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Abstract. Here we demonstrate the existence of a local Darboux chart for 
the Manev model such that its dynamics becomes locally equivalent to the 
Kepler model. This explains lot of similarities between these two models 
and especially why they share common symmetry algebras. We also discuss 
the existence of group actions on the phase space for the algebras inherent in 
the Manev model.

1. Introduction

In the last decade Manev model had enjoyed an increased interest either as a very 
suitable approximation to Einstein’s relativistic dynamics from astronomers’ point 
of view or as a toy model for applying different techniques of the modern dynamics 
(see e.g. [4,7,8,17,18]). It was not invented as an approximation of relativity theory 
but as a consequence of Max Planck’s (more general) action-reaction principle and 
is capable to describe both the perihelion advance of the inner planets and the 
Moon’s perigee motion.
By Manev model [16] we mean here the dynamics given by the Hamiltonian

H \ i v l  +  pI + pD
A
r

B
r (1)
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where r  =  \Jx2 +  y2 +  z2 while A and B are assumed to be arbitrary real con
stants whose positive values correspond to attractive forces. Due to the rotational 
invariance each component of the angular momentum

Lj = £jkmPkXm with (xi,X 2, X3) =  (x, y, z)

is an obvious first integral, i.e., {H, L j } = 0 and so, like the Kepler problem 
(and any central potential), the Manev model is integrable. Angular momentum 
components themselves are not in involution but span an so (3) algebra with respect 
to the Poisson brackets

{Lj , Lk } — £jkm L m (2)
and if we approach the question of the integrability solely in Lj  terms, we obtain 
the most simple example of non-commutative integrability [9,19,20].
The motion is confined on a plane which we assume to be X O Y  and correspond
ingly the angular momentum L z = L  is in the z-direction. From now on we 
shall concentrate on this dynamics on the phase space M  = T * (R2 \  {0}) =  
T  * R+ x T  *S1 which is separable in radial coordinates r  and d = arctan(y/x) as 
it is governed by

H
i f  2 L2 -  2 B
2 ( Pr +  —

A
r ,

u  = dpr A d r +  dL A d0. (3)

Recently we reported [11] that Manev model has an additional independent glob
ally defined constant of motion, albeit not for all initial data. Also, it has exactly 
the same additional symmetry algebras so(3) (or so(2, i) for positive energies) as 
the Kepler problem thus giving more arguments in favour of the view that Manev 
model is the natural generalization of Kepler's. We shall explain here why we 
have coinciding algebras for both models through an extension of the Newton's 
Revolving Orbits Theorem. Also we construct a (rather weak form of) canonical 
transformation connecting the Manev dynamics with the Kepler’s for a set of initial 
data corresponding to large enough angular momentum.

2. The Kepler Problem Invariants

In the case of Kepler problem the Hamiltonian is

H k 2 ( p 2 + L
A
r (4)

and we have more first integrals (for details and historical notes see e.g. [6,12,13, 
21]) due to

{Hk , J}  =  0 with J  =  p A L — A r/r  
being the Laplace-Runge-Lenz vector whose components are not independent 
as J 2 =  2Hk L2 +  A2. Together with the Hamiltonian and angular momentum
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they close on an algebra with respect to the Poisson brackets and after redefining
E  — J /  \J | — 2hK | on each H K — hK level set we get

{L, E x } — E y , {L, E y} — E x , Ey} — sign(hK) L

with Casimir invariant

EX +  Ey +  sign(—H k ) L2 —
A2

|2Hk  |
(5)

which makes obvious the fact that we have an so(3) algebra for negative energies 
and so (2 ,1) for positive ones. In the case of the three-dimensional Kepler problem 
the components of the angular momentum give us another copy of so (3), see equa
tion eq2, so the full symmetry algebra is either so(4) or so (3 ,1) depending on the 
sign of hK. Actually, the first use of these first integrals was made by J. Hermann 
(= J. Ermanno) in 1710 (in order to find all possible orbits under an inverse square 
law force) in the disguise of Ermanno-Bernoulli constants

J± — J x ±  i J y — j ------ A ^  i Lpr I e ±i<9

satisfying

{Hk , J±} — 0, {L, J±} — ± iJ± , {J+, J -}  — —4iHKL. (6)

3. The Manev Problem Invariants and Symmetries

It has already been established the invariance of

J  — vL

where

I • I APr ±  i [vp± — —

L A 2p± — — and v

„±i v6 d r r  r.
e , 1Ü- — 0dt

L 2 -  2B
L2

and J+  and J -  are not independent as

J + J -  — 2v 2H L 2 +  A2

(7)

Obviously in the Kepler case v equals one and (up to a multiplication by i) we 
recover the ‘Ermanno-Bernoulli’ constants.
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3.1. Compact Motion Case

Trajectories always lie on the joint level sets of H  and L which in the case when
0 =  L2 > 2B and H  < 0 are two-dimensional tori. When v is irrational tra
jectories fill densely these tori, and hence there are no new (continuous) constants 
of motion, and the fibration by two-dimensional tori is the finest fibration with 
invariant fibers.
In order to have globally defined constants of motion in this case we have to require 
that the real valued v's be rational, i.e.,

v =  V L2 — 2B  : L =  m : k (8)

with m and k mutually prime integers. Then J ±  are conserved by the flow deter
mined by equation (1) on any surface L =  i  satisfying the rationality condition (8). 
Thus we have conditional constants of motion which exist only for disjoint but in
finite set of values i, otherwise J ±  would not be well defined and we would have 
invariant submanifolds but not genuine constants of motion. Consequently, trajec
tories are periodic and we have a finer invariant fibration.
Let us remark that for a generic central potential we could have disjoint set of initial 
data corresponding to closed orbits but in our case all points on certain level sets of 
the angular momentum lie on closed orbits which are intersections with the level 
sets of the additional invariant.
Each trajectory in the configuration space looks like a “rosette” with m petals and 
this is connected to the fact that J ±  (as well as H  and L) are invariant under the 
action of the cyclic group generated by rotations by angle

k
6 a  6 +  2n—n, n  =  0 ,1 , . . . ,  m — 1. 

m

To visualize the intersection of the level sets we can fix the angular momentum 
and use x, y and pr as coordinates on this level set. Both Hamiltonian and J ±  
level sets are represented as two-dimensional surfaces whose intersection gives the 
trajectories in the phase space (see Fig. 1).
While the integrable systems are characterized by a fibration by Liouville tori 
n : M  a  B mapping the phase space M  to the base B which is the space of 
independent first integrals (with 2 dim B =  dim M ), in the superintegrable case 
(i.e., when 2 dim B > dim M ) we have a more complicate structure. A Hamil
tonian vector field is superintegrable if it is tangent to the fibers of a fibration
1 : M  a  B with connected and isotropic fibers such that there exists a second 
fibration with coisotropic fibers c : M  a  A such that the tangent spaces of the 
former and the latter are symplectically orthogonal. Such pair of fibrations denoted 
by A M  A  B is called bifibration and is a particular case of a dual pair [22].
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Figure 1. The level sets of H (the central “bubble”) and of J + (the 
helicoid-like surface) for L = 1, A = 2, v = 1/3, H = -1.95 and 
arg(J+ ) = -0.9.

In our case B is the three-dimensional space of first integrals {H, L, J } ,  which 
carries a natural Poisson structure and A is the space of actions, i.e., Casimirs of 
this structure, which consists of the Hamiltonian (1) only. The fibers of i are the 
periodic orbits, and the fibres of c are the level sets of H , and each level set is fibred 
by the periodic orbits, i.e., we have a third fibration s : B ^  A with c =  s o i.
We shall now introduce another Darboux chart for our symplectic form equa
tion (3) in the case when L2 — 2B  > 0 by defining new local coordinates § = 
v(L)d,  and L =  v(L)L which are canonically conjugate as

dL A d§ =  dL A d0 and hence u  =  dpr A d r +  dL A d § . (9)

It should be noted that § is not even an angular type of coordinate (i.e., a coordinate 
which does not exist globally but dfi is still well defined closed one-form). In our 

case even d§ =  v(L)dO +  dL is not well defined globally due to the second
term but dL A d§ still makes sense. When written in the new coordinates Manev’s 
Hamiltonian takes the form of Kepler's

H
1
2 P2 +

L2
r 2

a

r
(10)
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and this link between the two models gives us a direct method to demonstrate that 
Manev’s model possess exactly the same symmetry algebra as Kepler’s. The fact 
that symplectic structure is the same in both charts means that for every pair of 
phase space functions we will have

{ F (r ,pr ,9 ,L) ,G(r ,pr ,d ,L)}  = { F (r,pr,§, L) ,G(r ,pr,§, L)} (11)

and hence from any (Poisson brackets) algebra of the Kepler model we can im
mediately produce identical algebra of the Manev problem by just taking the same 
functions depending now on the local variables § and L. This observation may be 
viewed as a trivial extension of the Newton’s Revolving Orbits Theorem1

Theorem 1. Let r(9) be an orbit generated by any central force F  (r). Then the 
revolving orbit r(9) = r(a9) is generated by a central force F(r) that differs from 
F (r) by an inverse-cube force, and conversely. In particular, if L and L are the 
angular momenta corresponding to r(9) and r(9), respectively, then

~ L2 -  L2 L
Fir) = F  (r) +------ 5—  and a  = — ■

r3 L

In our notations a  = v  and 2B = L2 — L 2, and we may state that all Poisson 
brackets (and hence algebras) for the tilde-system are identical to the ones of the 
original system provided we replace the arguments of the phase space functions L 
and 9 with L =  L  and § = a9.

Applying this to Kepler’s invariants and defining

K = J + +  J -  K = i(J + — J -)
1 =  2 ^ \2H \ , 2 = 2 ^ \2H \ ’

we obtain so(3) or so (2 ,1) algebra

{K l, K 2 } = sign(—H ) K 3 , {K 2 , K 3} =  K i  ,

K 3 = L

{K3,Ki} =  K 2

with Casimir invariant

C = K f  + K2 + sign(—H ) K32
A 2
2H

and so, the space of invariants (i.e., the fibres of s, or equivalently, the space of first 
integrals for fixed value of the Hamiltonian) is a sphere or a hyperboloid (which 
degenerate to a point or cone if A = 0), i.e., exactly the same as in the Kepler 
model. In this way dynamical vector fields of Manev and Kepler problems provide 
different fibrations over isomorphic base spaces B.

■^Comments on the original Newton’s wording may be found in [15] and a standard exposition of this 
matter in [23].
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The specifics of the superintegrable systems are reflected in the Poisson structures 
on the base, which for the three-dimensional case are, fortunately, completely clas
sified [10] by just two smooth functions u and f . The most general Poisson bracket 
for a basis {yn} in R3 has the form

j x _  d f
{Vi,Vj } =  £ijk UQyk (12)

with f  being a Casimir of the Poisson structure. Here f  =  C and u =  1 (if 
we identify Kj with y )̂ and we have as a bonus a Lie algebraic structure whose 
existence is not guaranteed in generic superintegrable systems.

3.2. Noncompact Motion Cases

• When 0 =  l 2 > 2 B and H  > 0 the additional invariants are always globally 
defined and have the form and symmetry algebras just described.

• When l 2 =  2 B we have the first integral

j  = Lpr +  AO

satisfying {H, j}  =  0, {L, j}  =  A.
• In the case when 0 =  l 2 < 2B we may denote u =  iv with u real and

J ±  =  uL
A

Pr ±  ( up± +  — +v8

will be first integrals for any l.
In the last case (which has no direct analogue in the Kepler mechanics) we can 
again introduce new Darboux chart denoting L =  u(L)L and 0 = u(L)O. When 
written in the new coordinates Manev's Hamiltonian takes the form

H  =  - pr2
L2 A

r (13)

and we can define
=  J ++J - , 

2V/|2H | '

to obtain the so(2, 1) algebra 

{K i ,K 2} =  s ig n (-H )K 3 ,

K  =
J+  - J -  
2^Ï2H \ '

{K2,K3}  =  K i

K 3 =  L

{K3,Ki} =  - K 2

2r

for both choices of the sign of H. Its Casimir invariant is

C =  K2 -  K 22 +  s ign (-H ) K 32 =  - |2 H |

and thus the space of invariants is one- or two-sheet hyperboloid, and this again 
corresponds to f  =  C and u =  1 case of the general Poisson bracket equation (12).
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3.3. From Symmetry Algebras to Group Actions

The mere existence of an algebra of well defined first integrals does not presup
pose suitable group action on the phase space. Even as simple systems as the 
commensurate two-dimensional oscillator present obstructions to group actions on 
the phase space [2]. Also, the symmetry algebra of the Kepler model does not lead 
to global group action unless the problem is “regularized” [14]. Here we have a 
more immediate obstacle for the existence of group actions in the compact motion 
case as J ±  (or K 1, K 2) do not commute with L and hence do not preserve any 
L = £ surface and destroy rationality condition (8). Even if we take the stance 
that one could analyze also first integrals without global meaning, so not bother
ing about the rationality condition, there always exist “candidates for group orbits” 
which reach L2 =  2B level set where the symmetry algebra itself changes and 
hence could not be prolonged.
If we would like to find an algebra having any chance to yield a group action in 
the phase space it should be an algebra of rotationally invariant functions (i.e., 
commuting with L ). Similar to the bifibration of the previous sections with fibers 
formed by the Hamiltonian vector field and level sets of H , we could construct 
a bifibration with angular momentum L taking the role of H . Among the many 
possible such choices (starting e.g. with the first guess {r2, p2, p, r}) we would 
prefer an algebra more closely connected to the dynamics of the problem.
Such an so (2 ,1) algebra had actually been obtained at the end of 60’s as a tool for 
determining the energy levels in the quantum Manev model (but without calling 
it so) [1]. It is worth noting that this algebra somehow distinguishes the Manev 
model as it was demonstrated soon after in [5] that this is the most general model 
(under some set of physically sensible assumptions) with discrete and continuous 
spectrum having this algebra. A more recent survey [3] reported that the only 
explicit potentials realizing su (1, 1) (isomorphic to so (2, 1)) algebra with discrete 
spectrum are Manev, Morse and “spiked oscillator” (i.e., V  = ar2 +  b/r2) ones. 
For the classical Manev model the algebra’s basis is defined by

T2 = p . r

such that

{Ti ,T2} =  T3 , {T2,Ta} =  - T i , {Ta,Ti} =  - T 2. (14)

We shall make use also of

T+
B

=  T3 +  Ti =  rp2 ------- ,2 T - =  T3 -  Ti =  r 

{T2,T± } =  t T±.
(15)r

with {T+, T- } =  2T2 and
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Let us note that this is not a symmetry algebra as its elements do not commute 
with the Hamiltonian but with L. The Hamiltonian does not depend linearly on 
Ti-s but the combination r H  = T+/2 — A  does and hence through an appropriate 
reparametrization the radial motion could be represented as a linear dynamics on 
{Ti ,T 2,T s}.
The algebra has the Casimir invariant

T l — T2 — t 22 = T+T_ — T22 L2 — 2 B

and thus the space of invariants of the Hamiltonian vector field of L is one- or 
two-sheet hyperboloid for negative/positive £2 — 2B, or a cone if £2 = 2B.
If we want to keep the correspondence with the phase space we have to restrict our
selves to the region where r  > 0, i.e., T | > Ti. This selects the upper hyperboloid 
if £2 — 2B  > 0, or half of the single hyperboloid if £2 — 2B  < 0. As a result there 
will be obstructions to a possible group action on the phase space, coming from the 
fact that the vector fields are not complete vector fields. While we will have well 
defined action on the upper hyperboloid for £2 — 2B  > 0. This will be no longer 
true in the case when £2 — 2B  < 0 as any point on the single hyperboloid could be 
made to hit r  =  0 locus by a suitable rotation around T3-axis.

4. Conclusions

We have demonstrated the existence of a local Darboux chart for the Manev model 
such that its dynamics becomes locally equivalent to the Kepler model. This ex
plains why we observe so many similarities between these two models and espe
cially why they have common symmetry algebras. We also discuss the problem 
of existence of group actions on the phase space for the algebras inherent in the 
Manev model.
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