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Abstract. We study a quantum system in a Riemannian manifold M
on which a Lie group (G acts isometrically. The path integral on M is
decomposed into a family of path integrals on quotient space () = M /G
and the reduced path integrals are completely classified by irreducible
unitary representations of (. It is not necessary to assume that the
action of G on M is either free or transitive. Hence the quotient space
M /G may have orbifold singularities. Stratification geometry, which is
a generalization of the concept of principal fiber bundle, is necessarily
introduced to describe the path integral on M/G. Using it we show
that the reduced path integral is expressed as a product of three factors;
the rotational energy amplitude, the vibrational energy amplitude, and
the holonomy factor.

1. Basic Observations and the Questions

Let us consider the usual quantum mechanics of a free particle in the
one-dimensional space R. A solution for the initial-value problem of the
Schrodinger equation

.0 1 0° 1
1§¢($ﬂf) =3 @WIL’J) = §A¢($,t) (1.1)
is given by
$at) = [ dyK(e.y:)6(y.0) (12)
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with the propagator
1
V2rit

Their physical meanings are clear; the wave function ¢(x,t) represents prob-
ability amplitude to find the particle at the location x at the time ¢. The
propagator K (x,y;t) represents transition probability amplitude of the particle
to move from y to x in the time interval ¢.

If the particle is confined in the half line R>, = {« > 0}, we need to impose a
boundary condition on the wave function ¢(z,t) at x = 0 to make the initial-
value problem (1.1) have a unique solution. As one of possibilities we may
chose the Neumann boundary condition

9¢

5-(0.0)=0. (1.4)

Then the solution of (1.1) is given by

i

exp {—(m — y)ﬂ : (1.3)

K(z,y;t) = (z]e *y) = 5

dat) = [ dyKy(a.y:0)6(5.0) (15)

with the corresponding propagator
Ky (z,yit) = K(z,y3t) + K(—z, ;1) . (1.6)

The physical meaning of the propagator K (x,y;t) is obvious; the first term
K (z,y;t) represents propagation of a wave from y to x while the second term
K (—x,y;t) represents propagation of a wave from y to —z, which is the mirror
image of z. Thus the Neumann propagator Ky (x,y;t) is a superposition of
the direct wave with the reflected wave.

As an alternative choice we may impose the Dirichlet boundary condition

»(0,t) =0. (1.7)
Then the solution of (1.1) is given by

owt) = [ dyKole,y:1)0(y,0) (19)

with the corresponding propagator
KD(:U,y;t):K(x,y;t)—K(—x,y;t). (19)

Thus the Dirichlet propagator K (x,y;t) is also a superposition of the direct
wave with the reflected wave but reflection changes the sign of the wave.
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The half line R, can be regarded as an orbifold R/7Z,. In the above discussion
we have assumed the existence of the propagator K (z, y; t) in R and constructed
the propagators in R/Z, from K (x,y;t). There are two inequivalent propaga-
tors; the Neumann propagator K (z,y;t) obeys the trivial representation of Z,
whereas the Dirichlet propagator K p(z,y;t) obeys the defining representation
of Zy = {+1,—-1}.

Now a question arises; how is a propagator in a general orbifold M /G con-
structed? Here M is a Riemannian manifold and G is a compact Lie group
that acts on M by isometries. Such an example is easily found; we may take
M = S? and G = U(1). Then the quotient space is M/G = [—1, 1], which
has two boundary points.

Let us turn to another aspect of the propagator, namely, the path-integral ex-
pression of the propagator. For the general Schrodinger equation

2

0 10

its solution is formally given by
ox,t) = 7 dy K (x,y;t)6(y, 0) - (1.11)
The propagator satisfies the con_l;oosition property
K" zt+1t) = 70 de’ K(z", 2"t K(x', z;t) . (1.12)

By dividing the time interval [0, ] into short intervals we get

o]

K(zn,xo;t) = // dey_ - deK(zy,xn_15€) - K(x1, 205 €)
Jo (1.13)

with £ = Ne. For a short distance and a short time-interval the propagator
asymptotically behaves as

K(z+ Ax,x; At) ~

1
VomiAL 2 LAt

Then “the limit N — oc” gives an infinite-multiplied integration, which is
called the path integral,

exp [i (§>2At - iV(:c)At] . (1.14)

K(x' ;1) :72?36 ol Las :7Da:exp [i/tds <%x(3)2 - V(ZE(S)))] (1.15)
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In a rigorous sense, the limit N — oo does not exists but physicists use
this expression for convenience. The philosophy of the path integral can be
symbolically written as

propagation of the wave = Z motion of the particle . (1.16)

trajectories

We can construct the path integral on the half line R>, = R/Z, as well:

Kn(x', x;t) = Z/DxeideS, (1.17)
n=0

Ko(r,z;t) = Z(—l)”/DxeideS, (1.18)
n=0 T

where the summations are taken with respect to the number of reflections of
the trajectory at the boundary = = 0.

Now another question arises; what is the definition of path integrals on a general
orbifold M/G? Our main concerns are propagators and path integrals in M /G.

2. Reduction of Quantum System

When a quantum system has a symmetry, it is decomposed into a family of
quantum systems that are defined in the subspaces of the original. Here we
review the reduction method [5] of quantum system.

A quantum system (H, H) is defined by a pair of a Hilbert space H and
a Hamiltonian 7, which is a self-adjoint operator on H. The symmetry of
the quantum system is specified by (G, T'), where GG is a compact Lie group
and 7' is a unitary representation of G over H. The symmetry implies that
T(g)H = HT(g) for all g € G. The compact group G is equipped with the
normalized invariant measure dg.

To decompose (H, H) into a family of reduced quantum systems, we introduce
(HX, pX), where HX is a finite dimensional Hilbert space of the dimensions
dX = dim'HX. Besides, pX is an irreducible unitary representation of GG over
HX. The set {y} labels all the inequivalent representations. For each g € G,
pX(g) ® T(g) acts on HX ® H and defines the tensor product representation.
The reduced Hilbert space is defined as the subspace of the invariant vectors
of HX ® 'H,

(HX®@H)® :={p cHX @ H; Vh € G, (p(h) @ T(h))Y =}. (2.1)
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Let the set {ef,...,el} be an orthonormal basis of HX. Then the reduction
operator S : H — (HX ® H)® is defined by
FEH=SI =V [ 9) 0 @) @2
G

Theorem 2.1. SX is a partial isometry. Namely, (SX)*SX is an orthogonal
projection operator acting on H while S}(S})* is the identity operator on

(HX @ H)“.

Theorem 2.2. The family of the projections {(S})*S}} forms a resolution of
the identity as

> (SH)S¥ =1y (2.3)
X%
Hence, the Hilbert space is decomposed as
H = Im(SX)"S* = PHX @ H)“ (2.4)
X% Xt

and this decomposition is compatible with the Hamiltonian action. Namely,
we have the commutative diagram
X

H 2 (Hx @ H)C
HJ JId@H (2.5)

X

H 2 (HX @ H)C
Then ((HX @ H)“,1d ® H) defines a reduced quantum system.

The projection PX: HX @ H — (HX ® H)¢ onto the reduced space is defined
by

px = /dgpx(g)@@T(g)- (2.6)

The reduced time-evolution operator of the reduced system is
Ux = PX(Id®e '), (2.7)

Theorems 2.1 and 2.2 are easily proved by an application of the Peter- Weyl
theorem, which states that the set of the matrix elements of irreducible unitary
representations {v/dx p);(g)},.:, forms a complete orthonormal set of Lo (G).
Our main purpose is to give a path-integral expression to the time-evolution
operator UX. To describe it we need to introduce some related notions.



436 S Tanimura

Assume that the base space M is equipped with the measure dx. Then the
space of the square-integrable functions L,(M) becomes a Hilbert space H.
Moreover, assume that the compact Lie group G acts on M preserving the
measure dz. Then g € G is represented by the unitary operator T'(g) on
f € Ly(M) by

(T(9)f)(x) == flg " x). (2.8)

Let p: M — (Q = M/G be the canonical projection map. Then a measure dg
of @ = M/G is induced by the following way. Let ¢(q) be a function on )
such that ¢(p(x)) is a measurable function on M. The induced measure dg of
() is then defined by

[ dao(a) = [ dwoip(a)). (2.9)
Q M

On the other hand, suppose that the time-evolution operator U(t) := e 7! is

expressed in terms of an integral kernel K: M x M x R,y — C as

W) = [ dy K a0/ () 2.10)

for any f(x) € Lo(M).

Let us turn to the reduced Hilbert space (2.1) and characterize it for the case
H = Ly(M). A vector ¢ € HX ® Ly(M) can be identified with a measurable
map ¢: M — HX. The tensor product pX(g) ® T'(g) acts on 1) as

((p*(9) @ T(g))(x) = pX(g)(g 'x), geG (2.11)

via the definition (2.8). The definition (2.1) of the invariant vector i) € (HX ®
Ly(M))€ implies
((p*(9) ® T(9))¢)(x) = pX(9)¢ (g™ @) = (), (2.12)
which is equivalent to
P(gz) = p*(9)¢(x). (2.13)

A function ¢: M — HX satisfying the above property is called an equivariant
function. Hence the reduced Hilbert space is identified with the space of the
equivariant functions Lo (M, HX)¢.

The projection operator PX: Ly(M;HX) — Ly(M, HX)®, is now given by

(PX)(a / dg p*(g)ib(g ') . (2.14)
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From (2.7-2.10) and (2.14) the reduced time-evolution operator is given by

UK @) = [ dg [ dyp@K g wptey)  @15)

G

and thus the corresponding reduced propagator is KX: M x M xR., —
End 'HX is defined by

KX(z,y;t) := / dg p*(9)K (97 2, y;1) - (2.16)
G

Our aim is to express the reduced propagator in terms of path integrals.

3. Stratification Geometry

To write down a concrete form of the path integral we need to equip the base
space M with a Riemannian structure. Namely, now we assume that M is a
differential manifold equipped with a Riemannian metric g, and that the Lie
group GG acts on M preserving the metric g»;. Then the volume form induced
from the metric defines an invariant measure da of M. We do not assume that
the action of G on M is free. Therefore p: M — M/G is not necessarily a
principal bundle.

For each point x € M, G, := {g € G; gr = x} is called the isotropy group
of z and O, := {gx|g € G} is the orbit through z. It is easy to see that
O, = G/G,. Note that the dimensions of the orbit O, can change suddenly
when the point x € M 1s moved. The subspace of the tangent space 1, M,
V, = T,0,, is called the vertical subspace and its orthogonal complement
H, := (V,)' is called the horizontal subspace. Py : T,M — V, is the
vertical projection while Py: T, M — H, is the horizontal projection. A
curve in M whose tangent vector always lies in the horizontal subspace is
called a horizontal curve. Although these terms have been introduced in the
theory of principal fiber bundle, we use them for a more general manifold that
admits group action.

Let g denote the Lie algebra of the group GG. For each x € M, g, is the Lie
subalgebra of the isotropy group .. The group action G x M — M induces
infinitesimal transformations g x M — T'M by differentiation. The induced
linear map 60,: g — 1, M has ker 6, = g, and 3¢, = V,,. Then it defines an
isomorphism 6, : g/g, — V.. Now we define the stratified connection form
w by

Wy 1= (éx)_l oPy: T,M — g/g. . (3.1)

Actually w is not smooth over the whole M but it is smooth on each stratum
of M.
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4. Reduction of Path Integral

The Riemannian structure (M, gys) defines the Laplacian Ay, Suppose that
V: M — R is a potential function such that V(gz) = V(z) for all x € M,

1
g € G. Then the Hamiltonian H = iAM + V(x), which acts on L,(M),

commutes with the action of (&, which is defined in (2.8). Let us assume that
the path integral in M is formally given by

K(x' x;t) = 7Dxexp [1] ds (%”ZE(S)HQ — V(a:(s)))] . @

Now we repeat our question; what is the path-integral expression for the reduced
propagator (2.16) on () = M/G? The answer is our main result which is given
below.

Theorem 4.1. The reduced path integral on QQ = M /G is

KX(z',z;t) = /DQPX(’Y)Pf (PGXP [— % / dSA(Q@))])

< exp [i [ as (S - v<q<s>>)] .

To read the above equation we need explanation of the symbols. The canonical
projection map p: M — @ = M/G induces the metric gy of ) by asserting
that the map p is a stratified Riemannian submersion. For x,x’ € M we
put ¢ = p(x) and ¢’ = p(«’). The map ¢: [0,t] — @ is a curve connecting
g =¢(0) and ¢’ = ¢(¢t). The map §: [0,1] — M is a horizontal curve such that
G(0) = x and p(g(s)) = q(s) for s € [0,¢]. The element v € G is a holonomy
defined by o' = v - ¢(¢).

To describe the symbol A, which is called the rotational energy operator,
we need more explanation. The metric gy : TM ® TM — R defines an
isomorphism gy : TM — T*M. Then its inverse map §;/: T°M — TM
defines a symmetric tensor field g3/ : M — T'M ® TM. Thus combining it
with the stratified connection w, : T, M — g/g. we define the rotational energy
operator by

(4.2)

Az) = —(w: ®ws) 0 gy (2) € (8/82) ® (9/82) - (4.3)

The unitary representation pX of the group GG in ‘HX induces the representa-
tion pX of the universal enveloping algebra I/(g). Then we have pX(A(x)) €
End ‘HX. Moreover,
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A(T) = p (73 exp [— % / ds A(Q(S))]) € End HX (4.4)

is defined as a solution of the differential equation

ST = —gp MGG, A0) = EBdHE . (@)

Now we can read off the physical meaning of the reduced path integral (4.2).
The path integral is expressed as a product of three factors:
i) the rotational energy amplitude exp[— 3 v ds A(g(s))], which represents
motion of the particle along the vertical directions of p: M — M/G;
ii) the vibrational energy amplitude expli f, ds (1 d(s)||* —V (¢(s)))], which
represents motion of the particle along the horizontal directions;
11i1) the holonomy factor «, which is caused by non-integrability of the hori-
zontal distributions.

Here we give the outline of the proof of the main Theorem 4.1. For the detail
see the reference [6]. Essentially, it is only a matter of calculation; from the
path integral on M (4.1)

K2 a:t) = 7Dxe”m, Tla] = /tds (%uj;(s)n? —V(:U(S))) (4.6)

with the reduction procedure (2.16) we get

h—lm/
(2, ;1) /dhp iy at) = /dhpx(h) / Dy oille]
/ h—lfy
_/dhp /Dq/Dge QQ]—/Dq/dhp h) /Dgeif[gq]
ql
= /Dq/dhpx(yh) /pgeif[gd] (4.7)
q G e

q ht
:/qux(’y>/dhpx<h> / Dyel ] 531191 oi [ ds {3 1461°-V (@)}
q G e

= /’qux(’y)pff (Pexp [— % /ds A(ij(s))]) of [ds {5 1dIP-V@)}
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5. Example

Finally, we show an example of application of our formulation. Let us begin
with the plane M = R?, which has the standard metric g;; = dz? + dy? =
dr? + 72 d#?. It admits the symmetry action of G = SO(2). The quotient space
is a half line () = R?/SO(2) = R.(. The invariant potential is a function V' (r)
only of r.

The group action

SO(2) x R? — R?; (‘;fflz _(S::)r; j;) (‘;) (5.1)

induces the action of the Lie algebra

2 2, 0 —¢ &£
50(2) x R — TR?; (qs O) <y> ) (5.2)
which defines the vertical distribution
— 1%}
0: 50(2) xR? — TR?: ((g qé) (‘;)) - (5.3)
Then the stratified connection becomes
0 -1
w = (1 0) deo . (5.4)

In the cotangent space the metric is given as

0 0 1 0 0

_1__ i - i
)™ = 5 05 T 255 © 59 (33

The rotational energy operator is

As —(wRw)o(gy) ' = —~ <(1) _é> % <(1) _é> (56

r2

The irreducible unitary representations of S(O(2) are labeled by the integers
n € 7 and defined by

pn: SO(2) — U(1); (Cos‘b —sin ‘75) — e (5.7)

sing  coso
The differential representation of the Lie algebra of SO(2) is

(pn)w: 850(2) — u(l); <g _qg> — ing. (5.8)
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The rotational energy operator is then represented as

(o). () = — 8 _ (5.9)

r? r
Finally the reduced path integral is given by

Kn(r',0,7.03) = [ Drem@ o

(5.10)
t
< exp | / d n Ly
exp 10 S 52 T 3" r .
So the effective potential for the radius coordinate r is given by
n2
Ver(r) =V (r) + 9,3 (5.11)

where the second term represents the centrifugal force.
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