.71) W(V*) = l I((i b +j),e ) ,

j=0 1 1  J

which is the total current flowing from left to right through the seg-
p

ment C = {i-j } x [b-j ,b2] in TL D[a-| ,a2] x [b̂  ,b2]. This is precisely 
1/R when i-| = a-j, by definition of R (see (11.43)). However, (11.45) 
shows that if ej denotes the edge from (i^b-j+j) to (i^-l.b^+j), 

then

b2"bl b2“bl
l I((i1.bi+j)»e1-)+ l I(Oi »b+j),eO = 0 , a, < i, < a„. 

j=0 J j=0 J 1 1 ^

Since by (11.35) I((i 1 .b^j) ,ej) = -I((i^-1 ,b+j) ,ej ) this says that
(11.71) has the same value for all a-| <_ i-j < a2. (Intuitively, this 
merely says that the total current flowing into C from the left equals 
the total current flowing out to the right from C.) This proves (11.68).

It is also obvious that

W(w*(e*,v))-W(v*) = I(v,e) = V M e g | H ( v l  = S(e*)J(v*,e*),

when e* intersects e by (11.66), (11.36) and (11.65), provided 

R(e) f 0. Thus in this case W and J satisfy the analogue of (11.36). 
If R(e) = 0 then S(e*) = °° and in this case the analogue of (11.36) 
requires J(v*,e*) = 0 (see (11.39)). This is also satisfied, since 
R(e) = 0 implies V(w(e,v))-V(v) = 0 by (11.36) and then J(v*,e*) = 0 
by (11.65). Thus W and J satisfy Ohm's law. Finally, we must 

verify Kirchhoff's law for J, i.e.,

(11.72) I J(v*,e*) = 0, for
e* incident

to v* on (Z2)d

v* e [a1 + l,a2 -1 ] X ( b1 + l,b2 - 1 ) .

If v* = (c + p d  + ̂-) with a-| < c < a2, then by (11.65), (11.72) 

simply reduces to the relation l

l W v  1+1)-V(v,)} = 0, 
i=0 1 1 1

where vQ = v4 = (c+l,d), v1 = (c,d), v2 = (c,d+l), v3 = (c+l,d+l).



366

This relation trivially holds since vn = vA. If c = a-,, then thereU-, 4-, 11
is no edge in our network between (c + p d  + £-) and (c-pd + 2-). Thus 

the term (V(v2)-V(v1)} = V((c,d+1))-V((c,d)) = V((a2 sd+l))-V((a-j ,d)) 
has to be dropped from the last sum. However, this term is zero anyway, 
by virtue of (11.38). Thus (11.72) remains valid even when c = a^, 

and a similar argument applies when c = â . Thus J and W satisfy 
the analogues of (11.35)-(11.38) as desired. ((11.35) is trivial from
(11.65).) Thus RJ(-) can be taken as the current in

(Z2)d n [a-j + p a2 ” jjr] x " p b2 + ̂  when the Potent'ial on

[â  + ^-,a2 x (b-| - is set equal to zero and on Ea] + p a2 " ^

x {b2 + ̂-} equal to one, and when e* has resistance S(e*) = 1/R(e). 
Consequently, by the definition (11.43) and (11.65)

S([a] + p a 2 -l]x [b] - p b 2 + l])

a i < a 2

= i {  I (VUi+l.bJ-VO.b , ) ) } ' 1
a1<i<a2

= ^ { a 2,b-l)-\l(av b])r'] .

Since V was taken zero (one) on {a^}* [b^,b2](a2 x [b^jb^]) this 
proves (11.61) whenever (11.62) holds.

By (11.58) the case R([a^ ,a2] x [b-j ,b2]) = 0 occurs if and only 
if there exists a path r = (v q ^ ,... ,ev ,vv) on Z 2 H[a^ ,a2]x [b̂  ,b2] 

from to such that R(e-) = 0 for all 1 < i < v. Let $ 
be the part of [â  + x [b-j - p b^ Tr ] below r. Each edge of

(Z2)d H [a-j + ̂ -,a2 - 1 ] x [b̂  - l,b2 + Jr] leaving & has to be an edge e* 
which intersects some e., 1 £ i £ v , and therefore has S(e*) = °°.
Thus, no current can leave & in the network (Z ), n [a + 7L,a0 --̂ ]1 1  U I L c. L
x [bi - ̂ ,b2 +j]. Thus by (11.56) applied to this network

S([ai +pai - j] x [bi - p b 2 + ̂ ]) = °°. Thus (11.61) also holds if R = 0.
Finally, if R([ai ,a2] x ,b2]) = 00 , then by (11.59) there is

no conducting path from A^ to Â  in [ai,a2]x [b̂  ,b2]. By Prop.
2.2, or somewhat more directly by Whitney's theorem (see Smythe and 

Wierman (1978), proof of Theorem 2.2) it follows that there is then a



path r* on (Z2)d H [a-j + ̂ -,a2 - j] * [b-j - p b 2 + 1 ] all of whose edges 

have zero resistance and which connects the bottom edge [ a ^ i ^ - i ]
-1 1 1  1 I c L L

x {b^-^} with the top edge [a-j + ̂ ,a2 " 2^ x ̂ 2  + 2̂ ' (ProP- 2 -2 1S 
somewhat clumsier than Whitney's theorem here, because it requires 
transference of the problem to the covering graph.) The existence of 

r* shows that S([ai + x ̂ l “ + =  This con^^rms
(11.61) in the last case. 0

The reader probably does not need to be reminded that when two 

vertices v' and v" are connected only by a path 
(v1 = VQ,e^,...,e^,vv = v") then the resistance between v1 and v"

v
is -̂| R(e.|). (The resistances R(e-j),... ,R(e^) are in series in this
case; see Feynman et al (1963), Sect. 1.25.5 and II.22.3.) Also, if
v1 and v" are connected exactly by k paths r-j,...,r^ which are
pairwise disjoint (except for the common endpoints v' and v") then
these paths form parallel resistances. If the edges in r. are {e..},

« , % J 3'
then the resistance of r. is £ R(e..) and the resistance between

J 1 J *
v1 and v" is

(l {£ R(e J } - 1) ' 1
j T J

(see Feynman et al (1963), Sect. 1.25.5 and II.22.3).
Finally we make repeated use of the following monotonicity 

property.

Lemma 11.4. _If R-j(e) and R^(e) are two assignments of resistances 

to the edges of Q and R-,, R0 the corresponding values of the resis- 
tance between A and A , then

(11.73) R-j(e) < R2(e) for all e implies R-j £. R2-

Proof: Despite its intuitive content, we have no intuitive proof of
(11.73) . A quick proof for (11.73) when

(11.74) 0 < R-j (e) 5  R2(e) for all e

can be found in Griffeath and Liggett (1983), Theorem 2.1. It is based 
on the fact that under (11.74) the expression
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given in (11.43) for the reciprocal of R. can also be written as

(11.75) i
eeQ

(h(v)-h(w)}2
( e ) , i = 1,2.

Here V^(*) is the potential function corresponding to the resistances 

R.(e), v and w denote the endpoints of e, while the min in (11.75) 
is over all functions h from the vertex set of Q into [0,1] which 
sati sfy

h(v) = 0 if v e A^, h(v) = 1 if w e a I

(11.75) is usually called Dirichlet's principle. Its proof works as 
long as all edges have a strictly positive resistance; edges with 

infinite resistance do not cause difficulties. Clearly, (11.73) follows 
immediately from (11.75) whenever (11.74) holds^. When R-j (e) and/or 
R^(e) can be zero we have to use a limiting procedure. Let

Re(e) = R(e)+e, R?(e) = R^(e)+e
0 0 0 

and denote by R , R̂  the corresponding resistance between A and

A^. Then by (11.73) R̂  £ R^ for sill e > 0. It therefore suffices
to show that

(11.76) R S R 0 = R as e T 0.

(11.76) is very easy if there exists a short circuit between A^ 
and A^. For in this case we defined R as zero, while

Re <_ e (number of edges in any path from A^ to Â  all of 
whose edges have zero resistance)

(apply (11.73) with R-, (e) = Re(e) and R9(e) = Re(e) for e belong-
0 ^ 1ing to some short circuit between A and A and R£(e) = °° otherwise).

For the remainder of this lemma assume that there is no short 
circuit between flP and A^. Observe that by the maximum principle 
(11.42) 0 £ Ve(v) <_ 1 for all v in the set of Lemma 11.2. (Of
course Ve and I£ denote the potential and current when Re(e) is

 ̂ An alternative approach to (11.73) is via Thomson's principle, which 
is a dual to Dirichlet's principle (see Doyle and Snell (1982),
Sect. 2.9). This works well as long as all edges have finite 
resistance. In this approach one has to prove an analogue of (11.76) 
as resistances increase to °°.
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the resistance of e, and the boundary condition (11.38) is imposed.)
Note that is the same for all e and that we showed in the proof
of Lemma 11.2 that Re is determined by V In . Now let be any|U] n

sequence decreasing to 0. Since V|c is uniformly bounded we can

pick a subsequence (which for convenience we still denote by {en>) 
such that V^c converges to some function V on as e runs

1 Q
through the subsequence {en>. If e is any edge with R (e) = R(e) 
> 0 and its endpoints v and w in Cj, then

I^v.e) - V£,n,(w)-.ven.(yl

RE"(e)

(see (11.40)) also converges to some I(v,e) and

V(w)-V(v) = R(e)I(v,e).

The main difficulty is to show that

(11.77) V(w(e,v)) = V(v) if R(e) = 0 and v e C-j .

This does not follow from the above arguments but comes from the follow

ing separate argument. Let be an equivalence class of vertices, 
i.e., a maximal class of vertices which are connected by paths of zero 
resistance (see the text following (11.45)). Either c or
is disjoint from , by definition of and . We are interested 
in the case with c and #C- > 1. Let v e C1-\(A^ U ) and 
write (11.41) for V£ as follows

Ve(v)
»)) + !,

y 1+ y 1 
L0 e H  R(e)+e

9

where £q is the sum over edges e incident to v with R(e) = 0 
(and hence Re(e) = e) and ^  is the sum over edges e incident to 

v with R(e) > 0. By letting e run through the sequence {en} we 
obtain - whenever #0̂  > 1 and hence nonempty -

(11.78)

Thus on 
ed to v

V(v)
I0 V(w(e,v))

v e \  (Pp Ll ).

C.\ (fP Li A^) V(v) is the average over its neighbors connect- 
by an edge of zero resistance. Of course, all these neighbors



have to belong to C. as well, by definition of C.. Now assume that
> 1 ~ i

Ci is disjoint from A and that V achieves its maximum over
at Vq e C... If Vq e A®, then V(Vq ) = 0 (by (11.38)) and hence

V(i) e 0 on . If vQ i A0 , then by (11.78) V(w) = V(vQ) at each
point w which is connected to Vq by a path of zero resistance. Thus

also in this case V(*) has the constant value V(v q) on C... The
same argument with min V(v) replacing max V(v) works when C. is

veC. veC. 1
O '  ' n

disjoint from A . In the last possible case when C. intersects A 
1 ■ 

and A we already proved (11.76), so that this case does not have to
be considered. We have therefore proved (11.77) and (11.76) follows

quickly now. Indeed, (11.77) shows that V is constant on any C.. If
we denote this constant value by V(C.), then one immediately sees that
V and I must satisfy (11.46)-(11 -49), at least when we restrict
ourselves to Q|C as in Lemma 11.2. These equations have the unique

solution Vip . Thus V \n = M\n and (see (11.50))
|U1 |L1 |C1

V(C.) -1
01.79) R = {l
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where the sum is over all edges e of Qi^ having one endpoint in

0 1some C. which intersects A while the other endpoint lies in a C-
' 0  ̂which is disjoint from A . The fact that we may restrict the sum to

edges of Q|C is in the proof of Lemma 11.2. But also, by (11.56) 

with & = A0 U {C. :C.j intersects A0}, we have

(11.80) Re = {£ V£(w(e,v))-V£(v) }

where the sum runs over all edges e of Q|C with one endpoint v

in some C- which intersects A^, and the other endpoint w(e,v) in a 
1 0C. which does not intersect A . Again the restriction to edges of 

J
Qip rather than Q makes no difference. Now let e -* 0 through 

1 enthe sequence en- V (v) converges to V(C.) = 7(0^) = 0  if v be

longs to a C. which intersects A^, and V n(w) V(C.) = V(C.) if
* J J

w e Cj. Moreover R(e) > 0 for each e appearing in the right hand 
side of (11.80). Thus, the right hand side of (11.80) converges to the 
right hand side of (11.79). This proves (11.76) and the lemma. Q
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11.4 Proofs of Theorems 11.2 and 11.3.

We remind the reader that B = [0,n]x[o,n], = (0}x[Q,n],
1 ” 9  ̂ n

IL = Cn}x[o9n] and R is the resistance of ZZ fl Bn between A n -i n n n
and A^ .

Proof of Theorem 11.2. To prove (11.9) recall that, by (11.58), R = 0
---------------------  p 0 1 n
as soon as there exists any path on ZZ H Bn from An to An all of

whose edges have zero resistance. The probability of this event is at
least equal to

Pp(o){ 3 occupied horizontal crossing on Q-j of [0,n] x [0,n]}

= a((n,n); l,p(0),Q-|),

2
as one can see from the relation between bond-percolation on TL and 
site-percolation on its covering graph Q-j (see Comment 2.5(iii) and 
Prop. 3.1). By (7.14) and the definition (3.33) this shows

P{Rn = 0} > l-a*((n+2A4,n-2A4);2,p(0);Q1)

= l-a((n+2A^,n-2A4);2,l-p(0),Q^)

for some constant A^ = A^(Q^). Finally p(0) > j = P̂ (Q-j) is equiva

lent to l-p(0) < j  = Pj_,(Q*) = Pj(Q*) (see Application 3.4 (ii)). Thus 
by Theorem 5.1 (see also the end of proof of Lemma 5.4)

-C9n
a(n+2A4,n-2A4 ,2,l-p(0),Q*) < C](2n+4A4)e c

for p(0) > j . (11.9) follows from these estimates and the Borel-
Cantelli lemma (see Renyi (1970) Lemma VII.5A).

The proof of (11.10) is very similar. By (11.59) R = °° whenever
2 n 0 1there does not exist a conducting path on TL n Bn from An to An . 

Again by the relation between bond-percolation on TL̂  and site-percola
tion on Q-j, as in Comment 2.5(iii) we get from this

P{Rn = °°} > l-a((n-2,n+2)); 1 ,l-p(°°) ,Q-j).

For l-p(°°) < j = ph (Q-|) = Pj(Q-|) we again get from Theorem 5.1

-C9n
P{Rn = »} > 1-^e * .



An application of the Borel-Cantelli lemma now proves (11.10).
For the upper bound in (11.11) we shall use Theorem 11.1 and

Lemmas 11.1 and 11.4. Note that the proof below works just as well if
Bn is replaced by [0,n] x [0,n-m] and by {0}x[o,n-m], A^ by
{n}x[0sn-m] for any fixed integer m. This will be relevant for the

proof of the lower bound in (11.11) later on. Now let M be some large
1 kinteger and assume we can find k paths r , ...,r in [0,n] x [M,n-M] 

c: Bn from A^ to A^ such that R(e) < °° for each edge e appearing 
in any of these paths, and such that r1 and rJ have no edge in 
common. By Lemma 11.1 we do not change Rn if we replace R(e) by

o
0 if e is surrounded by a circuit r or 

2
TL which lies in B̂  and all of whose

Rfe) •= < nv ' ‘ edges have zero resistance,

R(e) otherwise .

After this replacement, RJ := resistance of the path rJ equals

l R(e}),
where e^ei,... are the successive edges in rJ (see the lines pre-

 ̂ I kceding Lemma 11.4). But the paths r ,...,r are almost parallel
resistances between fS and a]. They can fail to be parallel because

n n i i
the paths can intersect in vertices. If two edges ê  and ek have
an endpoint v in common v/e can think of this as a link of zero

i £resistance between an endpoint of e'i and ê . Removing the link is
equivalent to giving it infinite resistance. By Lemma 11.4 this removal

can only increase the resistance of the network. Thus R has at most
n

the value of the resistance of the network consisting of k parallel 
1 kresistances r ,...,r , i.e.,

Rn < * T  + 
R1

1_
k

Since the harmonic mean of positive quantities is no more than their 
arithmetic mean (by Jensen's inequality; cf. Rudin (1966), Theorem 3.3),
and since all e1? are distinct and contained in [09n] x [M,n-M] and

1 I khave finite resistance (by our choice of r ,...,r ), we obtain
, k ... , k
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< - V  l R(e)I[R(e) < «] .
k ê EO,!!] x [M,n-M]

Finally, denote by m(e) = (m-j (e) ,m2(e)) the midpoint of the edge e, 

and by 1(e) = I^e) the indicator function of the event

o 2
{e does not lie inside any circuit on TL made up of edges 

with zero resistance and contained in the square 

[m1(e)-M+l ,m-j (e)+M-l] x [m2(e)~M+l ,m2(e)+M-l]} .

Then

(11.82) R(e)I[R(e) < »] < R(e)I[R(e) < ®]IM(e)

for e c [M,n-M]x [M,n-M],

(11.83) R(e)I[R(e) < °°] <_ R(e)I[R(e) < °°] for all e c  Bn .

By the ergodic theorem (Tempel'man (1972), Theorem 6.1, Cor. 6.2 or 

Dunford and Schwartz (1958), Theorem VIII. 6.9; also use Harris (1960), 
Lemma 3.1 and the fact that R(e) >_ 0)

(11.84) lim-L- I R(e)I[R(e) < «]IM(e)
n-**> 2n e<=[M,n-Mr m

= E{R(e0)I[R(e0) < °°]IM(eg)}

with probability one (eg is an arbitrary fixed edge). Furthermore, if

(11.85) / x dF(x) = E{R(eg)I[R(eg) < °°]} < °°
(0,°°)

then by Birkhoff's ergodic theorem (Walters (1982), Theorem 1.14)

lim ^ I R(e)I[R(e) < «°]
n-»° n ectO.M] x [0,n]

= 2(M+l)E{R(e0)I[R(e0) <«>]}<»

and consequently

(11.86) lim l R(e)I[R(e) < ®] = 0
n-*» 2n ec [0,M]x [0,n]

with probability one. Also, under (11.85) the ergodic theorem implies
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(11.87) - U  I (R(e)I[R(e) < °°]}
2n ec[n-M,n] x [0,n]

= ~ T  l {R(e)I[R(e) < °°]}
2n ecBn

- - T  0 I {R(e)I[R(e)<»]}
2n£ e^[0,n-M] x [0,n]

-> / x dF(x) / x dF(x) = 0 (n °°)
(09o°) (0,°°)

with probability one. Of course, we may assume that (11.85) holds, 

since the upper bound in (11.11) is vacuous otherwise. It follows from 
(11.82)-(11.87) that

lim sup — U- l R(e)I[R(e) < °°]
n-*°° 2n^ ec[0,n] x [M,n-M]

< E{R(e0)I[R(e0 < °°)]IM(e0)} .

Together with (11.81) this implies for each fixed M

(11.88) lim sup Rp < 2 lim sup(-^~My)2 E {R (eQ) I [R (eQ) < °°]IM(e0)}, 

where

k(n,M) = maximal number of edge-disjoint conducting 

paths in [0,n] x [M,n-M] from to .

I k  i i(We call r ,...,r edge-disjoint if r and rJ have no common edges
for i f j.) A simple translation of (11.4) from site-percolation on
Q.j to bond percolation on TL as in Comment 2.5(iii) gives for large

n 6 6
P{k(n,M) >  ̂ - p H )  ]n} > l-2C2n exp-C3(| - p H )  2 n .

(Recall that PHW-]) = j by Application 3.4(ii) and that P{R(e) < °°}
= l-p(°°).) Thus, by the Bore!-Cantel 1 i lemma

— g

lim sup(RHTMy) - i ;  (r p W )  1

with probability one, for each M. In view of (11.88) this gives

q i -26,
lim sup Rp < _°-(i-pH) lim E{R(eQ)I[R(e0) < °°]IM(e0)}
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with probability one. We complete the proof of the upper bound in 
(11.11) by showing that

(11.89) lim E{R(e0)I[R(eQ) < ~]IM(e0)} = Tj— t q t-e2(l-p(0)) / xdF(x).
I4»co 1 (0 ,°°)

To prove (11.89) we observe that

2
(11.90) IM(eQ)Tl[e0 is not surrounded by a circuit on Z 

made up of edges with zero resistance], Mt°°.

p
Now consider the following bond-percolation problem on (Z ) , . Call

2 2 aand edge f* of (TL )d open if the edge f of TL which intersects
f* has non-zero resistance, and blocked otherwise. Then, if the open 
cluster of eg on (TL )d is non-empty and finite, it must be contain

ed inside a circuit on Z 2 made up of zero resistances. This follows 
from Whitney's Theorem (Whitney 1933), Theorem 4) as explained in 

Harris (1960), Lemma 7.1 and Appendix 2. Compare also Example 1 
in Hammers!ey (1959). We proved an analogue for site-percolation in 
Cor. 2.2. and the above result can be obtained from Cor. 2.2. by the 
usual translation from bond-percolation on (TL )d (which is 
isomorphic to Z 2) to site-percolation on the covering graph Q-, of 
Z  (see Comment 2.5 (iii) and Prop. 3.1). The open cluster of eg 

is non-empty iff eg is open, or equivalently iff R(eQ) > 0.
Moreover, the probability that any edge is open is l-p(O). It follows 
from these observations, that the expectation of the limit of IM(eQ) 

in (11.90) is just
2

P{open cluster of eg on (Z )d is infinite]eg is open}

e20-p(o))
= i-ptor" •

(11.89) is immediate from this since R(eQ) is independent of I ^ q ). 
This completes the proof of the upper bound in (11.11).

The lower bound in (ll.ll) can be proved by a direct argument 
which does not rely on Z being self-dual (see Remark 11.4(i) below 
for an indication of such a proof). Here we shall merely appeal to the 

fact that by Lemma 11.3

if = S ( [ f n - i ] x [ - I #n + i]).

2 2 1 1 1 1  
However, (Z )d is isomorphic to Z so that S([pn - x [-pn + j])
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has the same distribution as R([0,n+1]* [0,n-l]) when the distribu
tion of an individual edge is given by

(11.91) P{R(e) = 0} = p(°°),

P{R(e) = oo} = p(o),

P{R(e) e B} = / dF(x), B c= (09«).

-e B
X

(Compare (11.6)-(11.8) and recall that S(e*) = 1/R(e) in Lemma 11.3.) 
The lower bound in (11.11) now follows by applying the upper bound in 
(11.11) to R([09n+l] x [0,n-l]) when the distribution of R(e) is as 
given by (11.91) instead of (11.6)-(11.8). (Note that the upper bound 
applies just as well to R([0,n+1] x [09n-l]) as to Rn = R([09n]x [09n]) 
as pointed out in the beginning of the proof of (11.11).) H

Corollary 11.1 is immediate from (11.11) and (8.4).

Proof of Theorem 11.3. We do not give a detailed proof of (11.22). Its 
proof is a simplified version of the proof of the upper bound in (11.11). 
This time we do not use Lemma 11.1 and do not replace R(e) by R(e).
We simply find enough edge disjoint conducting paths from to 
by applying Theorem 11.1 to the restrictions of Bn to planes speci
fied by fixing x(3)9...9x(d)9 i.e.9 to graphs which are the restrictions 

of TL̂  to [09n] x [09n] x {i (3)} x ... x {i (d)} 9 with 0 £ i (3) £ n 9... 9 
0 £ i (d) £ n.

(11.19) is quite trivial. As in (11.9) R = 0 as soon as there 
0 1 nis a path in Bn from An to An all of whose edges have zero resis

tance. But the probability that such a connection exists in [09n] 
x [09n]x {i(3)}x ... x {i(d)} equals the sponge-crossing probability 
Sp(o)(n9n) of Seymour and Welsh (1978). By their results (see pp.233, 
234) for p(0) £ j

11}
sp(0)(n ’n) > S]/2(n9n) > S]/2(n9n+l) = 2 .

Since crossings in [09n] x [09n] x (i (3)} x ... x {i (d)} for different 

i(3)9...9i(d) are independent, it follows that

^  Here we merely need that S ^ 2(n9n) is bounded away from zero. By
going over to site-percolation we can also obtain this from Theorem 
5.1. However, the proof of Seymour and Welsh (1978) is much simpler

9
in the special case of bond-percolation on Z .
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-(n+1) d-2 if p(0) > 1

(11.19) thus follows from the Bore!-Cantelli lemma.
Also (11.20) is easy. By Theorem 5.1, (5.16) and the end of the 

proof of Lemma 5.4 (see (5.55)) one has for l-p(°°) < p<. ^

P{ 3 conducting path in B„ from A^ to A^} r n n n

< l n P{number of edges reachable by a conducting path 

VEAn
from v is at least n} 

j -C9n 
£ (n+1 )d~ C-|e 1 .

Again, it follows from the Bore!-Cantelli lemma that with probability 
one for all large n there does not exist a conducting path in Bn 
from A^ to Â . In view of (11.59) this implies (11.20).

We finally turn to (11.21). Its proof rests on Lemma 11.2. First 
we replace the resistance of each edge e which does not have each end
point in ^  by 00. Here is as in Lemma 11.2 with Q = restriction 
of TL̂  to Bn. This replacement does not change Rn- Denote the mid
point of e by m(e) = (m-j (e),... ,md(e)) and set

JM(e) = 0 if there exists a conducting path in the fullIM
network Tl from one of the endpoints of e to one of the 
two hyperplanes x(l) = m-j(e)±M,

and J^(e) = 1 otherwise. Then for M < m^e) < n-M, JM(e) = 1 implies 

that both endpoints of e are outisde O, , since they are not connected
to A0 U A1 by a conducting path in H B„ n n n Therefore the modified
resistance for such edges is at least R(e) + J ^ ( e ) T h u s  by Lemma

11. ,0Rn is at least as large as the resistance between An and A1

when R(e)+J|V| ( e ) i s  used instead of R(e) for the resistance of 
each edge e with M < m-|(e) < n-M. We next reduce to zero the resis
tances of all "vertical" edges between two neighbors (i(1),... ,i(d)) 
and (i(l),i(2),...,i'(s),...,i(d)) with 2 < s < d, |i'(s)-i(s)| = 1. 
By Lemma 11.4 once more this does not increase R . Set

if e is a "horizontal" edge and 
M < m-| (e) < n-M 

e is a "horizontal" edge with 
0 £ m.j (e) <_ M or n-M £ m-j (e) £ n

R(eJ =

R(e)+JM(e)-°°

R(e) if

if e is a "vertical" edge.0
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A "vertical" edge was defined above, and a horizontal edge is an edge 

from (i (1).. ,i (d)) to (i (1 )+l ,i (2),... ,i (d)) for some 0£i(l)
< n, 0 < i(2),...,i(d) < n. 
and in Bn , when R(e)

n̂ — Rn'

Denote by Rn the resistance between A 

is the resistance of the generic edge 
However, R is easy to calculate. As

0
n
e.

Then, by the above 
discussed in Sect. 11.3 all vertices in a "vertical plate"
{i(1)}x [0,n]^"^ will have the same potential since they are connected 
by zero resistances. We may therefore identify these vertices to one 

vertex. If we do this for each i(1) e [0,n], then we obtain a graph
A A /n-

K whose vertices we denote by 0,...,n, with i 
id-1n H i .

plate {i}x[0,n] in ZZ n Bn> There are
i and (i+1) with resistances ^(e^.), where
(n+l)^1 possible values for (i (2),... ,i (d))

edge from (i,j) to (i+1 ,j) (see Fig. 11.4).

corresponding to the 

(n+l)^ edges between 
j runs through the 
and e.. denotes the

* J
These resistances are

e00 e10

Figure 11.4. The graph Kn obtained by identifying vertices on 
"vertical plates".

in parallel, and equivalent to a single resistance of size

j J

between i and (i+1). The resistances between T and (i+1) for 
i = 0,1,...,n-1 are in series so that

n-1
H  (R(e. J)-1}"1 > n~l (Rte.,))-1}-1
j J i=M j 1J

0 n-M
> (n-M+1r  { l 

i=M
l (R(e.•))_1}_1 . 
j J
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The last inequality again results from the fact that the arithmetic 
mean is at least as large as the harmonic mean. Consequently, by the 
ergodic theorem (Tempel'man (1972), Theorem 6.1, Cor. 6.2 or Dunford 
and Schwartz (1958), Theorem VIII.6.9).

lim inf nd'2R lim inf nd_2Rn >. lim nd 

= (E{(R(eQ))_1>)_1

n-M
{ I
i=M

IWe..))'1}'1
3 J

= (P{JM(e0) = 0})_1{/ 1 dF(x)}'1 ,

for any fixed M, and any fixed edge e. Finally, as M »,

P{JM(eo) = 0} converges to

P{the cluster of all edges connected to eq by a conducting 
path is unbounded|R(eQ) < °°)

ecJ(l-p(°°))
l-p(«)"

This proves (11.21). | [

Remark.

(i) To prove the lower bound in (11.11) without using Straley's

duality lemma (Lemma 11.3) one can proceed along the lines of the above

proof of (11.21). First we replace R(e) by R(e). However, we do not
form by identifying the vertices in each segment {i}x[0,n] now. n • *
Instead, consider disjoint vertical crossings rJ , 1 < j < k, of 
[̂ .,n _ 1] x [-l,n +1] on (Z2)̂  such that all edges in each rt inter

sect an edge of Z 2 with strictly positive resistance. If rJ*
i * -i . 9

contains the edges ê  , and ê  is the edge of Z which intersects

e'l , then we form a vertex of by identifying the endpoints of the
i i*

e'i , i = 1,2,... which are immediately to the left of rd . Another
vertex of K is formed by identifying the endpoints of the e^, n •*
i = 1,2,... immediately to the right of rJ . By choice of rJ ,
R(e'j) > 0. After constructing by making these identifications for 

each 3 , 1 £ j £ k we can essentially copy the rest of the proof of
(11.21). All we need is a lower bound for the number k of disjoint 
vertical crossings rd of the above type. A lower bound of order

1 1 1̂j C-| (/̂r- P(0)) n can be obtained from Theorem 11.1 in the same way as 
in the estimate for k(n,M) in the proof of the upper bound in (11.11).


