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Abstract, In this paper we introduce the notion o f a semi-developable sur­
face of codimension two as a generalization o f die notion o f a developable 
surface o f codimension two. We give a characterization of the developable 
and semi-developable surfaces in terms o f their second fundamental forms.
We prove that any hypersurface o f conullity two in Euclidean space is locally 
a foliation o f developable or semi-developable surfaces o f codimension two.

1. Introduction

The class of semi-symmetric spaces was first studied by Cartan [3] in connection 
with his research on locally symmetric spaces. All locally symmetric spaces and all 
two-dimensional Riemannian manifolds belong to this class. In 1968 Nomizu [7] 
conjectured that in all dimensions greater or equal to three every irreducible com­
plete Riemannian semi-symmetric space is locally symmetric. His conjecture was 
refuted in 1972 by Takagi [11], who constructed a complete irreducible hypersur­
face in E4, which is semi-symmetric but is not locally symmetric, and by Seki- 
gawa [8], who gave counterexamples of arbitrary dimensions. In 1982 Szabd [9] 
gave a local classification of Riemannian semi-symmetric spaces, dividing them 
into three basic classes: trivial, exceptional and typical. Semi-symmetric spaces of 
the typical class were studied also by Boeckx et al in [2] under the name Riemann­
ian manifolds of conullily two.
In the present paper we study the class of the typical semi-symmetric hypersurfaces 
(hypersurfaces of conullily two) in Euclidean space En+1, considering them with 
respect lo their second fundamental form.
In Section 3 we introduce the notion of a semi-developable surface of codimension 
two as a generalization of the notion “developable surface” of codimension two
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and give a characterization of the developable and semi-developable surfaces of 
codimension two in terms of their second fundamental form.

In Section 4 we prove the following structure theorem:

Each hypersurface o f conullity two in En+1 is locally a foliation (one-parameter 
system) o f developable or semi-developable surfaces o f codimension two.

2. Preliminaries

For an //-dimensional Riemannian manifold (M n, g) we denote by TpM n the tan­
gent space to M n at a point p e  M n and by X M n -  the algebra of all vector fields 
on M n. The associated Levi-Civita connection of the metric g is denoted by V , 
the Riemannian curvature tensor R  of type (1, 3) is defined by

R(X ,  Y ) Z  =  [ V x , V y ] Z  -  V [X)y]Z, X , Y , Z  e X M n

and the corresponding curvature tensor of type (0,4) is given by

R(X ,  Y, Z, U) =  g(R(X,  Y ) Z ,  U), X ,  Y , Z , U  e X M n.

We remark that all manifolds, vector fields, differential forms, functions and sur­
faces are assumed to be smooth (i.e., of differentiability class C°°).

A  semi-symmetric space is a Riemannian manifold (M n,g ), whose curvature 
tensor R  satisfies the identity

R(X .  Y )  ■ R  =  0

for all X ,  Y  e 1 M ". According to Szabo’s classification (using the terminol­
ogy of [2]) every locally irreducible semi-symmetric space belongs to one of the 
following three classes:

1) “trivial” class, consisting of all locally symmetric spaces and all two-dimen­
sional Riemannian manifolds

2) “exceptional” class of all elliptic, hyperbolic, Euclidean and Kählerian
cones

3) “typical” class of all Riemannian manifolds foliated by Euclidean leaves of 
codimension two.

The trivial semi-symmetric manifolds are well-known and the exceptional ones are 
described and constructed explicitly in [9] and [10]. For the class of foliated semi­
symmetric spaces Zsabo [10] had derived a system of non-linear partial differential 
equations, describing their metrics.

Foliated semi-symmetric spaces were studied by Boeckx et al [2] with respect to 
their metrics as Riemannian manifolds of conullity two.
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A  Riemannian manifold (M n , g) is of conullity two, if  at every point p e  M n the 
tangent space TpM n can be decomposed in the form

TpM n =  A 0(p) ® A^(p)

where dim Ao(p) =  n — 2, dim A q- (p) =  2 and Ao(p) is the nullity vector space 
of the curvature tensor Rp, i.e.,

A 0(p) =  { X  e TpM n ; RP(X, Y) Z =  0, Y, Z  e TpM n).

The (n — 2)-dimensional distribution Ao : p — » Ao (p) is integrable and its inte­
gral manifolds are totally geodesic and locally Euclidean. So, ( M n, g) is foliated 
by Euclidean leaves of codimension two.

In [2] the metrics of the Riemannian manifolds of conullity two are described by 
systems of non-linear partial differential equations. For some classes of manifolds 
of conullity two the metrics are determined in explicit form.

We study hypersurfaces of conullity two (or foliated semi-symmetric hypersur­
faces) in Euclidean space E n+1 with respect to their second fundamental form, 
considering them as one-parameter systems of geometrically determined surfaces 
of codimension two.

We denote the standard metric in En+1 by g and its Levi-Civita connection by V .  
Let V  be the induced connection on a hypersurface M n in En+1 and h(X,  F )  =  
g (AX,  Y),  X , Y  e X M n be the second fundamental tensor of M n with corre­
sponding shape operator A.

Foliated semi-symmetric hypersurfaces are characterized in terms of the second 
fundamental form as follows [5],

Proposition 1. A hypersurface M n in En+1 is o f conullity two if  and only if its 
second fundamental form h is

h =  Xüü ® UÜ +  p(ùü ®g +  g®ùü) +  yg ® g, \v  — p? /  0 

where lu and g are unit one-forms; A, g, and u  are functions on M n.

Here the Euclidean leaves of the foliation are the integral submanifolds of the dis­
tribution Ao, determined by the one-forms uj and g

A 0 (p) =  { X e  TpM n ; iü(X) =  0, g(X)  =  0}, p £  M n.

We denote by A q- the distribution of M"\  orthogonal to Ao. Since the second 
fundamental form h of M n is symmetric, then locally there exist two mutually 
orthogonal unit vector fields C2 G A q- with corresponding unit one-forms gi 
and g2, respectively, such that

h =  orgi ® gi +  ^ 2  ® m Vlh>2 #  0 ( 1 )
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where 2/1 and 2/2 are functions on M n. The vector fields £1 and £2 determine the 
principal directions of the shape operator A  o f M n.

Using the Codazzi equations for a hypersurface with second fundamental form h, 
satisfying (1), in Section 4 we obtain all involutive (n — 1)-dimensional distribu­
tions, containing Ao, and prove that the integral surfaces of these distributions are 
developable or semi-developable surfaces of codimension two.

3. Developable and Semi-Developable Surfaces o f Codimension Two

A  (k +  1)-dimensional surface M k+1 in Euclidean space En+1, which is a one- 
parameter system {E fc(s)}, s G J  of ^-dimensional linear subspaces of En+1, 
defined in an interval J  C  R, is said to be a ruled (k +  1 )-surface [4, 1], The 
planes E k(s) are called generators o f M k+1. A  ruled surface M k+1 is said to 
be developable [1], if  the tangent space TpM k+1 at all regular points p of an 
arbitrary fixed generator E fe(s) is the same. A  developable ruled hypersurface 
M n =  {En_1(s)}, s £ J in  En+1 is called a torse.
Now we shall consider a ruled (n — 1)-surface M n~ 1 =  {En_2(s)}, s e  J  (ruled 
surface of codimension two). Let { N i ,N2}  be a normal frame field of M n_1, 
consisting of two mutually orthogonal unit vector fields. We denote by h\ and /12 
the second fundamental forms of M n_1 corresponding to the vector fields N\ and 
N2, respectively and by A± and A2 their corresponding shape operators, i.e.,

hi(x,y)  =  g{A\x, y), h2(x,y) =  g(A2x,y) ,  i j £ Ï M n_1.

If D  is the normal connection of M n_1, then the Gauss and Weingarten formulas 
imply

^'xV =  +  hx(x, y)N± +  h2(x, y)N2, x , y  £ £ M n_1

V xN i =  —A \x  +  D xNi,  V xN 2 =  —A2X +  D xN 2.

Let p be an arbitrary point of M n 1 and En_2(s) be the generator of M n 1 con­
taining p. We denote by A q(p ) the subspace of TpM n~1, tangent to E n_2(s) and 
by Ao -  the distribution Ao : p —» Ao (p). The unit vector field on M n_1, orthog­
onal to Ao and its corresponding one-form are denoted by W  and uj, respectively 
(W  is determined up to a sign). Since the integral submanifolds E n-2(s) of the 
distribution Ao are auto-parallel, then V'XQyo G Ao for all xg,yo G Ao- Hence, 
the first equality in (2) implies

h i( x 0, y0) =  h2(x0,2/0) =  0, x 0, y0 G A 0. (3)

Using the unique decompositions

x =  x 0 +  lü(x ) W, y =  y0 +  uj(y) W, x 0, y0 G A 0
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(4)

of arbitrary vector fields x, y e  X M n x, from (3) we get

hi(x,y)  =puj(x)uj(y)  +  uj(x)hl (yQ,W )  +  uj(y)hl (xQ,W )  

h2(x, y) =  quj(x) uj(y) +  üj(x ) h2(y0, W ) +  u{y) h2(x0, W )

where p =  h ß W ,  W), q =  h2(W, W).

We denote by ß 1 and ß 2 the one-forms on M n 1. defined by

A ( x 0) =  hiixo, W), Th(W ) =  0, %q e  A 0 

ß 2(xo) =  h2(x0,W ) ,  ß 2(W) =  0.

Let ß\ and ß 2 be their corresponding unit one-forms, i.e.,

ß 1 =  b1 ß 1, &i =  Wßßi 

ß 2 =  b2 ß2, b2 =  \\ß2\\.

Hence, the equalities (4) imply

h\ =  pw ®LÜ +  bl(LÜ®ßl+ßl®Lü), k 2 =  q LÜ®LÜ +  b2(LÜ®ß2 + ß 2 0 Lü). (5)

Let B\ and B 2 be the unit vector fields on M n 1. corresponding to the one-forms 
ß i  and ß 2, respectively, i.e.,

ßi(x) = gißt, x), ß 2(x) = g(B2, x), x  e B f 1" 1.

It is obvious that B \ , B 2 e  Ao- We denote by 9 the one-form on M n_1, defined 
as follows

9 (x) = g (V xN 2, iVi), a: e X M n~ \

Using that g (V xNi, N ß  =  0, i =  1, 2, the Weingarten formulas and equalities (5), 
we obtain

V xNi =  - h u j ( x )  B t -  h ß ß x )  W  - p u j ( x )  W  -  9 (x) N 2 

V'xN 2 =  —b2uj(x) B 2 -  b2ß 2(x) W  -  quj(x) W  +  9 (x) Nt.

The developable surfaces of codimension two in E n+1 are characterized [6] by

Lemma 1. Let M n~1 be a surface in En+1 with normal frame field {Ni,  N 2} 
Then, M n_1 is locally a developable surface o f codimension two if  and only if

(6)

V xNt =  - P Lü(x)W -  ßuj(x)N2, X e XM ' 

V'xN 2 =  —qu>(x)W +  ßüj(x)N\

where p, p and q are functions on M n_1, such that p2 +  q2 > 0.

n —1

(7)

Remark. The planes E n 1 of codimension two can be considered as trivial devel­
opable surfaces of codimension two, for which p =  q =  0 [5],
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Now, let M n_1 be a developable surface of codimension two with normal frame 
field {Ni,  N2},  satisfying (7). If {JVi, JV2} is another normal frame field of M n_1, 
such that

N i  =  cos if Ni  +  sin p  N2, N2 =  — sin p N \  +  cos p  N2, p  =  Z.{N\,Nf)  

then

V ,xN 1 =  - p u j ( x ) W  -  ßüü(x)N2, x  e  M " ' 1 

V xN 2 =  —qu>(x)W +  pu>(x)N 1

where

p =  pcosip +  gsin</>, q =  — p s i n p  +  qcosp,  p  =  p  — dp(W).  

The last equalities imply

ß  — d arctan \\(W) =  ß  — d arctan - ( W ) .
p P

Consequently, the function k =  p, — d arctan - ( W )  does not depend on the choice
p

of the normal frame field {N±, N2} of M n_1.

We call a developable surface M n_1 in En+1 planar, if  there exists a hyperplane 
En in En+1, such that M ' L 1 lies in En. The planar developable surfaces of codi­
mension two are studied in [5] under the name torses of codimension two and are 
characterized as follows:

Lemma 2. A developable surface o f codimension two is planar iff k =  0.

It is easily seen that for each developable surface M n_1 of codimension two there 
exists locally a normal frame field { h , h } ,  with respect to which the equalities (7) 
take the form

V'xh  =  -2/1 üü(x )W, V xl2 =  -02 u(x)W, x  e  1 M ” “ 1

where iq and 02 are functions on M n_1. Such a normal frame field is called a 
canonical normal frame field of M n_1. It is determined up to a constant orthog­
onal matrix.

Now we shall consider non-developable ruled surfaces of codimension two. Let 
M n_1 =  {En-2(s)}, s e  J  be such a surface. If {N±, N2} is an arbitrary normal 
frame field of M n_1, then the equalities (6) hold good. As a generalization of the 
notion developable surface of codimension two we give the following

Definition 1. A  ruled surface M n 1 =  {En-2(s)}, s e  J in  En+1 is called 
semi-developable, if  there exists a unit normal vector field N  of M n_1, which is 
constant along each fixed generator En_2(s), i.e., V ^ iV  =  0, xq e  Ao-

We shall prove the following
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Proposition 2. Let M n 1 be a non-developable ruled surface in E n+1 with normal 
frame field {Ni,  N2}. Then, M n_1 is semi-developable if  and only if

6 (xq) =  e d  arctan f^(x0), x 0 e  A 0, b\ +  &1 #  0 (8)
01

where e =  ± 1 .

Proof: 1) Let M n 1 be a semi-developable surface of codimension two with nor­
mal vector field N  =  co s ipNi  +  sin^Afe, ip =  Z ( N i , N ) ,  which is constant 
along each generator and N 1- be the normal vector field on M n 1. defined by 

sin v; A ri — cos ip AA. Then the equalities (6) imply

V'XN  =  — b\ cos ipu{x)B\ — 62 sin ipu(x)B2

— (61 cos ipßi(x) +  62 sin ipß2{x))W

— (p cos ip +  qsm<p)ùü(x)W — (ß(x) — dip(x))N±

V ^ N 1' =  61 sin tpuj(x)B\ — 62 cos <pu;(x)B2

+  (61 sin ipßi(x) — 62 cos ipß2(x))W 

+  (psin ip — q cos ip) uj(x)W +  (0(x) — dip(x))N.

Using that V .̂ AT =  0, rco G Ao, from the last equalities we get

61 cos ipßi(x0) +  62sin ipß2(a:o) =  0, 6 {xq) -  d</>(a:o) =  0, x Q G A 0. (9)

If we assume that 61 =  62 =  0, then the second equality of (9) implies 6(x) — 
dip(x) =  puj(x), where p, =  9 (W)  — dip(W). So, we obtain

V XN  =  —puj(x)W -  puü(x)N±, x  e  1 M ” " 1

V / A ^  =  -gw(a;)W 7 +  puj(x)N

where p =  p cos + q sin ip, q =  —p sin ip+q cos ip. Then, according to Lemma 1, 
M n_1 is locally a developable surface of codimension two, which contradicts the 
condition that M n 1 is non-developable. Hence,

In the case when 62 =  0 (or &i =  0) the equalities (9) imply

cos</> =  0 (orsin</> =  0), 0 (xq) =  0 , æg 6 Ao-

Hence, the conditions (8) are fulfilled.

In the case when 6162 #  0, the first equality of (9) implies

62
ßi(xo) =  tamp 8 2(xq)

01
which shows that the one-forms ß\ and $2 are collinear. Since ß\ and $2 are unit 
one-forms, then ß\ =  £«02, where e =  ± 1. Hence, tan 99 =  —£61/62- Using the 
second equality of (9) we get (8).
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2) Let M n 1 be a non-developable ruled surface with normal frame field 
{Ni,  JV2}, satisfying (6), such that the conditions (8) hold good. For the curva­
ture tensor R'  o f V ? from (6) we calculate

R'(x,  y, N i_,N2) =  — d0(x, y) +  b\ 62(^1 A ß 2)(x, y)

+  61 q(jh  A lû)(x , y) -  b2 p(ß2 A lû)(x , y)

where x ,y  e  T M n_1. Using that 1?? =  0 and d0(a:o, yo) =  0, a:o, yo G Ao, 
from (10) we obtain

h  b2(ßi A ß 2){xQ, yo) =  0, % ÿ 0 e A o -  (H )

In the case when 62 =  0 (or b\ =  0) we get from (8) that 6 (x0) =  0, xq e  Ao. 
Hence, 9 =  0(IU)iu. Denoting y, =  0(W7), we obtain from (6)

V'.iVs =  —gLu(a:)W7 +  yuj{x)N\ (or V'xN i =  —piu(:c)W7 — yuj(x)N2)

which implies V XqN2 =  0 (or V ^ iV i =  0), 2:0 G Ao- Consequently, M n~ 1 is a 
semi-developable surface.

In the case when 6162 #  0, the equality (11) implies («0i A ß2)(xo,yo) =  0,
61

2:0, yo G Ao, which shows that ß\ =  eß2 (e =  ± 1). Setting ip =  —e arctan —
62

and considering the normal frame field {iV, N L } of M n_1, defined by

iV =  cos ip iVi -)- sin ip N 2, iV"1 =  — sin 99 iVi +  cos ip N 2

we get the formulas

V '.iV  =  - p w ( i )  W7 -  fiùü(x)

=  -büü(x) B  -  bß(x)  W  -  quü(x) W  +  yuj(x) N

where ß  =  ß\ =  eß2, B  =  B\  =  e B 2, p =  p cos ip +  q sin ip, q =  —p sin ip +  
q cos ip, b2 =  &i +  &2> M =  0(W7) — àip(W). Consequently, V ^ iV  =  0, G Ao, 
i.e., M n_1 is a semi-developable surface. □

In the process of proving Proposition 2 we have obtained that for each semi­
developable surface M n_1 there exists a normal frame field {N,  N L }, such that

V  N  =  - P üü(x) W  -  yuoix) N l
. (12)

V xN l  =  -buj(x) B  -  bß(x) W  -  quj(x) W  +  yuj(x) N.

We call such a normal frame field a canonical normal frame field of the semi­
developable surface M n_1 and the normal vector field N  we call main normal 
vector field of M n 1. The main normal vector field N  is determined up to a sign. 

A semi-developable surface M !l 1 in En+1 is said to be planar, if there exists a 
hyperplane En in En+1, such that M n_1 lies in En. It is obvious, that if M n_1 is 
a planar semi-developable surface, lying in a hyperplane En c  En+1 with normal
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N,  then N  is the main normal vector field of M n 1. The planar semi-developable 
surfaces of codimension two are characterized by

Lemma 3. Let M n_1 be a semi-developable ruled surface in En+1 with a canon­
ical normal frame field {N , N -*-} satisfying (12). Then, M n~1 is planar iff p =  0.

Proof: 1) Let M n 1 be a planar semi-developable surface, lying in a hyperplane 
E n with normal vector field N.  Then, V XN  =  0, x  e  X M n_1 and the first 
equality of (12) implies that p =  0, p  =  0.

2) Let M n_1 be a semi-developable surface with normal frame field {N,  N L } and 
p =  0. Then, the equalities (12) imply

R ' ( x , y , N , W )  =  b p ( ß  Aùü)(x,y), x, y e  M " ' 1.

Using that R 1 =  0, we get

bp(ß  A  lû)(x , y) =  0, x, y £ X M n~1.

Since M n_1 is non-developable, then 6 ^ 0  and ß  A uj /  0. So, the last equality 
gives p  =  0. Hence, V^.iV =  0, x  e  X M n~1, i.e., M n_1 is planar. □

The non-planar semi-developable surfaces of codimension two are characterized 
by

Lemma 4. Let M n_1 be a surface in En+1 with normal frame field {N±, ./V2}. 
Tten, M n_1 w locally a non-planar semi-developable surface with canonical nor­
mal frame field {Ni, N2} if and only if

K N i  =  -puj(x)  W  -  puj(x) N 2

V'xN 2 =  -buj{x) B  -  b ß ( x ) W  — quj{x)W +  piJj{ x )N l  1 ~

where b, p, q and p, are functions on M n_1, such that 6 ^ 0 , p ^  0.

Proof: 1) It is obvious from the considerations above that for a non-planar semi­
developable surface M n_1 with canonical normal frame field { N i , N 2} the for­
mulas (13) hold true and b /  0, p /  0.

2) Let M n_1 be a surface in En+1 with normal frame field {iVi, A^}, satisfy­
ing (13) and b /  0, p /  0. Using that y, iVi) =  0, from (13) we get

+  (671(0 A u ) ( i , ÿ )  -  d(puj)(x,y))W -  à(puj)(x,y) N 2 =  0

which implies that du;(xo,yo) =  0, xo,yo £ A q. Hence, the distribution Ao is 
involutive. Consequently, for each point p e  M n_1 there exists a unique maximal 
integral submanifold S ” -2 of Ao containing p. With the help of formulas (13) 
and (14) we obtain

ô(V(.oy0, Ni) =  0, g(¥'x0yo, N 2) =  0, g(V'Xoyo, w) =  0, x 0, y0 £ A 0
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which imply that V Xf)yo £ A 0 for all xq, i/q e  A 0, i.e., the integral submanifold 
Sp~ 2 of Ao is totally geodesic. So, S ” -2 lies on an (n — 2)-dimensional plane 
E ” -2 . Hence, M n_1 is locally a one-parameter system |E n_2(s)}, s £ J  of 
planes of codimension three, i.e., M n_1 is locally a ruled surface of codimension 
two. More over, the first equality of (13) implies V'x N i  =  0, x 0 £ A 0. Hence, 
locally M n~1 is a semi-developable surface with main normal vector field N\. □

4. Structure Theorem

In what follows we consider a hypersuface M n o f conullity two with unit normal 
vector field N  (N  is determined up to a sign). The second fundamental form 
h o f M n satisfies (1). The (n — 2)-dimensional distribution, determined by the 
one-forms rji and rj2, is denoted by Ao- Applying the Codazzi equations for a 
hypersurface with second fundamental form defined by (1), we obtain the equalities

1) ^a:0Ci =  -7(^0) C2

2) V Xo£2 =  7(^0) £1

3) g ( V ^ i , x 0) =  d i n 27 (x0)

4) g(V ç2£2,2:0) =  d in  27(2:0)

5) g ( y ^ 2 , x 0) =  —— — ~f(x0) <'15'>
V-l

s) g i y & i  1,2:0) = 1/2 Ul i (x q )

7) (y\ — V2)2g ( y =  (yi — V2)

8) (2/1 -  2/2)2ö(v 6 6,C i ) = - i y i  -  »2 ) d^2(Ci)
where 7  is a one-form on Ao, defined by 7(2:0) =  g ( y xo£,2 , Ci)> G Ao-
We denote by and A ç2 the (n — 1)-dimensional distributions, orthogonal to 
the vector fields £1 and £2, respectively, i.e.,

(p ) =  {x £ TpM n ; »71(2:) =  0} =  A 0 ® span{£2}, p £ M n 

A ç2(p) =  {x £ TpM n ; 772(2:) =  0} =  A 0 ® span{£i}, p £ M n.

In general, and A ç2 are not involutive. We shall find all involutive (n — 1)- 
dimensional distributions of M n containing Ao- An arbitrary unit vector field £ e  
A q is decomposed in the form £ =  cos ip £1 +sin ip £2, where ip =  Z(£i,£). Let £■ *■  
denotes the unit vector field in Ag-, orthogonal to £, i.e., £J- =  — sin ip £i+cos ip £2. 
Then, the distribution A t . orthogonal to £, is presented by

A^(p) =  {x £ TpM n ; g(£, x) =  0} =  A 0 © span{£J-}, p £ M n.

Proposition 3. Let M n be a hypersurface o f conullity two in En+1 with principal 
directions £1, £2 and £ =  cos ip £1 +  sin ip £2 be a vector field in A q\ Then, the
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distribution Aç, which is orthogonal to £, is involutive if  and only if  the function ip 
satisfies

d</>(a:o) =  ( — cos2 ip +  k sin2 ip J 7(2:0) — — sin ip cos ip dk(xo) (16) 
\ k  / k

where xq G A o and k =  — .

Proof: Since Ao is an involutive distribution ([2:0, yo] G Ao for all 2:0, yo G Ao), 
then the distribution A ç is involutive if  and only if [2:0, £■ *■ ] G A ç for all 2:0 G Ao, 
i.e.,

a i ^ ' x C) -  aC^çxx0, c) =  0, 2:0 g A 0

or equivalently

a (y x + a ( y ^ i , 2:0) =  o, 2:0 g a 0.

The vector fields V ^ - 1- and can be expressed as follows 

Vxo^1  =  (7(^0) -  d 92(2:0)) £

=  sin 92 cos 92 (Vç2̂ 2 — V Çl£i) — sin2 92 +  cos2 92 V ç2Ci

+  (cos ip d92(£2) -  sin 92 d9?(^i)) C a­

using the last equalities and (15) we obtain that A t is an involutive distribution if 
and only if 92 satisfies (16). □

As a corollary we obtain

Corollary 1. Let M n be a hypersurface o f conullity two in En+1 with principal 
directions £1 and £2. The distributions Açj and A ç2 are involutive if  and only if 
7 =  0.

Since the distribution A q of M n is involutive, then locally there exist parameters

u, v, w1, . . . ,  wn 2 on M n, such that Ao =  span  ̂ ) . We denote
owa J a=1 n_2

<pa — d92 krv — dir
,dwa J \dw a

So, the equalities (16) can be written in the form

1

, la  =  7 dwc

ipa =  ( — cos 92 +  fcsin 92 I 7a — — sin 92co s92ka , a  =  1 , . . .  ,n  — 2

or equivalently 

1-Jfe2
7a cos 290 -  sin 290 +  1 7a, a =  1, . . . ,  n — 2. (17)ipa — 2k 2k
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Setting aa 

form

1 - k 2 , ka 1 +  k2
- ba  -  ca -

ipa  =  aa cos 2 ip +  ba  sin 2<p +  ca , a  =

"fa, we rewrite (17) in the 

1 , . . . ,  n — 2. (18)

Now, if we fix (u, v) the equalities (18) can be considered as a system of partial 
differential equations for the unknown function p iw 1, . . . ,  wn~2, u, v), where u 
and v are parameters. We shall prove that the integrability conditions

(paß  P ß a n  Oi, ß  1, . . . , B 2 

for the system (18) are fulfilled.

It is easy to calculate that

(p a ß  p Jrt: ( + a ß  ^  Jrt: "t" 26r,;f'c< 2h ß ( 'a ) COS 2(p

+  (baß -  bßa +  2cao,ß -  2Cßaa) sin 2(p 

"b (paß Cßa “b 2&Q!£Ij3 2bßda)

where

d ( l - k 2 \ k2 + 1 1 - k 2
aaß ~  f a ß  \ ^  / - ~ ^ 2Ü ^ k ß l a  +  ^ 2i T laß

b a ß

c a ß

d
dvß

d
dvß

_ _ 1  _ ö_  _ _ U L n  b\
2k )  2 dw@ n ' “  2 dwa n ' ^

1 +  k2 \ k2 - 1  1 +  k2
~ ^ l a ) ~ ^ ^ k ß l a  +  ^ r laß

b ß a

(19)

'"M dwß '

Using the fact that the one-form 7 is closed and taking into account (19) we calcu­
late

p a ß  P ß a  0, Oi, ß  1, . . . , B 2.

So, the integrability conditions for the system (18) are fulfilled. Hence, if  po(u, v) 
is a given function, then there exists a unique solution p iw 1, . . . ,  wn~2, u, v) of 
(18), defined for each |u;“ | < e, (u, v) e  Do, where e >  0, D q c  R 2, satisfying 
p (0 , • • •, 0, u, v) =  p 0(u,v).
Consequently, locally there exists a vector field £ =  cos</> î +  sin</>̂ 2, whose 
orthogonal distribution A ç is involutive. The integral submanifolds of A ç deter­
mine M n locally as a one-parameter system of (n — 1)-dimensional surfaces, i.e., 
locally M n is a foliation of surfaces of codimension two. Moreover, each func­
tion po(u, v) determines an involutive distribution A ç of M n, which generates the 
corresponding foliation of M n.
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Now we shall prove that the integral submanifolds M 1̂-1 of each involutive dis­
tribution Aç of M n are developable or semi-developable surfaces of codimension 
two.

Theorem 1 (Structure theorem). Each hypersurface of conullity two in En+1 is 
locally a foliation ( one-parameter system) of developable or semi-developable sur­
faces of codimension two.

Proof: First we shall consider the case 27 = 2/2. Setting 2/ := v\ = 2/2 the 
equalities (15) imply

1) Va;0Ci =  -7 (^ 0 )  £2

2) V Xo£2 = 7(^0) £1

3) g(¥ç j £1,2:0) =  d l n 2/(a:o)

4) £2,2:0) = dln2/(a:0)

5) g ( ¥ ç  1 £2, 2:0) =  0
6) ff(Vç2£i,a:o) =  0.

(20)

We denote p = g (V ^ £1, £2), q =  £/>(Vç2£2,£i )- Applying Proposition 3, we get 
that the vector field £ = cos ip £1+sin ip £2 determines an involutive distribution A t 
if and only if ipa = ya, a  = 1, . . . ,  n — 2, i.e., d</>(:co) = 7(2:0), 2:0 G Ao- Each 
integral submanifold M 1̂-1 of Aç is an (n — 1)-dimensional surface with normal 
frame field {N, £}. We denote £-*- = — sin ip £1 + cos ip £2 and uj = — sin ip 71 + 
cos ip rj2. Using (20) we get

V'XN  = - olj(x) ^ ,  V(£ =  -çw(2:)£i ) l e ï l f 1

where q = p sin ip + q cos ip + sin ip d</>(£i) — cos ip d</>(£2). Hence, according to 
Lemma 1, locally M 1̂-1 is a developable surface of codimension two with canon­

ical normal frame field {N, £}. Moreover, since 2/ /  0, the surfaces M ?_1 are 
non-trivial (M^1-1 /  En_1).

Now let us consider the case 2/1 /  2/2. Let Aç be an involutive distribution 
of M n, where £ = cos <p £1 + sin 92 £2. Its integral submanifolds M 1̂-1 are 
(n — 1)-dimensional surfaces in En+1 with normal frame field {N, £}. Once again 
we denote £-*- = — sin ip £1 + cos ip £2 and uj = — sin ip r}\ + cos ip 72- Then, 
Aç = Ao + span{£-*-}. Let { e i , . . . ,  en_2} be a local orthonormal basis of Ao- 
Using (15) we obtain

V££i =  din 2/1 (ea) ea +  d^ 2) £2 +  2/1 N  
M ' 2 / 1  — 2/2

V ç £2 =  din 2/2(ea ) ea -  ^ ^ - £ 1  + o 2N  
ç 2/1 -  2/2

2/2 -  2/1 

V2
l ( ß a ) Ĉt

d2/i(£2) c
-------- -£1
2/1 -  2/2

^ £ 1
2/2 -  2/1

l ( ß a )  e a  +
d^2(£l)

£2.
2/1 2/1 — 2/2
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Further, we calculate

=  (d</>(ea ) -  7(ea )) ea -  (sin ip dyj(£i) -  cos ip d</>(£2)) £J

did (6 )  di/2(Ci)sm ip------- :—  cos ip

(21)

 ̂ +  (i/2 — i>i) sin ip cos ip N.
V\ -  i/2 V\ -  i/2,

On the other hand, the equation (15) imply

V ?6qC =  (d</>(ea ) -  7 (ea )) a  =  1 , . . . ,  n -  2. (22)

We denote

 ̂ {F \ ä (t \ \ dj/i ( 6 )  di/2(Ci)q =  sm  ip a</>(Çi ) — cos ip d</>(Ç2) +  sm  ip ---------------cos i p -------------
i>i — v<2 v\ —

ipa =  dip(ea ), 7a  =  7 ( ea ) , a  =  1 , . . .  , n — 2.

Using the unique decomposition of an arbitrary vector field x  e  Aç in the form

x = g(x, ea) ea + lü(x) p  

we obtain from (21) and (22)

=  (ipa -  7 a ) u(x )  ea +  g(x,  ea )(ipa -  7a)

— q u (x )  p  +  (i/2 — 2/ i ) sin  ip cos ip u (x )  N.

From the equality (1) we get

V'XN  =  — (yi  s in 2 <p +  i/2 cos2 <p) lo(x ) £-*- — (i/2 — i/i) sin  ip cos ip lo(x ) £. (24)

(23)

Let us denote B  =  (pfa — ipa) ea (B  e  Ao) and let B  be a unit vector field, such 
that B  =  bB, b =  \B\. If ß  is the unit one-form, corresponding to B ,  then

bß(x) =  bg(x, B)  =  (pfa ~ <pa)g(x, ea).

Hence, setting p =  v\ sin2 ip + 1/2 cos2 ip, p =  (i/2 — i/i) sin ip cos ip and using (23) 
and (24), we get

V XN  =  —p u ( x )  p  — fMjj(x) £

=  —buj(x) B  — bß(x) p  — quj(x) p  +  puj(x) N

where p /  0. In general, when 6 ^ 0, Lemma 4 implies that locally M^1-1 is 
a semi-developable surface of codimension two with main normal vector field N.  
In particular, when 6 =  0, according to Lemma 1 locally M^1-1 is a developable 
surface of codimension two.

Consequently, locally M n is a one-parameter system of developable or semi-deve­
lopable surfaces of codimension two. □
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