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Abstract, I describe work in progress with Baryshnikov and Zhamitsky on 
periodic billiard orbits that leads one to an exterior differential system (EDS). 
I then give a brief introduction to EDS illustrated by several examples.

1. In troduction

The purpose of these notes is to introduce the reader to the techniques of exterior 
differential systems (EDS) in the context of a problem in billiards. The approach 
in this article is different from that of [13] and [16], which begin with a study of 
linear Pfaffian systems, an important special class of EDS. The billiard problem 
results in an EDS that is not a linear Pfaffian system, so these notes deal imme
diately with the general EDS. For the interested reader, two references regarding 
EDS are [6] and [13]. The first is a definitive reference and the second contains an 
introduction to the subject via differential geometry. For more details about any
thing regarding EDS the reader can consult either of these two sources. Cartan’s 
book on EDS [10] is still worth looking at, especially the second half, which is a 
series of beautiful examples.
We generally will work in the real analytic category, although all the non-existence 
results discussed here imply non-existence of smooth solutions.

Notation

If M  is a differentiable manifold we let T M ,  T *M  denote its tangent and cotan
gent bundles, Qd(M)  the set of differential forms on M  of degree d and Q*(M)  =  
®rfQd(M ). If I  c  T * M  is a subbundle (more precisely, subsheaf), then we let 
{ /}diff C n*(M ) denote the differential ideal generated by /, i.e, all elements
of Q*(M)  of the form a  A o + d,J A w where a, 3 e I  and Q,ip e Q*(M).
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denotes the linear span of the vectors Vi if they are vectors, and the 
subbundle of 0 1(M) they generate if they are one-forms.

2. O rig in  o f th e  B illiard  P roblem

Let D  c  R2 be a convex domain with its flat metric. Let A denote the standard 
Laplacian on D. Then Weyl [19] conjectured and Ivrii [14] proved

{number of eigenvalues of A < A2} =  —area(D)A2 ±  -length(9D)A +  o(A)
7T 4

where more precisely, Weyl proved the first term is indeed the leading term and 
Ivrii proved the correction term (the plus/minus signs here refer to Dirchlet/Neu- 
mann boundary conditions), but subject to the following possibly extraneous hy
pothesis:

That there does not exist a two parameter family o f periodic billiard trajectories 
in D.

In fact Weyl and Ivrii work in n dimensions but we have restricted to n =  2 case 
for notational simplicity. Also, Ivrii’s actual restriction was that there was not a set 
of positive measure of periodic billiard trajectories in the space of all trajectories, 
but for the problem at hand, that is equivalent to the statement above, as remarked 
in [17],
In what follows I will report on joint work with Y. Barishnikov and V. Zhamitsky 
investigating whether this additional hypothesis is actually necessary or not. But 
first, I must explain the hypothesis.

3. B illiards

Let C  C R2 be a smooth curve. A billiard trajectory is defined by a particle 
traveling in straight lines in the interior of C  and reflecting at the boundary subject 
to the law that the angle of incidence with the tangent line to the curve equals the 
angle of reflection.

Figure 1, Billiard trajectory.

A trajectory is periodic if it closes up and repeats itself. The number of collisions 
it has with the boundary of C  before repeating is called its period.
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For example, if C  is a circle, then there are many periodic trajectories.

Figure 2, Billard trajectory with period three.

Moreover, given a periodic trajectory in the circle one can construct a one param
eter family of such by varying the initial point and keeping the angle constant. It 
is also true that given an ellipse and a periodic trajectory on it, one can still obtain 
a one parameter family of periodic trajectories if one moves the angle just right as 
one displaces the initial point.

Figure 3, Billiard trajectory with period four.

One can locally parametrize the space of trajectories by putting a local parameter 
on the curve (e.g. arclength) and measuring the angle of the trajectory with the 
tangent line to the curve (one thinks of shooting out a trajectory from that point). 
In particular, the set of trajectories is a two dimensional space and the existence of 
a two parameter family of periodic trajectories would mean that there is some point 
on the curve C  such that no matter what small perturbation of the initial angle and 
initial point one makes, the resulting trajectory is still periodic.

Sound Preposterous?

Ivrii thought so. In fact, legend has it that Ivrii was attempting to prove the correc
tion term to Weyl’s formula and realized it he could prove it under the assumption 
that there are no periodic billiard trajectories in the domain. Fortunately for him 
(he thought), he was at Moscow State University, where there were many world ex
perts on billiards. Allegedly he went in to ask them if there could be such a curve 
-  they quickly answered: “Of course not!”, so he said “Great! May I please have 
a proof?” -  they said certainly. They had trouble coming up with a full argument 
immediately so they told him to come back later in the afternoon. He returned later 
that afternoon and they told him that perhaps it would be better to return the next
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day . . .  then it became the next week,. ..  All this was nearly 30 years ago and the 
question is pretty much as open today as it was then.

Some things are known: for a similar problem the answer is that there are such 
things: there exist compact surfaces with Riemannian metrics, all of whose geode
sics are closed [11]. These are called Zoll surfaces and there are more of them 
than was originally expected.
The progress on Ivrii’s question is as follows: we may break it up into a series of 
questions based on the period of the trajectory. It is easy to see that there can be 
at most a one-parameter family of two-periodic trajectories. (Hint: what happens 
when you change the angle a little?)
In 1989 Rychlik [17] proved that there are no curves supporting an open set of 
three-periodic trajectories. Now there are three published proofs of Rychlik’s the
orem [17, 18, 20], and in these notes I will give a fourth. The four periodic case 
is still open and that is the subject of my current research with Baryshnikov and 
Zharnitsky.

4. Setting up  th e  P roblem

The problem is local. If we want an //-periodic trajectory, we only need n bits 
of curve. We can later close up the bits any way we please (as long as it closes 
convexly).
Let z i , . . .  ,z n e  R2. We want to construct n (germs of) curves, one passing 
through each point. The initial points determine an initial ra-gon which in turn 
tells us what the tangent lines to the curves must be at the I.e., the n points 
immediately determine the zero-th and first order terms of the Taylor series for the 
curves.
Let

^  _  Z j  -  Z t + 1 _  Z j  -  Z j _ i

\zt - Z t+1\ |Zj - Z j_ i |
and note that Ni points in the direction of the tangent line to the curve we are trying 
to construct. Let n, =  N i/\N i\. Let Jrii denote the rotation counterclockwise of 
rij by 7t/ 2. We have the picture shown in Fig. 4. The tangent line at Zi must be 
perpendicular to Jrii. Let E =  (R.2)xn denote the naive configuration space (the 
actual space is an open subset of this) where p =  (z±,. . . ,  zn) c  E is our initial 
point. Define

tpi := (Jrii, dzi) e  0 1(E)
and for future reference set i f  =  (rii, dzf), let on be the angle between ej_i and 
Jrii, and let k  be the length of the section from Zi to Zi+±.
We have a distribution A on E, namely

A =  k e r{ # i,. . . ,  ibn} C TE.
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Figure 4, Our frame and eoframe pietorially.

Any two-parameter family of n-periodic trajectories corresponds to an immersed 
surface M  2 c— £  which is everywhere tangent to A and subject to some additional 
genericily conditions. More precisely, we have

Proposition 1 ([1]). There exists a one to one correspondence between (segments 
of) cun>es admitting an open subset o f n-periodic trajectories and immersed sur
faces i : M 2 —► £  tangent to A satisfying:

1. no two points coincide;
2. no three points are colinear;
3. any two consecutive points “move independently” in the manner made pre

cise in condition (1) described below.

Note that the first two conditions are zero-lh order conditions regarding the initial 
point in £  about which we waul to construct the surface. The last is a first order 
condition which may be described as follows:
Note that (r/1, . . . ,  77” , -ip1, . . . ,  ifp ) gives a basis of T*D and that this basis varies 
smoothly -  one says (771, y f)  form a coframing of £ . The precise form of condi
tion (3) for Proposition 1 is that

i*{rf A r f^ 1) is nonvanishing for all 1 < i < n (1)

where we use the convention that for indices n +  1 =  1.

How Can We Determine the Existence o f Such Surfaces?

Were we looking for n-folds, the answer would be given by the Frobenius theorem:

Theorem 1 (Frobenius theorem). Given pointwise linearly independent one- 
forms ip1, . . .  ,ipn on a manifold X m, there exists an immersed submanifold i :
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M m~n _» X  passing through p £ X  on which i*(tb f =  0 for all j  (i.e., with 
TXM  = A x := ker{ibj} for all x  £ M)  if  in a neighborhood o f p there exist 
one-forms a* £ 0 1(X) such that

dtp1 = a \  A ip1 + -----h ajj A tbn for all i. (2)

The condition (2) is often expressed as d #  =  0 mod fib1, In fact the
individual forms do not matter, just their span, so we could write I  =  {ib1, . . . ,  # n} 
and

d #  =  0 mod I  for all i.
Another way to express it is that locally if, X , Y  are vector fields lying in A, that 
[X, Y } also lies in A. (Exercise: verify that this is indeed equivalent.) Note that all 
these conditions involve beginning with first order information and differentiating 
it once -  if everything is Ok, then we are guaranteed solutions. That is, we can stop 
working after taking two derivatives.
Were we in the situation that there was just a single one-form, then Pfaff’s theorem 
(see, e.g., [6] § 1.3) guarantees existence of submanifolds of dimension roughly 
half the dimension of the manifold. Moreover, by computing the exterior deriva
tive of the one-form one can determine the precise maximal dimension of a sub
manifold on which the form pulls back to be zero.
To deal with the general setting of determining existence of submanifolds on which 
an ideal of differential forms pulls back to be zero, an explicit algorithm was devel
oped by ('art an and others. The algorithm also gives a rough estimate of the size 
of the space of such manifolds. (E.g., in the Frobenius theorem, there is a unique 
such manifold through a point but for Pfaff’s theorem, there will be “functions” 
worth of solution manifolds through a point.)
The essential question is: Given a candidate tangent space (a first order admissible 
Taylor series), can we extend it? I.e., can we “fit together” potential tangent spaces 
to obtain a solution submanifold?

5. EDS Term inology

Let V  be a vector space, let G(k, V)  denote the Grassmannian of fc-planes through 
the origin in V.

Definition 1. Let E be a manifold. Let I  c  0*(E) be a differential ideal, which we 
will call an exterior differential system. We let Xj c  fE(E) denote the component 
in degree j  and I  is an immersed submanifold i : M  ^  E such that = 0 for  
all o £ 'I.

As with many things in mathematics, we will work infinitesimally with the goal of 
linearizing the problem of determining the integral manifolds of an EDS.
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Definition 2. For x  e  E, we let

Vk(X)x := {E  e  G(k, TxE ) ; </>|B =  O/oratf £ 1}

which is called the variety o f k-dimensional integral elements to 1  at x. We
let G ( k , T E) denote the Grassmann bundle, i.e., the bundle over E whose fiber 
over x  6 E is G (k,T xTi), and let Vk(X) C G(k,  TE) denote the set o f all k- 
dimensional integral elements.

The first step in the ('artan algorithm is C artan’s test: one compares a crude es
timate (obtained from linear algebra calculations) of dim 14 (T) with its actual di
mension. If the two numbers agree, then the Cartan-Kdhler theorem guarantees 
local existence of integral manifolds. We can think of it as saying “if the second 
order terms for the Taylor series look good, everything is good.” If the test fails, we 
must take more derivatives to determine existence. This process is called prolon
gation. The Kuranishi prolongation theorem says that in principle one only needs 
to prolong a finite number of times before getting a definitive answer, but this is 
of little use in practice as the theorem gives no indication of how many times one 
must prolong (how many derivatives one needs to take). Before going into details, 
let’s examine some examples to develop our intuition.

6. PD E and  EDS

Example 1. Consider the PDE system for u(x, y) given by

ux = A(x,  y, u) 
uy = B(x,  y, u) (3)

where A, B  are given smooth functions. Since (3) specifies both partial derivatives 
of u, at any given point p =  (x, y, u) £ JR3 the tangent plane to the graph of a 
solution passing through p is uniquely determined.
Whether or not the plane is actually tangent to a solution to (3) depends on whether 
or not the equations (3) are “compatible” as differential equations. For smooth 
solutions to a system of PDE, compatibility conditions arise because mixed partials 
must commute, i.e., (ux)y =  (uy)x. In our example,

(ux)y = — A(x,  y, u)

(uy).r =  — B(x,  y, u)

A y(x, y, u) +  A u(x ,y ,u )  

B x (x, y, u) +  B u(x, y, u)

du
dy
du
dx

Ay +  B A U 

Bx +  A B„

so setting (ux)y = (uy)x reveals a “hidden equation,” the compatibility condition

Ay +  B A U — B x +  A B U (4)
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and the Frobenius condition is exactly the vanishing of this equation. To see this 
let

0 = du — A(x,  y, u)dx  — B(x,  y, u)dy.
Exercise. Show that (4) holds iff d0 = 0 mod 0.
Here we have the EDS X  =  {0}diff on E =  R3 but since this EDS comes from 
a PDE, we have an additional condition that we want our integral manifolds to 
satisfy, namely that x, y are independent variables on a solution. We encode this 
by setting O =  drc A dy and making the following definitions:

Definition 3. Let X  C 0*(E) be a differential ideal, and fl G On(E). The pair 
(X, fl) is called an exterior differential system with independence condition. An 
integral manifold ofX  is an immersed submanifold i : M  —» E such that i* (</>) = 0 
for all 4> G X and i*(fl) is nonvanishing. Note that we really only need fl up to 
scale and modulo X, so we sometimes refer to an independence condition as an 
equivalence class o f n-forms (the equivalence is up to scale and modulo X).

Remark 1. One can attempt to obtain solutions to the system (3) by solving a 
succession of Cauchy problems. For example fix y =  0 and solve the ODE

dw
—  = A(x ,0 ,u ) ,  u(0) = uq . (5)

After solving (5), hold x  fixed and solve the initial value problem
du
—  =  B(x,  y, u), u(x, 0) =  u(x) (6)

This determines a function u(x, y) on some neighborhood of (0,0). The problem 
is that this function may not satisfy our original equation, and it also may depend 
on the path chosen. The function is independent of path chosen precisely if the 
Frobenius condition holds, and in that case it gives the right answer too.

In general, given a first-order system of r  equations for s functions ua of n vari
ables, there exists a change of coordinates so that the system takes the form

u\l  = f l  (x,u),  . . . ,  Urx\ = f l t (x, u)

ulz = fl(x>U,Uxl), . . . ,  urxl  = f l 2 (x, U,UX 1 )

^ x n f l  ( T ’ ^ x i i U x n —1 ) ,  • • • i O x n f r n ( X j  U ,  U x i  , . . . , t l x n —1 )

where x = (x1, . . . ,  x n), u = (u1, . . . ,  us), uxj = duaf d x f  1 < a < s, 1 < j  <
n, and r\ < < ■ ■ ■ < rn =  s with r  =  r\ + -----h rn (see [9]).
We may be able to produce solutions of this system by solving a series of Cauchy 
problems. However, we need to check that equations are compatible, i.e., that
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mixed partials commute

Although it would be impractical to change any given system of PDE into the 
above form, converting this system to an EDS will guide us naturally to the analog 
of the above form. We can then apply a straightforward test that signals when no 
further compatibility conditions need to be checked.

7. C a r ta n ’sT es t

Let 1  be an EDS on a manifold E. Let p £ E be a general point and (p, E)  e 
Vn(I)  be a general point of Vn{I). The required generality can be made precise, 
see [13, 6] but we suppress that here. Intuitively, we want (p, E)  to be “like” its 
neighbors in some small open set in Vn{I).

Remark 2. Note that since we are dealing with (analytic) varieties, i.e., zero sets 
of analytic functions, there can be components to Vn{I)p. “A general point” means 
a general point of a given component.

As mentioned above, the test we are after will compare a codimension estimate 
obtained by linear algebra calculations with the codimension of a variety.

Definition 4. Let E  e  Vj (X)p and let ei , . . . ,  ej be a basis o f E. Define

H (E )  := {v £ TpE; 4>(v, n ....... €j) =  0 for all <j> £ Xj+i}

the polar space o f E.

Note that

1. H (E)  is well defined (i.e., independent of our choice of basis)
2. E  c  H{E)  and
3. determining H (E)  is a linear calculation.

The quotient H (E)  JE  may be thought of as the space of possible enlargements of 
E  from a p-dimensional integral element to a (p+1) -dimensional integral element. 
We will actually need to calculate the dimensions of a series of polar spaces.
Let E  £ Vn(X). Fix a generic flag E\  C • • • C En- \  C En =  E  in E.  Let 
Cj =  (H(Ej) ,TpY,), and set co =  Vi(X) =  dimXi- Note that if E has com
ponents, then Vi(X) can depend on the component, and for j  > 1, Vj(X) may 
have components even if E has just one component. Therefore, from now on we 
will write ej+1 (Vj+ i (X), G (j + 1 , TE)) to eliminate any possible ambiguity when 
discussing the codimension of Vj+iiX) at -Ey+i.
We have the following estimate
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Proposition 2.

Ej+1 (Vj+ i, G (j  +  1, TE)) > E] (V3, G(j ,  TE)) +  r ps  H (E 3).

The inequality is intuitively reasonable as the first term on the right represent the 
conditions to have a /-dimensional integral element and the second term repre
sents the new conditions for enlarging it to a (j  -I- 1)-dimensional integral ele
ment. Equality holding should be interpreted as V3+i being “as large as possible” 
at Ej+1. Adding up these inequalities, we obtain

Proposition 3.
s(V n, G(n,  TE) > co +  ci +  • • • +  cn_i. (7)

The Cartan-K ahler theorem states that when equality holds (assuming our gener- 
icity hypotheses about p and E),  there exists an //-dimensional integral manifold 
through p with tangent space M.  The test for equality holding in (7) is called Car- 
tan’s test. If an integral element passes Cartan’s test, we get a bonus -  a coarse 
estimate of the size of the moduli space of integral manifolds through p. Namely, 
if we set =  c^ — c^-i and let kg be the largest integer such that s^0 is nonzero, 
then integral manifolds depend roughly on s^0 analytic functions of kg variables. 
In particular if the largest kg is 0, then integral manifolds depend only on a choice 
of constants, as in the Frobenius theorem.

Other Possibilities

Vn(I )P = 0
More precisely, there exists a Zariski open subset of E over which there are no n- 
dimensional integral elements. In this case it is necessary to restrict to the (analytic) 
subvariety E ' c E  over which there are //-dimensional integral elements and start 
over, working at general points of E?. Note that E? may have several components 
and that one must perform the test on each component separately. If dim E? < n 
we are done, there are no //-dimensional integral manifolds.

Cartan’s Test Fails

Intuitively, this means we have not differentiated enough to uncover all compati
bility conditions and we must take more derivatives. It turns out that, rather than 
taking higher derivatives, it is notationally simpler to start over on a larger space 
where our old derivatives are replaced by independent variables. (This corresponds 
to the standard process of converting any system of PDE to a first order system by 
adding additional variables.)
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More precisely, forgetting about 1  for the moment, on tt : G (n ,T E ) —» E , con
sider the following tautological system: given (p, E ) e  G (n, TT,), we have E L c  
T*E. Define

W )  :=

For good measure we can add here the independence condition determined by 
An(tt*(T*TfI) ) .  Integral manifolds of the tautological system ({I}difr,^) with 
[O] e  An(7r*(T*E/J)) are precisely the Gauss images of immersed n-dimensional 
submanifolds /  : M  —> T.
Now let us return to our original EDS T  on E

Definition 5. The prolongation o f I  is the pullback o f the tautological system on 
G ( n ,T T )  to Vn( l )  C G (n ,T E ).

One then starts over with E replaced by Vn{I) and 1  replaced by the pullback of 
the tautological system. One then performs Cartan’s test, if it fails, one prolongs 
again, etc ...  For more details, see [13], § 5.5.

8. F irs t Exam ples of C a r ta n ’s Test

Example 0: A rbitrary Maps R2 —»l 2

Let the first R2 have coordinates x 1, x 2, the second coordinates u1, u2 and let 
E =  J ^ R 2, R2) ~  R8 with coordinates (xl , u f p j ) ,  1 < i, j  < 2.

Given a map /  : R2 —> R2, we define the lift of /  to E to be the set of points

x 1, x 2, f 1( x ) , f 2(x),
a / 1 a / 1 d f 2 d f 1
d x 1 d x 2

X
d x 1

X
d x 2

X

which is a coordinate version of the Gauss map of an immersion. Let

61 =  du1 — p \drc1 — p \d x 2

62 =  d u2 — p fd x 1 — P2 d x2.

Introduce the independence condition Q =  dx1 A dx2. Then integral manifolds 
of the system ({91, 02}difr, are in one to one correspondence with lifts of maps
/  : R2 -» R2.
The manifold E =  J 1(R2, R2) equipped with the system ({91, 02}diff, is called 
the space of one-jets of mappings R2 —» R2.
Let us perform now the Cartan’s test:
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Determination of cq +  ci

co =  2 because dim X\ =  2. The equations on any line {v} are explicitly 01(c) =
0, 6 2 ( v )  =  0.

To find ci, we need to take a generic {v} e  Vi- Write

v = a — r +  a — r 
o x 1 o xA

+  b i—— +  ea
d

dua

where here and throughout we use the summation convention that repeated indices 
are to be summed over. 93(v) =  ej — p^a1 — p2a2 so we may take

v =  a '------4" a ------
d x 1 d x 1 +  (pfa1 +  p fa2)

d
dua

where a3, Va are (general) constants.
To determine C2, we must find First, there are a  A 91, a  A 92 where a  is any 
one-form. We also have d93 =  —dp{ A da:1 — dp2 A da:2. To determine a possible 
enlargement of {v} we must calculate

d63(v, •) =  tr^dx1 —  a 1dpf +  6^da:2 — a 2dp \.

So any vector w in i f 1({c}) must satisfy the four linear equations

63( w )=  0, d63(v, w) = 0.

These are independent (check yourself!), so we obtain c\ =  4 and cq +  c\ =  6.

Determination of V2

Let G(2, TE) have local coordinates (xl , ua,pf; bla, cla, ea, f a) where the first set 
gives coordinates for the base point and the second for the plane v A w  where

V ~ d ^  + b l'i +  e dua

W - d ^  + c l d t f + f dua

We have the following conditions and consequences

e1^ )  = 0
92(v) = 0 
e1(w) = 0 
92(w) = 0 

d01(c A v j ) = 0 
d02(v Aw) =  0

Pi
Pi
P2
P%

0.
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These six equations are independent and we conclude =  6 and Cartan’s test
succeeds. Moreover integral manifolds “depend on two functions of two variables” 
which in this case we see explicitly, as we knew the solutions all along.

Example 1: The Cauehy-Riemann Equations uxxl =  u22, ux2 =  —«2

This example is the same as above, except that we now restrict to the submanifold 
£ ' C £  where p\ =  and p \ =  ~Pi- We still have co =  2 as 01, 92 remain 
linearly independent when restricted to £ ? but we now have c\ =  2.
Exercise. Be sure to express the initial v in terms of six variables (e.g., eliminate 
Pi, P%)-
Similarly, only four of the six equations for V2 remain independent. So, here we 
have the equality e  V2 =  4 =  co +  c\ =  2 +  2.
Here Cartan’s test indicates that integral manifolds should depend on two functions 
of one variable, which we also know to be the case as a (sufficiently generic) real 
analytic arc uniquely determines a holomorphic map C ' (1

Remark 3. Note that in both the above calculations, the calculation of V2( I )P 
was linear. There is a large class of EDS, called linear Pfaffian systems which are 
systems defined by one-forms for which this linearity holds. For such systems, 
there is a simplified version of Cartan’s test. Any system of partial differential 
equations expressed as the pullback of the contact system on the space of jets is a 
linear Pfaffian system, see, e.g., [13], example 5.1.4.

Example 2: Lagrangian Submanifolds

Let uj be the standard sympleciic form on R2”

l0 =  da:1 A dy1 + -----b da:n A dyn .

An //-dimensional submanifold is called Lagrangian if it is an integral manifold
Of 1  =  {w}diff •
Given (p, E) G Vn(X), we can make a linear change of coordinates (while keep
ing the form of uj) so that E  is annihilated by dy1, . . . ,  dyn. This is because the 
subgroup of GL(TpR.2n) leaving uj invariant is the symplectic group which acts 
transitively not only on Lagrangian n-planes but on all flags within them. Thus, all 
n-planes at all points are equivalent and genericity issues don’t enter. Any nearby 
integral n-planes at p are given by dyJ =  J2k s-^dad for s^k =  skK Therefore, 
dim(V„(T)p) =  (" J1) and

is independent of p and E.
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Let e \ , . . . ,  en e  E  be dual to drc1, . . . ,  dxn and we use e \ , . . . ,  en to build our flag 
in E , i.e., E j  =  (e i , . . . ,  eff. (By the remark above, there are no genericity issues 
to be concerned with.)
It is easy to calculate that for j  < n

H(Ej)  = { v e  TpR 2n; dyk(v) = 0 for all k < j }

so Cj =  j  for j  < n — 1. Since ci +  C2 +  • • • +  cn_i =  Q), we have involutivity, 
and integral manifolds depend on one function of n variables. In fact, they can 
be explicitly constructed by setting =  d f  fdx^  for /  an arbitrary function of
x i x n

9. Periodic B illiard  O rb its

We now return to the problem of finding //-periodic billiard orbits. We have the 
EDS

and several independence conditions: that each rf  A rf+1 is nonvanishing on an 
integral manifold. Fortunately we can reduce to a single independence condition 
thanks to the following

Lemma 1. It is sufficient to work with the independence condition rj1 A r f  (or any 
other o f the type rf A rf+1).

Proof: Let Xi  be a dual basis to rf  of kerXi. Take local coordinates p f  , p f  about 
[X± A X 2} where we write [u A to] as a nearby point with v =  X \  +  p f X a , 
W = X 2 +  P2Xa.
Introduce the notations a, =  coŝ f +1\  f)j = c°s(aj-i) wjjere we use the notation21■3- 1
of Section 4. One calculates (see [1]) that

drjf =  (a j i f +1 +  b j f f -1 ) A f f  mod J.

Moreover p c E implies that none of the aj, bj are zero at p.
Evaluating the d #  at v A w (that is, evaluating at an arbitrary point in our chart) 
we obtain the n equations on the

0 =  £Ii +  &1P2
0 =  Pla2 +  &2
0 =  _ (p M  ~ p M ) a3 +pfb3
0 =  (plpf -  pfpl)a4 +  (p'lpf -  P2Pi)b4 (8)

0 =  p%an +  (p^pl 1 -  P2 1prl)bn 

of which n — 1 are independent.
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The first equation implies p2 f  0, which implies that on an integral element on 
which r)1 A r f  f  0, we also have rf1 A r f f  0. The second equation implies 
pf f  0 which implies that similarly rj2 A r f  f  0. The third equation implies that 
(p2pf ~  P2P1 ) f  0 but this is exactly the condition that r f  A r f  f  0. Continuing, 
we see that r f  A r f  f  0 implies that all rf  A r f+1 f  0 on an integral element. □

Rem ark 4. Had we instead taken, e.g., r]1 A r f  as independence condition, (as
suming n > 3) we could not have drawn a similar conclusion, see [1],

Introduce notation Aj_i  =  (p{p32 1 — p2Pi X) with the convention that p\ =  p2 = 
1, p2 =  p2 =  0, so A i =  1. Then our equations (8) become

£ijAj_x — bji-ij — 0

which we may write in matrix form

/  0 0 0 . . .  0
a2 62 0 . . .  0
0 03 bz . . .  0

a 1

\  0 0 0 . . .  an_i bn- i ) \A n )

f ~ b i \
- a 2

0

V 0
and since the a, are nonzero, there is a unique solution for A 2, . . . ,  A n. Now 
A 2 =  pf  and A n =  p2 so pf , p2 are fixed and the remaining equations on the p f  
are independent. In fact one can solve explicitly for all the remaining p f  , p2 in 
terms of pf, p2, pf,  pf, . . . ,  p f -1 . Thus the space of integral elements satisfying 
the genericity condition is of dimension n — 3.

Proposition 4. The system (1, r f  A r f)  has V2(X) =  3 n — 1, cq = n, c\ =  2n — 2 
and thus fails Cartan ’s test by one.

Proof: Here co is just the codimension of the space of one-dimensional integral 
elements at a point of E. To calculate ci, one needs a sufficiently generic vector, 
Z  = X 1 +  • • • +  X n will do. One then sees that Z  is contained in a unique two
dimensional integral element. □

If one ignores the genericity conditions, as n increases the dimensions of integral 
manifolds can be arbitrarily large (see [1]). The next proposition states that with 
the genericity conditions, this fails even at the infinitesimal level.

Proposition 5. For all n, there are no three-dimensional integral elements to I  
satisfying the genericity conditions.

Proof: On a three-dimensional integral element, we must have say r f,  r f ,  f arja 
independent where 3 < a < n and the f f  s are some constants. First note that 
f n must be zero by considering d # 2, d # 1 respectively. But we also must have r f,
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r f  independent, and since fa =  0, this implies r f,  r f ,  f ar)a must be independent, 
which, using d # 3 implies that / i  =  0. Continuing in this fashion one obtains that 
all the f a must be zero. □

10. T hree  Periodic B illiard  O rb its

Here the space of integral elements satisfying the billiard conditions is a single 
point. Taking r f  A r f  as our independence condition, writing Cj =  eos(oy), sj = 
sin(oy), we see that on integral elements

r f  +
c \h
C2h

+
C3I1
C2h

r f  = 0.

Adding this form to the ideal and taking its derivative, we see

(9)

2 . c i h  1 c3li 3 V + — '?1 + —r r]i 
C2h C2i3

=  [(“  S3C1C2 +  C3S2C1 +  C3 SiC2 )ll +  (—C3S1C2 +  S3C1C2 +  C3 S2Ci)l2

r f  A r f
r 2/2 
c2t3

+  ( — C 3 S 2 C 1  +  S 3 C 1 C 2  +  C3 S i C 2 ) l 3 ]-

Thus, V i ( l ) x = 0 for general x  e  S  and we must restrict to the subvariety of E 
where

( — S3C1C2 +  C3S2C1 +  C 3 S iC 2 )ll +  ( — C3S1C2 +  S3 C i C2 +  C3S2Ci)l2

+  ( — C3S2C1 +  S3 C l C2 +  C - ^ S i C 2 ) h  =  0 .

Now recall that a triangle is uniquely determined, e.g., by two of its three angles 
and the length of one of its sides, we may write

7T
«3 = Oi\ — Oi2

l\ sm(2cK2) 
sin(7r — 2ot\ — 2 0̂2) 

li sin(2o;i) 
sin(7r — 2ot\ — 2 0̂2)

and substituting in, we obtain the equation

6Iicic2s iS2 =  0

which cannot occur on E.
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11. A Few Successes o f the  C a rta n -K a h le r  Theorem

11.1. The C artan-Janet Theorem

Given an analytic Riemannian manifold (M n, g), does there exist a local isometric 
immersion into Euclidean space En+S? The Cartan-Janet theorem states that for 
any analytic metric the answer is yes as long as s > Q ). If the metric is special 
one can sometimes do much better, see [8, 2, 7] for the cases of space forms and 
generalizations.

11.2. Manifolds with Exceptional Holonomy

Using EDS Bryant [5] showed that there exist non-symmetric Riemannian mani
folds with holonomy G2 and Spin7, settling the last open local existence questions 
in the Riemannian case of Berger’s 1953 thesis [3].

11.3. Existence of Calibrated Submanifolds

The abundance of special Lagrangian and other calibrated submanifolds was first 
proved by Harvey and Lawson [12] using the Cartan-Kahler theorem.
While describing the first two examples would involve too many definitions, we 
will explicitly describe two cases of applying the Cartan-Kahler theorem to prove 
existence of calibrated submanifolds.

Definition 6. A calibration on an oriented Riemannian manifold E is a closed 
differential form $  6 Ofe(E) such that for all unit volume (p ,E ) 6 G(k,  TE), 
<j>(E) < 1 .

There are many variants on the definition. Calibrations are a tool for finding vol
ume minimizing submanifolds of E because the fundamental lemma of calibrations 
says that if i : M  —> E is an immersed submanifold on which i*(4>) =  voIm then 
M  is volume minimizing in its homology class (assuming M  is compact, there are 
variations when M  is noncompact), see [12].
Recently calibrated manifolds have become of central importance because of appli
cations to physics. See, e.g., Joyce’s lectures in [15]. Calibrations may be thought 
of as generalizations of normalized powers of the Kahler form, which itself gives 
rise to an involutive system (the Cauchy Riemann equations!). We will discuss 
two additional calibrations, the special Lagrangian calibration and the associative 
calibration.
Sometimes a calibration a  has a complementary form a c such that

\a(E)\2 + \ac(E)\2 = 1 (10)
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for all unit volume planes E.  In such cases we may define an EDS whose integral 
manifolds are the submanifolds calibrated by a  by taking X  =  {ac}diff-

Example 2 (Special Lagrangian manifolds). On R2n =  Cn (or any Kahler mani
fold), consider the differential n-form

a  =  Re (d z 1 A • • • A dzn ĵ

where z^ =  dx^ +  idyO called the special Lagrangian calibration.
In the special Lagrangian case, a variant of (10) holds. If we take

a c =  Im (d z 1 A • • • A dzn"j

then, restricted to Lagrangian n-planes, (10) holds. Moreover, it is easy to see 
that any submanifold calibrated by a  is Lagrangian, so X  =  {u>, a c}difr is an EDS 
whose integral manifolds are the special Lagrangian submanifolds.
Given E  e  Vn(X), we can change the underlying coordinates so that E  is an
nihilated by dy1, . . . ,  dyn. (This is because the system is SU(n) invariant and 
SU(n) acts transitively on the special Lagrangian planes at a point and even tran
sitively on flags in special Lagrangian planes.) Taking e\ , . . . ,  en e  E  to be dual 
to da:1, . . . ,  dxn, we have Cj =  j  for 1 < j  < n — 2 as in Example 2 of Section 8. 
However,

u> =  da:"” 1 A dy"” 1 +  dxn A dyn

a c =  da:1 A . . .  da:"” 2 A (da:"” 1 A dyn -  da:n A dy"” 1)

shows that cn_ i =  n. The requirement that a c\e  =  0 is one additional equation 
(12j  =  0) on the set of Lagrangian n-planes so the codimension of Vn(X) is 
one greater than the Lagrangian case and the system is involutive, with solutions 
depending on two functions of n — 1 variables.

Example 3 (Associative submanifolds). The 14-dimensional compact Lie group 
G2 arises as the automorphism group of the normed algebra O of octonions 
(see, e.g., [13] § A.5), and leaves invariant a three-form (j) on R7 =  ImO, where 
4>(x,y,z) =  (x , y z }. Here {•,•) is the inner-product induced from the norm. 
This o  is a calibration on R7, and it admits a complement as in (10): o,- =  
|lm  ({xy)z -  (zy)x).
We define an EDS X  for associative submanifolds by taking the components of the 
ImO-valued three-form <pc as generators. (Since <pc is constant-coefficient, all of 
these generators are closed.)
Let E  e  VdX).  Then the stabilizer of E  in G2 is six-dimensional. Since G2 acts 
transitively on the space of three-dimensional integral elements, we conclude

(Vz(X)p, G(3, TpImO)) = 12 -  8 = 4.

I  moddy1, . . .  ,dyn 2
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On the other hand, for any flag in E,  co =  c\ =  0 and =  4 (two independent 
vectors in E  determine the third one by multiplication). Thus, 1  is involutive at 
E  (hence involutive everywhere, by homogeneity). Integral manifolds depend on 
four functions of two variables.
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