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Abstract. We study a quantum system in a Riemannian manifold M  
on which a Lie group G acts isometrically. The path integral on M  is 
decomposed into a family of path integrals on quotient space Q = M /G  
and the reduced path integrals are completely classified by irreducible 
unitary representations of G. It is not necessary to assume that the 
action of G on M  is either free or transitive. Hence the quotient space 
M /G  may have orbifold singularities. Stratification geometry, which is 
a generalization of the concept of principal fiber bundle, is necessarily 
introduced to describe the path integral on M/G.  Using it we show 
that the reduced path integral is expressed as a product of three factors; 
the rotational energy amplitude, the vibrational energy amplitude, and 
the holonomy factor.

1. Basic Observations and the Questions

Let us consider the usual quantum mechanics of a free particle in the 
one-dimensional space M. A solution for the initial-value problem of the 
Schrodinger equation

d I d 2 1i — = -  A <j>(x,t) ( 1.1)

is given by

OO

( 1.2)
—  OO
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with the propagator

K(x,  y, t) x \ z - ^ \ y ) ,— -  exp 
\/27rit

(1.3)

Their physical meanings are clear; the wave function 4>(x, t ) represents prob­
ability amplitude to find the particle at the location x  at the time t. The 
propagator K ( x , y , t )  represents transition probability amplitude of the particle 
to move from y to x  in the time interval t.
If the particle is confined in the half line M>0 =  {x > 0}, we need to impose a 
boundary condition on the wave function cf)(x, t) at x  =  0 to make the initial- 
value problem (1.1) have a unique solution. As one of possibilities we may 
chose the Neumann boundary condition

^ (0 ,( )  = 0. (1.4)

Then the solution of (1.1) is given by

[x , t )=  /  d y K N(x,y;t)cf)(y,0)

with the corresponding propagator

(1.5)

K n (x , y; t) =  K(x ,y ; t )  +  K ( - x , y ; t ). (1.6)

The physical meaning of the propagator K N( x , y , t ) is obvious; the first term 
K{x,  y, t ) represents propagation of a wave from y to x  while the second term 
K ( —x, y: t ) represents propagation of a wave from y to —x, which is the mirror 
image of x. Thus the Neumann propagator K N(x, y. t) is a superposition of 
the direct wave with the reflected wave.
As an alternative choice we may impose the Dirichlet boundary condition

m t )  = o. (i.7)

Then the solution of (1.1) is given by
OO

</>(x,t)=J d y K D(x,y;t)<f>(y,0) (1.8)
—  OO

with the corresponding propagator

K D{x,y; t ) =  K ( x , y , t ) -  K ( - x , y , t ) . (1.9)

Thus the Dirichlet propagator K D(x,y, t )  is also a superposition of the direct 
wave with the reflected wave but reflection changes the sign of the wave.
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The half line R>0 can be regarded as an orbifold IR/Z2. In the above discussion 
we have assumed the existence of the propagator K{x,  y ; t) in M and constructed 
the propagators in M/Z2 from K(x,y; t ) .  There are two inequivalent propaga­
tors; the Neumann propagator K N{x, y; t ) obeys the trivial representation of Z2 
whereas the Dirichlet propagator K D(x, y. t) obeys the defining representation 
of Z2 =  {+1, — 1}.
Now a question arises; how is a propagator in a general orbifold M / G  con­
structed? Here M  is a Riemannian manifold and G is a compact Lie group 
that acts on M  by isometries. Such an example is easily found; we may take 
M  =  §2 and G =  UJ(1). Then the quotient space is M / G  =  [—1,1], which 
has two boundary points.
Let us turn to another aspect of the propagator, namely, the path-integral ex­
pression of the propagator. For the general Schrodinger equation

c) 1
i — <t>{x,t) =  H4>(x,t) = - - - ^ ( / ( x G )  + V(x)<f>(x,t) , (1.10)

its solution is formally given by
OO

Cf i (x, t )= J dy K(x,y;t)(j)(y,0). (1.11)
— OO

The propagator satisfies the composition property
OO

K(x",  x; t +  t') =  J d x ' K ( x "  , x ' ; t ' ) K ( x ' , x ; t ) . (1.12)
—  OO

By dividing the time interval [0, t] into short intervals we get
O O  OO

K ( x N, x 0-,t)= / • • • /  dxN_i ■ ■ ■ d x i K ( x N, x N_i-,e) ■ ■ ■ K ( x i , x 0-,e)
- o o  - O O  (1.13)

with t = Ne. For a short distance and a short time-interval the propagator 
asymptotically behaves as

K ( x  +  Ax,  x: At)  ~  . exp
V2/dAt

1 /  A x
2 V ~At

2

A t  — iV (x)A t (1.14)

Then “the limit N  — oo” gives an infinite-multiplied integration, which is 
called the path integral,

K{x',  x]t) = f V x  elf  Lds = [ V x  exp
t

iJ ds ( ^ ( s)2 -  ^ (^ ( s)))
- o

• (U 5 )
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In a rigorous sense, the limit TV —> oo does not exists but physicists use 
this expression for convenience. The philosophy of the path integral can be 
symbolically written as

propagation of the wave =  ^  motion of the particle. (1.16)
trajectories

We can construct the path integral on the half line R>0 =  R /Z 2 as well:

(1.17)

(1.18)

where the summations are taken with respect to the number of reflections of 
the trajectory at the boundary x  =  0.
Now another question arises; what is the definition of path integrals on a general 
orbifold M / G l  Our main concerns are propagators and path integrals in M/G.

OO x
K N{x' ,x\ t)  = Y ,  [  V x e if Lds,

n = 0 x

o°
K D(x' ,x\ t )  =  $ 3 ( - l ) "  /  V x e*i Lds,

n = 0 i

2. Reduction of Quantum System

When a quantum system has a symmetry, it is decomposed into a family of 
quantum systems that are defined in the subspaces of the original. Here we 
review the reduction method [5] of quantum system.
A quantum system (77,77) is defined by a pair of a Hilbert space 77 and 
a Hamiltonian H,  which is a self-adjoint operator on 77. The symmetry of 
the quantum system is specified by (G,T),  where G is a compact Lie group 
and T  is a unitary representation of G over 77. The symmetry implies that 
T{g)H =  HT(g ) for all g € G. The compact group G is equipped with the 
normalized invariant measure dg.
To decompose (77. 77) into a family of reduced quantum systems, we introduce 
('Hx,px), where TLX is a finite dimensional Hilbert space of the dimensions 
dx =  dimTT V Besides, px is an irreducible unitary representation of G over 
H x. The set (y ) labels all the inequivalent representations. For each g e  G, 
px {g) w T(g) acts on H x <S> 'H and defines the tensor product representation. 
The reduced Hilbert space is defined as the subspace of the invariant vectors 
of H x <g> 77,

(Hx (8) n f  := G H x (8) n ; Vh G G, {px (h) 0  T(7i))^ =  ip} . (2.1)
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Let the set {e*, . . .  , e f }  be an orthonormal basis of TLX. Then the reduction 
operator S f  : Ti —► (Hx ®Ti)G is defined by

/  e n  >-> S f t  ■.= VdA j  dS ( ^ ( 9)e?) ® (T(g) f  ) . (2.2)
G

Theorem 2.1. S f  is a partial isometry. Namely, (Sf )*S f  is an orthogonal 
projection operator acting on 7j  while Sf (Sf )* is the identity operator on 
(Hx ® H) G.

Theorem 2.2. The family o f the projections {{Sf )*Sf}  forms a resolution o f 
the identity as

Y . i S l Y S l  =  I„  ■ (2.3)
X,i

Hence, the Hilbert space is decomposed as

H = ©  lm(Sf )*Sf  9* ® H f  (2.4)
x,i xA

and this decomposition is compatible with the Hamiltonian action. Namely, 
we have the commutative diagram

H

H

(Hx <8> H )G

Id ®H

H (Hx <8> H) G

Then ((f ix ® H) G, Id ®H) defines a reduced quantum system.

(2.5)

The projection P x : H x H (Hx <S> H )G onto the reduced space is defined 
by

P x -.= J  &gpx {g)®T{cj).  (2.6)
G

The reduced time-evolution operator of the reduced system is

Ux := P x(ld®e~iHt).  (2.7)

Theorems 2.1 and 2.2 are easily proved by an application of the Peter-Weyl 
theorem, which states that the set of the matrix elements of irreducible unitary 
representations {Vd* pfj(g)}x,i,j forms a complete orthonormal set of L 2{G). 
Our main purpose is to give a path-integral expression to the time-evolution 
operator Ux. To describe it we need to introduce some related notions.
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Assume that the base space M  is equipped with the measure dx. Then the 
space of the square-integrable functions L 2( M ) becomes a Hilbert space H. 
Moreover, assume that the compact Lie group G acts on M  preserving the 
measure dx. Then g E G is represented by the unitary operator T(g) on
/  E L 2{M) by

(T(g)f)(x)  := / ( g ^ x ) . (2.8)

Let p: M  —> O =  M / G  be the canonical projection map. Then a measure cl<y 
of Q = M / G  is induced by the following way. Let <p{q) be a function on Q 
such that <p>(p(x)) is a measurable function on M.  The induced measure dq of 
Q is then defined by

J dq<p{q) := J dx <p(p(x)). (2.9)
Q M

On the other hand, suppose that the time-evolution operator U (t) := e~lHt is 
expressed in terms of an integral kernel K : M  x M  x IR>0 —> C as

(U(t)f)(x) = J dy K ( x , y ] t ) f ( y )  (2.10)
M

for any f ( x ) E L 2(M).
Let us turn to the reduced Hilbert space (2.1) and characterize it for the case 
H — L 2(M).  A vector ^ e  H x 0  L 2( M ) can be identified with a measurable 
map ip: M  —y TLX. The tensor product px (g) 0  T(g) acts on tp as

( ( P x {g) ® T(g))tp)(x) = px (g)ip(g~1x ) , g e G (2.11)

via the definition (2.8). The definition (2.1) of the invariant vector ip <E (7TX 0  
L2(M))g implies

((px (g) 0 T(g))ip)(x) =  px (g)pj(g~1x) =  ip(x) , (2.12)

which is equivalent to

^(gx)  =  px (g)ip(x). (2.13)

A function ^p: M  —> 'Hx satisfying the above property is called an equivariant 
function. Hence the reduced Hilbert space is identified with the space of the 
equivariant functions L 2( M , H X)G.
The projection operator P x : L 2( M ; H x) —>■ L2(M, H X)G, is now given by

{Pxip)(x) = j  dg px (g)tp(g~1x ) .
G

(2.14)
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From (2.7-2.10) and (2.14) the reduced time-evolution operator is given by

(UHt)t)(x) = J  d g j  dypx{a)K(g- 'x ,y , i ) i ’(y) (2.15)
G M

and thus the corresponding reduced propagator is K x : M  x M  x M>0 —► 
End TLX is defined by

K x (x, y; t) j  dg px (g)K(g~1 x , y , t ) . (2.16)
G

Our aim is to express the reduced propagator in terms of path integrals.

3. Stratification Geometry

To write down a concrete form of the path integral we need to equip the base 
space M  with a Riemannian structure. Namely, now we assume that M  is a 
differential manifold equipped with a Riemannian metric gM and that the Lie 
group G acts on M  preserving the metric gM. Then the volume form induced 
from the metric defines an invariant measure dx of M.  We do not assume that 
the action of G on M  is free. Therefore p: M  —? M / G  is not necessarily a 
principal bundle.
For each point x  <G M, Gx {g E G ; gx — x}  is called the isotropy group 
of x  and Ox {gx \ g <G G} is the orbit through x. It is easy to see that 
Gx = G/G x. Note that the dimensions of the orbit Ox can change suddenly 
when the point x £ M  is moved. The subspace of the tangent space TXM,  
Vx := TxOx, is called the vertical subspace and its orthogonal complement 
Hx := (Vx)1- is called the horizontal subspace. Pv : TXM  Vx is the 
vertical projection while PH: TXM  —> Hx is the horizontal projection. A 
curve in M  whose tangent vector always lies in the horizontal subspace is 
called a horizontal curve. Although these terms have been introduced in the 
theory of principal fiber bundle, we use them for a more general manifold that 
admits group action.
Let q denote the Lie algebra of the group G. For each x G M,  gx is the Lie 
subalgebra of the isotropy group Gx. The group action G x M  — M  induces 
infinitesimal transformations g x  M  —► T M  by differentiation. The induced 
linear map 6X: q —> TXM  has ker 9X =  gx and G0X =  Vx. Then it defines an 
isomorphism 6X: g/gx —>• Vx. Now we define the stratified connection form 
lv by

u x := {OxY1 o P v : TXM  ->• g/gx . (3.1)

Actually co is not smooth over the whole M  but it is smooth on each stratum 
of M.
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4. Reduction of Path Integral

The Riemannian structure (M,gM) defines the Laplacian A M. Suppose that 
V : M  —» M is a potential function such that V  (gx) =  V  (x ) for all x  G M,

g € G. Then the Hamiltonian H  — - A M +  V{x),  which acts on L 2(M),
2

commutes with the action of G, which is defined in (2.8). Let us assume that 
the path integral in M  is formally given by

K ( x ' , x ‘, t ) =  jD x e x .  p (4.1)

Now we repeat our question; what is the path-integral expression for the reduced 
propagator (2.16) on Q =  M / G l  The answer is our main result which is given 
below.

Theorem 4.1. The reduced path integral on Q — M / G  is
/Q

K x (x' ,x;t)  = j  Dq px (j)px 
q

x exp
tJ d s  Q | | t f ( s )

2

(4.2)

To read the above equation we need explanation of the symbols. The canonical 
projection map p: M  —> Q = M / G  induces the metric gQ of Q by asserting 
that the map p is a stratified Riemannian submersion. For x ,x '  G M  we 
put q — p(x) and q' =  p(x'). The map q: [ON] () is a curve connecting 
q =  q(0) and q' = q(t). The map q: [0. t] M  is a horizontal curve such that 
q{0) =  x  and p(q(s)) — q(s) for s G [0, t]. The element 7 G G is a holonomy 
defined by x' =  7 ■ q(t).
To describe the symbol A, which is called the rotational energy operator, 
we need more explanation. The metric gM: T M  0  T M  M defines an 
isomorphism gM : T M  -x T*M.  Then its inverse map g ^ l : T*M -x T M  
defines a symmetric tensor field r/f/ : M  —? T M  T  T M.  Thus combining it 
with the stratified connection lox : TXM  —> g/gx we define the rotational energy 
operator by

A(x)  :=  -(u)x ® u x) o g ^ ( X) G (q/ qx) 0  (fl/fl*) . (4.3)

The unitary representation px of the group G in TLX induces the representa­
tion px of the universal enveloping algebra U (g). Then we have p) (A(./:)) G 
End?Tx. Moreover,
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A(r) =  px [ V  exp
1
2

ds A(q(s)) E End W

is defined as a solution of the differential equation

A(0) =  /  G End H x .A(r) = ~^P*  (A(g(r))) A (r),

(4.4)

(4.5)

Now we can read off the physical meaning of the reduced path integral (4.2).
The path integral is expressed as a product of three factors:

i) the rotational energy amplitude exp[—  ̂J,' dsA(g(s))], which represents 
motion of the particle along the vertical directions of p: M  —> M/G;

ii) the vibrational energy amplitude exp[i /', ds ( |  \\q(s) ||2 — V (g(s)))], which 
represents motion of the particle along the horizontal directions;

iii) the holonomy factor 7, which is caused by non-integrability of the hori­
zontal distributions.

Here we give the outline of the proof of the main Theorem 4.1. For the detail 
see the reference [6]. Essentially, it is only a matter of calculation; from the 
path integral on M  (4.1)

K(x\x- , t )  = /  V x e iI[x] V(x(s)) (4.6)

with the reduction procedure (2.16) we get
h ~ 1x ’

K x {x\x] t )  := [  d h p x (h)K(h~1x ,,x]t) = f d h p x {h) [  V x e iI[x]
G G

q' h  N h

=  /  dhp x(h) I Vq I VgeiI[9̂ ] =  I Vq I dhpx(h) /  Vg
G q G

=  j  Vq j  dh p x {1h) J  V g e iI[99]
q G e

q h
= j v q p x {1 ) f d h p x (h) J  ^ e i/ d̂ ll®l|2ei/ dfl̂ ll̂ l|2- y(9)}

q G e

(4.7)

=  J  'D<lPx{l)p l I 'P exp
q

~  2 J dsA(q(s))  
0

d j ds { h \\q\\2~ v (q)}
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5. Example

Finally, we show an example of application of our fonnulation. Let us begin 
with the plane M  — R2, which has the standard metric gM — d.r:2 +  dy2 — 
d r2 +  r 2 d02. It admits the symmetry action of G = §0(2). The quotient space 
is a half line Q =  R2/SO(2) =  R>0. The invariant potential is a function V (r) 
only of r.
The group action

§0(2) X t 2 ^  m  , 

induces the action of the Lie algebra

2 _ ( cos 0 — sin 
sin 0 cos 0

50(2) x l 2 ^  TR2; ^ 

which defines the vertical distribution

6: 50(2) x l 2 -> TR2;

0 -0
0 0

0 — 0\  f x
0 oj  ’ U

Then the stratified connection becomes

T) -1  
0

uj = d e.

In the cotangent space the metric is given as

0-M  .
d d I d
dr ^  dr r2 d9

d_
de

The rotational energy operator is

A =  - M w) °  ( 9 ^  = - ^  (?

d_
dd

0 -1  
1 0

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

The irreducible unitary representations of §0(2) are labeled by the integers 
n G Z and defined by

pn : §0(2) —» U(l); cos (p — sin i 
sin 0 cos i

4  n<p

The differential representation of the Lie algebra of §0(2) is

(5.7)
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The rotational energy operator is then represented as

n

r

2
(5.9)

Finally the reduced path integral is given by
r ‘

T (5.10)
Tl J_

X exp ~ + T,?'2 - V ( r

(5.11)

where the second term represents the centrifugal force.

Acknowledgements

Thanks are due organizers for the stimulating conference at the beautiful site, 
Sts. Constantine and Elena in Bulgaria. I wish to thank I. Mladenov especially 
for his effort to keep touch with me for a long time from a great distance. I 
have benefited also from discussions with P. Exner and C. Herald. This work 
is supported by a Grant-in-Aid for Scientific Research (#12047216) from the 
Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

[1] Davis M., Smooth G-manifolds as Collections o f Fiber Bundles, Pacific J. Math. 
77 (1978) 315-363.

[2] Landsman N. and Linden N., The Geometry o f Inequivalent Quantizations, Nucl. 
Phys. B 365 (1991) 121-160.

[3] Montgomery R., Isoholonomic Problems and Some Applications, Commun. Math. 
Phys. 128 (1990) 565-592.

[4] Tanimura S. and Tsutsui I., Induced Gauge Fields in the Path-Integral, Mod. Phys. 
Lett. A 10 (1995) 2607-2617; e-print archive: hep-th/9508165.

[5] Tanimura S. and Iwai T., Reduction o f Quantum Systems on Riemannian Manifolds 
with Symmetry and Application to Molecular Mechanics, J. Math. Phys. 41 (2000) 
1814-1842; e-print archive: math-ph/9907005.

[6] Tanimura S., Path Integrals on Riemannian Manifolds with Symmetry and Induced 
Gauge Structure, Int. J. Mod. Phys. A 16 (2001) 1443-1461; e-print archive: 
hep-th/0006150.


	PATH INTEGRALS ON RIEMANNIAN MANIFOLDS WITH SYMMETRY AND STRATIFIED GAUGE STRUCTURE

	1.	Basic Observations and the Questions

	V2/dAt

	2.	Reduction of Quantum System


	(UHt)t)(x) = J dgj dypx{a)K(g-'x,y,i)i’(y) (2.15)

	3.	Stratification Geometry

	4.	Reduction of Path Integral

	= j Vq j dhpx{1h) J VgeiI[99]

	5.	Example


	0 0

	0 oj ’ U

	de

	A = -Mw)° (9^ = -^ (?

	References





