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1. Introduction

The present article summarizes most of the four lectures that I have presented dur
ing the Varna Conference on Geometry, Integrability and Quantization, June 2007. 
They are based on my book An Introduction to Lie groups and the Geometry o f Ho
mogeneous Spaces [4], with additional recent results on homogeneous geodesics 
and homogeneous Einstein metrics.
The theory of Lie groups (i.e., a manifold with a group structure) is one of the 
classical well established areas of mathematics. It made its appearance at the end 
of the nineteenth century in the works of S. Lie, whose aim was to apply algebraic 
methods to differential equations and geometry. During the past one hundred years 
the concepts and methods of the theory of Lie groups entered into many areas of 
mathematics and theoretical physics.
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The basic method of the theory of Lie groups, which makes it possible to obtain 
deep results with striking simplicity, consists in reducing questions concerning Lie 
groups to certain problems of linear algebra. This is done by assigning to every 
Lie group G its “tangent algebra” g  This is the tangent space of G at the identity 
element e, equipped with a natural Lie algebra structure. To a large extend, the Lie 
algebra g determines the group G, and for every homomorphism f  : G ^  H  of 
Lie groups, a homomorphism d f  : g ^  h of their Lie algebras determines f  to a 
large extend.

The question “what is geometry?” is a question that was emerged through the 
various attempts to prove Euclid’s fifth postulate. After C. F. Gauss’ Theorema 
Egregium (curvature is an intrinsic property of a surface) there were two main 
directions in the development of geometry. The first, was the theory of Riemannian 
manifolds, developed by B. Riemann, and is a generalization of Gauss’ theory of 
surfaces.

The other direction was developed by F. Klein in his Erlangen program, according 
to which the object of geometry is a G-space M , that is a set M  with a given 
group G of transformations. If the group acts transitively, that is for all p,q  G M  
there exists an element in G which transforms p into q, then the G-space is called 
homogeneous. As a result, if we pick any point o G M , we can identify M  with 
the set G /H  of left cosets, where H  is the subgroup of G consisting of those 
elements which map o to itself. Therefore, the homogeneous geometry of such a 
space M  =  G /H  is the study of those geometrical properties and of those subsets 
of M , which are invariant under G. By varying the group G, we obtain different 
geometries (e.g., Euclidean, affine, projective, etc). As a result, if we know the 
value of a geometrical object (e.g., curvature) at a point of M , then we can calculate 
it at any other point.

Using the identification of a homogeneous space M  with the quotient G /H , sev
eral geometrical problems can be reformulated in terms of the group G and the 
subgroup H. In particular, if G and H  are Lie groups the problems can be further 
reformulated in terms of their infinitesimal objects, i.e., the Lie algebra g of G and 
its Lie subalgebra h associated to H . The major benefit of such an infinitesimal 
approach is that difficult nonlinear problems (from geometry, analysis or differen
tial equations) can be reduced to linear algebra. This is essentially done by use of 
the canonical isomorphism To(G /H ), of the tangent space of G /H  at the identity 
coset o =  eH , with the quotient Te(G )/Te(H ) =  g/h.

After Cartan’s classification of semisimple Lie groups, two important classes of ho
mogeneous spaces were classified, namely symmetric spaces and flag manifolds. 
Flag manifolds are adjoint orbits of a compact semisimple Lie group, and equiva
lently homogeneous spaces of the form G /C (T ), where T  is a torus in G. They
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have many applications in real and complex analysis, topology, geometry, dynam
ical systems, and physics.
There is actually a third direction in the development of geometry, which is Car- 
tan’s theory of connections on a fiber bundle (espèces généralizés), which was used 
as an appropriate mathematical framework in recent physical theories (Yang-Mills 
theory, quantum gravity). I will not enter in this topic.
The object of these lectures was to present some aspects of Lie groups and ho
mogeneous spaces, as well as their geometrical objects defined on them, such as 
invariant metrics and curvature. As an application of the theory, I included a sec
tion in homogeneous Einstein metrics with some old and new results. I had in 
mind an audience of graduate students with a background on linear algebra and an 
introductory course on differential manifolds.

2. Lie Groups

A Lie group is a an abstract group with a smooth structure.

Definition 1. A set G is a Lie group if and only if
1) G is a group
2) G is a smooth manifold
3) The operation G x  G ^  G, (x, y) ^  x y -1 is smooth.

Examples 1. 1) The sets R, C, H (the quaternions), Rn, Cn , Hn are abelian Lie 
groups under addition.

2) The sets R*, C*, H* are Lie groups under multiplication. The first two are 
abelian, the third is not.

3) The set MnR of all n x n  real matrices (respectively MnC, MnH) which is 
identified with the set End(Rn) (respectively End(Cn), End(Hn)) of all endo- 
morphisms (i.e., linear maps) of Rn (resp. Cn , Hn).

4) The set GLnR of all invertible real matrices, which is identified with the set 
Aut(Rn) of all automorphisms of Rn . Similarly we can define the Lie groups 
GLnC and GL«H.

5) The circle S1 C C* and the three-sphere S3 C H*.
6) The torus S1 x S1.
In general, if G and H  are Lie groups then the product G x H  is also a Lie group. 
To obtain more examples we need the following notion.

Definition 2. a) A Lie subgroup H  of a Lie group G is an abstract subgroup o f G 
which is also an immersed submanifold o f G. 

b) A closed subgroup o f a Lie group G is an abstract subgroup and a closed subset 
of G.
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Proposition 1 (Cartan). I f  H  is a closed subgroup o f a Lie group G, then H  is a 
submanifold, so a Lie subgroup o f G. In particular, it has the induced topology.

It is possible to have a Lie subgroup which is not a closed subset. The standard 
example is the line of irrational slope f  : R ^  S1 x S1, t ^  (e2nit, e2niat), a  
irrational. The map f  is an one to one homomorphism, and an immersion. It is 
known that its image is a dense subset of the torus, so it is not an embedding (e.g., 
[12]).
By use of the above proposition we can obtain more examples of Lie groups.

7) The orthogonal group O (n) =  {A G GLnR ; A A * =  I }. By using the implicit 
function theorem we obtain that the dimension of O(n) is 1 n(n  — 1).

8) The unitary group U(n) =  {A G GLnC ; AA* = I } and the symplectic group 
Sp(n) =  {A G GLn H ; AA* =  I }. Their dimensions are n 2 and 2n2 +  n 
respectively.

9) The special orthogonal group SO(n), and the special unitary groups SU(n) 
consisting of matrices in O(n) and U(n) of determinant 1.

Subgroups of GLnK (K G {R, C, H} are known as the classical groups.

We have the following simple isomorphisms: SO(1) =  SU(1) =  { I}, O(1) =  
S0 =  Z2, U(1) =  SO(2) =  S1, SU(2) =  S3 =  Sp(1).
A result of Hopf states that S0, S1 and S3 are the only spheres that admit a Lie 
group structure.

2.1. The Tangent Space of a Lie Group -  Lie Algebras

There are two important maps in a Lie group G, called translations.
For a G G, we define the left translation L a : G ^  G by g ^  ag and the right 
translation R a : G ^  G by g ^  ga. These maps are diffeomorphisms, and 
can be used to get around in a Lie group. In fact, any a G G can be moved to 
the identity element e by La- i , and (dLa- i ) a : TaG ^  TeG is a vector space 
isomorphism.

Proposition 2. Any Lie group is G parallelizable, i.e., its tangent bundle is trivial.

Proof: The map X g ^  (g, dLg- i X g) gives the desired isomorphism TG =  G x 
TeG. □

Definition 3. A vector field X  on a Lie group G is called left-invariant if X  ◦ L a = 
dLa(X ) for all a G G.

As a consequence, if X  is a left-invariant vector field then X a =  (dLa)e(Xe) for 
all a G G, that is its value is determined by X e.
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The set g of all left-invariant vector fields on G is a real vector space, and this 
vector space can be identified with the tangent space of G at the identity, as the 
next proposition shows.

Proposition 3. g =  TeG.

Proof: We define the map g ^  TeG by X  ^  X e. Its inverse is TeG 9 v ^  X v , 
where XgV =  (dLa)e(v) is a left-invariant vector field. □

It is easy to see that the set g is closed under the bracket operation of vector fields, 
that is if X , Y  G g then [ X , Y ] G g. This bracket provides g with a real Lie algebra 
structure. This means that [ , ] is bilinear, antisymmetric, and satisfies the Jacobi 
identity: Cyclic([X, [Y, Z ]) =  0 for all X , Y , Z  G g. Using the above isomorphism 
this Lie algebra structure can be translated to TeG by [u, v] =  [Xu, X v]e (u, v G 
TeG).

Definition 4. The Lie algebra o f a Lie group G is the vector space TeG equipped 
with the Lie bracket defined above.

Examples 2. 1) The cross product operation [x,y] = x  x y in R3 defines a Lie 
algebra structure.

2) The Lie algebra of G =  (Rn , +) is g =  Rn with bracket [x, y] =  0.
3) The operation [A, B] = A B  — B A  defines a Lie algebra structure in MnR =2

Rn .
4) The Lie algebra of GLnR (i.e., the tangent space at the identity I) is MnR =  

g (in fact it is an open submanifold of a Euclidean space). What is the Lie 
algebra bracket? To each X  G g we associate the n x n  matrix A =  ( a j ) 
of components of Xe, so that X e =  (d fo  ) , and write A =  p ( X  ). By
explicit inspection of components one can show that ̂ ([X, Y]) =  p ( X ) p ( Y ) — 
p ( Y ) p ( X ), giving the Lie algebra structure on g =  MnR.

In order to be able to find explicitly the Lie algebra of various Lie groups, we need 
to give an alternative description of a Lie group. In fact, this description is close to 
Lie's original concept of a Lie group.

2.2. Infinitesimal Description of a Lie Group

Definition 5. An one-parameter subgroup of G is a smooth homomorphism p  :
(R, +) ^  G.

Examples 3. 1) The map p(t) =  e* is a one-parameter subgroup in G =  R.
2) Given a vector v G Rn, the map p(t) =  tv  is a one-parameter subgroup in Rn .
3) Similarly p(t) =  e1* is an one-parameter subgroup in G =  S1 =  U(1).
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4) The map p(t) cos t sin t 
— sin t cos t is an one-parameter subgroup in G =  U(2).

It can be shown that a path p(t) in a Lie group G is a one-parameter subgroup if 
and only if the velocity of p(t) is constant and p(0) =  e.
The main result is the following one.

Theorem 1. The map p  ^  d p 0(1) defines a one to one correspondence between 
one-parameter subgroups o f G and TeG.

Proof: Let v G TeG and Xg =  (dLg)e(v) be the value of the corresponding left- 
invariant vector field. Let p  : (—e, e) ^  G be the unique integral curve of X v 
such that p(0) =  e and d p t =  Xg(t). Then p  is a homomorphism, and extend it 
to all R by p v (t) =  p( n)n for large n. Then the map v ^  p v is the inverse of 
p  ^  dpo(1). □

Corollary 1. For each X  G g there exists a unique one-parameter subgroup p x  : 
R ^  G such that f'X (0) =  X .

Definition 6. The exponential map o f G is the map exp : g ^  G given by 
exp(X ) =  p x  (1).

It follows that exp(tX ) =  p x  (t), therefore

Corollary 2. The curve y (t) =  exp(tX ) (X G g) is the unique homomorphism in 
G with y '(0) =  X .

The following proposition summarizes some properties of the exponential map.

Proposition 4. 1) The exponential map is smooth, and dexp0 : g ^  g is the 
identity map.

2) exp(tX  +  s X ) =  exp(tX ) ■ exp(sX ).
3) exp(tX ) exp(tY) =  exp(t(X  +  Y) +  ty [X, Y] +  o(t2)) (Campbell-Baker- 

Hausdorffformula).
4) I f  G is compact and connected, then exp is onto.
5) I f  d : G ^  H  is a homomorphism of Lie groups, then dQe : g ^  h is a 

homomorphism of Lie algebras, and Q o exp =  exp o d9e.

Examples 4. 1) If G =  R *, then g =  R and exp(t) =  et .
2) If G =  GLnR, then g =  MnR and exp(A) =  eA (usual matrix exponentiation).
3) We will show that the Lie algebra of O(n) =  {A G GLnR ; At =  A- 1} is 

o(n) =  {A G MnR ; At =  —A}, the set of all skew-symmetric matrices. 
Hence, the dimension of O(n) is 1 n(n  — 1).
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Let y (s) beacurvein MnR with y(0) =  I  that lies in O(n),i.e., y(s)*y (s) =  I. 
Differentiating at s =  0 we obtain that y7(0)* =  —y7(0), thus T /O(n) C o(n). 
To show the opposite inclusion, we need to use the fact (exercise) that for any 
matrix X , (eX)* =  (eX )-1 if and only if X * = —X . Then, if A G o(n), then 
Y(s) =  esA is a curve in MnR with y (O) =  I  and y(R) C O(n). Differentiating 
at s =  0 it follows that y^O) =  A G T/ O(n), so o(n) C T/ O(n).

4) The Lie algebra of U(n) is u(n) =  {A G MnC ; A  =  —A*}, the set of all 
skew-Hermitian matrices.

5) The Lie algebra of SLnR, of the set of all real matrices with determinant one, 
is sl(n) =  {A G MnR ; tr  A =  0}.

Jumping a bit ahead, we mention that if a Lie group G is given a Riemannian metric 
which is invariant under La and Ra, then exp : g ^  G is the usual exponential 
map for G at e. In this case the one-parameter subgroups of G are the geodesics 
through e.

2.3. Lie’s Fundamental Theorems

The precise relationship between a Lie group and its Lie algebra is described by
the following statements, which are due, in a direct or indirect manner, to S. Lie.

1) Given a Lie algebra g there is a Lie group G whose Lie algebra is g.
2) There exists an one to one correspondence between connected immersed sub

groups H  of a Lie group G and subalgebras h of g (the Lie algebra of G). This 
correspondence is given by H  ^  h =  TeH . Normal subgroups of G corre
spond to ideals in g.

3) If G 1, G2 are Lie groups with Lie algebras g1, g2, and if g1 and g2 are isomor
phic as Lie algebras, then G 1 and G2 are locally isomorphic (in fact they have 
the same covering space). For example, S3 =  Sp(1) and SO(3) =  RP3 are 
locally isomorphic, but not isomorphic.

4) The category of Lie algebras and homomorphisms is isomorphic to the category 
of connected, simply connected Lie groups and homomorphisms.

2.4. The Adjoint Representation

We need a measure of the non-commutativity of a Lie group, and this can be pro
vided by an important representation, called the adjoint representation. Further
more, this can be used to define important invariants of a Lie group, other from its 
dimension and the center.
For g G G, let a(g) : G ^  G be the inner automorphism a(g)(h) =  ghg- 1 .
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Definition 7. 1) The adjoint representation o f a Lie group G is the (smooth) ho
momorphism Ad : G ^  Aut(g) given by Ad(g) =  (da(g))e : TeG ^  TeG.

2) The adjoint representation of a Lie algebra g is the homomorphism ad : g ^  
End(g) given by ad (X ) =  (d Ad)e(X ).

It follows that ker Ad =  Z(G) the center of G, and kerad =  Z(g). If G is 
connected the Lie algebra of Z(G) is Z(g).

Proposition 5. I f  G is a matrix group (i.e., G C GLnK, K G {R, C, H}) then
1) Ad(g)X =  g X g -1 for all g G G, X  G g.
2) ad(X  )(Y ) =  [X, Y  ] for all X , Y  G g. In fact this is true for any Lie group.
3) For any g G G and X  G g, exp o ad(X ) =  Ad o exp(X ).

Examples 5. 1) If G is abelian, then both Ad and ad are trivial (i.e., Ad(g) =  
{Id}). This is the case for SO(1), SO(2) ^  U(1), O(1), O(2).

2) Trying to compute Ad : SU(2) ^  Aut(su(2)), consider the basis

X 1 =
i 0
0 - i X 2 =

0 1
1 0 X 3 = 0 i

1 0

of su(2), and let

A = G SU(2).x +  iy u +  iv 
—u +  iv x — iy

We know that Ad(A)B =  ABA-1 , so by finding the matrices Ad(A)X1, 
Ad(A)X2, Ad(A)X3 we can obtain the matrix representation of Ad(A) (this 
is a 3 x 3 matrix).
In fact one can do more: Using the following Proposition 6 it follows that Ad : 
SU(2) ^  O(3), and since SU(2) =  S3, then det(Ad g) =  1, therefore Ad is a 
homomorphism from SU(2) to SO(3). It can be shown that this homomorphism 
is onto.
Using language of the more advanced representation theory, it can be shown that 
the complexified adjoint representation of SU(n) is given by AdSU(n) ®C =  
hn G ßn — 1, where pn : SU(n) ^  SU(n) is the standard representation of 
SU(n) and 1 is the trivial representation.

3) If An : SO(n) ^  SO(n) is the standard representation of SO(n), then AdSO(n) 
=  A2An, the second exterior power of An.

Towards studying the geometry of a Lie group the following notion is very impor
tant.

Definition 8. 1) Let g be a Lie algebra. The Killing form of g is the symmetric 
bilinear form  B : g x g ^  R given by B(X, Y ) =  tr(ad(X  ) o ad(Y )). The 
Killing form o f a Lie group is the Killing form o f its Lie algebra.
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2) A Lie algebra g is called, semisimple if B  is non-degenerate. This is equivalent 
to Z(g) =  0.

3) A Lie group G is semisimple if its Lie algebra is semisimple. This is equivalent 
to the fact that Z(G) is discrete.

The groups GLnR and U(n) are not semisimple. Table 1 gives the Killing form of 
the classical Lie groups.

Table 1. The Killing form of the classical Lie groups

G B
U(n)
SU(n)
S0(n)
Sp(n)

2n tr  X Y  — 2 tr  X  tr  Y 
2n tr  X Y  
(n — 2) tr  X Y  
2(n +  1) tr  X Y

The Killing form can be used to define an inner product on a compact semisimple 
Lie group:

Theorem 2. Let G be a compact semisimple Lie group. Then the Killing form  B 
is negative definite. The converse is true if G is connected.

This theorem is a consequence of the fact that a compact Lie group G admits an 
inner product ( , ) on its Lie algebra g, which is Ad-invariant, i.e.,

(Ad(g)X, Ad (g)Y ) = (X, Y  ) for all g G G, X , Y  G g.

Proposition 6. 1) The Killing form  B of a Lie group G is Ad-invariant. As a con
sequence, for all g G g the operator Ad(g) is B-orthogonal, that is Ad(G) C 
0 (g).

2) For any Z  G g the operator ad(Z ) is skew-symmetric with respect to B, 
that is B (ad(Z)X , Y) + B (X , ad(Z)Y ) =  0. Equivalently, B([X, Z ],Y ) =  
B(X, [Z, Y]).

Definition 9. A semisimple Lie algebra is called simple if it is non-abelian and it 
has no non-trivial ideals.

Simple Lie algebras are the “building blocks” of semisimple Lie algebras, since a 
semisimple Lie algebra is a direct product of simple ideals.

2.5. Maximal Tori and the Classification Theorem

Definition 10. 1) A torus T in a Lie group G is a Lie subgroup isomorphic to a 
product S1 x ■ ■ ■ x S1.
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2) A maximal torus in G is a torus T if whenever T c  S C G, with S a torus, then 
T =  S.

Examples 6. 1) The set of matrices Tn =  |d iag(e101, . . . ,  e10n )} is a maximal 
torus in U (n). By adding the condition 91 +  ■ ■ ■ +  9n =  0, this set is a maximal 
torus in SU(n).

( e10 0 \
2) If rot 9 =  o e-ie I, then the set of the block diagonal matrices of type

{diag {rot 9 i , . . . ,  rot 92n}} is a maximal torus in SO(2n), and {diag(rot 9i, 
. . . ,  rot 92n, 1)} is a maximal torus in SO(2n +  1).

The following proposition gives a characterization of tori.

Proposition 7. A Lie group H  is a torus if and only if H  is compact, connected, 
and abelian.

The next theorem essentially summarizes the central theory of maximal tori in a 
Lie group.

Theorem 3. Let G be a compact, and connected Lie group. Then

1) Any element in G is contained in some maximal torus.
2) Any two maximal tori T 1, T2 are conjugate in G, that is g T 1g-1 =  T2 for  

some g G G.
3) I f  T is a maximal torus in G, then G =  UgeG gTg-1 .

Several well known theorems of linear algebra can be interpreted by the above 
theorem. For example, if G =  U(n) then any unitary matrix can be diagonalized. 
Due to part above the following concept is well defined.

Definition 11. The rank o f a compact and connected Lie group G is the dimension 
o f a maximal torus.

Denoting by rk(G) the rank of the Lie group G, then rk(U(n)) =  rk(SO(2n)) =  
rk(SO(2n +  1)) =  n, and rk(SU(n)) =  n  — 1.
There is an analogous concept for Lie algebras. A Cartan subalgebra of a Lie 
algebra g is a maximal abelian subalgebra of g  In turns out that the Lie algebra t 
of a maximal torus T of G, is a Cartan subalgebra of the Lie algebra g of G.
For example, if G =  U (n), then g consists of all n x n skew-symmetric complex 
matrices, and the Lie algebra of Tn is the set {diag(ic1, . . . ,  icn) ; Cj G R}. This is 
a Cartan subalgebra of u(n).
The maximal tori are used for the classification of compact and connected Lie 
groups, which it is summarized in the following theorem.
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Theorem 4. 1) Let G be a compact, and connected Lie group. Then there exists a 
Lie group G which is a finite covering o f G and so that G =  S x H, where S is 
a torus, and H  a compact, connected, and simply connected Lie group.

2) Every compact, connected, and simply connected Lie group is isomorphic to a 
product o f simple, compact, connected, and simply connected Lie groups.

3) The simple, compact, connected, and simply connected Lie groups are the fo l
lowing: SU(n) (n > 2), SO(2n +  1) (>  3), SO(2n) (n > 4), Sp(n) (n > 2), 
G2, F 4, Eß, E 7, Eg.

The first four simple groups are the classical groups, and their corresponding Lie 
algebras are denoted by An-1 , Bn , Cn, and Dn, respectively. The remaining five 
are called the exceptional Lie groups, and their definition is more complicated. 
The subscript denotes their rank, and their dimensions are 14, 52, 78, 133 and 278, 
respectively. The group SO(n) is also denoted by Spin(n), and is known as the 
spinor group.
The analysis and proof of the classification theorem is a laborious process, and 
reduces to the classification of complex semisimple Lie algebras, that was achieved 
by E. Cartan. This is a slightly easier process, since it uses elementary, but non 
trivial linear algebra. The bottom line, is that the complex semisimple Lie algebras 
can be classified by certain combinatorial graphs, called Dynkin diagrams.

3. Homogeneous Spaces

3.1. Group Actions and Examples

Definition 12. Let G be a Lie group, and H  a closed subgroup. Then the space 
G /H  o f left cosets is called a homogeneous space.

Proposition 8. The space G /H  has a natural manifold structure. The projection 
G ^  G /H  is a submersion, and it is a principal fiber bundle with group H .

The group G acts on G /H  by a ■ gH  =  agH . This action is transitive. In fact, 
every transitive action is represented in this way:

Proposition 9. Let G x M  ^  M  be a transitive action o f a Lie group G on a 
manifold M , and let H  =  Gm =  {g G G ; g ■ m  =  m } be the isotropy subgroup 
o f m  G M . Then

1) H  is a closed subgroup of G.
2) The manifold G /H  is diffeomorphic to M .
3) The orbit G ■ m  is diffeomorphic to G / G m.

In this case we say traditionally, that the Lie group G is “represented” as a group 
of diffeomorphisms or “transformations” of M .



22 Andreas Arvanitoyeorgos

Definition 13. A Riemannian homogeneous space is a Riemannian manifold (M, g) 
on which the isometry group I (M ) acts transitively.

It is a result of Myers and Steenrod that I (M ) is a Lie group.

Examples 7. 1) Spheres. The group O(n  +  1) acts transitively on S” c  Rn+1 and 
the isotropy subgroup at ( 1 ,0 , . . . ,  0) can be identified with O(n), therefore 
S” =  O(n +  1)/O(n). By restriction of the action to SO(n + 1 ) we also obtain 
that S” ^  SO(n +  1)/SO(n).
Similarly, S2n+1 =  SU(n +  1)/SU(n), and S4n+3 =  Sp(n +  1)/Sp(n).

2) Grassmann manifolds. The group SO(n) acts transitively on the set GrkR” =  
{E c  R” ; E  a subspace of R” , dim E  =  k}. This is called a real Grassmann 
manifold. It follows that GrkR” =  SO(n)/S(O(k) x O(n — k)).
A special case is the real projective space RP” =  G r1Rn .

3) Flag manifolds. The group O(n) acts on the set of flags F kl,...,kl =  {x =  
(E kl , . . . , E kl ) ; E ki G Grfci R” , dim E ki =  ki and E kl c  ■■■ C E kl c  R” }, 
by A ■ x  =  (AEki , . . . , A E kl ).
The isotropy subgroup at the point E ki =  span{e1, . . . ,  eki} can be identified 
with the block diagonal matrices A =  diag(A1, A2, . . .  ) G O(n) with Ai an 
orthogonal matrix. It follows that Fkl,...,kl =  O (n)/O (k1) x O(k2 — k1) x - - - x  
O(n —ki). This is called a real flag manifold. More generally, a flag manifold is 
a homogeneous space of the form G / C  (T ), where G is a semisimple compact 
Lie group, and C (T) the centralizer of a torus T  in G. Flag manifolds for a 
simple Lie group G can be classified in terms of “painted” Dynkin diagrams. 
For more details on flag manifolds we refer to [5] and references therein.

4) Stiefel manifolds. A k-frame in R” is a set of k linear independent vectors 
in R” . A real Stiefel manifold is the set VkR” of all k frames in R” . The 
groups O(n) and SO(n) act on VkR” and the isotropy subgroups at (e1, . . . ,  ek) 
are identified with O(n — k) and SO(n — k), respectively, therefore VkR” =  
O (n)/O (n — k) =  SO (n)/SO (n — k). Notice the special cases V1R” =  S” -1 , 
VnR” =  O(n), and V2R” =  TjS”-1 (the unit tangent bundle).

5) Symmetric spaces. This an important class of homogeneous spaces, but we 
will not enter into any further analysis here. Briefly, a symmetric space is a 
Riemannian manifold (M, g) which is defined by the geometrical condition 
that its curvature tensor is locally parallel, i.e., V R =  0.

In concluding this section, we remark that various non-Euclidean geometries are 
realized as examples of coset spaces. Also, if is possible that a manifold M  is 
represented as a homogeneous space in more than one ways, i.e., M  =  G /H  =  
G '/H '. Finding all such possible presentations is a difficult problem in general.
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3.2. Reductive Homogeneous Spaces

Let G /H  be a homogeneous space and n : G ^  G / H  the canonical projection. 
Consider the derivative dne : G ^  To( G / H ), where o = e H . Then an easy com
putation shows that kerdne =  h, the Lie algebra of H , hence g/h =  To(G /H ). 
This motivates the following

Definition 14. A homogeneous space is called reductive if there exists a subspace 
m of g such that g =  h © m and Ad(h)m C m for all h G H, that is m is 
Ad ( H  )-invariant.

The last condition implies that [h, m] C m and the converse is true if H  is con
nected. So, if G /H  is reductive, then m =  To( G / H ). For example, if G is a 
compact and semisimple Lie group, we can take m =  h± with respect to an Ad- 
invariant inner product of g.

Examples 8. 1) Let G /H  =  SU(3)/S(U(1) x U(1) x U(1).
Then h =  {diag{ia, ib, ic} ; a +  b +  c =  0}, and with respect to the Killing 
form B(X, Y) =  6 tr  X Y  of SU(3), we obtain that

{/  0 ai +  ibi a2 +  ibA 1
I - a i  +  ibi 0 a3 +  ib3 I .

\ - a 2  +  ib2 -a 3  +  ib3 0 )  )2) Let M  =  G / H  =  SO(5)/U(2).
ai b +  ic

—b +  ic diThen h =

by using the identification u(2) =  ^  u (2)^

^  (  X  - Y
X  +  iY ^  ( Y X

; a,b,c,d  G R }•, and we embed it to so(5), first 

0 0 \ , and then by use of the embedding

Then with respect to the Killing form B(X, Y ) =  3 tr  X Y  of SO(5), it follows 
that

m

' / 0 a i a2 a3 a4 \ '

- a i 0 bi 0 b3
- a 2 - b i 0 -b3 0 ; ai, bj G R, i =  1,. . , 4  j  =  1  3
-a3 0 b3 0 -b i

1. V —a4 -b3 0 bi 0 ,

3.3. The Isotropy Representation

For a G G, let ra : G /H  ^  G /H  be the left translation defined by ra(gH) =  
agH . This is a diffeomorphism.
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Definition 15. The isotropy representation of G /H  is the homomorphism x  : 
H  ^  GL(To(G /H )) given by x(h) =  (dTh)o.

It is possible to have a more concrete description of x  when G /H  is a reductive 
homogeneous space. Let g =  h © m, and consider the restricted adjoint representa
tion of G, AdG : H  ^  Aut(g). Then h and m are AdG -invariant subspacesH H
of g, therefore we obtain that AdG =  AdH © AdG/H, where the first summandH
is the adjoint representation of H, and the second summand is the isotropy repre
sentation of G /H , x  =  AdG/H : H  ^  Aut(m). Its precise relationship to the 
adjoint representation of G is given by AdG/H(h )X  =  AdG(h)X  for all h G H , 
X  g g.

Definition 16. A homogeneous space is called isotropy irreducible if its isotropy 
representation is irreducible.

Examples 9. 1) Let Sn =  SO(n +  1)/SO(n). Recall that AdSO(n) =  A2An, 
where An is the standard representation of SO(n). Then

AdSO(n+1)
SO(n) A^n+1 SO(n) A2(An © 1) — A2An © A21 © (An © 1).

The first summand is the adjoint representation of SO(n), the second is zero, 
and the third is identified with An, which is the isotropy representation of Sn . 
This is irreducible.

2) Let M  =  SO(5)/U(2). It is easier to consider the complexified isotropy repre
sentation of SO(5). Then

AdSO(5) ©C U(2) A2(A5 © C) U(2) A2 (^2 © fi2 © 1)

A2̂ 2 © A2/X2 © (fi2 © fi2) © (fi2 © 1) © (fi2 © 1).

The third summand is the complexified adjoint representation of U(2). The 
rest of the summands contribute to the isotropy representation of SO(5)/U(2), 
which consists exactly of two irreducible summands, namely [A2^ 2 © A2,fi2] © 
[(^2 © 1) © (^2 © 1]. Their dimensions are two and four, respectively. This de
composition induces an Ad(U(2))-invariant decomposition of the tangent space 
m =  m1 © m2, into two non-equivalent irreducible submodules.

4. Geometry of Compact Lie Groups and Homogeneous Spaces

4.1. Invariant Metrics

We will develop the geometry of a compact Lie group and a homogeneous space 
in a parallel manner. Of course a Lie group G is identified with the homogeneous
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space G /{e}, so its geometry is a special case. However, various formulas for a 
compact Lie group have their own value, so we will treat them separately.

Definition 17. A Riemannian metric g on a Lie group G is called left-invariant if
g(u, v)x =  g((dLa )x u, (dL a )x v ) La{x ) for all a , x  G G and u , v  G TXG.

This means that the diffeomorphism L a is an isometry. Similarly, a Riemannian 
metric is called right-invariant if the right translation R a is an isometry. A metric 
which is both left-invariant and right-invariant is called bi-invariant.

Proposition 10. There exists an one to one correspondence between left-invariant 
metrics on G and scalar products on its Lie algebra.

Proof: Let g be a left-invariant metric on G. Then for any X , Y  G g the function 
g(X,  Y ) : G ^  R is constant due to the left-invariance, therefore it defines a scalar 
product on g. Conversely, if ( , )e is a scalar product on g, then the metric given
by g(x , y ) a = ((dLa-i)aX, (dLa- 1 )ay )e (a G G, x , y  G TaG) is a left-invariant 
metric on G. □

A compact Lie group G possesses a bi-invariant metric. In fact, it can be shown 
that G admits a G-invariant integral f G f  (g) dg. Then, by fixing a scalar product
( , )e on g, define a bi-invariant metric on G by (u , v ) = j G (Ad(g)u,  Ad(g)v ) e dg.

Proposition 11. There exists an one to one correspondence between bi-invariant 
metrics on G and Ad-invariant scalar products on g.

We now turn to homogeneous spaces M  = G /H . Let g =  h © m be a reductive 
decomposition.

Definition 18. A metric g on M  is called G-invariant if for all a G G the diffeo
morphism Ta : G /H  ^  G /H  is an isometry, i.e., g ( X , Y ) =  g(dra(X ), d ra(Y)) 
for all X ,  Y  G T0( G / H ).

Proposition 12. There exists an one to one correspondence between G-invariant 
metrics g on M  = G /H  and A d G / H -invariant scalar products ( , ) on m, i.e., 
(X , Y ) = (AdG/H(h)X,  AdG/H( h )Y ) for all X ,  Y  G m, h G H.

This proposition is a special case of a general phenomenon, where G-invariant 
objects on a homogeneous space G / H  (e.g., (p, q)-tensors), correspond to AdG/H- 
invariant objects on T0( G / H ) =  m.

4.2. Connections and Curvature

Let G be a compact Lie group with a left-invariant metric g . Then the Riemannian 
connection is given by

Vx Y =  2([X,  Y] -  (adx )*Y -  (ady )*X )
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where (adx )* is the formal adjoint operator of adx . Equivalently,

g ( Vx Y, Z ) =  2 {g(Z, [X, Y ]) +  g(Y, [Z, X ]) +  g(X,  [Z, Y ])}.

Using a left-invariant metric it is quite complicated to handle other geometrical 
objects such as curvature or geodesics. However, if we restrict ourselves to bi
invariant metrics, formulas simplify.

Proposition 13. Let G be a Lie group with a bi-invariant metric. Then for any 
X , Y, Z  G g

1) V x Y =  2 [X,Y].
2) Geodesics starting at e are the one-parameter subgroups exp t X .
3) The curvature tensor is given by R(X,  Y )Z  =  2 [[X, Y], Z ].

4) The sectional curvature is given by K  (X , Y ) =  1 (X XX(r rjX’(XV f  '

5) The Ricci curvature is given by Ric(X, Y ) =  4 ^ ( [ X ,  Ei], [Y, Ej\), where 
{Ef} is an othonormal basis o f g.

6) IfG  is compact and the bi-invariant metric is the Killing form, then the scalar 
curvature is S  = 4 dim G.

If G is semisimple and compact, then with respect to a bi-invariant metric, the 
Ricci curvature is given by Ric(X, Y ) =  — 1 B( X ,  Y ), that is G is an Einstein 
manifold.
We now turn to homogeneous spaces. Let g be a G-invariant metric on a homoge
neous space M  =  G / H  with reductive decomposition g =  h ©m, and o =  e H . For 
any X  G g we define the vector field X* =  dt (exp t X ) ■ o . This is a Killing 
vector field (i.e., its flows are isometries), and satisfies [X*, Y *] =  —[X, Y]*. Re
calling the canonical projection n : G ^  G / H , we have that dn (X ) =  X,* and 
dn(X m) =  X*. Here X m denotes the component of X  in m.

Proposition 14. Let X , Y  G m. Then the Riemannian connection of g is given by 

m ^  T*(G/H) 3 V x  * Y *|* =  — 2[X ,Y ]m +  U (X,  Y  ) 

where U : m x m ^  m is determined by the identity

2(U(X, Y ), Z ) =  ([Z, X ]m , Y ) +  (X, [Z, Y]m )

for all Z  G m.

There is a particularly simple class of reductive homogeneous spaces. For a semi
simple and compact Lie group G , we know that every bi-invariant metric deter
mines an Ad-invariant scalar product ( , ) on g. The restriction ( , )|m induces a
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G-invariant Riemannian metric, called normal. If ( , ) =  - B, this metric is called 
standard.
Formulas for the various curvatures for a general reductive homogeneous spaces 
are quite complicated (see, e.g., [4,8,27]). We only mention the following

Proposition 15. The curvature tensor o f a reductive homogeneous space G /H  is 
determined by the following equation

3 1
(R(X,  Y )X, Y ) =  -  4 ([X, Y]m, [X, Y]m) -  - ([X, [X, Y]m]m, Y )

-  -  ([Y, [Y, X  ]m]m, X  ) +  (U (X, Y ) ,U  (X, Y ))

- ( U  (X,  X  ), U (Y, Y  )) +  (Y, [[X, Y ]h, X  ]m)

for all X, Y G m.

If U =  0 then G /H  is called naturally reductive. From geometrical viewpoint, 
this condition is equivalent to the fact that all geodesics are the one-parameter 
subgroups exp t X  ■ o (X G m). Homogeneous spaces that have this property 
are, for example, the symmetric spaces. Such geodesics are called homogeneous 
geodesics, and have been studied in various occasions by various people (e.g., 
Kajher, Arnold, Kostant).
The following proposition is due to O. Kowalski, L. Vanhecke and E. Vinberg.

Proposition 16. Let M  = G / H  be a homogeneous space. Then the orbit y (t) =  
exp(tX  ) ■ o is a geodesic in M  if and only if ([X, Y ]m, Xm) =  0 for all Y  G m.

Spaces with the property that all geodesics are homogeneous are known as g.o. 
spaces, and have been studied by Kowalski and his collaborators. It is an active 
area of research. For example D. Alekseevky and the author classified all flag 
manifolds, which are g.o. spaces (see [1]). The main theorem is the following:

Theorem 5. The only flag manifolds M  =  G /K  o f a simple Lie group G which 
admit an invariant metric with homogeneous geodesics, not homothetic to the stan
dard metric, are the manifolds Com(R2̂ +2) =  SO(2T +  1)/U(T)) of complex 
structures in R 2̂ +2 and the complex projective space CP2̂ -2 =  Sp(T)/U(1) ■ 
Sp(T -  1). These manifolds admit a one-parameter family g\, A > 0 o f invariant 
metrics (up to a scaling) . All these metrics have homogeneous geodesics and are 
weakly symmetric. The metric g\ is the standard metric. It has the full connected 
isometry group SO(2T +  2) (respectively SU(2T -  1)) and is the standard met
ric o f the symmetric space Com(R2̂ +2) =  SO(2T +  2)/U(T +  1) (respectively 
CP2̂ - 2 =  SU(2T -  1)/U(2T -  2)). All the other metrics g\, A =  1 have the 
full connected isometry group SO(2T +  1) (respectively Sp(T)). In particular, the 
corresponding spaces are not naturally reductive as Riemannian manifolds.
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Note that for i  =  2 we obtain Sp(2)/U(1) ■ Sp(1) =  SO(5)/U(2), which is 
the 6-dimensional non-naturally reductive g.o. space in the work of Kowalski and 
Vanhecke [19], in which they classified homogeneous g.o. spaces of dimension
< 6.

5. Homogeneous Einstein Metrics

5.1. Brief Introduction

Which are the “best” metrics on a Riemannian manifold (M, g)? Motivated from 
the two-dimensional case, where the good metrics are the ones with constant Gauss 
curvature, in higher dimensions we need to look at the various curvatures of a mani
fold. Constancy of the sectional curvature is a very strong condition, and constancy 
of the scalar curvature is a very weak one. Therefore, we are lead to impose con
stancy of the Ricci curvature, which is equivalent to the equation Ric(g) =  cg, 
where c is some constant (called Einstein constant). Manifolds that satisfy this 
equation are called Einstein manifolds. The terminology, as expected, is related 
to general relativity. In the four-dimensional case the equation Ric(g) =  cg is 
equivalent to the Einstein's field equations with cosmological constant.
If (M, g) is compact, then g is an Einstein metric if and only if g is a critical point 
of the scalar curvature functional T  : M 1 ^  R given by T(g)  =  Jm  Sg dvolg, on 
the set Riemannian metrics of unit volume. This is an old result of D. Hilbert. For 
references on Einstein manifolds we refer to the book of Besse [8] and the survey 
of Wang [28].
If M  =  G /H  is a homogeneous space, where G , H  are compact, then the G- 
invariant Einstein metrics on M  are precisely the critical points of T  restricted to 
M G, the set of G-invariant metrics of unit volume. This is a direct consequence of 
R. Palais' principle of “symmetric criticality.”
General problem: Find (if possible all) G-invariant metrics on a homogeneous 
space G / H .
The problem is difficult even for a compact semisimple Lie group. It is still an open 
problem to find all left-invariant metrics in this case. Is this set finite or infinite?
In 1979 D’Atri and Ziller [13] obtained many Einstein metrics on G, which are 
naturally reductive. In 1973 Jensen [16] obtained examples of Einstein metrics by 
a fiber bundle construction.
If the Einstein constant is positive, then G /H  is compact. Examples of such man
ifolds are and CPn with the standard metrics, symmetric spaces of compact 
type, and isotropy irreducible spaces. These admit a unique (up to scalar) Einstein 
metric, and were classified by J. Wolf in 1968. In 1985 M. Wang and W. Ziller 
classified all normal homogeneous Einstein manifolds [31].
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Einstein metrics on flag manifolds are not unique. Explicit solutions were obtained 
for various examples of flag manifolds by D. Alekseevsky, the author, M. Kimura, 
Y. Sakane, and E. Rodionov. A complete description remains open.
There exist compact homogeneous spaces with no G-invariant Einstein metrics, as 
it was shown in [29].
If the Einstein constant is zero, then D. Alekseevsky and Kimel’fel’d have shown 
that a homogeneous Ricci flat manifold is flat.
Finally, if the Einstein constant is negative, then G /H  is not compact. Examples 
of such manifolds are RHn with the standard metric, and symmetric spaces of non
compact type. A result of Dotti and Miatello in 1982 says that if G is a unimodular 
solvable Lie group, then any Einstein left-invariant metric on G is flat. There is a 
lot of active research in the non-compact case.
General existence results is difficult to obtain. We mention the results of Jensen 
[15], Wang and Ziller [29], and more recently a new existence approach by Böhm, 
Wang and Ziller [10]. This was used by Böhm and Kerr [9] to show the following

Proposition 17. Every compact simply connected homogeneous space o f dimen
sion < 11 admits at least one invariant Einstein mertic.

In dimension 12 there are examples of non-existence.
The structure of the set of invariant Einstein metrics on a given homogeneous man
ifold is not well understood in general. The situation is only clear for isotropy 
irreducible spaces, partly for flag manifolds, and for some special types of homo
geneous spaces studied by Nikonorov, Lomshakov and Firsov [21]. A finiteness 
conjecture, due to Ziller, says that if the isotropy representation x  of a homoge
neous space consists of pairwise inequivalent irreducible components, then the set 
of Einstein metrics is finite.

5.2. The Variational Approach for Einstein Metrics

There are two direct methods for finding Einstein metrics on a homogeneous space. 
The first is the direct computation of the Ricci curvature. This has been successful 
in various cases such as flag manifolds (Arvanitoyeorgos, Rodionov). The second 
is the variational approach, where Einstein metrics are the critical points of the 
scalar curvature functional, as explained in the previous section. For both cases 
the Einstein equation reduces to an algebraic system of equations, which in some 
cases can be solved explicitly.
We will give applications of the variational method for two cases, namely Einstein 
metrics on flag manifolds, and Stiefel manifolds.
Let M  = G /H  be a homogeneous space of a compact semisimple Lie group, with 
reducive decomposition g =  h © m with respect to —B. Recall that G-invariant
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Einstein metrics g on G /H  correspond to AdG/H-invariant scalar products ( , ) on 
m.
Let {ea} be an orthonormal basis of m with respect to ( , ). Then according to [29] 
the scalar curvature of g is given by

S(( , )) =  - 1 V B ( e a ,e fe) -  1 E ( [ e a ,e fe]m, [ea,e&]m). (1)
a a,b

We assume that the isotropy representation of G /H  decomposes into a direct sum 
X = Xi © ■ ■ ■ © Xs of irreducible subrepresentations, which are pairwise inequiv
alent. If they are not, then the description of G-invariant metrics is more compli
cated. Then the tangent space of m decomposes into a direct sum m =  mi ©■ ■ ■ ©ms 
of irreducible pairwise inequivalent Ad(H)-submodules.
Then any AdG/H -invariant scalar product on m has the form

( , ) =  Xi ( - B ) \m1 +  ••• +  xs ( - B ) lms , xi > °.

Let da =  dim ma and {eß} be a —B-orthonormal basis of ma (1 < j  < da). 
Define the numbers [aßY =  i,j,k B([eß, eß], eß)2, where i, j, k vary from 1 to 
da, dß and dY, respectively. These numbers are symmetric, and independent of the 
basis, but depend on the decomposition of m. Then the scalar curvature (1) takes 
the form

S 1 di

2 h  xi

i
4 13 [a ß Y]

a,ß,Y

x7
x ax ß

The volume condition takes the form V  =  n s= i x?  — 1 =  0. Therefore, the 
solutions of the Einstein equation are the solutions of the Lagrange system V S =  
A(VV ).

Flag Manifolds.

Consider the flag manifold G /H  =  SU (n)/S(U (ni ) x U (n2) x U (n3)) (n =  
n i +  n 2 +  n 3). The isotropy representation decomposes into three non-equivalent 
irreducible components, inducing the decomposition m =  mi2 ©mi3 ©m23, hence 
SU(n)-invariant metrics depend on three positive parameters x i2, x i3, x23.
The Lagrange system reduces to the following algebraic system of three equations

ni +  nj  +  1 V  nk (x j  — (xik — Xjk )2) =  Xij
2 k=i,j xikxj'k

which has four solutions listed in Table 2.
It turns out that the first three Einstein metrics are also Kähler. If n i =  n 2 =  n 3 
then the fourth metric is the standard metric.
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Table 2

X12 X13 X23
ni +  n 2 n i +  2n2 +  n3 n 2 +  n3
n i +  n 2 +  2n3 n 1 +  n3 n 2 +  n3
n i +  n 2 n i +  n3 2ni +  n 2 +  n 3
n i +  n 2 n i +  n3 n 2 +  n3

Invariant Einstein metrics on the full flag manifold SU (n)/Tn , where the torus 
Tn =  S(U(1) x ■ ■ ■ x U(1)) a maximal torus, are not completely classified (except 
for n = 3, 4). The only known Einstein metrics are the finite number of nr Kähler- 
Einstein metrics, the standard metric, a class of n Einstein metrics found by the 
author [3], and a class of n Einstein metrics found by Sakane [26].
For Einstein metrics on other flag manifolds we refer to [3,20,26].

Stiefel Manifolds.
Let G /H  = SO (n)/SO (n — k) be a real Stiefel manifold. The simplest case 
Sn - 1 =  SO (n)/SO (n — 1) is an irreducible symmetric space, therefore it admits 
up to scale a unique invariant Einstein metric. It was Kobayashi [18] who proved 
first the existence of an invariant Einstein metric on T1S n =  SO (n)/SO (n — 2). 
Later on, Sagle [25] proved that the Stiefel manifolds SO (n)/SO (n — k) admit 
at least one homogeneous invariant Einstein metric. For k > 3 Jensen [16] found 
a second metric. In the same work he also proved that the quaternionic Stiefel 
manifold Sp(n)/Sp(n — k) admits at least two homogeneous invariant Einstein 
metrics. Einstein metrics on SO (n)/SO (n — 2) are completely classified. If n =  3 
the group SO(3) has a unique Einstein metric. If n > 5 it was shown by Back 
and Hsiang [7] that SO(n)/SO (n — 2) admits exactly one homogeneous invariant 
Einstein metric. The same result was obtained by Kerr [17]. The Stiefel man
ifold SO(4)/SO(2) admits exactly two invariant Einstein metrics which follows 
from the classification of five-dimensional homogeneous Einstein manifolds due 
to Alekseevsky, Dotti, and Ferraris [2]. We also refer to [10, pp 727-728] for fur
ther discussion. For k > 3 there is no obstruction for existence of more than two 
homogeneous invariant Einstein metrics on Stiefel manifolds SO(n)/SO (n — k). 
In a recent joint work with Dzhepko and Nikonorov [6] we developed a method 
of finding invariant Einstein metrics on certain homogeneous spaces of classical 
Lie groups, and as a consequence we obtained new Einstein metrics on real and 
quaternionic Stiefel manifolds. For specifically, let G be a compact Lie group 
and H  a closed subgroup so that G acts almost effectively on G /H . We investi
gate G-invariant metrics on G /H  with additional symmetries, and the hope is to 
find among them, Einstein metrics coming from with simpler systems of algebraic 
equations.
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Let K  be a closed subgroup of G with H  c  K  C G, and suppose that K  = 
L' x H ', where {e^/} x H ' = H . It is clear that K  C N g (H ), the normalizer 
of H  in G. If we denote L =  L' x {eH/}, then the group G = G x L  acts on 
G /H  by (a, b) ■ gH  = agb- l H , and it turns out that the isotropy subgroup at eH
is H  =  {(a, b) ; ab-1 G H }.
The set M g of G-invariant metrics on G /H  is finite dimensional. We consider the 
subset M g ,k  of M g corresponding to Ad(K)-invariant inner products on m (and 
not only A d(H )-invariant).
Let p G M g ,k . The action G on (G /H , p) is isometric, so any metric form M g ,k  

can be identified with a metric in M g and vice-versa. Therefore, we may think 
of M g as M g ,k , which is a subset of M g . Since metrics in M g ,k  correspond 
to Ad(K)-invariant inner products on m, we call these metrics A d(K )-invariant 
metrics on G /H .
We apply the above construction for G =  SO(n) and Sp(n), and prove existence 
of Einstein metrics in the set M g ,k  for various choices of the subgroup K  =  
L' x H '. Let n G N and k\, k2, . . . ,  ks, ks+\ , . . . ,  ks+t be natural numbers such 
that ki +  ■ ■ ■ +  ks =  l, ks+i +  ■ ■ ■ +  ks+t =  m, l +  m =  n. Let G =  SO(n) 
and K  =  L' x H ', where L' =  SO(ki ) x ■ ■ ■ x SO(ks) and H ' =  SO(ks+i) x 
■ ■ ■ x SO(kt+s). The embedding of K  in G is the standard one. Analogously, we 
consider G =  Sp(n) and K  =  L' x H ', where L' =  Sp(ki ) x ■ ■ ■ x Sp(ks) and 
H ' =  Sp(ks+i) x ■ ■ ■ x Sp(kt+s).
We consider the simple case SO(ki +  k2 +  k3)/SO (k3) (s =  2, t =  1) and 
investigate SO(ki +  k2 +  k3) x SO(ki ) x SO(k2)-invariant Einstein metrics. Here 
L' =  SO(ki ) x SO(k2), and these metrics depend on five parameters x i , x2, x i2, 
x i3, x23. The scalar curvature of such a metric is given by

S =  ki(ki -  1)(ki -  2) 1  +  k2(k2 -  1)(k2 -  2) 1
8(n -  2) x i 8(n -  2) x2

1 f  kik2 , kik3 , k2kA  l (  Xi
+  ö -------+ --------+ -------- -  ^ k i k 2 ( k i  -  1 ^ 2 —2 \X (i)2) X(i,3) X(2,3^ 8(n -  2) y 2)

+  kik3(ki -  ---- + k2k3(k2 -  1 ^ ! 2--- + kik2(k2 -  1 ^ | 2-
X(i,3) X

1
4(n -  2) 

The volume condition is

kik2k3 x (i,2)
+

(2,3) 

x (i,3)

X(i,2)

+
x (2,3)

x̂ (i,3)x (2,3) x (i,2)x (2,3) x (i,2)x (i,3)

xdi xd2xd(l,2) xd(l,3) xd(2,3) =  cnnsf.X/1 0/2 0/(i 2̂ L(i 3^L(2 3) — l-whol

where dj =  1 ki (ki -  1) and d^ j)  =  k^kj.
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By the Lagrange method the problem for finding A d(K )-invariant Einstein metrics 
reduces to the algebraic system

£ 2X23 ( (kl -  2)x212x 213 +  ^2X1X13 +  fc3£?x?2)

=  X i x l ^ ( k 2  -  2)x22X23 +  k,3xlx2i2 +  k i x ^ )

£13 ( (k2 -  2)xl2x23 +  k3x2x2i2 +  kix2x23j

= X2X23 (2(ki +  k2 +  k3 -  2)xi2X13X23 -  (kl -  1)xiX13X23

-  (k2 -  1)X2X13X23 +  k3X32 -  k3Xi2xi3 -  k3Xi2x2,3 ĵ 

Xm(2(ki +  k2 +  k3 -  2)xi2X13X23 -  (ki -  1)xiX13X23 -  (k2 -  1)X2Xi3X23

+  k3X32 -  k3Xi2X23 -  k3Xi2x^) =  X i^2(k i +  k2 +  k3 -  2)xi2Xi3X23

-  (ki -  1)XiXi2X23 +  k2X33 -  k2X22Xi3 -  k2Xi3x23) 

X2̂ 2 (k i  +  k2 +  k3 -  2)xi2X13X23 -  (ki -  1)xiX12X23

+  k2X33 -  k2x12Xi3 -  k2Xi3x^) =  X i^2(k i +  k2 +  k3 -  2)xi2Xi3X23

-  (k2 -  1)X2Xi2Xi3 +  kiX33 -  kiX22X23 -  kiX23X2^ .

It turns out ([6]) that a solution to the above system exists only when k1 =  k2 =  k 
(k > 3), and let k3 =  l. One of the results we obtain is the following

Proposition 18. I f  l > k > 3 then the Stiefel manifold SO(2k +  l)/SO (l) admits 
at least four SO(2k + 1) x SO(k) x SO(k)-invariant Einstein metrics. Two o f these 
metrics are Jensen’s metrics found in[16], and other two metrics are new.
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