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Abstract, Let (M, w) be a closed symplectic 2n-dimensional manifold. Ac­
cording to the well-known result by Donaldson [5] there exist 2 m -dimensio­
nal symplectic submanifolds ( V 2m,ut) of 1 <  m < n  — 1, with
(m — l)-equivalent inclusions. In this paper, we have found a relation be­
tween the flux group and the kernel of the Lefschetz map. We have present 
also some properties of the flux groups for all symplectic 2m-submanifolds 
( V 2m, lc) where 2 <  m < n  — 1.

1. Introduction

Lei ( M, uj) be a compact symplectic manifold and Symp0(M ) denote the identity 
component of the sympleclomorphism group Symp(M) of (M, uj). Recall lhal the 
flux homomorphism

can be defined as follows. For an element o e  7ri(Symp0(M )) and any homology 
class a E Hi(M,R)  set

where Ot.a denotes the trace of a loop a  under the isolopy {<?*} representing o and 
(•, •) is the natural pairing. Il is well known lhal o is represented by a Hamiltonian 
loop if and only if F^(o) =  0. Define the flux group Tm of M  by the image of the 
flux homomorphism, i.e.,

r M = imfF* : TnfSympofA/)) H \ M , R ) }  C H \ M , R ) .

The importance of this uoliou is due lo the fact lhal the Hamiltonian diffeomor- 
phism group Ham(M ) is closed in Symp0(M ) if and only if Tm is a discrete 
subgroup of H 1(M,  K). The siaiemeul lhal Tm is discrete is known as the flux 
conjecture. Then we obtain a relation between the flux group Tm of M  and

F *  : TrxfSympofM)) H 1(M,E)

(F J o ) , a ) =  (uj,0ta)
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the kernel of the Lefschetz map of M , where the Lefschetz map LefM of M , 

LefM : R) U[̂ ”1 i? 2n_1(M, R), is defined by LefM(a) = o U  Z ' 1.

Theorem 1.1. Let (M , lu) fee a compact symplectic manifold. I f  the Euler number 
x (M ) o f M  is not equal to zero, then the flux group T'm  o f M  is included in the 
kernel o f the Lefschetz map o f M , i.e., T'm  C ker(LefM).

A symplectic 2n-manifold (M, uj) is called Lefschetz if the Lefschetz map is an 
isomorphism. In the Lefschetz case, Theorem 1.1 implies the following corollary.

Corollary 1.2. Let (M , uj) be a compact symplectic Lefschetz manifold. I f  the 
Euler number y(M ) o f M  is not equal to zero, then the flux group T'm  «  trivial.

Let (M, ut) be a compact symplectic manifold of dimension 2n with the cohomol­
ogy class [uj] having a lift to an integral cohomology class h .  Donaldson [5] proved 
the existence of some integer N q such that for any N  > N q there exists a symplec­
tic submanifold i / 2(n_1) of dimension 2 (n — 1) that realizes the Poincare dual of 
Nh,  that is,

PD[F2(n-1)] =  N h  e H 2(M ).
Furthermore, such manifolds satisfy the Lefschetz theorem on hyperplane sections. 
This means that the inclusion t : i / 2(n_1) * M  is (n — 2)-equivalent. By repeating
this process, we get any even dimensional submanifold V 2m, 1 < m  < n — 1, with 
(m — 1)-equivalent inclusion t : V 2m —> M.  These manifolds are called Don­
aldson submanifolds of M.  Denote by Lefy2m the Lefschetz maps of Donaldson 
submanifolds V 2m, 2 < m  < n — 1. Then we get relations between Lefschetz 
maps.

Theorem 1.3 ([4]). Let (M 2n, ut) be a compact symplectic manifold and (V 2m, u>) 
be a Donaldson submanifold o f  (M , uj) for each m, 2 < m  < n — 1. Then

ker(LefM) =  ker(Lefy2m).

Using this fact, we get the following Corollary when (M, u>) is a Lefschetz mani­
fold.

Corollary 1.4. Let (M, uj) be a compact symplectic Lefschetz manifold. Then the 
flux groups T y 2m of Donaldson submanifolds V 2m are discrete for all dimensions 
2m, 2 < m  < n — 1.

In the case when (M, uj) is closed, Lalonde, McDuff and Polterovich proved that 
the flux group T m  of M  is discrete if the first Betti number B\(M ) is equal to 
one. Then we can show that the flux groups Tyzm of Donaldson submanifolds 
V 2m, 2 < m  < n — 1, are discrete under the same assumption as above, i.e., 
3 i(M ) = 1.
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Theorem 1.5. Let (M , tv) be a closed symplectic manifold with the first Betti num­
ber equal to one. Then the flux conjecture holds for all Donaldson submanifolds 
V 2m, 2 < m < n - l .

A compact symplectic manifold (M, tv) is said to be sympleetieally aspherieal if 
wI7t2(m ) =  0. In this case, we obtain that all Donaldson submanifolds V 2m of M  
are also sympleetieally aspherieal.

Theorem 1.6. Let (M , tv) be a compact, sympleetieally aspherieal manifold. Then 
all Donaldson submanifolds (V 2m,tv) o f  (M ,tv), 2 < m  < n — 1, are also sym- 
plectically aspherieal.

In the sympleetieally aspherieal case, the flux group I'm  is trivial if the center of 
the fundamental group of M  is trivial [4], Using this fact and the above theorem, 
we get the following result for Donaldson submanifolds V 2m of M .

Corollary 1.7. Let (M, tv) be a compact, sympleetieally aspherieal manifold. I f 
the fundamental group o f M  has a trivial center, then all flux groups o f Donaldson 
submanifolds (V 2m, tv), 2 < m  < n — 1, are trivial.

For any class <f> in 7ri(Symp0(M )), we can construct a symplectic fibration over 
S 2 with fiber (M, tv) (see Section 4 for details). Then, the fibration over S 2 gives 
rise to the Wang exact sequences

------ ► H t+2(Pfi) -  Ht (M ) ^  ^  H t+1(Pp) • • •

and

------ > HHPtj,) ^  HHM)  ^  ^  H t+1(P^) • • •

where d^A  =  [4>t (A)\, (9Ja, A) =  (a, d^A) for A  e  H fiM )  and a e  H l+1(M ). 
We say that a symplectic fibration is Hamiltonian if the corresponding loop of 
symplectomorphisms is homopotic to a Hamiltonian loop. Using the property 
Fuj(4>) =  0 if and only if <f e  (Ham(M )), we can prove the following

Corollary 1.8. Let (M , tv) satisfy one o f the following conditions:

i) (M , tv) is a compact, symplectic Lefschetz manifold,
ii) (M, tv) is a compact, sympleetieally aspherieal manifold with fundamental 

group having trivial center.

Then every symplectic fibration (M , tv) —» P^ —» S 2 induced by the element G 
7ri(Symp0(M )) is Hamiltonian. Furthermore, in the case ii), every symplectic 
fibration (V2m, tv) —> P^v2m S 2 induced by <py2m G 7ri(Symp0(U2m)) is also
Hamiltonian for all Donaldson submanifolds V 2m, 2 < m  < m  — 1.
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2. Relations Between the Flux Group and the Lefschetz Map

Let (M, u>) be a compact symplectic manifold. Recall that the Lefschetz map

LefM : H \ M ,  R) i f 2n_1(M, R)

defined as L e f^ N  =  [a] U [x>}n~1 for a class [a] e  R.) we can define an
evaluation map

ev : 7Ti(Symp0(M )) —» tti(M)
by ev(<̂ >) =  4>(xq), for a base point xq e  M.  By ev we denote a homomor­
phism from 7ri(Symp0(M )) to H \(M )  =  H\(M ,  Z)/torsion which is given by 
the composition of ev and the Hurewiez homomorphism h : iri(M) —> H \(M) ,  
i.e.,

ev : 7Ti(Symp0(M )) — > iri(M) H \(M) .

Lemma 2.1 ([9]). The following diagram is commutative up to a positive constant 

7ri(Symp0(M )) H-tiM) i f 2n_1(M)

7ri(Symp0(M )) —^  H H M M  UM" *> H 2n~ H M ,R)  
where P D  is the Poincare duality.

Let M m  be the space of continuous maps from M  to M.  Then goes to
iri(M)  under the evaluation map ev : —» iri(M).  Denote by G(M)  the
image of under the evaluation map. This G(M)  is known as Gottlieb
group of M.

Theorem 2.2 ([7]). Suppose X  has the same homotopy type as a compact con­
nected polyhedron. I f  the Euler number x(Jkf) is not equal to zero, then the Got­
tlieb group G(M) is trivial.

Proof of Theorem 1.1: For any f  =  {4>t} in 7ri(Symp 0(M )), f t  6 Symp 0(M) 
is in M m , for all t  e  [0,1], since Symp0(M ) C M m . Then the image of 
7ri(Symp0(M )) under the evaluation map ev(</>) =  ev({^(a:o)}) is included in 
the Gottlieb group G(M).  But G(M)  is trivial by Theorem 2.2. This means that 
ev : 7ri(Symp0(M )) —» H \(M )  has trivial image. Then, from the commutativity 
of the diagram in Lemma 2.1

7ri(Symp0(M )) H t iM )  i f 2n_1(M)

■> H X(M,  R) UN" *> i J 2«-!(M ,R )7ri(Symp0(M ))
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any class a in the flux group T m  =  Fw (xi (Symp0 (M ))) goes to the trivial element 

in R) by the Lefschetz map, H '(M .  R) U[̂ > * i? 2n_1(M, R). □

Now, we can prove Corollary 1.2.

Proof of Corollary 1.2: By Theorem 1.1, the flux group T m  is included in the 
kernel of the Lefschetz map Lef^f- That is, T m  C ker(LefM). On the other 
hand, we know that the Lefschetz map LefM is an isomorphism since (M , lj) is 
a Lefschetz manifold. Therefore, the kernel of L cJ'm is trivial and this completes 
the proof. □

3. On Symplectic Submanifolds

Let (M , u>) be a compact symplectic manifold. Donaldson proved the existence of 
symplectic manifolds of codimension two which can be realized by the Poincare 
dual of N h, for sufficiently large N , where h is the integral lift of uj.

Theorem 3.1 ([5]). Let ( M 2ti, uj) be a compact symplectic manifold and h 6 
H 2(M) be an integral lift of[uj\. Then for a large enough N  the Poincare dual o f 
Nh, in H 2n - 2 (M), can be realized by a symplectic submanifold V 2n~2 o f M 2n. 
Moreover, we can choose V 2n~2 such that the inclusion i : y 2n~2 —> M 2n is 
an (n — 2)-equivalence, i.e., the homomorphism : ^ ( V 2”-2 ) —> wk(M) is an 
isomorphism for k < n — 2 and an epimorphism for k  =  n — 1.

By repeating this process, we get for any even dimensional submanifold V 2m, 
1 < m  < n — 1, (m  — 1)-equivalent inclusions t : V 2m —> M.  These manifolds 
are called Donaldson submanifolds of M.  The following example shows that 
C P m, 0 < m  < n — 1, are Donaldson submanifolds of C Pn.

Example. Let Cn be the complex //-dimensional vector space with the standard 
symplectic form uj =  Y h= i dzi A dZj. Consider the Hamiltonian action of the 
circle S 1 on Cn given by e10(2i , . . . ,  zn) =  (e102:i , . . . ,  e10zn) with a moment map
H : C" ' R given by H ( z \ ....... zn) =  | |2 H------ V\zn \2. Then 1 e  R is a regular
value of H  and H ~ 1( 1) =  5 2n_1 is a smooth submanifold of Cn preserved by the 
circle action. Moreover, the quotient i f _1( l ) / 5 1 =  C P n~1 is just the symplectic 
reduction. The inverse image D (l) =  { ( z i , . . . ,  zn) e  Cn ; H ( z i , . . . ,  zn) < 1} is 
decomposed into the open unit disc D °(l) =  { ( z i , . . . ,  zn) e  Cn ; H ( z i , . . . ,  zn) 
< 1} and the unit sphere g 2n_1 =  { ( z i , . . . ,  zn) e  Cn ; H (z \ , . . . ,  zn) =  1}, 
i.e., D (l)  =  D °(l) U S 2n~1. By symplectic cutting, we have C P n = D°(  1) U 
g 2n- i  j g i  (£pn~ i. Considering this process, we have also C Pn D C P n~1 D
. . .  D C P 1 3  {pt.}.
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Recall that a symplectic manifold is called Lefschetz if the Lefschetz map LefM is 
an isomorphism. Then it follows from Lemma 2.1 that the flux groups are discrete 
for Lefschetz manifolds. Indeed, in the diagram in Lemma 2.1, the image of the up 
arrows is discrete in H 2n~1(M,  R). Then the flux group is discrete since u[iu]n_1 
is an injective map. Thus, we can show that the flux conjecture holds for Donaldson 
submanifold V 2m if the Lefschetz map Lefy2m is injective.

Proof of Corollary 1.4: By Theorem 1.3, the kernel of Lefy2m is equal to the 
kernel of LefM for each m,  2 < m  < n — 1. Since M  is Lefschetz, the kernel 
of LefM is trivial and therefore the kernels of Lefy2m are also trivial. This means 
that Lefy2m are injective maps for all dimensions 2m, 2 < m  < n — 1. Then, by 
the above statement, all flux groups TV2m are discrete. □

In the case when (M, u>) is closed, the following theorem is proved by Lalonde, 
McDuff and Polterovich.

Theorem 3.2 ([10]). Let (M , lu) be a closed symplectic manifold with the first Betti 
number B\ (M ) equal to one. Then the flux conjecture holds for M.

Donaldson submanifolds (V 2m, u>), 2 < m  < n — 1, are closed manifolds when 
(M, u>) is closed. Then we can obtain the same result as Theorem 3.2 for Donald­
son submanifolds.

Lemma 3.3. Let (M , ic) be a closed symplectic manifold and (V 2m, uj) be Don­
aldson submanifolds for M, 2 < m  < n — 1. Then the first Betti number o f V 2m 
is equal to the first Betti number o f M, i.e.,

0 i ( y 2m) = 3i(M)

for any m, 2 < m  < n — 1.

Proof: For a given closed symplectic manifold (M, u>), we can consider Donald­
son submanifolds (V 2m, u>) which are closed and have (m — 1)-equivalent inclu­
sions l : V 2m M.  That is, : iri(V2m) iri(M) is an isomorphism for 
i < (m — 1) and an epimorphism for i =  m.  Then, by Whitehead theorem, 
t* : H1(V2m) if i(M ) is an isomorphism for every m, 2 < m < n — 1. Thus 
we get that Bi(V2m) = 01 (M ) . □

Proof of Theorem 1.5: From the just proven Lemma 3.3, Bi(V2m) = BtiM)  for 
any m, 2 < m  < n — 1. Applying Theorem 3.2 to our case, we obtain the result 
we want. □

Now we consider flux groups of symplectically aspherical manifolds. Recall that 
a symplectic manifold (M, u>) is called symplectically aspherical if the symplectic
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form w o f M  vanishes on spherical images, i.e., f  uj : H 2(M) —> M. vanishes on 
i f f  (M ). This means that

for every map /  : S 2 —> M .  Then we can prove that every Donaldson submanifold 
is also symplectically aspherical.

Proof of Theorem 1.6: For any map /  : S 2 —» V 2m, 2 < m  < n — 1, we need 
to show that f s2 f*uj =  0. For a given /  consider a map / m : S'2 —> M  which 
is a composition of /  : S 2 —> V 2m with the inclusion t : V 2m —> M.  That is, 
/ M =  t o / : 5 2 - ^  V 2m - U  M.  Then,

uj =
f ( S 2)

t UJ =
/(S2)

UJ = j UJ.
» / ( S 2) J f M i S 2)

But JfM(s2) w =  I s 2 I m *uJ = 0 since (M, lj) is symplectically aspherical. □

Theorem 3.4 (see [4]). Let (M, uj) be compact and symplectically aspherical. I f 
tti(M) has trivial center, then the flux group o f M  is trivial.

Thus we can prove the triviality of the flux groups of Donaldson submanifolds of 
a symplectically aspherical manifold as stated in Corollary 1.7.

Proof of Corollary 1.7: Theorem 3.1 implies that the inclusions t : V 2m —» M  
are (m — 1)-equivalent. Thus t# : 7ri(F2m) —> iri(M)  is an isomorphism for all 
m,  2 < m  < n — 1. Then, by hypothesis, every center of fundamental group 
Z(7ri(F2m)) is trivial and Donaldson submanifolds are symplectically aspherical 
by Theorem 1.6. Finally, after applying Theorem 3.4 to our case, the proof is 
completed. □

4. Relations with Symplectic Fibrations

There is a correspondence between loops in the group of symplectic diffeomor- 
phisms and symplectic fibrations over S 2 with fiber (M, uj).  By definition, a sym­
plectic fibration is a such fibration for which the changes of trivialization preserve 
the given symplectic form uj on the fibers. In other words, the structure group 
of the fibration is Symp(M). The correspondence is given by assigning to each 
symplectic loop <j> in Symp0(M ) the fibration

(M, uj) —> Pj, —> S 2

obtained by gluing a copy of x M  with D f  x M  along their boundaries in the 
following way

f  : (2wt,x) i—>• (—2wt,(j)t (x)).
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Here Z>2 is the closed disc of radius one in the plane and

P,-, =  D.2 x M U „  Dfj x M.

We always assume that the base S 2 is oriented with an orientation induced by D .j . 
Note that this correspondence can be reversed: given a symplectic fibration over 
the oriented 2-sphere with fiber M ,  one can reconstruct the homotopy class of <j>. 
We can notice also that any given symplectic fibration P-, is Hamiltonian if 
Fui(4>) =  0, since Fw(4>) =  0 if and only if <j> e  7ri(Ham(M)).

Proof of Corollary 1.8: Ful(4>) =  0 if and only if 4> e  (Ham(M)). Thus, ev­
ery symplectic fibration (M , uj) ' Pr, ' S~ induced by <p e  7ri(Symp0(M))
is Hamiltonian if the flux group T m  =  im{Fw : 7ri(Symp0(M )) —» H 1(M,  R)} 
is trivial. By Corollary 1.2, the flux group is trivial in the case i) and the flux 
group is trivial when (M, u>) satisfies the condition ii) by Theorem 3.4. Further­
more, in case ii) all flux groups T V2m of Donaldson submanifolds are trivial by 
Corollary 1.7. □
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