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Abstract, The dynamics of vortex filaments has provided for almost a cen
tury one of the most interesting connections between differential geometry 
and soliton equations, and an example in which knotted curves arise as so
lutions of differential equations possessing an infinite family of symmetries 
and a remarkably rich geometrical structure. These lectures discuss several 
aspects of the integrable dynamics of closed vortex filaments in an Eulerian 
fluid, including its Hamiltonian formulation, the construction of a large class 
of special solutions, and the role of the Floquet spectrum in characterizing 
the geometric and topological properties of the evolving curves.

Introduction

Most of the well known soliton equations in one space dimension have been shown 
to describe integrable curve evolutions: among them the Vortex Filament Equation 
(or localized induction equation) [28, 34]; the mKdV equation modelling the dy
namics of boundaries of vortex patches [23]; the sine-Gordon equation which de
scribes constant torsion curves generating pseudospherical surfaces [16, 15]; and 
their higher dimensional generalizations [17, 37],
The understanding of connections between curve geometry and integrability has 
proceeded along several directions. Many of the fundamental properties of soliton 
equations have been given a geometrical realization: in the case of the Vortex 
Filament Equation (VFE), its bihamiltonian formulation and recursion operator, 
its hierarchy of constants of motion, and its relation to the nonlinear Schrodinger 
equation possess natural geometric interpretations [36, 11], For equations, such 
as the VFE, which describe curve dynamics in three-dimensional space, periodic 
boundary conditions give rise to closed and, in many cases, knotted curves. It 
is then natural to ask whether the infinitely many symmetries and the associated

11



12 Annalisa Calini

sequence of integral and spectral invariants are connected with the knot types of 
the evolving curves, as well as with their special geometric features.
This series of lectures addresses connections between integrability (namely the 
Floquet spectrum of a given solution), geometry and topology of closed curve 
solutions of the Vortex Filament Equation. We begin with a derivation of the 
self-induced dynamics of a vortex filament in an ideal fluid, and the Hamilton
ian formulation of the resulting evolution equation for closed vortex filaments in 
an appropriate infinite-dimensional phase space. We then introduce a transfor
mation discovered by Hasimoto which converts solutions of the Vortex Filament 
Equation to solutions of the cubic Nonlinear Schrodinger (NLS) equation, thus un
veiling its complete integrability. We conclude the first lecture with a geometric 
interpretation of the Hasimoto map in terms of the horizontal lifting of the curve 
to its frame bundle with respect to the canonical connection, and introduce its 
natural frame. In Lecture 2, after discussing some of the universal properties of 
integrability, we derive the inverse of the Hasimoto map: a reconstruction formula 
due to Sym and Pohlmeyer, which generates a solution of the VFE from a given 
NLS potential. Closure conditions for the reconstructed curve can be formulated 
in terms of a distinguished point in the Floquet spectrum of the associated NLS 
potential: we discuss this result by Grinevich and Schmidt as the first hint of the 
important role of the spectral invariants in the characterization of the properties of 
the curve. After illustrating these ideas for the simplest case of multiply covered 
circles associated with planar wave NLS potentials, in Lecture 3 we discuss the 
explicit algebro-geometric construction of iV-phase solutions of the Vortex Fila
ment Equation, following Krichever’s use of the Baker-Akhiezer function. These 
are the periodic analogues of solitons on infinite domains and realize, for N  2. 
3, curves of interesting topology, such as torus knots and cable knots. The final 
lecture contains a description of recent investigations by the author and collabora
tor T. Ivey of a possible relationship between the geometry and the knot types of 
closed VFE solutions coming from iV-phase NLS potentials and their associated 
Floquet spectra. We describe different approaches to answering this question: the 
use of exact formulas for i¥-phase solutions corresponding to curves with certain 
symmetries, perturbation methods, and the theory of isoperiodic deformations for 
investigating the topology of curves in neighborhoods of multiply covered circles.

Lecture 1

The Physical Model

The first mathematical model of the evolution of an Eulerian vortex filament, an 
approximately one-dimensional region of the fluid where the velocity distribution 
has a rotational component, was derived in 1906 by Luigi Da Rios [49], a student
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of Tullio Levi-Civita. A careful derivation of the self-induced dynamics of a vortex 
filament can be found in G. Batchelor [5]; a brief description of its set-up is given 
below (see also [8]).
Let u  be the velocity distribution of an incompressible (div(u) =  0) fluid filling 
an unbounded simply connected region in space, and assume that its voracity w  =  
curl(u) is concentrated on a smooth arclength parametrized curved y  of length L. 
We write

[L d y
w(x,t)  =  r j f  5 ( x - y ( s , t ) ) ^ - d s  (1)

where r  =  j> u  • dl is the (finite) circulation of u  around a closed circuit threaded 
by the vortex filament, and S is the 5-function in R3.
The Biot-Savart law gives the following representation of the velocity field in terms 
of the voracity of the fluid:

1 /■ j 3 /(x - x?) x w (x?) r
u  =  “ I-  d x ----n— :— Tin— " =  --T "4tt J x  — x? r  4tt

x  —7 (s,f) d y  
1------ -7 ^ 3  x - I d s .  (2)|x — 7 (s,f)||-i ds

d y
Since — -̂(s?, t) =  11(7 (3', £)), we obtain the divergent integral

T f  y ( s ' , t ) - y ( s , t )  d y  
d t K 4tt j  ||7 (s?, t) — 7 ( s ,t ) ||3 ds

which can be reduced to the following expression using a Taylor’s expansion about
s = s

d y T_
4tt

This is the self-induction approximation: only parts of the curve “close" to a 
given point determine the velocity field at that point. By introducing the “cut-off

r
Is — s?l > e and rescaling the time variable as t  —> ln(e )— t  in order to absorb

‘ 4w
the logarithmic singularity, one obtains (renaming s? —» s) the Vortex Filament 
Equation (VFE)

d y  d y  d2y
d t ds ds2

Equation (3) can be rewritten in more transparent form by defining the 1* t enet-
d y  d T

Serret frame of the curve: T  =  — , —— =  kN , B =  T  x N , with k(s ) the
ds ds

curvature function of 7. At a point of non-vanishing curvature the VFE can be 
rewritten as

d y
~dt

= kB (4)
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where the vectorfield is directed like the binormal to the curve, and is non-zero only 
where the filament has non-vanishing curvature (there is no self-induced motion of 
a straight line vortex).

The Hamiltonian Formulation

The Vortex Filament Equation can be derived as a Hamiltonian system on a suitable 
infinite dimensional symplectic manifold. Following the treatment in J.-L. Brylin- 
sky’s [9], we restrict consideration to closed smooth curves in three-dimensional 
Euclidean space.
Let X  =  {7 : S 1 —» l 3 ; 7  e  C°°(51,R 3)} be the loop space of R3. The infinite
dimensional group DifF+ (5 1) of orientation preserving diffeomorphisms of the 
circle acts on X  by reparametrization. The quotient space y  =  X /DifF+ (5 1) of 
unparametrized oriented loops is a singular space, as it contains curves with an 
infinite number of self-intersections or self-tangencies of infinite order, and these 
possess a non-trivial isotropy group. If X  is the subspace of immersions with 
finitely many self-intersections and with contacts of finite order, then DifF+ (5 1) 
acts freely on X :

Theorem 1 ([9]). The space o f oriented singular knots

y  = T'/DifF+(5 1)

is a smooth infinite-dimensional manifold modelled on C00(5'1,R.2).

A tangent vector at a point 7  e  y  is a smooth choice of normal vectorfield along 
the curve 7, therefore the tangent space T y y  can be identified with the space of 
smooth sections of the normal bundle of 7.
The following 2-form on T y  was introduced by J. Marsden and A. Weinstein in 
their study of vortex dynamics in incompressible fluids [44]:

r27r /  d-r \  , f 2̂  /d 7  .
lu~(u , v) =  / — x u  • v  ds =  / i/(— , u, v) ds (5)

Jo V as J Jo ds

where u, v  are arbitrary tangent vectors at 7, s is the arclength parameter, and v  is 
the standard volume form in R3.
The closure of uj is an immediate consequence of the fact that the exterior derivative 
of the volume form v  in R3 is identically zero. Nondegeneracy also follows easily. 
A symplectic form w on a finite-dimensional manifold M  determines a natural 
isomorphism

T M
X

T*M
uj(X , •)
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between tangent vectors and one-forms (see for example [2]). In particular, lo 
associates to any smooth function H  on M  (a Hamiltonian) a unique vectorfield 
X h  (and thus a Hamiltonian flow on M ) defined by

u ( X H, •) =  d i f  (•)• (6)
In the infinite-dimensional setting the correspondence T M  —» T*M  may fail to 
be surjective, i.e. not every Hamiltonian functional has an associated Hamiltonian 
vectorfield. However, the inverse map T*M  —> T M  exists and is well-defined for 
a class of functionals (see [9] for a discussion of this issue) which include the total 
length functional

/‘2'tt
A t ) =  /Jo

defined on arbitrary smooth closed curves. The Frechet derivative of £ ( t ) re
stricted to the arclength parametrized representative of 7  is

d27
=  - £ ■

d7
ds

ds (7)

Using the Marsden-Weinstein symplectic form one easily computes the associated 
Hamiltonian vectorfield

Y  _  dT v X c  — 7— X ds
“T

ds2
which coincides with the right-hand side of the VFE.
An immediate consequence of the Hamiltonian formulation of the VFE is that the 
total length of the filament is a conserved functional. A short calculation shows 
that local arclength is also preserved during the evolution, i.e. c^||7s || =  0 (the 
vortex filament moves without stretching), and that therefore s and t  are indepen
dent variables: we will see how the ability to “commute mixed partials” is at the 
root of the most interesting properties of the Vortex Filament Equation.

The Hasimoto Map

In 1972, R. Hasimoto [28] introduced the complex function q =  k exp(i J s r  els') 
of the curvature k and the torsion r  of a space curve, and showed that if the curve 
evolves according to the VFE (3), then q solves the focussing cubic nonlinear 
Schrodinger equation

1, ,o
m  +  qss +  2191 9 =  0.

To prove this result we introduce the orthonormal frame (T, U, V ), where 

U  =  cos( /  r d s ?)N  — sin( /  r d s ?)B

V  =  sin 1
S

r d s ?)N  -)- cos r  ds?)B.

(8)
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Using the Darboux equations for the new frame

T s =  « iU  +  K2~V, U s =  —« iT , V s =  —K2T  (9)

with k i =  k cos(J s t  ds?) and «2 =  « sin ( f s r  ds?), we rewrite the VFE as

~ft = —K2U  +  « iV . (10)

Differentiating (10) twice with respect to s, we obtain

Jtss =  — «2ssU +  KlssV +  (k i«2s — «2«ls)T. (11)

On the other hand ■jss =  « iU  +  K2V , from which we derive

Ifsst =  +  «2tV +  KiUt +  K2V  t - (12)

In order to compare equations (11) and (12), we observe that T t =  — «2sU +  « isV  
(this follows directly from differentiating (10) with respect to s), and that U f V  =  
—U  • V f  Using the Darboux equations (9) we compute

(U t • V )s =  U st • V  +  U t • V s =  —«l«ls — «2U t ' T
=  —KiKis +  K2U ' T t =  —K\K\S — K2K2s-

It follows that U t • V  =  — (k\ +  k^ )/^  +  A(t), where A(t) is an arbitrary s- 
independent function. Equating the right-hand sides of (11) and (12), we obtain 
the following system of equations

i  +

«21 ~

2 (Ki +  «!) — A(t) 

2 (Ki +  Kl) —

«2

k

~K2ss

ss

which reduces to

i ipt +  ipss + - \ ib f i j  -  A(t) ib  =  0 (13)

for the complex-valued function ip = k 1 +  i«2, and becomes the focussing nonlin
ear Schrodinger equation (8) if ip is rescaled to exp(—i Apt') dt')ip.

A Geometric Interpretation of the Hasimoto Map

Given a smooth arclength parametrized space curve 7 , its unit tangent vector T  
describes a curve in the unit sphere S 2 =  {x e R3 ; x \  +  x \  +  x 2 =  l}. Then, an 
orthonormal frame of the curve 7  can be identified with a unit tangent vectorfield 
to S 2 at 7.
Introduce the circle bundle of S 2

n S 2 = {(x, v) ; x e S 2, v e  TXS 2, ||v|| = l}
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together with the projection map tt : T \S 2 —» 5 2, ir(x, v) =  x, and fiber tt 1 (x) =  
5 1, where || • || is the inherited Euclidean norm from R3.

Remarks:
1. The group 5 1 acts freely on T \S 2 by fixing the base point x  and rotating v 
within the tangent plane to S 2 at x:

5 1 x T iS 2 — ► T \S 2
h ,-(x ,v ) — ► (x, kv).

2. We can construct a local cross section, i.e. a smooth map <p-1 : ir_1([7) —» 
U x 5 1 for some neighbourhood U of each point x  e  S 2. To do so, we choose a 
smooth unit vectorfield e(U) (for example, we can take the vectorfield 9U/||9 U|| in 
a local coordinate system (u, v)) and define </>(x, h) =  (x, he(x)). Since the 5 1- 
action is free and e(x) is smooth and never zero in (/. o  is smooth and invertible 
and so is o  1.
3. The properties described above define T \S 2 as a principal fibre bundle with fibre 
5 1 and base S 2.
4. The action of the orthonormal frame group 5 0 (3 , R) on T \S 2 given by 
g ■ (x, v) =  (<7x, gw), g £ 5 0 (3 , R), is transitive and free. We can then iden
tify 5 0 (3 , R) =  T i5 2.

We now summarize the notion of a connection in a principal fibre bundle and the 
construction of the canonical invariant connection for T \S 2 (see [31] for a compre
hensive treatment and [50] for a discussion of the circle bundle of a 2-dimensional 
Riemannian manifold). A choice of a connection in a manifold prescribes a way of 
parallel translating tangent vectors and of intrinsically defining a directional deriv
ative. In the case of a principal bundle P  with structure group G over a manifold

M
we best explain the role of a connection when lifting a vectorfield v 6 T M  to a 
vectorfield v 6 T P  in a unique way. For each p 6 P, let Gp be the subspace of 
TpP  consisting of all the vectors tangent to the vertical fibre. The lifting of v is 
unique if we require v(p) to lie in a subspace of TpP  complementary to Gp. A  
smooth and G-invariant choice of the complementary subspace is called a connec
tion on P. More precisely,

Definition 1. A connection on a principal bundle P  is a smooth assignment o f a 
subspace Hp C TpP, Vp £ P  such that:
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1. TPp = GP® H P
2. Hgp = (£g)*Hp, V<7 e G, £ g is the left-translation in G.

Given a connection, the horizontal subspace Hp is mapped isomorphically by dir 
onto T::ij))M. Therefore the lifting of v is the unique horizontal v which projects 
onto v.
An equivalent way of assigning a connection is by means of a Lie algebra valued 
1-form 4> (the connection form). If A  e 0 (the Lie algebra of G), let A* be the 
vectorfield on P  induced by the action of the 1-parameter subgroup etA. Since G 
maps each fibre into itself, then A* is tangent to the vertical fibre at each point. For 
each X  e TpP, let 4>(X) be the unique A  e 0 such that A* is equal to the vertical 
component of X .  Then 4>(X) =  0 if and only if X  is horizontal.

Proposition 1. A connection 1-form f  has the following properties:

1. 4>(A*) = A
2. (£g)*4> =  Adg4>, ¥<j> e G, Ad is the adjoint representation o f G.

The first property follows immediately from the definition of connection 1-form; 
for a proof of the second property we refer to [31].

We are now ready to construct an invariant connection on T \S 2. Define the in
volution a  on the group 50(3 , R) by a(g) =  T ~ 1gT, g e 50(3 , R), where T

is the matrix T  =   ̂ ^ . The identity component of the set of elements

h e G invariant under the action of a  is the subgroup of elements of the form

h =  ^ j which can be identified with the group 5 0 (2 , R). The resulting

symmetric homogeneous space 5 0 (3 ,R )/5 0 (2 ,R )  is naturally diffeomorphic to 
the 2-dimensional sphere. This can be shown, for example, by constructing a suit
able transitive action of 5 0 (3 , R) on 5 2.
The group involution a  induces a Lie algebra automorphism a' on g =  so (3, R),  
which inherits the direct sum decomposition

0 =  f)®e

where f) =  { X  e 0; cr'X =  X} is the subalgebra of the invariant subgroup H  =  
5 0 ( 2 ,R) and 6 =  {X e 0; cr?X  =  -X } .
Let 9 be the canonical 1-form of 5 0 (3 , R), i.e. the left-invariant 0-valued 1-form 
defined by

9(A) = A,  A  e g .

Then
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Theorem 2. The f)-component o f the canonical 1-form 0 of 5 0 (3 , R.) defines a 
left-invariant connection on T \S 2.

Let now (V, E \, E 2) be the canonical basis for the Lie algebra g such that V  spans 
the vertical space f) and (E \, E 2) span the horizontal subspace 6. We have

[V, E ! } = E 2, [V, E 2\ = - £1, [Eu  E 2) = V.

Setting 9 =  <pV +  uj\E i +  lo2E 2 and using the Maurer-Cartan equation

d 9( X , Y)  = - h ( [ X , Y } ) ,  X , Y  e  g

we obtain the structure equations for the dual basis (<p, uji, uj2)

dcp =  —uJi A uj2, d w i  =  <j) A uj2, duj2 =  —(p A uj\.

Remarks:
1. If the Riemannian metric on S 2 is the restriction of the Euclidean metric on R3, 
then the invariant connection constructed above coincides with the Riemannian 
connection on T\ S 2 (the unique connection which leaves the metric invariant and 
has zero torsion).
2. The 1-forms uj 1, uj2 can be explicitly defined in terms of the Riemannian struc
ture and the isomorphism d?r : i?(x,v) —> TXS 2 between the horizontal subspace 
at (x, v) and the tangent space to S 2 at x. The horizontal basis vectors (E i , E 2) 
can be identified with the orthonormal basis (ei, ie i) of T0S 2, where iei is the 90° 
rotation of e i within the tangent plane. Then for t  e  T(oe ijT iS 2, u>i|(0 eij (t) 
and LU2|(o e i) (t) are the components of d7r(f) with respect to e i and iei (e.g., 
u>i |(0 ei) (t) =  (d7r(f), e i ), where (, ) denotes the metric on S'2). Since u>i, uj2 are 
invariant under the circle action, we can define them on all tangent vectors v  =  he 1 
at o , h £ S 1. The left-invariance of the metric under the full group action defines 
them everywhere:

^i|(x,v)(*) =  (d7r(t),v), w2|(x,v)(*) =  (d7r(t),iv), t £  T(X)V)TiS2.

Given the curve c(s) =  T(s) described by the tangent indicatrix of 7  in S 2, we 
construct the unique horizontal lifting cQ =  (T, v), with v(0) =  N(0) (i.e. we 
require that cQ agrees with the Frenet frame at s =  0). In order to compute the 
tangent vector field to c0, we work in a local coordinate patch U C S 2 and use the 
map 4> : U x S 1 — > 7T~1(U) to identify 7r_1(C/) with U x S 1. In a local patch, 
there exist smooth real-valued functions 0(s), S(s) for which (T, N) =  (T, e^W ) 
and

c0(s) = (T (s), h(s)), with h(s) = e  S 1.
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If da denotes the unit tangent vector field to S 1 and r  : 

map r(a)  =  e1Q, thei 

velocity field of cQ is

-> S 1 the exponential
( \ 10L A dh d(B + 5 ) A f d \  d (8 + S ) a ^  ^map r (a )  =  e , then —  =  ---------- -d r  —  =  ---------- -oa . Therefore the

ds ds V ds/ ds

dc0 / / d 0  d S \

d7 “ l™' l dl+ ~s) e“
The lifting cQ is horizontal if and only if the component of its tangent vectorfield
, u • . d8 dS c . d8 e ,along the vertical fibre vanishes, i.e. when —  =  —— . Since —  =  r  (in fact, the

ds ds ds
covariant derivative of the unit normal vector satisfies V t N  =  v B =  rd a), then 
*00 =  -  Jo r(u)du  and we obtain the following expression for the horizontal 
lifting

Ch(s) =  ^ T (s),e  1Jo T(u)du]Sf'j = ^T, cos ( ^ j  r d u j

where we define the binormal vector B =  iN.
The orthonormal frame

N  — sin rd u  I B

r d u  I N  — sin r d u  I B

r d u  N  +  cos r d u  I B

U  =  cos 

V  =  sin

given by the horizontal lifting is known as the natural frame of the curve j  (see [7] 
for some history and further discussion), and satisfies the following Darboux equa
tions

dT
ds

dU
ds
dV
ds

=  K COS

=  —K COS

=  — Ksin

r  d u j  U  — k sin 

r d u  ) T

r d u  V

(14)

r d u  I T .

Correspondingly, the components of the projection of the velocity field of the hor
izontal lifting with respect to U  and V  are called the natural curvatures:

'd£h'
{Ch V ds

'd  ch '

K\ — UJi\

Ko =  UJo |

={kN , cos ( Jq t  du) N — sin (Jq rdu ) iN) =k cos (JJ t  du)

Ch \  ds
= (kN , cos (Jq t  du) iN — sin (Jq t  du) N )=n sin (Jq t  du)

We summarize this discussion by giving the following interpretation of the Hasi- 
moto map H  : ■j(s) — > q(s) =  k(s) exp (i Jq t  du).
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Proposition 2 (A. Calini).

h ( 7 )  =  ( ^ ) .

Given the parallel transport o f the Frenet frame o f j  with respect to the canonical 
connection on T \S 2, the image o f the Hasimoto map is the projection o f its velocity 
field onto the tangent space to S 2 at the curve described by the unit tangent vector 
o f j ,  TCS 2 = C.

Remarks:
1. A natural frame (a choice of a parallel vectorfield) exists at every point along 
the curve, while the Frenet frame is not defined where the curvature k ( s ) vanishes. 
In fact, once the vector v(0) is chosen, its horizontal lifting is unique.
2. The Frenet lifting of a closed curve is closed, however the horizontal lifting 
needs not be. The condition for a closed lifting is the following quantization condi
tion for the total torsion: j> r d u  = 2irj, j  6 Z. Since q(2ir) =  q(0) exp(i j> r  du), 
periodic solutions of the VFE are in general mapped to quasi-periodic solutions of 
the NLS equation.

Lecture 2

Some Consequences of Integrability

In 1972 Zakharov and Shabat [53] proved the complete integrability of the cubic 
nonlinear Schrodinger equation, adding it to the growing list of soliton equations. 
This special class of nonlinear partial differential equations gained its importance 
in the mid-sixties with M. Kruskal and N. Zabuski’s observation of solitary wave 
solutions of the Korteweg-de Vries equation (KdV), and with the development of 
the inverse scattering method for the KdV equation by Gardner, Green, Kruskal 
and Miura. Several features shared by these nonlinear equations make them the 
infinite-dimensional counterparts of completely integrable Hamiltonian systems in 
finite dimensions.
We summarize some of the most important properties of integrable PDE’s. A good 
overview of the subject can be found in the book by A. Newell [45] and a very clear 
exposition is contained in the book by G. Lamb [34]; we also refer to M. Ablowitz 
and H. Segur’s monograph [1],
Integrable PDE’s possess a class of special solutions widely known as solitons. 
These are solitary waves in the form of pulses whose behavior is particle-like. 
During their evolution, solitons propagate without change of shape and with no 
energy loss. When two or more solitons with different propagation speeds collide, 
the pulses emerge with the same initial shapes (but with a shift in the phases), 
and no energy is lost in radiation processes during the nonlinear interaction. The
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1- and 2-soliton solutions for the Vortex Filament Equations were first computed 
by H. Hasimoto [28] and S. Kida [30]; the periodic analogs of solitons (the N -  
phase solutions) were derived by A. Sym [52] for the case N  2. and the explicit 
formulas for general N  will be discussed in Lecture 3 (see also [11]).
Soliton equations possess an infinite sequence {Ik}kLi  of constants of motion (or 
integral invariants), whose gradients are linearly independent and whose associated 
Hamiltonian flows pairwise commute (i.e., the IF  s are in involution with respect to 
a given Poisson structure). For example, the focussing cubic nonlinear Schrodinger 
equation

1, l2
m  +  qss +  77 M v  =  o 

can be rewritten in Hamiltonian form

qt = {H,

with Hamiltonian functional

q } = J
5H

H[q] = /  ( |gs|2 -  k l4)ds
Jv

with respect to the inner product

( f ,g)  = l l R• [  f(s )g (s )d s2 Jv
and the Poisson bracket

s f  r \  = /  t SJ L  =  • [  ( 5J L 5J 1  _  5J L 5J 1
1 , 1  V  6 q ’ Sq /  JvK S q  Sq Sq Sq

ds.

V  denotes the domain of solutions, SF/Sq the Frechet derivative of the functional 
F(q,q),  and J  =  i is the standard symplectic operator of the NLS equation.
The first few NLS invariants are

h  =  j^ \ q \ 2ds, h  =  j^ ( q s q - q sq)ds, I3 =  ^ J  (|gs|2 -  |g|4) d s , . . . .

They satisfy {Ik, I j }  =  0, V&, j  and their gradients are linearly independent. The 
first few conserved functionals for the VFE are listed below:

J - 1 =  / Halids,  Jo =  rd s  
Jv  Jv

J \ =  f  - k2 ds, J2 =  [  K2rd s ,  J3 =  [  \(k s)2 +  k2t 2 — k4] d s , ----
J v  2 J v  Jv  1 J

The first two invariants (total length and total torsion of 7) do not have a corre
sponding NLS invariant, while the remaining conserved quantities are associated 
with NLS invariants via the Hasimoto map.
In his seminal 1978 article, F. Magri [42] discovered the existence of a second 
symplectic operator fC for the NLS equation, compatible with J  and such that
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the NLS equation can be rewritten as a Hamiltonian system with respect to two 
different symplectic structures and two different Hamiltonians:

&H
Qt = Sq

K.
SH'

Given two compatible symplectic operators, one constructs a recursion opera
tor 71 =  K .J -1 which generates an infinite sequence of Hamiltonian vector- 
fields X n =  lZnXo, and an associated family of Poisson structures {F, G}n =

5q 5q
For asymptotically linear boundary conditions, J. Langer and R. Perline [36] stud
ied the biham iltonian structure of the Vortex Filament Equation and showed that the 
VFE and NLS equations can be regarded as the same Hamiltonian system written 
with respect to two different Poisson brackets. More precisely, the Hasimoto trans
formation is a Poisson map satisfying { / o 7L, g o =  { /, <?}nls (W(t )),
i.e., 7L maps the Marsden-Weinstein Poisson bracket to the fourth NLS Poisson 
structure.
As a consequence of the existence of a hierarchy of invariants, the phase
trajectories are restricted to lie on the infinite codimensional intersection of the 
level sets Ik =  c*, k  =  1 , . . . ,  oo. In the case of a finite-dimensional phase space, 
the preimage of a regular value c of the momentum map I  =  ( I i , . . . ,  In ) is dif- 
feomorphic to a product of circles and lines [2], and the dynamical system can 
be described in terms of the linear evolution of a collection of action-angle vari
ables. For completely integrable PDE’s, the inverse scattering method explicitly 
constructs a nonlinear change of variables that linearizes the flow. The KdV equa
tion was the first soliton equation for which the inverse scattering method was 
developed: in this case, the analogues of action-angle variables are the scattering 
data of a related linear Hamiltonian recursion operator. The initial value problem 
for the KdV equation can then be solved exactly by mapping the initial condition 
to its scattering data, evolving the scattering data according to a linear evolution up 
to time t, and using the inverse transform to reconstruct the solution of the original 
PDE at time t.
At the heart of the inverse scattering method for the KdV equation is an underlying 
linear operator £ , whose spectrum does not vary under the KdV evolution [39]. If 
the spectrum of £  is independent of time, then its evolution can be written as

£(t )  =U ( t ) £ ( 0) U- 1(t) (15)

for some time-dependent unitary operator U(t). It follows directly from equa
tion (15) that, if some function <p solves the eigenvalue problem £<ft =  \<p, then <p 
is also a solution of the linear system <pt =  B<p, where B  =  UfU~1. Differentiating
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equation (15) with respect to time gives Lax form of the KdV equation

A  =  [B, C)

where the operators L  and B  are called a Lax pair for the soliton equation. Lax 
also showed the existence of an infinite sequence of operators BE  s that give rise 
to spectrum preserving evolutions of C: the corresponding hierarchy of Lax equa
tions coincide with the infinite sequence of commuting Hamiltonian KdV flows 
mentioned above.
An alternative and more common representation of the NLS equation (8) is as the 
solvability condition of the following pair of linear systems [22]:

F s =  U F  
F f =  V'F

(16)

where F  is an auxiliary complex vector-valued function,

U =  iA<73 +
29

!F  =  (2iA2 - - | g|2)C73 + 2iAg +  l q s
2iAq -  y s

are matrices whose entries depend on s and t  through the complex-valued function 

q, and a3 = (  q ^  J . The parameter A is called the spectral parameter. Differ

entiating the first equation of the overdetermined system (16) with respect to t, and 
the second equation with respect to s and equating the mixed partial derivatives, 
one obtains

dU d V  fTTTrl
W ~  a 7  +  [c/’1 ] - °

(17)

which is equivalent to the NLS equation (8) for the complex potential q. Sys
tem (16) can be interpreted as the equations of parallel transport in the trivial vector 
bundle R2 x C2, where the vector function F  takes values in the fibre C2 and the 
matrices U and V  are local connection coefficients. Then, equations (16) express 
the fact that the covariant derivative of F  is zero and equation (17) expresses the 
flatness of the (U, F)-connection on R2 x C2. For this reason, linear systems of the 
form (16) are also called the zero curvature formulation of the associated soliton 
equation.

The Inverse of the Hasimoto Map

The skew-hermitian matrices

Ei  =  — icr3 = - i  0 
0 i , Eh — iex2 —

0 1 
- 1  0 , Ev, =  —ioi = 0 i

1 0

where the crj’s are the Pauli matrices form a right-handed orthonormal basis for 
the Lie algebra su(2) with respect to the inner product {A, B) =  — |  traee(AB),
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.4. B  c  su(2). Then, the map

(K V ) —  (su(2), (, ))

x _  - t x t E k (18)
k=1

is an isometry. Let (T, U, V) be the image of the natural frame (T, U, V ) via the 
isometry (18). Since the group S U (2) acts transitively on the space of orthonormal 
triples, there exists 9  e SU (2) which conjugates the matrices of the “natural 
frame" to the basis (E\,  E2, E 3):

T  = 9  ' Ef 9 .  U = 9  'E-29.  V  = 9  ' E-,,9.

The Darboux equations (14) for the natural frame can then be written in the fol
lowing form

E u  f V 1
ds —K1E 2+K2EZ, E 2, f V 1ds

t' \ E \ .
A9
d s '

9 -1 K2E 1.

We obtain 1 =  -~^-E^  +  -^-Ei,  which coincides with the spatial part of
qs 2 2

the NLS linear system (16) at A =  0:

dO _  /  0 ig/2 \  
ds “  \  iq/2  0 P l (19)

The above discussion rederives a result originally due to A. Sym [51] and K. Pohl- 
meyer [47] which allows the recostruction of the curve 7  =  77_1[g] associated 
with an NLS potential q via the Hasimoto map:

Proposition 3 (A. Sym [51] and K. Pohlmeyer [47]). Let $  be a matrix o f inde
pendent solutions o f the NLS linear system (16) with 4>|s=0 6 SU  (2), then

1. the skew-hermitian matrix representing the unit tangent vector o f the asso
ciated solution 7  o f the VFE is

T  =
A=0

(20)

2. the skew-hermitian matrix T which represents the position vector o f 7  is 
given by

1 d$
T(s, t )  = -  $ _1 —

dA
+ r0 (21)

A=0
where To is a constant matrix representing the initial position vector at 
8 =  0.

Remarks:
1. The reconstruction formula (21) is obtained by differentiating the spatial part 
of the NLS linear system (16) with respect to the parameter A and evaluating the
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resulting expression at A =  0. One obtains T  =  —  (—$  $ \)  , and computes
d s  I A=0

the expression for the matrix T by taking an antiderivative with respect to s.
2. The described procedure is equivalent to reconstructing the curve by solving 
its Frenet equations for given curvature k and torsion r .  However, for several 
classes of NLS potential, including multi-solitons and iV-phase solutions, the Sym- 
Pohlmeyer reconstruction formula produces many explicit solutions of the VFE.
3. Formula (21) evaluated at A =  Ao /  0 produces a curve of the same curvature 
as 7  and torsion r  +  Aq.

Closure Conditions

A generic periodic NLS potential q(s — L. l )  = q(s,t)  does not produce a closed 
curve 7  =  H ~ 1(q), nor a closed Frenet frame, unless

T (s +  L, t )  =  T (s, t) (periodicity of the tangent vector)

[  T (s, t) ds =  7 (L) — 7(0) =  0 (closure of the curve).
Jo

Since the closure of the initial curve is preserved by the VFE, we drop 
the f-dependence in following discussion, which summarizes P. Grinevich and 
M. Schmidt’s [26] reformulation of the closure conditions of 7  as conditions on 
the Floquet spectrum of the associated NLS potential q.
Consider the simultaneous eigenvalue problems

for the operators £  =  —i03-— h
d s

(the spatial part of the NLS linear

£4> =  A 4> (22)
1S</> =  vj<ft

0 iq/2  
iq/2  0

system (16)), and S  : (Stfi)(s) =  <p(s +  L) (the shift operator). Since £  and S  are 
commuting linear operators, system (22) generically admits non-!rivial solutions 
(known as Bloch eigenfunctions) and one introduces the spectral curve of q:

C(q) = j(A ,«;) e  C2; 3 a non trivial Bloch eigenfunction <̂ J .

For general A 6 C, there exist two linearly independent eigenfunctions (f>1, 
with distinct multipliers wi ( \ )  ^  W2(X) satisfying \wiW2\ =  1. Therefore C(q) 
is a double cover of the A-plane (i.e., a hyperelliptic Riemann surface), branched 
over the A’s at which the multipliers coincide (wi( \ )  =  ^ (A ))  and the Bloch 
eigenfunctions fail to be linearly independent (4>1 =  c<̂ 2)- The branch points of 
C (q) are the endpoints of the continuous spectrum (known as Floquet spectrum 
for linear operators with periodic coefficients) of £(q)

a(q) =  {A e  C ; |u;(A)| =  1}.
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An equivalent definition of the Floquet spectrum of C(q) can be given in terms of 
the Floquet discriminant A : {periodic functions} x C ^ C  defined below. (See, 
e.g., [21,41] for discussion and proofs of the properties of the Floquet discriminant 
functional.)
Let $(s;A ) be the fundamental solution matrix of £<fi =  Atfi (i.e., satifying 
$(0; A) =  I). We introduce the transfer matrix $(T; A) across a period L. It 
is easy to check that $(T; A) has determinant 1, and as a consequence its eigenval
ues are completely characterized in terms of its trace

A(g; A) =  trace [$(T; Ai)]. (23)

The function A (q; A) is called the Floquet discriminant of the linear operator £(q).  
Then, the Floquet spectrum of £(q)  is the set of eigenvalues for which the associ
ated eigenfunction is bounded for all values of s:

a(q) =  {A e  C ; A(g; A) 6 R. and — 2 < A(g; A) < 2} .

The Floquet discriminant has the following properties (property 1 follows from the 
analytic dependence on A of the fundamental solution matrix <!>. the verification of 
properties 2 and 3 involve simple computations):

Proposition 4. I f q is a solution o f the NLS equation, then
1. A (q; A) is an analytic function o f A.
2. A (q; A) is invariant under the NLS evolution, i.e.

~jjA(g(t), A) =  0.

3. The multipliers w\, W2 are the eigenvalues o f $(T ; A) and satisfy

A ±  iV4 -  A 2
“ 1,2 =  ---------^---------•

Remarks:
1. Since the Floquet discriminant is a constant of motion VA e  C, then A is a 
generating function for the NLS conserved functionals. In fact, the usual hierarchy 
of constant of motions can be extracted from the coefficients of the asymptotic 
expansion of the discriminant at a distinguished value of A [22],
2. Figure 1 shows the Floquet spectrum of a generic NLS potential. Because of the 
symmetry $ (s , A) =  $ _1(s, A) of solutions of the eigenvalue problem (16), the 
spectrum possesses the symmetry A —» A. As a consequence, the entire real axis is 
part of the continuous spectrum.
3. Potentials with a finite number of branch points (that is, a finite number of com
plex bands of continuous spectrum) are called finite-gap or JV-phase potentials. 
We will discuss them more in depth in the next lecture.
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•  = periodic points 

X = multiple points

: :

L-plane

Figure 1, The Floquet spectrum of a typical NLS potential.

4. At a critical point Ac, such that dA /dA |A =  0, the Floquet multipliers coincide 
w i( \c) =  tu2(Ac). It can be shown that two bands of continuous spectrum can 
have a common endpoint Am if Am is a critical point. Such critical points, which 
satisfy the additional condition A (q, Am) =  ±2, are called multiple points.

We now state the main result by P. Grinevich and M. Schmidt on the closure con
ditions for 7  =  7 i_1[g], where q(s) is a smooth periodic NLS potential of period 
L. Let Ao e  R, and let F(s;Ao) be the NLS Bloch eigenfunction normalized as 
follows: Fi(0, Ao)F2(0, Ao) +  ^ ( 0 ,  Ao)Fi(0, Ao) =  1. One easily shows that the 
associated fundamental solution matrix

« = ( £ " * )  satisfies S!'s + L> =  S!'s > ( wf o) 4 . ) ) '

Then, T(s  +  L) =  T(s)  if and only if (see equation (20)) wi(Ao) =  ±1:

C l: The unit tangent vector o f 7  =  7i-1 [g] is periodic o f period L  if and only if  
Aq is a real multiple point.

Compute [26]

a 0 
0 a where a =  — i

«/(A) 
w ( A)

• JL
1 dA

In w
AoA=Aq
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and introduce to (A) =  e27ri0M , where

d0 - L ^ dA
2tti tw(A)

is the quasimomentum differential.

(24)

C2: The curve 7  w periodic o f period L  if  and only if Ao is a real multiple point 
and a zero o f the quasimomentum differential.

Lecture 3

Plane Waves to Circles: An Example

The simplest family of NLS solutions consists of the spatially independent plane 
wave potentials

qa(t) =  ae2fl2<, a > 0.

For a fixed / 0. one easily computes the fundamental solution matrix of the
spatial part of the NLS linear system (16),

q (s ;x ) = ( cos(ws) “  i - sin(ws) l i sinM )
’ l Hjsin(u;s) cos(lus) +  ijsin(u;s)

where lo 

is

' A2 +  — and s e [0, L]. The expression for the Floquet discriminant

A(a;A) =  trace(0(T; A)) =  2 cos(loL). 

It follows that the Floquet spectrum is the set (see Figure 2)

a (a) = {A e C; A e R, - 2  < A < 2} =  1 U  -
ia
~2

ia'
~2

The critical points are the solutions of

— A =  — sin(u;T) 
dA

2A L
V4A2 +  a2

=  0.

All of them are double points except for A =  0 which is a critical point of multi
plicity 4. There is an infinite number of real double points

Ar
n n >

aL
2 7T
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and a finite number of complex double points (in this case they are all pure imagi
nary) given by

where [x] denotes the integer part of x.

m  =  1 ,2 ,..
aL
2tt

^,-plane

Figure 2. The Floquet spectrum of a plane wave potential with three 
imaginary double points. The corresponding curve is a four-fold circle.

From the expression of the quasimomentum differential

d0 —  A? dA =  -  A =  dA
4tt V4 -  A 2 7T V4A2 +  a2

one finds that its only zero is A =  0, which is a multiple point (i.e. also satisfying

the condition A (a; 0) =  ±2) if and only if a =  —-— (where M  — 1 is the number
Ju

of imaginary double points). The associated curve obtained by using the recon
struction formula (21) at Ao =  0 is the following M-covered circle of curvature

2ttM
KM = --Z---

j ( s )
L

2itM
— sin

2ttM  \
—-— s 1 e i +  cos

2 7tM \
— ) e2. +  7(0)

where e i and e2 are the standard unit vectors in the (x, y)-plane in R.3.
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Remarks:
1. Reconstructing the curve at a different real Ao /  0 produces a family of helices

2/i M  ,
of curvature km = —=— and torsion Ao-

JL
2. The following result is proved using the representation of the quasimomentum 
9 in terms of the Floquet discriminant and the analyticity of A as a function of A:

Lemma 1. Real zeros o f the quasimomentum differential d0 (if any exists) are 
located at the points intersection o f two bands (one of them the real axis) o f con
tinuous spectrum.

JV-phase Solutions of the Vortex Filament Equations

Soliton equations, when considered on periodic domains, admit large classes of 
special solutions which are the analogues of solitary waves for rapidly decreasing 
initial data on an infinite domain. An Ar-phase quasiperiodic potential depends on 
s and t  through a finite number of linear phases

9i(s,t) = kiS +  Uit, i = 1, . . . ,  N.

The potential q(s,t) =  q(0(s,t))  is periodic of finite period in each phase, 
q(6\ , . . .  ,9i +  2tt, . . . ,  On ) =  q(6\, . . . , 9 i , . . . ,  On ). If 0 is a real-valued vec
tor, then k is called the vector of spatial frequencies, and oj the vector of time 
frequencies.
N -phase solutions of soliton equations such as KdV, NLS and general AKNS sys
tems were first constructed by S. Novikov, B. Dubrovin and I. Krichever [32, 18]. 
Their method is a rediscovery of classical Riemann surface techniques developed 
by J. Burchnall and T. Chaundy [10] and by H. Baker [4] for classifying commu
tative algebras of scalar differential operators.
Peter Lax gave a different characterization of iV-phase solutions (in particularly for 
the KdV equation) [40] as critical points of linear combinations of the conserved 
functionals, and proved that the isospectral set of a given iV-phase solution is an 
iV-dimensional torus in the space of all solutions.
A. Marcenko and I. Ovstrovskii [43] (for the KdV equation), and P. Grinevich [25] 
(for the the NLS equation and the VFE) showed that any sufficiently smooth peri
odic potential can be approximated by N  -phase solutions of the same period to an 
arbitrary degree of precision.
In this lecture we sketch the construction of explicit formulas for iV-phase solutions 
of the VFE following K riche vers approach [32] and E. Previato’s treatment of the 
reality conditions for iV-phase NLS potentials [48], and making use of the Sym- 
Pohlmeyer reconstruction formula (21).
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Every N -phase solution is associated to a set of data on a Riemann surface. We 
start with a hyperelliptic Riemann surface E of genus g described by the equation

We mark the two points oo+ and oo_, which are permuted by the holomorphic 
involution r(A, p) =  (A, —g) exchanging the two sheets. We also choose a set of
<7+1 distinct points V  Pi -------\-Pg+i placed in a generic position (a non-special
divisor) and not containing oo±.
Let A : E —» C U {00} be the hyperelliptic projection; this is a meromorphic 
function on E whose pole divisor is oo+ +  oo_ (i.e. whose poles are the preimages 
of 00 via the map A). In neighborhoods of 00± we choose the local parameters k± 
such that (&±)_1 =  (A(F))-1 .
K riche vers main idea is to construct a function 'tb(P) on the Riemann surface E 
which is uniquely defined by a prescribed set of singularities and by a prescribed 
asymptotic behavior near 00 ±.

Definition 2. A Baker-Akhiezer function associated to (E ,P ,  oc±) is a function 
ib on T, which:

• is meromorphic everywhere except at oo±, and has pole divisor in V
• has essential singularities at 00j- that locally are o f the form tb(k±) ~  

CeP(k±\  where C is a constant and p(k) an arbitrary polynomial with com
plex coefficients.

The singular structure of ib and its normalization at the essential singularities define 
it uniquely as described in the following

Proposition 5 (I. Krichever [32]). Suppose that the following technical condition 
holds:

Condition 1. The divisor P\ + -----b Pg+1 — oo+ — oo_ is not linearly equivalent
to a positive divisor.

Then, i f  p(k) = iks  +  iQ(k)t, where s and t  are complex parameters with |s|, 
\t\ sufficiently small, and Q(k) is a given polynomial, the linear vector space of 
Baker-Akhiezer functions associated with (E, V , oo±) is 2-dimensional and it has 
a unique basis ifi1, ip2 with the following normalized expansions at co±:

23+2
^ 2 =  n  -  a *)- (25)

where fiP1 are functions o f the parameters s and t  and £o+ =  1, Co =  0, Co+ =  0> 
Co2- =  1-
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Remarks:
1. Condition 1 can be rephrased as: there exists no non-constant meromorphic
function with pole divisor P\ H-----+  Pg+i which vanishes simultaneously at oo+
and at oo_.
2. The proof of the uniqueness property makes use of the Riemann-Roch Theorem 
(see for example [24]), stating that the dimension h°(V)  of the linear space of 
meromorphic functions on E whose pole divisor is a non-special divisor V  is

h°(V)
1, d <  g
d — g +  1, d >  g.

We refer the reader to [48] for more details.

(27)

The existence of the Baker-Akhiezer eigenfunction is shown by explicitly con
structing its components in terms of the Riemann Theta function of E. We sum
marize the main steps of this algebro-geometric construction (see [18, 6] for a 
comprehensive discussion and application of this method to several other soliton 
equations). Let

£Il, . . . , CLg , b\, . . .  ,bg
be a canonical homology basis for E, such that a, • ag =  0, h  ■ bj =  0, a, • bj =  Sij, 
and let

u)i , . . . ,u)g, with f  uj] = 5 t], i , j = l , . . . , g
Jai

be g normalized holomorphic differentials. We introduce the period matrix B  of 
entries

Big = j b ujj, i , j  = l , . . . , g

and construct the associated Riemann theta function

6{z) =  exp (i7r(n, Bn)  + 2(n, z)) , z 6 C3. (28)
n  (£29

The series (28) is absolutely convergent; this follows from the fact that A(B)  is a 
positive definite matrix. Moreover, if e* ’s are the standard basis vectors of C3 and 
ffe =  B e k, k =  1 , . . .  ,g, then

0(z +  Vj) = 0{z), 0(z +  fj) = e~mB» +2mz)0(2), j  = 1, . . . ,  g,

i.e., 0 is a quasi-periodic function. (The e fe’s are called periods and the f;/s the 
quasiperiods of 0.) Let A be the 2</-dimensional lattice spanned by the columns of 
the matrix (I | B), then the complex torus Jac(E ) =  C3/ A  is called the Jacobian 
of the Riemann surface.
The essential singularity of ib at oo is introduced by means of the unique differ
entials of the second kind g and C with a simple pole at oo and local expansions
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rj ~  idfc, C ~  idQ(&) (dictated by the polynomial dependence of the exponent 
on the local parameter k), and normalized so that their integrals along the a-cycles 
vanish.
The components of the Baker-Akhiezer eigenfunction ipL are now constructed in 
terms of rations of theta functions as follows:

ip1 ̂ ( P )  =exp +  t c - c ±

0(A(P)  + Us + W t  -  A(V±)  -  K)
0(A(P) -  A ( V ± ) -  K)
0(A(oo±) -  A(V±)  -  K)  9±(P)

0(A(oo±) + Us + W t  -  A(V±)  -  K )  X g±(oo±)
where Pq e  S  is a base point, U± are the unique positive divisors linearly equiv
alent to V  — oo-t, and K  is the vector of Riemann constants [18] (such that 
0(A(P)  — A(V±)  — K)  has zeros precisely in V±).  The Abel map

A :T ,W g — > C9/A

9 9 rQk
E  Qk —  E  /  w (30)
k=1 k=lJP°

(E ^ »  is the set of unordered g-tuples of points on E and u  is the vector of holo- 
morphic differentials) associates to a divisor J2l=i Qk a point on Jac(E).
The frequency vectors U and W  are introduced to make ip a well-defined function 
on E. In fact, if the path of integration is modified by adding an integer combina
tion of homology cycles, ip changes by the factor

exp E
k= 1

m k [s  f  r] +  t  f  C -  m k (sUk +  t W k)

which equals 1 if we define the components of U and W  as

Uk = ^ - f  r,, ^ - W k = I  C-
ZTTl Jbk Z7T1 Jbk

The constant terms 77“  and at the exponent of expression (29) are subtracted to 
make the leading coefficient of the meromorphic part of the eigenfunction matrix 
be the identity. Finally, in order to make the pole divisor be V.  ip± is multiplied by 
a meromorphic function g±(P)  whose zeros lie in T>± -I- 00T and whose poles lie 
in the original divisor V.
An explicit computation using the asymptotic expansions of the eigenfunctions 
ip3's at oo-t (see, e.g. [48]) shows that, for Q(k)  =  2k 2, they are linearly in
dependent solutions of the pair of NLS linear systems (16), and that the matrix
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$ (s , t; P ) = is a fundamental solution matrix. In gen-# -+ (F )  # 1'+ (r(F))
# > - ( F )  # 1’_ (r(F))  

eral, Q(k)  and the normalization of ip at the essential singularity prescribe which 
soliton equation is encoded in the coefficients of the asymptotic expansion of the 
Baker-Akhiezer eigenfunction and thus, its explicit construction provides one with 
both the soliton equation, a large class of initial conditions and the associated so
lutions.
We now derive a formula for the corresponding N -phase solution of the VFE, 
making use of the explicit formula for the fundamental solution matrix $  and of 
the Sym-Pohlmeyer reconstruction formula (21):

Proposition 6 (A. Calini). The components (71,72,73) o f the position vector 7  of 
an N-phase solution of the Vortex Filament Equation are given by the following 
expressions

71 +  i 72

73

d_
dP
_a_
5 F

log6(a(P) + Us + Wt )  -)- rj(Xo+ )s
p=x0+

log 6(a(P) + Us + Wt )  -)- r ]( \-o )s
P = A-o

(31)

where tt(Ao±) =  Ao, Ao 6 R, (U ,W ) are the vectors o f spatial and temporal 
frequencies, a(P) is a vector o f “phases" depending on the divisor and the branch 
points ofE,  and 77(A) dA =  d0(X) is the quasimomentum differential.

Remarks:
1. The conditions for the components of 7  to be real-valued are established in the 
work by E. Previato [48] for the focussing NLS equation, and require the Floquet 
spectrum to possess the additional symmetry A —» A, and the divisor to satisfy 
certain additional conditions (see also [6]).
2. We recover Grinevich and Schmidt’s closure condition from the explicit for
mula: the iV-phase curve (31) is closed if and only if Ao is a real zero of the 
quasimomentum differential.

In the case g =  1, we can express the family of 2-phase solutions in terms of elliptic 
integrals, since the associated Riemann surface is an elliptic curve. The Floquet 
spectrum of a generic 2-phase solution is shown in Figure 3; the intersections 
and a2 of the complex bands of spectrum with the real axis are the real zeros of 
the quasimomentum differential

d0(A)
1 A2 +  c0A +  ci
...... .........................dA.
2 \ / n J . i ( A - A , )



36 Annalisa Calini

Figure 3, The Floquet spectrum of a generic 2-phase solution

Closed curves are obtained by selecting the branch points Aj’s so that the com
plex spines intersect the real axis at double points and reconstructing the curve by 
means of formula (21) evaluated at one such point.
These curves are interesting objects from a geometric and topological point of 
view as they are extremals of the following linear combination of global geometric 
invariants

f L 2 f L f L/ k ds +  £ig / r d s  +  a_ i / Ids .
J o  J o  J o

The solutions of the corresponding constrained variational problem form the family
fL

of centerlines of Kirchhoff elastic rods (extremizing the bending energy /  k2 ds
J o

for constant total torsion and length) which includes the classical Euler elastic 
curves (ao =  0) and the free elastica (ao =  a_ i =  0). Several of them are shown 
in Figure 4 (in which the curves have been thickened for better viewing).
The curves in Figure 4 are symmetric presentations of torus knots (knots that lie 
on the surface of a torus without self-intersections); moreover 2-phase solutions 
exhaust all possible torus knot types, as proved in [29] (see also [38]).

Proposition 7 (T. Ivey and D. Singer). Every torus knot has a smooth closed elastic 
rod centerline representative.

Remark: 2-phase solutions of the Vortex Filament Equation evolve by a combi
nation of translation and screw motion [38], and thus move rigidly without change 
of topology. This observations makes the associated Floquet spectra suitable can
didates for topological invariants.
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Figure 4, A gallery of 2-phase solutions of the Vortex Filament Equa
tion, including an unknot, a trifoil knot (a (2,3)-torus knot), (2,5)-, 
(2,9)-, (3,8)- and (4,9)-torus knots.

L ecture 4

This lecture describes various recent results and work in progress by the author 
and Thomas A. Ivey on investigating connections between the Floquel spectra of 
A'-phase solutions of the Vortex Filament Equations and their geometric and topo
logical properties. A brief description of three different approaches is given below 
and we refer the reader to the cited references for further detail.
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Use of Exact Formulas for JV-phase Solutions

The exact formula (31) for A'-phase solutions of the VFE in terms of Riemann 
theta functions are ultimately necessary for a detailed description of their geometric 
properties however, effective implementation of these formulas is difficult (see [6] 
for a discussion of the effeclivizalion problem, [3] for reduction to lower genus 
formulas in the case of algebraic curves with symmetries, and [46] for a numerical 
investigation of A'-phase NLS solutions in the defocussing case).
When the Riemann surface £  possesses the additional involution (A, p,) —> (—A, 
(—l)9+1p), one has a nearly complete classification of 2- and 3-phase solutions as 
described in the following theorem

Theorem 3 (T. Ivey). I f  the spectrum, o f an N-phase NLS potential with N  < 4 
possesses the symmetry A —► —A, then the associated VFE solution is planar at 
one time. This implies that, for N  < 3 the cur\>e 7  has self-intersections for all 
times.

Figure 5 shows a self-intersecting curve with its corresponding symmetric spec
trum.

+ia

Figure 5. A self-intersecting curve arising from an even perturbation 
of a triply covered circle.

Perturbations of Multiply-covered Circles

Another seemingly universal feature of solilon equations is the existence of Back- 
lund transformations. Backlund formulas produce new and more complex solu
tions of the nonlinear equation from a given one and from the Bloch eigenfunctions 
of the associated pair of linear systems.



Integrate Dynamics of Knotted Vortex Filaments 39

Figure 6, Time evolution frames of the Baeklund transformation of a 
5-fold planar circle.

Baeklund transformations are commonly used to generate homoclinic orbits of 
linearly unstable potentials qo, i.e. solutions which converge to qo in forward and 
backward lime, leaving and returning lo the level set of qo along its stable and 
unstable manifolds. The importance of understanding the homoclinic manifolds 
of unstable A'-phase solutions is advocated in a series of articles by N. Ercolani, 
G. Forest and D. McLaughlin [19, 20, 21]. A finite number of Baeklund transfor
mations produce an explicit parametrizalion of the homoclinic manifold and thus a 
labelling of the underlying level sets. Moreover, using Baeklund transformations, 
one is able lo construct both the tangent and normal veclorfields lo the level set of 
a given solution and lo generate explicitly the entire isospeciral set.
The author derived the Baeklund transformation for the Vortex Filament Equation 
in [12], and used the resulting formulas lo generate the homoclinic orbits of linearly 
unstable circles, the simplest VFE solutions possessing linear instabilities. Figure 2 
illustrates the Floquel spectrum of one of these solutions. A simple Fourier series 
expansion argument shows lhal the imaginary double points are associated with 
the linear instabilities of the potential (e.g. a four-fold circle has three-dimensional 
stable and unstable manifolds). Correspondingly, Baeklund formulas implemented 
al different complex double points produce homoclinic orbits which converge lo
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the original potential for t  —» ±oo along different directions within its stable and 
unstable linear eigenspaces.
Figure 6 shows a sequence of time frames of the evolution of the homoclinic or
bit of a 5-fold circle, computed using a Backlund transformation at the second 
imaginary double point. The new curve possesses two distinguished points of self
intersection which persist when the evolving curve undergoes a significant excur
sion away from the original circle. It appears to be a general feature of these sin
gular curves that the number of such “stable” self-intersections equals the ordering 
of the complex double point at which the Backlund transformation is computed. 
An interesting question is whether the presence of self-intersections has a topolog
ical meaning. A more general related question is whether the curves produced by 
the Backlund transformation play a role in distinguishing different knot classes of 
N -phase solutions, and whether the Floquet spectrum can be used to characterize 
their knot types.
In order to partially answer these questions, the perturbative approach used in [14, 
13] introduces a complex periodic perturbation of the plane wave potential qa =

with r, 61,62 e  R.
2 7TJ

When n = fij = —— , 1 < j  < M  — 1, the perturbation causes the j-th double
Ju

point to split into a gap or cross configuration as shown in Figure 7.
Since the solution of NLS linear system (16) depends analytically on the potential 
q, we assume the following perturbation expansion of the fundamental solution 
matrix

By computing the coefficient matrices 4/ k recursively, the trace of 4/, and the asso
ciated curve via equation (21), one arrives at the following result.

Lemma 2. 1. The Floquet discriminant o f the perturbed potential satisfies

2ttM  
L

$  =  $0 +  e $ i +  e2$ 2 + ___

2. The associated curve

lf(s) =  To M  +  e7 i ( s ) +  0 ( e2)
is closed up to order e2

Therefore, the Floquet spectrum of qo -I- eq\ can be used to characterize the prop
erties of the closed curve 7 0 -)- e j 1.
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Figure 7, Above: a left-handed trefoil and its spectrum (M  = 3, j  = 
2, p = 0.2, © =  tt/ 4, e =  0.02). Below: a right-handed (5,2)-torus 
knot and its spectrum (M  = 5, j  = 2, p = —0.2, © =  tt/4 ,  e = 0.1)

The perturbation (32) with r  /  0, 0i /  9?, 92 +  and fi = fij = — 1 < j  <
Ju

M  — 1 causes the j-lh complex double point to split asymmetrically. In this case 
we obtain the following result

Proposition 8. For e > 0 sufficiently small, the cun>e J q +  is a torus knot o f 
type (M, ±j ) .

Remarks:
1. The proof involves computing the exact expression of 7 0 +  e j 1 in terms of the 
Frenel frame of 7 0 [14],
2. Figure 7 (lop) shows an asymmetric perturbation splitting the second imaginary 
double point of a triply covered circle (M =  3), and its associated lefl-handed 
trefoil knot (a (3, —2)-torus knot).
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3. Figure 7 (bottom) shows an asymmetric perturbation splitting the second imag
inary double point of a 5-covered circle ( M  =  5), and its associated right-handed 
(5,2)-torus knot. Observe that this curve is close to the long-time asymptotics of 
the Backlund transformation of a 5-fold circle shown in Figure 6, this suggests 
that homoclinic orbits indeed separates knots of different topologies (in this case, 
torus knots of opposite handedness) and that the Floquet spectrum may be used for 
classifying N -phase solutions close to multiply covered circles.
Knots of increasing complexity can be generated using the perturbation procedure 
outlined above. For example, a periodic perturbation of the form

q i ( s )  =  LU j [ c o s ( f t j s )  +  a j  s i n ( / i j s ) ]  +  l u ^ [ c o s ( p k s )  +  a *  s i n ( ^ s ) ]  ( 3 3 )

2wj 2wj
with \LOj\ =  \LOk\ =  1, ay, d | j £ l  and pj =  —-—, pj =  ——, 1 < j, k < M  — 1,

JL  Aj

causes the j-th and k -th double point to split, and we obtain the following result:
2tt

Proposition 9. Under certain non-resonance conditions on p j, p j, — , the curve
( M  j \

7  =  7 0 +  e‘j 1 is a cable knot with companion an I — , ± — 1 -torus knot, patterned
\  LL U J

on a (d, ±k)-torus knot, where d =  g.c.d. (j, M).

Remark: For a given cable knot, the pattern is an embedding of a loop into a 
solid torus, and the companion knot is the given embedding of the solid torus in 
three-space. For example, in Figure 8 the pattern is a (2,5)-torus knot, and the 
companion knot is a left-handed trefoil.

Isoperiodie Deformations of NLS Potentials

In a 1998 article [29], T. Ivey and D. Singer proved the following results:

Theorem 4 (T. Ivey and D. Singer). 1. Every torus knot type is realized by a 
smooth closed elastic rod centerline (i.e. by an initial condition for a 2-phase 
solution of the Vortex Filament Equation).
2. There is a countable family o f regular homotopies o f closed elastic rod cen
terlines between the m-covered circle and the m-covered circle for every k, m  
relatively prime (such family was observed in numerical experiments by Li and 
Maddocks [35]). Each homotopy family contains exactly one elastic curve, one 
self-intersecting curve and one constant torsion curve.

It is natural to ask whether the Floquet spectra associated to the distinguished 
curves within each homotopy family have features which reflect their special geo
metric or topological properties. As the homotopy transforms a multiply-covered 
circle to a different multiply-covered circle (the Floquet spectra of which are ex
plicitly known), one needs to choose a deformation of the branch points such that
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Figure 8, A cable knot, together with its companion toms knot, ob
tained using perturbation with M  =  6, j  =  4, k = 5, w.j = 1, 
Wk = 0.1, =  d>k = tt/2, pj = 0.2, pk = —0.3 and e =  0.02.

Figure 9, A family of homotopy deformations of elastic rod center
lines between a once-covered circle and a doubly-covered circle.
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the curve is closed at each value of the deformation parameter. This involves tran
scendental conditions that require the spatial frequencies C4’s to be commensurate, 
and the quasi-momentum differential d9 and its real zeros to be preserved. These 
conditions are expressed in terms of elliptic integrals for 2-phase solutions (and hy
perelliptic integrals for general N -phase solutions), and are very difficult to solve 
in terms of the branch points A/Cs.

Consider the following deformation, and observe how the complex spine of spec
trum not containing the zero of the quasimomentum at which the curve is recon
structed converges to a real double point as the curve approaches the limiting circle.

Interestingly, such spectral deformation as the one illustrated in Figure 10 can 
be achieved by preserving the frequencies and the quasimomentum differential. 
Isoperiodic deformations have been studied by I. Krichever [33] and P. Grinevich 
and M. Schimdt [27] and can be written as the following system of ordinary differ
ential equations for the 2</ — 2 branch points A/Cs and the g +  1 zero’s a^ ’s of the 
quasimomentum differential:

dXt
ac
dm
ac

where the m ’s are arbitrary functions (the controls of the system) of the deforma
tion parameter £, and are subject to the same reality condition as the corresponding 
Afc’s (e.g., C2 =  ci). If one reconstructs the curve at A =  a g ,  then the associated 
control co to must equal zero, in order for a g  to remain a double points through
out the deformation [26], Then, if g =  1, there only a one-parameter family of 
deformations which preserve closure of the associated curve.

By choosing as initial condition of system (34) the spectrum of a multiply covered 
circle and opening up a real double point (i.e., by reversing the deformation shown 
in Figure 10), one generates closed 2-phase solutions which belong to the family 
of homotopy deformations described in Theorem 4. Figure 11 shows several inter
esting curves along the homotopy deformation (ao is the reconstruction point for 
each of the curves):

1. In the Floquet spectra of the right-handed (2 ,5)-torus knot and the left-handed 
(3 ,5)-torus knots, the locations of the second real zero of the quasimomentum 
differential satisfy prescribed resonance relations with the period of the curve.

2. Constant torsion is achieved when the complex bands of spectrum are symmet
rically placed with respect to the midpoint of the real zeros of the quasimomentum.

9+1

-E
k = i

E
k^l

Ck ~  Cl 

a k ~  m
Cl

xt -  m (34)
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Figure 10, A family of elastic rod centerlines deformations and their 
spectra: from a trefoil knot to a circle

3. The Euler elastic curve is realized when the two real zeros of the quasimomen
tum coalesce.
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Figure 11, Distinguished curves along the homotopy deformation be
tween a doubly- and a triply-covered circle and their spectra. From 
the top down: a (2,5)-torus knot, a curve of constant torsion, an Euler 
elastic curve, and a (—3,5)-torus knot.

Remarks:
1. It is not yet known what special spectral configuration, if any, is associated with 
self-intersections.
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2. The perturbative deformation scheme based on the theory of isoperiodic defor
mation is easily adaptable to a systematic investigation of higher phase solutions 
(obtained by successively opening up several real double points), which can be 
shown to realize all possible knot types in a neighborhood of multiply covered cir
cles. For example, one can produce cabling of a given torus knots and a labelling 
of its knot type in terms of the location of the relevant double points. The role 
played by the choice of divisor for higher phase solutions is currently under study.
3. These observations provide strong evidence of an important role of the Floquet 
spectrum in determining both the geometric and topological properties of iV-phase 
VFE solutions “close" to multiply covered circles. One hopes that the Floquet 
discriminant functional is a topological invariant for a restricted class of VFE so
lutions large enough to contain representatives of many knot families.
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