
CHAPTER 9-

FUNCTORS

“ Ii should be observed first that 
the whole concept of a category is 
essentially an auxiliary one; our 
basic concepts are essentially 
those of a functor and of a 
natural transformation.”

S. Eilenberg and S. MacLane

9.1. The concept of functor

A  functor is a transformation from one category into another that 
“preserves” the categorial structure of its source. As the quotation from 
the founders of the subject indicates, the notion of functor is of the very 
essence of category theory. The original perspective has changed some­
what, and as far at least as this book is concerned functors are not more 
important than categories themselves. Indeed the viability of the topos 
concept as a foundation for mathematics pivots on the fact that it can be 
defined without reference to functors. However we have now reached the 
stage where we can ignore them no longer. They provide the necessary 
language for describing the relationship between topoi and Kripke mod­
els, and between topoi and models of set theory.

A  functor F  from category to category 2) is a function that assigns
(i) to each 9i-object a, a 2>-object F(a);

(ii) to each ^-arrow f : a ^ b  a 2)-arrow F(f ) : F(a) —> F(b), 
such that

(a) F(1a) = 1 F(a), all ^-objects a, i.e. the identity arrow on a is assigned 
the identity on F(a),

(b) F(g ° f) = F(g) ° F(/), whenever g ° f  is defined.
This last condition states that the F-image of a composite of two arrows 

is the composite of their F-images, i.e. whenever

c
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commutes in ^  (h = g ° /), then

F(a)

commutes in 2). We write F or -----> 2) to indicate that F  is a
functor from ^  to 9). Briefly then a functor is a transformation that 
“preserves” dom’s, cod’s, identities and composites.

E x a m p l e  1. The identity functor 1 ^ :^ —>9i has 1^(α) = α, 1 « ( /)= /·  The 
same rule provides an inclusion functor ^  ^  0) when ^  is a subcategory 
of 2).

E x a m p l e  2. Forgetful functors: Let ^  be any of the categories in the 
original list of §2.3, say ^  = Top. Then a ^-object is a set carrying some 
additional structure. The forgetful functor U ^ Set takes each c€- 
object to its underlying set, and each Harrow to itself. Thus U “ forgets” 
the structure on ^-objects and remembers only that ^-arrows are set 
functions.

E x a m p l e  3. Power set Functor: £P:Set-^Set maps each set A  to its 
powerset 2P(A), and each function f : A —>B to the function 
3P(f):£P(A)^>£P(B) from 3>{A) to &(B) that assigns to each Χ ς Α  its 
/-image /(X ) c  B.

E x a m p l e  4. If P and Q are posets, then a functor F : P -> Q is simply a 
function F :P —>Q that is monotonic, i.e. whenever pC q in P then 
F (p )cF (q) in Q. As a special case of this consider the powerset as a 
poset (SP(A), c ) .  Given / : A — and X, Y subsets of A, then Χ ς Υ  
only if / (X )c / (Y ) .  Thus the function 0>(f): 2>(A) —> ^(B ) is itself a 
functor between (poset) categories.

E x a m p l e  5. Monoid homomorphisms: A  functor between monoids (M, 
*, e) and (N, □ , e'), when these are construed as one-object categories, is 
essentially a monoid homomorphism, i.e. a function F : M - ^ N  that has

F(e) = e'
F(jc * y) = F(jc)DF(y).
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E x a m p l e  6. If has products, each ^-object a determines a functor 
— Xa which takes each object b to the object b x a , and each
arrow f : b —>c to the arrow f x l a i b x a - ^ c x a .

E x a m p l e  7. Horn - functors: Given a ^-object a, then (a, —): —> Set 
takes each ^-object b to the set 9ί(α, b) of ^-arrows from a to b and each 
^-arrow / :  b —> c to the function (a, f ) : ̂ (a, b) —> (a, c) that outputs 
f  ° g for input g

9ί(α, —) is called a hom-functor because of the use of the word 
“ homomorphism” in some contexts for “ arrow” . Ή (a, b) = hom^(a, b) is 
known as a hom-set. There is a restriction as to when this hom-functor is 
defined. The hom-sets of have to be small, i.e. actual sets, and not

Contravariant functors

The above examples are all what are known as covariant functors. They 
preserve the “ direction” of arrows, in that the domain of an arrow is 
assigned the domain of the image arrow, and similarly for codomains. A  
contravariant functor is one that reverses direction by mapping domains 
to codomains and vice versa.

Thus is a contravariant functor if it assigns to f : a - ^ b  an
arrow F(f) :F(b)  -> F(a), so that F(1a) = 1F(a) as before, but now

a

c

proper classes. □

F ( g ° f )  = F(f) ° F(g),
i.e. commuting

a -----1— * b

c
goes to commuting
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E x a m p l e  8. A  contravariant functor between posets is a function F:P^>  
Q that is antitone, i.e.

if pC q in P, then F (q )cF (p ) in Q.

E x a m p l e  9 . Contravariant powerset functor:

#  : Set —> Set

takes each set A  to its powerset ^ (A ), and each f : A  —> JB to the function 
# ( /) :  0>(B) —> 2 ( A )  that assigns to Χ ς β  its inverse image f~1(X) ^A.

E x a m p l e  1 0 . Contravariant hom -functor: <&(—, Set, fo r  fixed  o b ­

je c t  a , ta k es o b je c t  b to  <&(b,a), a n d  H a r r o w  f : b  —>c to  fu n ctio n  

9 ί( /, a )  : ^ ( c ,  a ) ^ ^ ( b ,  a) th at o u tp u ts  g  ° /  fo r  in p u t g

a

E x a m p le  11. Sub: —> Set is the functor taking each -object a to its
collection Sub(a) of subobjects in and each arrow f : a - ^ b  to the 
function Sub(/):Sub(b) —>Sub(a), assigning to g\c >->b the pullback 
h : d >-» a of g along f. Of course this construction is only possible if ^ has

d>----- —̂ ► a

f

c >  — > b

pullbacks. It generalises Example 9 . □

E x e r c is e  Verify that ( l ) - ( l l )  really are functors. □

The word “ functor” used by itself will always mean “ covariant func­
tor” . In principle contravariant F : ^ 2) can be replaced by covariant 
F :^ op —» 2), where F(a) = F(a), and for /op: b —» a in ^ op (where / :  a —> b 
in <$), F(fop) = F ( f ) :F ( b ) ^  F(a). We will not consider contravariant 
functors again until Chapter 14.
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Now given functors F : ii ̂  2 , G : 2  - »  &>, functional composition of F  
and G yields a functor and this operation is associative,

H  ° (G ° F) = (FT ° G) ° F.

We can thus consider functors as arrows between categories. We intui­
tively envisage a category Cat, the category of categories, whose objects 
are the categories, and arrows the functors. The identity arrows are the 
identity functors of Example 1.

The notion of Cat leads us to some foundational problems. Set could 
not be an element of the class of Cat-objects (if we regard these as 
forming a class), since Set as a collection of things is a proper class, and 
not a member of any collection. Moreover contemplation of the question 
“ is Cat a Cat-object?” leads us to the brink of Russell’s paradox. Gener­
ally Cat is understood to be the category of small categories, i.e. ones 
whose collection of arrows is a set. Further discussion of these questions 
may be found in Hatcher [68] Chapter 8, (cf. also a paper by Lawvere 
[66] on Cat as a foundation for mathematics).

9.2. Natural transformations

Having originally defined categories as collections of objects with arrows 
between them, by introducing functors we took a step up the ladder of 
abstraction to consider categories as objects, with functors as arrows 
between them. Readers are now invited to fasten their mental safety-belts 
as we climb even higher, to regard functors themselves as objects!

Given two categories ϋ  and 2  we are going to construct a category, 
denoted Funct(^, 2 ) ,  or 2 ^ ,  whose objects are the functors from 9? to 2 .  

We need a definition of arrow from one functor to another. Taking 
F : ϋ  —> 2  and G : ϋ  —> 2 ,  we think of the functors F  and G as providing 
different “pictures” of ϋ  inside 2). A  reasonably intuitive idea of “ trans­
formation” from F to G comes if we image ourselves trying to super­
impose or “ slide” the F-picture onto the G-picture, i.e. we use the 
structure of 2  to translate the former into the latter. This could be done 
by assigning to each ^-object a an arrow in 2  from the F-image of a to 
the G-image of a. Denoting this arrow by τα, we have τα :F (a)—»G(a). 
In order for this process to be “ structure-preserving” we require that
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each ^t-anow / :  a —> b gives rise to a diagram

G(a)

G(f)

>G(b)

a F(a)

F(f)

b F(b)
that commutes. Thus τα and rb provide a categorial way of turning the 
F-picture of f : a —>b into its G-picture.

In summary then, a natural transformation from functor F : > 3) to
functor G :<€ —> 2) is an assignment τ that provides, for each -object a, a 
2)-arrow ra :F(a) —> G(a), such that for any ^-arrow f :a^>b,  the above 
diagram commutes in 3f, i.e. Tb ° F(f) = G (/) ° τα. We use the symbolism 
τ : F -r* G, or F -τ» G, to denote that τ is a natural transformation from 
F to G. The arrows τα are called the components of r.

Now if each component ra of τ is an iso arrow in 3  then we can 
interpret this as meaning that the F-picture and the G-picture of ^  look 
the same in 2), and in this case we call τ a natural isomorphism. Each 
ra :F(a)—> G(a) then has an inverse r~1:G (a )-^ F (a ), and these t “ 15s 
form the components of a natural isomorphism τ-1 :G-r>F.  We denote 
natural isomorphism by τ : F =  G.

E x a m p l e  1. The identity natural transformation 1f :F -t*F  assigns to 
each object a, the identity arrow 1F(a) :F(a) F(a). This is clearly a
natural isomorphism.

E x a m p le  2. In Set, as noted in §3.4, we have A  =  A  x 1, for each set A. 
This isomorphism is a natural one, as we can see by using the functor 
— x 1: Set —> Set, as described in Example 6 of the last section. Given 
f  : A —>B then the diagram

A  A  ———► A  x 1

/ /xidi

B

commutes, where rA(x) = (x, 0), and similarly for tb. (i.e. ta =(idA, lA)). 
The left side of the square is the image of f  under the identity functor. 
Thus the bijections t a  are the components of a natural isomorphism τ 
from 1Set to — x 1.
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E x a m p le  3 . Again in Set, we have A x B = B x A  by the “ twist” map 
twB : A  x Β - »  B x A  given by the rule twB ((x, y»  = (y, x). Now for given 
object A, as well as the “ right product” functor — x A  : Set —> Set we have 
a lef t-product functor A x — : Set -> Set, taking B  to A x  B,  and f : B ^ C  
t o  1a x f - A x B  A  xC. Now for any f : B  —» C, the diagram

B A x B — — ► B x A

X / / x1a

A  x C C x A

commutes, showing that the bijections twB are the components of a 
natural isomorphism from A x -  to -  xA . □

Equivalence of categories

When do two categories look the same? One possible answer is when 
they are isomorphic as objects in Cat. We say that functor F : -> 2  is iso 
if it has an inverse, i.e. a functor G : 9  ^  such that G ° F =  1  ̂ and
F ° G = Λ®. We then say that and 9) are isomorphic, %  if there is 
an iso functor F : 9).

This notion of “ sameness” is stricter than it need be. If F has inverse G 
then for given ^-object a we have a = G(F(a)), and for 9)-object b, 
b=F( G( b )). In view of the basic categorial principle of indistinguish- 
ability of isomorphic entities we might still regard and 9) as “ essentially 
the same” if we just had a =  G(F(a)) in and b=F( G( b )) in 9). In other 
words and 9) are to be categorially equivalent if they are “ isomorphic 
up to isomorphism” . This will occur when the isomorphisms a —> G(F(a)) 
and b —> F(G(b)) are natural.

Thus a functor F : <€ —> 9> is called an equivalence of categories if there 
is a functor G : 9  ^  such that there are natural isomorphisms τ : 1  ̂=
G ° F, and σ : =  F ° G, from the identity functor on ^  to G ° F, and
from the identity functor on 9) to F ° G.

Categories ^  and 9) are equivalent, — 9 , when there exists an equival­
ence F :

E x a m p le . Finord — Finset. Let F :Finord ^Finset be the inclusion func­
tor. For each finite set X, let G(X) = n, where n is the number of 
elements in X. For each X, let rx be a bijection from X  to G(X), with t x
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being the identity when X  is an ordinal. Given / : X —> Y, put G(f) = 
τΎ ° f  ° τχ . Then G is a functor from Finset to Finord.

Since

X  Τχ > F(G(X))

J  F(G(f))

Y — F(G(Y) )
commutes, by definition of G(f) = F(G(f)), the tx ’s are the components 
of a natural isomorphism τ : 1 —> F ° G. But also G ° F  is the identity 
functor on Finord. □

The notion of equivalence of categories can be clarified by considering 
skeletal categories. Recall from §3.4 that these are categories in which 
isomorphic objects are identical, a =  b only if a = b. Finord is skeletal, 
since isomorphic finite sets have the same number of elements. A  skeleton 
of a category ^  is a full subcategory of that is skeletal, and such that 
each -object is isomorphic to one (and only one) ^-object. Finord is a 
skeleton of Finset. In general a skeleton 9ί0 of exhibits the essential 
categorial structure of is equivalent to <£, and the equivalence is
provided by the inclusion functor ^ 0 ̂  as may be shown by the
method of the last Example.

Any category ^  has a skeleton. The relation of isomorphism partitions 
the collection of ^-objects into equivalence classes. Choose one object 
from each equivalence class and let be the full subcategory of based 
on this collection of choices. 0 is a skeleton of <€ (cf. Chapter 12 for a 
discussion of the legitimacy of such a selection process in set-theory). 
Equivalence of categories is described in these terms by:

categories %> and 3  are equivalent iff they have isomorphic
skeletons (^ — 3  iff ^ 0 =  3 0),

and in this sense equivalent categories are categorially “ essentially the 
same” . Note however that they need not be in bijective correspondence, 
indeed need not be comparable in size at all. The collection of finite 
ordinals is small, i.e. a set, identifiable with the set of natural numbers, 
whereas the objects of Finset form a proper class (e.g. it includes {x}, for 
each set x).

E x e r c is e  1. Any two skeletons of a given category are isomorphic.



202 FUNCTORS CH. 9, § 9.3

E x e r c i s e  2 . In a topos for each object d there is a bijection Sub(d) = 
%(d, Ω) ( § 4 .2 ) .  Show that these bijections form a natural isomorphism 
between the functors Sub: —>Set and %(—, Ω) :%—> Set (this is a functor- 
ial statement of the Ω -axiom).

9.3. Functor categories

We return now to the intention stated at the beginning of §9.2 -  to define 
the functor category Si** of all functors from to 2). Let F, G, H  be such 
functors, with natural transformations τ : F G, σ : G -τ> H. Then for any 

arrow f  :a —> b we get a diagram

F(a) G(a) H (a)

F(f) G(f) W )

F(b) G (6) H(b)

We wish to define the composite σ  ° τ of τ and cr, and have it as a natural 
transformation. The diagram indicates what to do. For each a, put 
(v ° T)a =Gra ° ra. Now each of the two squares in the diagram commutes, 
so the outer rectangle commutes, giving (σ- ° r)b ° F(f) = H(f)  ° (σ ° τ)α, 
and thus the (or ° r)a’s are the components of a natural transformation 
σ  ° τ : F -τ» H. This then provides the operation of composition in the 
functor category 3)**. For each functor F : —> 3) the identity trans­
formation 1 f \ F ^ F  (Example 1, §9.2) is the identity arrow on the 
2^-object F.

E x e r c is e  1 . The natural isomorphisms are precisely the iso arrows in 35^.

E x e r c is e  2. Let C and D  be sets, construed as discrete categories with 
only identity arrows. Show that for F, G : C D  there is a trans­
formation F G iff F = G, and that the functor category D c  is the set of 
functions C ^ D .

E x e r c is e  3. τ :F^> G is monic in Q)% if ra is monic in 3) for all a. □

A  number of the topoi described in Chapter 4 can be construed as 
“ set-valued functor” categories, as follows.
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(1) Set2. The set 2 = {0 ,1} is a discrete category. A  functor F: 2 —>Set 
assigns a set F0 to 0 and a set Fx to 1. Since Fas a functor is required to 
preserve identity arrows, and 2 only has identities, we can suppress all 
mention of arrows, and identify F  with the pair (F0, FJ. Thus functors 
2 —> Set are essentially objects in the category Set2 of pairs of sets. Now 
given two such functors F and G, identified with (F0, Fx) and (G0, Gx), a 
natural transformation τ :F-t> G has components Tq:F0 —> G0, τ 1:F1-^ 
G1. We may thus identify τ with the pair (τ0, τχ), which is none other 
than a Set2-arrow from (F0, Fx> to (G0, Gx).

(2) Set '. Consider the poset category 2 = {0,1} with non-identity 
arrow 0 —̂ 1. A  functor F :2 —>Set comprises two sets F0, F1? and a 
function f : F 0—> Fx. Thus F is “ essentially” an arrow f  in Set, i.e. an 
object in Set~A Now given another such functor G, construed as g : G0 —> 
G1? then a r :F-r> G has components t0, t x that make

0 F0 G0

/  g

1 Fx — ^  Gx

commute. We see then that r, identified with (t0, t x) becomes an arrow 
from f  to g in Set^, and so the latter “ is” the category Set2 of functors 
from 2 to Set.

(3) Μ-Set. Let M = (M, * ,e ) be a monoid. An M-set is a pair (X, λ) 
where X  is a set and λ assigns to each m e M  a function Am : X  —» X, so 
that

(i) Ae =idx, and
(ii) Am ° Ap AmHcp.

Now M is a category with one object, say M, arrows the members m of 
M, * as a composition, and e = idM. Then A becomes a functor 
A : M —> Set, with A (Μ) = X  for the one object, and A (m) = Am, each arrow 
m. Indeed (i), (ii) are precisely the conditions for A to be a functor. Now 
given any other functor μ : Μ —>Set, with μ(Μ)=Υ, then a τ:Α-τ>μ 
assigns to M  a function f : X —> Y  so that
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commutes for each m e M . But this says precisely that f  is an equivariant 
map from (X, λ) to (Y, μ). Thus Μ-Set is the category Set** of functors 
from M to Set.

(4) Bn (I). Taking the set I  as a discrete category, a functor F : I —» Set 
assigns to each i e l  a set F*. So we can identify such functors with 
collections {Ft : i e  1} of sets indexed by I.

An object (X ,/) in Bn(I) (i.e. a function gives a functor
f  : I —> Set, with /(0  = / -1({ι*})> the stalk of /  over z.

An arrow h : (X, /) —> (Y, g) is a function that maps the /-stalk over z to 
the g-stalk over z, hence determines a function ht : f(i) —> g(z). These V s  
are the components for h : f - ^ g .  Thus each bundle can be turned into a 
functor from I  to Set. The converse will only work if the Ft’s are pairwise 
disjoint. So given F : I ^ > Set we define a new functor F : I —*Set by 
putting F(i) = F(i)x{i}  and then turn (F (i): i e l }  into a bundle over I. 
Since F(i) =  F(i) x{z}, the functors F and F are naturally isomorphic. 
What this all boils down to is that the passage from (X ,/) to /  is an 
equivalence of categories. The category Bn (I) of bundles over I  is 
equivalent to the category Set1 of set-valued functors defined on I. □

These last four examples illustrate a construction that provides us with 
many topoi. We have:

for any “ small” category the functor category Set  ̂ is a 
topos!

We devote the rest of this chapter to describing the topos structure of 
Set".

Terminal object

In Set  ̂this is the constant functor 1: —> Set that takes every ^-object to 
the one-element set {0}, and every -arrow to the identity on {0}. For any 
F : % —> Set the unique arrow F 1 in SeF is the natural transforma­
tion whose components are the unique functions !: F(a) —> {0} for each 
^-object a.

Pullback

This is defined “ componentwise” , as indeed are all limits and colimits in 
Set*.
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Given τ :F-r> H  and cr: G -*H , then for each ^-object a, form the 
pullback

K(a) G(a)

F(e) H(a)

in Set of the components τα and σα. The assignment of K(a)  to a 
establishes a functor K : cf; —> Set. Given ‘if-arrow f : a —> /), K(f ) is the 
unique arrow K(a)  —> /< (/)) in the “ cube”

K(a) G(a)

K(b)

F(a) -  

F(fl·

G(f)

G(b)

A -  H(a)
Xb \ H ( f )

F(b) H(b)

given by the universal property of the front face as pullback. The λ„'s and 
μ„ ‘s are components for λ : K  .-> F and μ : K  —> G  that make

K μ > G

F  — H  

a pullback in Set*.
E x e r c i s e  4. Define the product F x G : 9 i - ^  Set of two objects in Set**.

□

Subobject classifier

To define this we introduce a new notion. For a given ^-object a, let Sa 
be the collection of all ^-arrows with domain a,

Sa = ι f°r some b, a — > b in [
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(Sa is the class of objects for the category \ a of “ objects under a” 
described in Chapter 3).

We note that Sa is “ closed under left composition” , i.e. if f e S a, then 
for any 9i-arrow g : —>c, g ° f e S a

We define a sieve on a, or an a-sieve to be a subset S of Sa that is itself 
closed under left composition, i.e. has g ° f e S  whenever f eS.  For any 
object a there are always at least two a-sieves Sa and 0 (the empty 
sieve).

E x a m p l e  1. In a discrete category, Sa = {1a}, and so Sa and 0 are the only 
a-sieves.

E x a m p l e  2. In 2, with / : 0 —> 1 the unique non-identity arrow there are 
three 0-sieves, 0, S0 = {10, /}, and {/}.

E x a m p le  3 . In a one-object category (monoid) M, an M-sieve is a set 
S c M o f  arrows closed under left composition = left multiplication. The 
sieves are just the left-ideals of M. □

Now we define Ω\<€^> Set by

n(a)  = {S:S is an a-sieve}

and for Harrow f : a - * b ,  let 0 ( f ) : 0 ( a ) —> Q(b) be the function that 
takes the α-sieve S to the b-sieve { b ^ > c : g ° f e S }  (why is this a 
sieve?)

Thus in Set1'1, we find that 12(M) = LM, the set of left ideals in M, and 
for arrow 12 (m) : LM-> LM takes S to {r c :n * m e S } =
ω(νη, S). So Ω becomes the action (LM, ω) that is the codomain of the 
subobject classifier.

In SeC we define T : 1 -r> 12 to be the natural transformation that has 
components Ta:{0 }-^ i2 (a) given by Ta(0) = Sa, the “ largest” a-sieve. 
This arrow is the classifier for SeC. To see how T works, suppose that 
τ : F  τ» G is a monic arrow in SeC. Then for each ^-object a, the 
component ra : F ( a ) ^ G ( a )  is monic in Set (Exercise 3 ) and we will 
suppose it to be the inclusion F(a) cz* G(a). Now the character χτ : G -τ+Ω

c
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of τ is to be a natural transformation with the component (χτ)α a set 
’unction from G(a) to ί2(α). Thus (χτ)α assigns to each xeG(a) ,  an 
α -sieve (*T)a(x). The question then is to decide when an arrow f : a —>b 
with domain a is in (χτ)α(χ). For such an /, we have a commutative 
diagram

F(a) c: - G( a)

F(f)

F(6)

Off)

G(b)
so that F(f) is the restriction of G(f) to F(a). We put f  in (χτ)α(χ) if and 
only if G(f) maps x into F(b). (Compare this with the picture for Set-* in 
§4.4). Thus (χτ)α(x) = { / :  a —> 6: G(f)(x)eF(b)}.

G(b)
Fig. 9.1.

More generally, assuming only that τα is a function, perhaps not an 
inclusion, we put

(Χτ)α0;) = G (/)(x )erb(F(&))|

: |a f > b: for some yeF(b) ,  G(f)(x) = rb(y)|

E x e r c is e  5. Verify that (χτ)α(χ) is an α-sieve, and that this construction 
satisfies the β -axiom, (see §10.3)

E x e r c i s e  6. Show that it produces the classifiers for Set2, Set-* and Bn (I).

E x e r c is e  7. Let S be an α -sieve. Define S : ^ —>Set by S(b) = 
S Π ̂ (a, b). Show that the inclusions S(b) <=± (a, b) are the components of
a monic Set^-arrow S>r->Si(a, —). Show that in fact the α -sieves are in
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bijective correspondence with the subobjects of the homfunctor ^(a, —) in 
Set*.

E x e r c is e  8 . Show that for each ^-object a , (Ω(α), c )  is a Heyting 
algebra of subsets of Sa, with

—iS = |a > b: for any b — c, g° s j

S Φ  T = {f: whenever g ° fe S , then g ° f c  T}

Show that —iS is the largest (union) of all the a-sieves contained in -S , 
and S => T is the largest α-sieve contained in —S U T. □

The dual to the notion of sieve is called an a-crible. This is a collection 
of arrows with codomain a that is closed under right-composition. Cribles 
are used to show that the category of contravariant functors from to Set 
is a topos. This type of functor arises naturally in the study of sheaves, 
and the work of Grothendieck et al. [SGA4] is done in terms of cribles. 
We have used co-cribles because they are appropriate to the conventions 
of the Kripke semantics. Cribles themselves will be discussed in Chapter 
14.

Exponentiation in Set*

Let F :^ -^  Set. For each -object a, define a “ forgetful” functor 
Fa: %fa  —> Set that takes / :  a —» b to F(b), and h : f - + g  where

a

commutes, to F(h).
Now given F,G \<€ —> Set, define GF:<€ —> Set by

GF(a) = Nat[Fa, G j ,

the collection of natural transformations from Fa to Ga.
Acting on arrows, GF takes k\a-> d to a function GF(k) from 

Nat[Fa, Ga] to Nat[Fd, Gd]. This takes τ : Fa Ga to τ ' : Fd Gd that has
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components rf = Tfok, for 

a — > d

*

f  an object in | d.

E x a m p l e . Let F and G be functors 2 —>Set, thought of as functions 
/ : A — and g : C ^ D  (i.e. Set^-objects). Now 2 ΐ  1 is the discrete 
one-object category. So F1 is identifiable with F(1) = JB, likewise G 1 “ is” 
D, and

G f (1) = D B, the set of functions B —» D.

Now 2 f  0 is isomorphic to 2 itself, so F0 and G0 can be taken as just F 
and G. Then

GF(0) = Nat[F, G ] “  = ” E,

where E  is the set of Set-*-arrows from /  to g. Finally GF takes !: 0 —> 1 
to

E - > D B, as follows:

Given τ : F G, corresponding to the Set~*-arrow (t0> tx) from /  to g, 
GF(t) is the transformation Fx -r> G x whose sole component is tx, since 1 
corresponds to the unique member 1X of 2| 1.

0  !— 1

1

Thus gf ((t0, t x)) = τ1? and this very complex construction has yielded the 
exponential object in Set^. □

We have yet to define the evaluation arrow e v : GF x F -^ G  in Set* 
This has components eva : GF(a) x F(a) —> G(a), where eva((τ, x)) = 
τΊα(χ) whenever xeF (a ) and τ e GF(a), i.e. r :F a -^ G a (note that the 
component τ1α of the ^  f  a-object 1a is indeed a function from F(a) to
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G(a). Now for a Set  ̂ arrow t :H x F -^ G , the exponential adjoint 
τ :Η-τ> GF has components that are functions of the form

τa : H ( a ) ^ G F(a).

For each y in H(a), ra(y) is a natural transformation Fa -r> Ga. For each 
^ t a-object f : a - + b ,  ra(y) assigns to f  that function from F(b) to G(b) 
that for input x e F(b) gives output

rb((H(f)(y), x))

(note that rb: H(b)xF(b) -^ G(b) and H(f ) :H(a) -> H(b)).
The reader who has the head for such things may check out the details 

of this construction and relate it to exponentials in Μ-Set, Bn (I) etc. We 
shall need it only for the description of power objects in a special topos of 
Kripke models in Chapter 11. Our major concern will be with the 
subobject classifier of “ set-valued” functor categories.


