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Abstract, We modify the metrics on six-dimensional and seven-dimensional 
Riemannian g.o. manifolds constructed in previous published papers and we 
obtain pseudo-Riemannian g.o. manifolds. We describe geodesic graphs of 
corresponding g.o. spaces. We show that if diese geodesic graphs are nonlin­
ear, they are discontinuous on an nonempty set but diey are continuous at die 
origin.

1. Introduction

Lei M  be a pseudo-Riemannian manifold. If there is a connected Lie group 
G c Iq(M)  which acts transitively on M  as a group of isometries, then M  is 
called a homogeneous pseudo-Riemannian manifold. Lei p e M  be a fixed 
point. If we denote by H  the isotropy group alp, then M  can be identified with the 
homogeneous space G/ H.  In general, there may exist more than one such group 
G c Iq(M).  Lor any fixed choice M  =  G / H , G acts effectively on G / H  on the 
left. The pseudo-Riemannian metric g on M  can be considered as a (/-invariant 
metric on G/ H.  The pair (G/H,  g) is then called a pseudo-Riemannian homo­
geneous space.
If the metric g is a positive definite, then (G/H,  g) is always a reductive homo­
geneous space: We denote by g and f) the Lie algebras of G and H  respectively 
and consider the adjoint representation Ad : H  x g —> g of H  on g. There ex­
ists a direct sum decomposition (reductive decomposition) of the form g =  m +  t) 
where m c g is a vector subspace such lhal Ad(Zf)(m) c m. If the metric g is 
indefinite, the reductive decomposition may not exist (see [6] for an example of 
nonreduclive pseudo-Riemannian homogeneous space). Lor a fixed reductive de­
composition g =  m +  t) there is a natural identification of m c g =  TeG with the
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tangent space TPM  via the projection tt : G —» G /H  =  M . Using this natural 
identification and the scalar product gp on TPM  we obtain a scalar product {, ) on 
m. This scalar product is obviously Ad (if)-invariant.
The definition of a homogeneous geodesic is well-known in the Riemannian case 
(see e.g., [11]). In the pseudo-Riemannian case, the necessary generalized version 
was given in [4]

Definition 1. Let M  =  G /H  be a homogeneous pseudo-Riemannian space, g =  
m +  f) a reductive decomposition and p the basic point o f G/H .  The geodesic 7 (3) 
through the point p defined in an open interval J  {where s is an affine parameter) 
is said to be homogeneous if there exists

1 ) a diffeomorphism s = (p (t) between the real line and the open interval J  
2) a vector X  G 0 such that y{ip{t)) =  exp(tX){p) for all t  G (—oo, +oo).

The vector X  is then called a geodesic vector.

The basic formula characterizing geodesic vectors in the pseudo-Riemannian case 
appeared in [6] and [13], but without a proof. The correct mathematical formula­
tion with the proof was given in [4]

Lemma 1. Let M  = G /H  be a homogeneous pseudo-Riemannian space, g =  
m +  f) a reductive decomposition and p the basic point o f G/H.  Let X  G 0. Then 
the curve 7 (f) =  exp{tX){p)  (the orbit o f a one-parameter group o f isometries) 
is a geodesic curve with respect to some parameter s if  and only if

[X,Z]m, X m) = k ( X m, Z ( 1 )

for all Z  G m, where k  G l  is some constant. Further, if k  =  0, then t  is an affine 
parameter for this geodesic. I fk  0, then s = e~kt is an affine parameter for the 
geodesic. The second case can occur only if the curve 7 (f) is a light-like curve in 
a (properly) pseudo-Riemannian space.

For the results on homogeneous geodesics on homogeneous Riemannian manifolds 
we refer for example to [10, 12], Further references can be found also in [4], First 
results for pseudo-Riemannian manifolds were obtained in [1, 4],

Definition 2. A pseudo-Riemannian homogeneous space (G/ H, g) is called a g.o. 
space {or pseudo-Riemannian manifold {M, g) is called a g.o. manifold, respect­
ively) if  every geodesic o f {G/ H, g) {or o f {M, g)) is homogeneous. Here “g.o.” 
means “geodesics are orbits”.

Our technique used for the characterization of g.o. spaces and g.o. manifolds is 
based on the concept of “geodesic graph”. The original idea (not using any explicit 
name) comes from J. Szenthe [14],



146 Zdenêk Dusek and Oldrich Kowalski

Definition 3. Let (G/H,  g) be a g.o. space and g =  m +  f) an Ad(H)-invariant 
decomposition o f the Lie algebra g. A geodesic graph is an Ad(H)-equivariant 
map 7] : m —» f) which is rational on an open dense subset U o f m and such that 
X  +  r](X) is a geodesic vector for each X  6 m.

On every g.o. space (G / H , g), there exists at least one geodesic graph. The con­
struction of a canonical geodesic graph and general geodesic graphs (on open 
dense subsets) through rational maps is described in details in [3, 9]. For the 
vectors X  e  m \  {[/}, the map rj must be constructed part by part using again 
some rational maps and the geodesic graph may be discontinuous on some subset 
V c m \  {(/}.
On the subset U, the components r]t of a geodesic graph are always rational func­
tions in the form rji =  Pi fP ,  where Pi and P  are homogeneous polynomials (of 
the coordinates on Tp(M))  and deg(Pj) =  deg(P) +  1. The degree o f a geodesic 
graph is defined as the degree of the denominator P  in the situation when Pi and 
P  are relatively prime.
Definition 4. I f  (M, g) is a g.o. manifold then the degree o f (M , g) is the minimum 
o f degrees o f all geodesic graphs (either canonical or general) constructed for all 
possible g.o. spaces (G/H,  g) where G C Iq(M) and M  = G/H.

According to the results of Szenthe, the degree of (M, g) is zero if and only if 
(.M ,g ) can be made a naturally reductive space (G /H ,  g) for a suitable choice 
G c  Iq(M).
For the examples of geodesic graphs of various degrees we refer to [2, 3,5,9]. The 
systematic description of temporary results about Riemannian g.o. manifolds was 
given in [5],
In this paper we are going to consider the six and sevendimensional manifolds 
which were described with Riemannian metrics in [5, 7, 9] and geodesic graphs 
of these Riemannian g.o. manifolds that were described in [5, 9]. We now modify 
these metrics and obtain invariant pseudo-Riemannian metrics. We show that the 
corresponding pseudo-Riemannian manifolds are g.o. manifolds and we describe 
corresponding geodesic graphs.
We remark already here that we will use Lemma 1 with k  =  0. This is the con­
sequence of the fact that our metrics are the simplest modifications of Riemannian 
g.o. metrics where the compact isotropy group remains unchanged.

2. Examples

2.1. Five Dimensional Examples of Type U (3)/ U (2)

Let us consider the five-dimensional vector space m with the pseudo-orthonormal 
basis { E \ , . . . ,  E 4 , Z \ } with the signature (1 ,1 ,1 ,1 , e), where e =  ±1. We denote
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by Aij (for 1 < i < j  < 4) the elements of so(m), with the corresponding action 
given by the formulas

A j ( E k) = SzkEj -  SjkEi for k = 1 , . . . ,  4. (2)

Further, we denote

Ä = A 34 +  A i 2 , A  = A 34 — A]_2 , b  =  -Al3 +  A 24, C  =  .4 I 1 — -4.23- (3) 

We notice the Lie bracket relations

[A, B] = 2(7, [B, C} = 2A, [C, A] = 2B  (4)

and the isomorphism span(Al, B, C) ~  su(2). We consider the algebra t) = 
span(^4, A, B,  C) ~  u(2) of the operators on m. Put g =  m +  f) and define 
the Lie bracket on g by the additional relations

[E\, E2] =  aZi  +  XA, 

[Eu En] =  - A B, 
[Eu E 4] = -A C, 

[Zi,Ei]  =  pE2, 
[Z\,E2] =  -pEi ,

[E2, E z] = XC 
IE 2 . Ei\ =  —AB  
[En, E 4] =  a Z i  — Â 4
[Zi,Ez] =  pE 4 

[Zi , E 4] =  -pE n

(5)

for the parameters p, a, A, such that pa  +  3A =  0.
The algebra g is isomorphic to u(3) for a  > 0 and to u (l, 2) for a  < 0. The 
scalar product on m is ad(if)-invariant and hence the relations above define a two- 
parameter family of pseudo-Riemannian metrics on U(3)/U(2), or U (l, 2)/U(2), 
respectively.
We are going to compute a geodesic graph. For that purpose we shall apply 
Lemma 1 to the given decomposition g =  m +  f) and will present each vector 
X  e m in the form X  =  x \E \  +  • • • +  x 4E 4 +  z \Z \  and each vector £ (X ) e f) 
in the form £(X) =  £iA  +  ^2^- +  & B  +  Ç4C. In this way, we identify these 
vectors with the arithmetic vectors X  =  (x4, . . .  , x 4, z\)  and £ {X ) =  (Ci, • • •, £4) 
of their components with respect to the basis { E \ , . . . ,  E4, Z 4} of m and the basis 
{A, B,  C, D}  of f). Let us now consider the equation

([X + Ç(X),Y]m, X )  = 0 (6)

where Y  runs over all m. This gives the condition for X  +  £(X) to be a geodesic 
vector. We have to determine the corresponding £(X) to the given X .  Here for 
Y  e m we substitute, step by step, all five elements E \ , . . . ,  E 4, Z \ of the given 
pseudo-orthonormal basis into the formula (6). In this way we obtain a system 
of five linear equations for the parameters £1, . . .  ,£4 (satisfying the Frobenius’ 
criterion of compatibility). Now, for a generic vector X ,  the rank of this system is 
three. We select, in a convenient way, a subsystem of three linearly independent
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equations. The matrix A  of the coefficients of the corresponding homogeneous 
system and the vector of the right-hand sides are given by

(X2 —x 2 x 3 2:4 \  /  (ea -  p)x2z{ \
—x \ x \  X4 —x 3 , b  =  —(ea — p jx iz i  . (7)

X4 X4 —x i  x 2J \  (ea — p)X4Z1 J

Now we choose an invariant scalar product on f) and add the condition £(X) _L qx- 
Here qx  is the subalgebra of f) defined by the condition

qx =  { A e t ); [A , X \ =  0 } .  (8)
In our case dim qx =  1 for a generic vector X .  If we denote by Q x  =  qiA  +  
q2A  +  q3B  +  C a generator of the algebra qx, then the components form 
a solution of the homogeneous system of equations whose matrix is equal to A 
(see [3] or [9] for the details about the construction of a canonical geodesic graph). 
By the Cramer’s rule we obtain the following particular solution:

2 1 2 1 2 1 2 qi = x 1 + x 2 + x 3 +  x 4

2 I 2 2 2q2 = x 1 + x 2 -  x 3 -  x 4 ^
q3 = 2 (x i x 4 -  x 2x 3) 
q4 =  - 2(2:12:3 +  2:22:4).

Now, the condition £(X) _L qx  can be described by the equation
4

=  o- do )
3=1

The system of equations described by the matrix A  and the vector b  in (7) and the 
equation (10) give the system of four equations for four variables. In the generic 
case, we obtain also the components of the unique solution £(X) in the form

Ci

C2

6

C4

(p — ae)z\
2

(p — ae)(x\  + x 2 — x 3 — 2:4)21

2|M |2
(p — ae)(xiX4 — x 2x 3 )z\

(p -  ae ) (x \x 3 +  x 2x 4)z1

( 1 1 )

Here we denote ||2:||2 =  x f  + x 2 + x 3 + x 4. The formulas (11) make sense on 
the subset U c m ,  where U =  { X  e  m; ||2:||2 ^  0}. On m \  {(/}, we can put 
C(X) =  0 and we obtain a canonical geodesic graph.
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This geodesic graph cannot be continuous on the subset V  C m \ {[/}, where V  = 
{(0,0,0,0, zi) e m; z\  /  0}. Indeed, considering the curves 71 =  (t, 0,0,0, z\) 
and 72 =  (0, 0, t, 0, z4) in m, we easily see that the limit of £2 (for t  going to 0) 
along 71 is (p — ae)z4/2  and along 72 it is —(p — ae)z4/2. Hence, on V,  the 
geodesic graph cannot be defined continuously (unless p =  ae, where £ =  0 and 
the space is naturally reductive). It is not hard to see that £ is continuous at the 
origin (see also the general Lemma 2 in Section 3).
Further, it is easily seen that if we put

rj(X) = £(X) -  (P~ œJ Zl • Q x  (12)
2 \\x r

we obtain

l i  = ~(P ~  ae)zi,  rj2 = m  = m  =  0 (13)

which is the linear geodesic graph. Clearly, it is defined on all m and it is continu­
ous. It implies the natural reductivity of the space G / H  (for any p, a, e).

2.2. Six Dimensional Nilpotent Examples

Let us consider the sixdimensional vector space m with the pseudo-orthonormal 
basis { E i , . . . ,  E 4 , Z±, Z 2} with the signature (1 ,1 ,1 ,1 , 6 1 , 6 2), where £1,62 =  
±1. Further, let f) =  span(2l, B, C). Put g =  m +  f) and define the Lie bracket by 
the relations

\E \ . E->\ = 0,
[Ei, Es] = aZ i,
[E\, E 4] =  ß Z i  +  7 Z2, 
[Zi ,Ei\ = [Z2,E i\ = [Zi ,Z2]

[E2,E 3] = ß Z i + ~ f Z 2 
[£2,-^4] =  - a Z i  
[E3,E 4} = 0 

0 for i = 1 , . . .  ,4

(14)

for arbitrary parameters a, 0, 7  (a  /  0 /  7 ). The scalar product on m is ad(if)- 
invariant for all possibilities of £1 , e2 =  ±1. If we consider N  as the unique 
connected and simply connected group whose Lie algebra is m, H  =  SU(2) 
and G = N  x1 SU(2), we obtain a three-parameter family of invariant pseudo- 
Riemannian metrics on the manifold G /H .
From the equation (6) we obtain a system of equations whose matrix A  and the 
right-hand side vector b  are

( - x 2 x 3 rc4\ / (axs  +  ßxß je iz i  +  ^x4e2z2\
x 4 x 4 —X3 , b  =  ißx:i — a x 4)eizi  +  ryx;ie2z2 . (15)

x 4 - x i  x 2J \ - ( a x i + ß x 2) e i z i - ^ x 2e2z2)
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By the Cramer’s rule we obtain the components of the vector £(X) in the form

Ci

C2

Ca

—2a e \z\{x \X 4 +  2:22:3) +  2{ße\z\ +  762^2) (2:12:3 — 2:22:4)

oie\Zi (x \  -  x \  +  x \  -  x\ )  +  2 (ße1 z 1 +  ^e 2z2)(2:12:2 +  2:32:4)

2 a£1 z 1 (x3x 4 — 272:2) +  (ßeizi  +  j e 2z2)(xf  ~  x \ ~  x \  +  x î)

(16)

The formulas (16) make sense again on the subset U =  { X  e  m; ||2:||2 ß  0}. For 
||2:||2 =  0 we put CPO =  0. At the origin, the geodesic graph C is continuous 
(see Lemma 2). On the subset V  =  {(0,0,0,0, 24, 22) C m: -  -J /  0} it
cannot be continuous: For z\ ß  0 we consider the component C2 and the curves 
71 =  (t, 0,0,0, zi, z2), 72 =  (0, t, 0,0, z i , z 2). Then we see that the limits of C2 
along these curves for t  —> 0 are different, as in the previous example. For z  1 =  0 
and z 2 ß  0 we consider the component C3 and the same curves.
Finally, we observe that G / H  is a pseudo-Riemannian g.o. space of degree two 
(for any a , ß, 7 , e\, e2, £3).

2.3. Six Dimensional Examples of Type SO (5)/U (2)

Let { E i , . . . ,  E 4 , Z\ ,  Z 2} with the signature (1 ,1 ,1 ,1 , e, e) is the pseudo-ortho­
normal basis of the vector space m. We denote by B \ 2 the operator from so(m), 
with the action given by the formula

E i i iZ i )  = Z 2, B i 2(Z2) =  —Z\,  B \ 2(Ei) =  0 for i =  1 , . . .  ,4 (17)

and we put D  =  A \2 +  A 34 +  2B \2. The isotropy algebra is f) =  span(A, B , C ,D )  
~  u(2). We define the Lie bracket on g =  m +  f) by the relations

[Eu E 2] = X { D - A ) ,  [E3 , E 4] = X{D + A), [Zu Z 2\ = 2(A2/ p2)D 

[Ei , E 3] = pZi  +  À B, [E2, E 4] = —pZi  +  À B
[Ei, E 4] =  pZ2 +  ÀC, [E2, E3] =  pZ 2 — ÀC  (18)

[Ei, Zi] =  [E2, Z 2] = -(A /p )E z , [Ei, Z 2] = - [ E 2, Z i ] =  -(A / p)E4

[E3 , Z i ] =  [E4 , Z 2] = ( \ f  p)Ei, [E3 , Z 2] =  - [ E 4 , Z i ] =  (A/ p)E2

for the parameters p > 0 and A /  0 (for A =  0 we obtain the example from the 
previous section). For A > 0 the algebra g is isomorphic to so (5) and for A < 0 
it is isomorphic to so (1,4). Hence we have two-parameter family of metrics on 
SO(5)/U(2) and on SO(4,1)/U(2).
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From the equation (6) we obtain a system of equations whose matrix A  and the

(19)

right-hand side vector b  are

f - x 2 X3 x 4 x 2\ (  (pe -  ^){xzZ 1 +  2:4Z2)\

A  =
X\ X4 —x 3 —X\ , b  = (pe ~  ^ ) { ~ x 4z 1 +  x 3z2)
X4 —X\ X2 X4 (pE -  | ) (2:121 +  X2Z2)

\  0 0 0 2Z2/ \  0 /

By the Cramer’s rule we obtain the components £(X ) of the unique geodesic graph 
on U = { X  e  m; ||rc||2 ^  0} in the form

A \  — 2 z i ( x \ X 4  +  X 2 X 3 )  +  2 Z 2 ( X \ X %  —  X 2 X 4 )

p )  ||rc (12

A\ Z\(x\ — x \  +  X2 — X2) +  2z2(x \X2 +  2:32:4)
p )  INI2 (20)
A \ 2z i (—2:42:2 +  2:32:4) +  Z2 (x\ — x \  — x \  +  2:|)

p )  INII2

For ||2:||2 =  0 we put again £(X) =  0. Geodesic graph is continuous on U and 
at the origin. As in the previous example, we see that it cannot be continuous on 
V  = {(0,0,0,0, Z]_, z2) e m; z \  +  z \  /  0}. Geodesic graph is linear (and it 
implies the natural reductivity of G/ H )  if p2 =  eX. Otherwise, G / H  is a pseudo- 
Riemannian g.o. space of degree two.

This manifold was constructed by Gordon m [7], Let us consider the pseudo­
orthogonal basis { E i , . . . ,  E 4 , Z \ , . . . ,  Z 3 }, where E \ , . . . ,  E 4 are unit and space­
like and

2.4. Seven Dimensional Nilpotent Examples

(Zi, Z\) — eik2, (Z2, Z2) — E2I2,

The Lie bracket satisfy

[Eu E2] =  Z i / k 2, 

[E2,E4] =  Z2/ l 2,

\E2. Ez) =  Z-zIm2, 

[Ei, E4] =  Z-z/m2, 
[Zi, Ek] =  [Zi, Zj] =  0

(Zz, Zz) = s zm 2 . (21)

[Ei,Ez] =  Z2/I2 

[Ez,E4} = Z z / k 2 (22)

where e i ,E2 , ez = ±1. We put again t) = span(A, B, C). The matrix A  of 
the coefficients of the corresponding homogeneous system and the vector b  of the



152 Zdenêk Dusek and Oldrich Kowalski

right-hand sides are given by

' —X2 X3 X4 ' 
A  =  I X\ X.4 —X3 

X4 —Xi X2/

£lX2Zl +  S2X3Z2 +  £3X423^ 
b  =  I - E 1 X1 Z1 +  E2X4Z2 +  £3X323 

£1X42:1 -  £2X122 -  £3X223/

The components £j of the unique geodesic graph are

£l(—x \  — x |  +  x |  +  x | ) 2i +  2£3(x iX3 — X2X4)z3
Cl = X
. 2£i(x2X3 — XiXi)2i +  2£3(x iX2 +  X3Xi )23
C2 =  ---------------------- ' „ „9--------------------- :----- h £2-2-2X

c3 = 2£l(xix3 +  X2X4}Z\ +  £3(xf — x | — x \  +  x \ ) z 3

x

(23)

(24)

For ||x||2 =  0 we put Ci =  £3 =  0 and C2 =  £2^2- We easily check that geodesic 
graph is continuous on U and on the set W  =  {(0,0,0,0,0,22, 0) e m ; z2 e 1}. 
It cannot be continuous on the set V  =  {(0,0,0,0,21, 22, 23) e m ; 21 /  0 or 23 /  
0}. We see that G / H  is a pseudo-Riemannian g.o. space of degree two (for any k,
l, m, Ei, £2, £3).

2.5. Seven Dimensional Examples of Type (SO (5) x SO(2))/U(2)

Let { E i , . . . ,  E 4 , Z\ ,  Z 2, Z3 } with the signature (1,1,1,1, £1, £1, £2) be the 
pseudo-orthonormal basis of the seven-dimensional vector space m. We denote 
0 =  span(i?i , . . . ,  E 4), 3 =  span(Zi, Z 2, Z 3 ) and thus m =  0 +  3. Now we put 
D  =  A 14+ A 23+ 2B 12 and we consider the algebra f) =  span(^4, B, C, D)  ~  u(2). 
We define the Lie algebra structure on g =  m +  f) by the additional relations

[Ei , E 2] = p(Zi  -  A), [E2, En) =  qZ-3 -  pC, [Ei, £ 3] =  p(Z 2 +  B)
[E2, E 4} — —p(Z 2 — B),  [Ei, E 4}

[Zi, Z 2} = ^ Z 3, [Z2 , Z 3]
p

qZ3 +  pC, [E3, E 4] = p(Zi  +  A)
2 p r , 2 p

- — Zi,  Z3, Z i  = ~ ^ z 2
9 9

(25)

where p and q are the parameters satisfying p > 0, q /  0 and p ^  \q\, and by the 
adjoint action of the elements from 3 on 0 given by

ad(Zi)|D — (2I12 +  A34), ad(Z2)|D — (2I13 — 2I24), ad(Z3)|0 — -(2I14 +  2I23).

(26)
It can be shown (see [5]) that the algebra g is isomorphic to so(5) +so(2) for q > 0 
or it is isomorphic to so (4,1) +  so (2) for q < 0.
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From the equation (6) we obtain a system of equations whose matrix A  and the 
right-hand side vector b  are

A  =

( ~ X 2
X \  X 4  

X 4  — X \

V o  0

X 4  x A  

- X3 X3 

X2 —X2

0 2e iz2J

(27)

b  = (28)

* (eip -  1) x 2z!  +  (eip -  1) x 3z2 +  (e2q ~  | )  x 4z3^

-  (sip -  1) aqzi -  (s ip  -  1) 2:422 +  (e2q ~  | )  2:323

(sip -  1) 2:421 -  (s ip  -  1) 2:122 -  (e2q -  | )  2:223

, 2 {S4 ~ ei l ) z 2Z3
Then the corresponding vector £(X)  can be calculated by the Cramer’s rule and its 
components are

Cl =  [ißip -  1)(—2:f -  x\ +  x\ +  x 24)z! -  2(eip -  l)(2:ia:4 +  x 2x 3)z2

+  2 \ E2q ~  —  J (2:12:3 -  2:4X2)231/lbII2
V S i p j

C2 =  [2(eip -  1)(2:22:3 -  x ix 4)2i +  (eip -  l) (x f  -  x\ +  x\ -  x\)z2
(  £̂2 q\ 9

+  2 £29------- (x ix 2 +  2:3X4)23] / lb  II2
V eip/

C3 =  [2(eip -  l ) ( x ix 3 +  x 2x4)2i +  2{e\p -  l) (x 3x 4 -  x ix 2)22 

+  (s2q -  — )  (x\ - x \ -  x | +  x|)23]/||x ||2
V £1 p )

(29)

C4 =
£2? -  £ 1 p-

Eipq
-Z3 .

For ||x ||2 =  0 we put Ci =  C2 =  C.s =  0 and C4 as in the formula (29). Geodesic 
graph is continuous on U and at the origin. It cannot be continuous on the set 
V  = {(0,0,0,0 ,21, 22, 23) e  m ; 22 +  2§ +  22 ^  0}. Geodesic graph is linear 
(and G/ H  is naturally reductive) only for p =  £1 =  1 and arbitrary £2. Otherwise, 
G / H  is a pseudo-Riemannian g.o. space of degree two.

3. Observations

We now want to show that all geodesic graphs presented in the previous section are 
continuous maps at the origin. For this purpose we need only the following

Lemma 2. Let x± , . . . ,  x p, z \ , . . .  , z s be coordinates in the space Rp+S and ||x|| =  
\Jj2i< t<p x i- Suppose that the geodesic graph o f a given pseudo-Riemannian g.o.
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space G/ H  is expressed, for  ||rc || ^  0, by the formulas in which some o f the graph 
components (Jet us say Cl ,•••,£<) are zeros, or linear functions o f the variables 
Z]_,. . .  , z s, and the others [let us say Ct+i, • ••,£«), are rational functions o f the 
form  Pt+i/||a:||2, . . . ,  Pu/\\x\\2, where the numerators are homogeneous polyno­
mials of degree three in Xi, Zj which are linear in the variables zj_,. . .  , z s. Suppose 
that, for  11 a: 11 =  0, the rest o f the graph is defined by letting £ i , . . . ,  unchanged 
and putting Ct+i, •••,£« equal to zero. Then this geodesic graph is continuous at 
the origin.

Proof: Put in general (aq ,. . . ,  x p) =  a ( a i , . . . ,  ap), where the numerical vector 
( a i , . . . ,  ap) on the right-hand side is a unit vector and a  =  ||rc|| is the norm. Then 
we can write

Ct-M =  £  Qt+i(ai ’ • • • > ap)zT  for l = (30)
3 = 1

where each Q3t+l(a i, . . . ,  ap) is a quadratic homogeneous polynomial. Now, each 
\Q3t+i(ai , . . . ,  ap)| is bounded from above by some positive constant k3t+l. Hence

S
l6 + i l < £ ^ + i M -  (3D

3= 1

We see that this is a subcontinuous and hence continuous function. We see finally 
that the whole geodesic graph is continuous at the origin. □

Further, we add a conjecture whose proof might be not simple.

Conjecture 1. For every pseudo-Riemannian g.o. space G/H  with compact iso­
tropy group H , every canonical geodesic graph (in the sense of J. Szenthe) is con­
tinuous at the origin.

Remark. Recently, we started to investigate pseudo-Riemannian homogeneous 
spaces which are “g.o. spaces up to measure zero.” Here the isotropy group H  is 
not compact, the (incomplete) geodesic graph is not continuous at the origin and 
the discontinuities are of stronger character. The results will appear in a subsequent 
paper.
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