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Abstract, In this paper we describe the Euclidean signature curves for two 
dimensional closed curves in the plane and their generalization to closed 
space curves. The focus will be on discrete numerical methods for approxi
mating such curves. Further we will apply these numerical methods to plot 
the signature curves related to three-dimensional simulated DNA supercoils. 
Our primary focus will be on statistical analysis of the data generated for the 
signature curves of the supercoils. We will try to establish some relationships 
between the statistics and the shape of the signature curve. The hope is that 
these findings will provide a more efficient way for computers to search for 
and identify signature curves corresponding to similar DNA supercoils.

1. Introduction

When one begins the examination of signature curves, it is helpful to understand 
why they are so important. Signature curves are most useful in the study of com
puter vision applications because they allow any object to be represented by a 
unique curve which is invariant under Euclidean transformations such as rotation. 
The ability for a computer to view objects as invariant curves holds much promise 
for future developments in the field of artificial intelligence. Signature curves can 
also be used in medical imaging devices such as CAT or MRI scans. There are 
also many military and civil defense systems that can employ the use of signa
ture curves for object recognition purposes. Signature curves can be calculated for 
curves that are described by functions algebraically but this process can be difficult 
as the calculations get very tedious. However they can simply be created numeri
cally by methods described by Calabi et al, [2], These numerical methods can also 
be applied to find the signature curves of an image taken with a camera or other 
imaging device. One can find the boundary of such an image using a segmentation 
algorithm such as the method of active contours or snakes described in [4], and 
thereby create the corresponding signature curve.
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Figure 1, The Original curve C and its Signature curve S

Algebraically, the Euclidean signature curve associated to planar curve C  in M2 
that is parametrized by arclenglh s =  s(t) =  Jq \ J + y f, i.e. C  =  {x-(s), y(s)}, 
is the curve S  =  {k ,k s}, where k  =  k ( s )  =  x syss —  ysx ss is the curvature as a 
function of arclenglh and ks is its derivative with respect lo arclenglh.
The Euclidean signature curve is then displayed by simply plotting (k, ks). Il is 
important lo note however, lhal this formula for curvature only applies lo Euclidean 
signature curves. In order lo plot affine signature curves, the affine curvature and 
arclenglh must be used, see [2],
Figure 1 shows a graph of a curve C  in its parametric form x(t)  =  cos t  +  |  cos2 f, 
y(t) =  sinf +  i  sin2 1 followed by the graph of its algebraic Euclidean signature 
curve S. Note lhal if the original curve is rotated or translated in any direction, the 
signature curve S  remains unchanged.
Although the formulated approach lo finding curvature is effective for explicitly 
parametrized curves, il is not used in computer vision applications as il is not so 
easy lo fit a function lo a segmented image. Thus, il becomes important lhal curva
ture be approximated by some numerical method lhal respects the underlying sym
metry group. The process for approximating discrete curvature begins by placing 
three successive mesh points on the original curve (image). Three mesh points is 
optimal because the Euclidean curvature, as defined above, is a second order dif
ferential function. Lei A, B,  and C  denote the three points, and lei a = d(A, B), 
b =  d ( B , C ), c =  d(A,C)  be the distances between them. The circle passing 
though the points A, B  and C  in Figure 2 is an approximation of the osculating 
circle al point B. As a result, k  =  k(A,  B, C), which is the reciprocal of the radius 
of this circle, acts as an approximation lo the curvature al point B. We can apply 
Heron’s formula lo find the radius of the circle passing through these three points,
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Figure 2, Original curve with points A, B , and C and the circle going 
through these points
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Figure 3, The discrete version of the signature curve obtained numer
ically for the curve C of Figure 1

and thus find a good approximation of the curvature.

k (A, B , C)  so M A  B, C) = ^  = ± W  s(* -  a)(* -  b ) ( s - c )
abc abc

where s =  | ( a  +  b +  c).
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The first derivative of curvature can also be approximated using a centered differ
ence formula

Ks (Pi-2,  Pi -1,  Pi, Pi+l ,Pi+2)
K(Pj ,Pj+1, Pi+2 ) — K,(Pj-2 , P j - 1 , Pi) 

d(Pi+i ,  P i - i )

This formula is only accurate when the points are fairly regularly spaced around 
the curve, a more general formula was found by Mireille Boutin [1], Thus, the 
entire numerically discrete approximation to the Euclidean signature curve can be 
plotted by

( n ( P i - 1 , Pi, Pi+i),  Ks ( P i - 2, P i - i ,  Pi, Pi+ i , P i +2 )) ■

Figure 4 gives the smooth and discrete versions of the signature curve obtained 
numerically for the curve given in polar form r(9) =  3 +  ^  cos 30 +  cos 79.
As was stated previously, signature curves have many applications today in the 
field of medical imaging. One reason for this is that the signature curve for an 
object remains the same despite any rigid movement of the object, e.g. tilting 
at different angles. This fact is extremely useful for DNA imaging, since DNA 
is constantly in motion. In particular however, signature curves seem to be well 
suited for characterizing DNA supercoils. DNA supercoiling occurs when the ends 
of DNA strands are not allowed to rotate, which in effect causes the DNA strands to 
coil over each other. Since DNA supercoils are space curves, their signature curves 
are parameterized by the four basic differential invariants: curvature k , torsion, r ,  
and their derivatives with respect to arclength k , ks, t , ts. However, it has been 
proved [5], that a complete signature requires only three of them, namely, k , ks, 
t . The numerical invariant expressions for the differential invariants can be found 
in [1], For the time being, we examine signature curves by analyzing curvature 
versus the derivative of curvature and torsion versus the derivative of torsion.

Figure 4, The original curve and its smooth and discrete signature
curves
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One difficulty when considering signature curves is how a computer will interpret 
these curves and decide if they are representing similar or the same objects. Com
puters do not actually see signature curves the same way humans do, but they see 
them rather as a set of points that the curve is composed of. One possible way of 
interpreting these points is by applying various statistical measurements to them. 
For the most part these measurements will be unique to the data they represent, and 
thus provide an excellent way for computers to compare and identify the signature 
curve for a particular object. For this study we use the simulated points which were 
generated from a model to form three-dimensional DNA supercoils by the Numeri
cal Analysis group at Ecole Polytechnique Federate de Lausanne (EPFL) under the 
supervision of John Maddocks [3]. By using the purely numeric approach devel
oped in [1] coupled with a Mathematica program, we graph the signature curves 
using curvature k versus the derivative of curvature ks and torsion r  versus the de
rivative of torsion r s. Along with these curves, histograms for k , ks , t  and r s are 
also plotted and the following statistics for each of these variables are provided: 
mean, harmonic mean, median, variance, standard deviation, sample range, mean 
deviation, median deviation, quartile deviation, skewness, quartile skewness, and 
the Kurtosis excess [6],
One problem we are facing is how to compare both the derivative and non-deriva
tive versions of the histograms. However, since both histograms and their accom
panying statistical findings are representing the signature curve, it seems reason
able to take the difference or the sum of certain statistics to be a good indicator 
of an overall statistical measurement for a particular curve. We apply this method 
first by taking |kS D  — ksS D | where kS D  and ksS D  represent the standard de
viations for the curvature and its derivative, respectfully. We can then see that 
signature curves whose difference in standard deviations were low are much more 
spread out, than those whose difference in standard deviations are relatively high. 
One way to show this beyond simple observation is to examine the Kurtosis ex
cesses from both histograms where the standard deviations are taken as Kurtosis 
excess to measure the “peakedness” of the histogram. Thus, if the histogram is 
more peaked, the Kurtosis excess is high, and vise versa. Because of this, the sum 
of the Kurtosis excesses can be taken to get overall measurement of how strong 
the peakedness is between the two histograms. The graph in Figure 5 represents a 
linear regression plot of the difference in standard deviations versus the sum of the 
Kurtosis excesses. As one can see there is a fairly strong correlation between the 
two variables. However, this strong linear correlation may have to do in part with 
several outliers that were within the data.
Therefore, the difference in standard deviation for torsion and its derivative should 
also be considered. As one can see from Figure 6, there is a stronger linear re
gression (larger i?-Sq(adj)) present inspire the fact that the torsion and derivative
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Regression Plot
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Figure 5, Di(Terence Curvature Standard Deviation versus Sum of 
Curvature Kurtosis Excesses
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Figure 6, Difference Torsion Standard Deviation versus Sum of Tor
sion Kurtosis Excesses

of torsion histograms have more severe peaks to them, than the histograms for cur
vature and its derivative. This strong linear regression is a good statistical measure 
for representing the original curve and its signature curve.
As one can see the original graph in Figure 7 is very elliptical, and thus the sig
nature curves of curvature versus the derivative of curvature and torsion versus 
the derivative of torsion are very spread out. Similarly, if one examines the his
tograms for both curvature and torsion, they will see that the histograms are fairly 
uniform, and do not have any large spikes in them. On the other hand, the original
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Figure 7, The original curve and its signature curves
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Figure 8, The Histograms for the curve in Figure 7

curve in Figure 9 is not elliptical at all, and thus its signature curves are much less 
spread out than those in Figure 7. In addition, when the signature curve is lightly 
wound around the origin as in Figure 9, large arcing lines will represent any outly
ing points on the histogram. This is especially true when the sample range for the 
histograms representing the signature curve is large compared lo the mean value 
for the histograms’ points.

Figure 9, The original curve and its signature curves
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Figure 10, The Histograms for the curve in Figure 9
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Although much work has gone into these findings, there is still much that can 
be done in terms of a statistical analysis concerning three-dimensional Euclidean 
signature curves. In fact, due to the existence of heteroscedastic responses in the 
observed variances, one could use a variance-stabilizing transformation such as y 
for the regression model [6], Further, it would be interesting to actually apply some 
of these findings to real-life DNA supercoils and see how accurate by computer can 
identify these supercoils. This experiment could be run to judge just how effective 
statistics are as a way to identify signature curves for particular objects.

References

[1] Boutin M., Numerically Invariant Signature Curves, Int. J. Computer Vision 40 (2000) 
235-248.

[2] Calabi E., Olver P., Shakiban C., Tannenbaum A. and Haker S., Differential and Nu
merically Invariant Signature Curves Applied to Object Recognition, Int. J. Computer 
Vision 26 (1998) 107-135.

[3] Hoffman K., Manning R. and Maddoeks J., Link, Twist, Energy, and the Stability of 
DNA Minicircles, Biopolymers, to appear.

[4] Kiehenassamy S., Kumar A., Olver R, Tannenbaum A. and Yezzi A., Conformal Cur
vature Flows: From Phase Transitions to Active Vision, Arch. Rat. Meeh. Anal. 134 
(1996) 275-301.

[5] Shakiban C., Invariant Signature Curves in 3D, Preprint, 2003.
[6] Mendenhall W,, A Second Course in Statistics. Regression Analysis, Sixth Edition, 

Pearson Education, Inc., Upper Saddle River, NJ, 2003.


	SIGNATURE CURVES STATISTICS OF DNA SUPERCOILS

	1. Introduction

	K(Pj,Pj+1, Pi+2) — K,(Pj-2, Pj-1, Pi) d(Pi+i, Pi-i)

	(n(Pi-1, Pi, Pi+i), Ks(Pi-2, Pi-i, Pi, Pi+i,Pi+2)) ■


