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Abstract. The Lamb shift in hydrogen spectrum is obtained here in 
the framework of some weak generalization of the classical Maxwell 
electrodynamics. It is shown that weakly generalized classical Maxwell 
electrodynamics can describe the intra-atomic phenomena with the same 
success as relativistic quantum mechanics can do. Group-theoretical 
grounds for the description of fermionic states by bosonic system are 
presented briefly. The advantages of generalized electrodynamics in 
intra-atomic region in comparison with standard Maxwell electrody­
namics are demonstrated on testing example of hydrogen atom. We 
are able to obtain some results which are impossible in the framework 
of standard Maxwell electrodynamics. The Sommerfeld-Dirac formula 
for the fine structure of the hydrogen atom spectrum is obtained on the 
basis of such Maxwell equations without appealing to the Dirac equa­
tion. The Bohr postulates are proved to be the consequences of the 
equations under consideration. The relationship of the new model with 
the Dirac theory is investigated. Possible directions of unification of 
such electrodynamics with gravity are mentioned.

1. Introduction

Lamb shift is a specific effect of quantum electrodynamical consideration. It is 
explained in this theory as a consequence of polarization of vacuum. Below we 
are able to explain this effect in the framework of classical electrodynamics. 
More precisely speaking this effect is obtained in the framework of weakly 
generalized classical electrodynamics, which contains electric and magnetic 
gradient-type sources.
Before such nonstandard consideration of the Lamb shift the group-theoretical 
grounds of a new model of atom and the main assertions of this model must
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be presented. Let us consider firstly the reasons why the classical Maxwell 
electrodynamics needs some weak generalization and after that the foundations 
of the new model of atom, which follows from such generalized Maxwell 
equations.
There is no doubt that the classical Maxwell electrodynamics of macroworld 
(without any generalization) is sufficient for the description of electrodynamical 
phenomena in macro region. On the other hand it is well known that for micro 
phenomena (inneratomic region) the classical Maxwell electrodynamics (as well 
as the classical mechanics) cannot work and must be replaced by quantum 
theory. Trying to extend the limits of classical electrodynamics application to 
the intra-atomic region we came to the conclusion that it is possible by means 
of generalization of the standard Maxwell electrodynamics in the direction of 
extension of its symmetry. We also use the relationships between the Dirac and 
Maxwell equations for these purposes. Furthermore, the relationships between 
relativistic quantum mechanics and classical microscopical electrodynamics of 
media are investigated. Such relationships are considered here not only from the 
mathematical point of view — they are used for construction of fundamentals 
of a nonquantum-mechanical model of microworld.
Our nonquantum-mechanical model of microworld is a model of atom on the 
basis of weakly generalized Maxwell’s equations, i. e. in the framework of 
weakly extended classical microscopical electrodynamics of media. This model 
is free from probability interpretation and can explain many intra-atomic phe­
nomena by means of classical physics. Despite the fact that we construct the 
classical model, for the purposes of such construction we use essentially the 
analogy with the Dirac equation and the results which were achieved on the 
basis of this equation. Note also that electrodynamics is considered here in 
terms of field strengths without appealing to the vector potentials as the pri­
mary (input) variables of the theory.
The first step in our consideration is the unitary relationship (and wide range 
analogy) between the Dirac equation and weakly generalized Maxwell equations 
[39,40],
Our second step is the symmetry principle. On the basis of this principle we 
introduced in [41,42] the most symmetrical form of the generalized Maxwell 
equations which can describe both bosons and fermions because they have (see 
[41,42]) both spin 1 and spin 1/2 symmetries. On the other hand, namely these 
equations are unitarily connected with the Dirac equation. So, we have one 
more important argument to suggest these equations in order to describe intra- 
atomic phenomena, i. e. to be the equations of specific intra-atomic classical 
electrodynamics.
In our third step we refer to Sallhofer, who suggested in [34-36] the possi­
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bility of introduction of interaction with external field as the interaction with 
specific media (a new way of introduction of the interaction into the field equa­
tions). Nevertheless, our model of atom (and of electron) [39,40] is essentially 
different from the Sallhofer’s one.
On the basis of these three main ideas we are able to postulate the weakly 
generalized Maxwell equations as the equations for intra-atomic classical elec­
trodynamics which may work in atomic, nuclear and particle physics on the 
same level of success as the Dirac equation can do. Below we illustrate it 
considering hydrogen atom within the classical model.
The interest to the problem of relationship between the Dirac and Maxwell 
equations dates back to the time of creation of quantum mechanics [2,6,7,10, 
11,24,25,27-30]. But the authors of these papers considered the most simple 
example of free and massless Dirac equation. The interest to this relationship 
has grown in recent years due to the results [34-36], where the investigations of 
the case ra0 0 and the interaction potential <h /  0 were started. Another ap­
proach was developed in [3,4,8,9,16,17,32,33], where the quadratic relations 
between the fermionic and bosonic amplitudes were found and used. In our 
above mentioned papers [39,42], in publications [19-22,37,38] and herein we 
consider the linear relations between the fermionic and bosonic amplitudes. In 
[20-22,37,38] we have found the relationship between the symmetry proper­
ties of the Dirac and Maxwell equations, the complete set of 8 transformations 
linking these equations, the relationship between the conservation laws for the 
electromagnetic and spinor fields, and the relationship between the Lagrangians 
for these fields. Here we summarize our previous results and give some new 
details (Lamb shift consideration) of the intra-atomic electrodynamics and its 
application to the hydrogen atom. The possibilities of unification with gravi­
tation are briefly discussed.

2. Weakly Generalized Maxwell Equations with Maximal 
Symmetry Properties

Consider the Maxwell equations with specific (gradient-type) form of electric 
and magnetic sources and the symmetry properties of such equations. The 
corresponding equations for the system of electromagnetic and scalar fields 
(E, H,E°, H °) have the form:

d0E  =  rot H  — grad E° , d0H  =  — rot E  — grad H° ,

div E  = - d 0E° , div H  = - d 0H° . ^

The Eqs (1) are nothing more than the weakly generalized Maxwell equations 
with gradient-like electric and magnetic sources =  —d^E°, j “ag =  — <9/(T7°,
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i. e.

j e =  grad E° , j mag =  grad ff° , pe = - d 0E° , pmag =  - d 0H° . (2)

In terms of complex 4-component object £ = ( £ =  E  — iff

where £ =  E  — iH  is the well-known complex fonn for the electromagnetic 
field used by Majorana in far 1930 (see, e. g. [28]) Eqs (1) may be rewritten in 
the manifestly covariant form

dp£u -  du£p + i£ ^ padp£ a =  0, dp£ p =  0. (4)

It is useful also to consider the following form of Eqs (1), (4):

(i<90 — S  • p)£ — i grad 6’° =  0 , dp£ p — 0 , (5)
— >

where S  =  (SJ) are the generators of the irreducible representation D{ 1) of 
the group SU (2), i. e. the quantum-mechanical spin 1 operators:

=  [E1 -  iH \ E 2 -  iH 2,E 3 -  if f3, E° -  iff°]T , (3)

'0 0 O' 1 0  1 '0 - i  O'
0 0 - i , 5 2 = 0 0 0 , s 3 = i 0 0
0 i 0. - i  0 0. 0 0 0.

S 2 = 1(1 +  1 )/.

(6)

Equations (1-5) are directly connected with the free massless Dirac equation

i7+ 9 ^ (x )  =  0. (7)

The substitution of

^  =

' E 3 +  if f0 ' 
E 1 +  i E 2 
E° +  if f3 

- f f 2 +  if f1.

II u  =

- 0 0
c + ic + 
0 0

JO- i C-

c+ c c  
0 0 

c  C+ 
0 0 .

Ct = \ ( C  T l ) , cm  = m* , C£ =  £*

into the Dirac equation (7) with 7 matrices in standard Pauli-Dirac repre­
sentation guarantees its transformation into the generalized Maxwell equations 
(1-5). The complete set of 8 transformations like (8), which relate gener­
alized Maxwell equations (4) and massless Dirac equation (7), was found in 
[37,38]. Unitary relationship between the generalized Maxwell equations (4) 
and massless Dirac equation (7) can be found in our papers [20,22].
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The unitarity of the operator (8) can be verified easily by taking into account 
that the equations

(.A C y  = C A f , aC = Ca* , (aC)* = Ca (9)

hold for an arbitrary matrix A  and a complex number a. We note that in the real 
algebra (i. e. the algebra over the field of real numbers) and in the Hilbert space 
of quantum mechanical amplitudes this operator has all properties of unitarity. 
Equations (4) (or their another representations (1-5)) are the maximally sym­
metrical form of the generalized Maxwell equations. We consider here repre­
sentation (4) as an example. The following theorem is valid.

Theorem 1. The generalized Maxwell equations (4) are invariant with respect 
to the three different transformations, which are generated by three different 
representations P v , P TS, P s o f the Poincare group P ( l .  3) given by the 
formulae

£{x) —>■ £ v (x) = A5^A_1(a; — a)j

£{x) —>■ £ TS(x) — F(A )£^A ~1(x — a)j (10)

£(x) —> £ s {x) — S {K )s[h r1{x — a)j

where A is a vector, i. e. F{A) is a tensor-scalar (0,1) © (0,0) and

5(A) is a spinor representation (0, f ) <8> ( §, 0  ̂ o f S L (2, C) group. This means 
that the equations (44) have both spin 1 and spin 1/2 symmetries.

Proof: Let us write the infinitesimal transformations, following from (10), in 
the form

1
—  i 
2

£ V,TS’S(X') =  — apdp — -ccp(Tj^if s,s^j£(x).

Then the generators of the transformations (11) have the form

d
°)p d xp ’ jp/TS’s = x pda -  x adp +  sr ’TS’s' pa

where

{ S p a ) v  = 5 p 9 ™  ~  5 a 9 p »  , 

s]

V 1 1
S pa ^ \ 2  ’ 2  1 ’

cT5 _  
b pa ~

&  O' 
0 0 e (1,0) © (0 ,0 ), T T

Spa =  ~ S ap ,

oT — _\c-mnj qj
b m n  —  ° s l  = S ’ ,’0 j

(11)

( 12)

(13)
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with S J given by the formula (6) and

£ = j [ 7 „ T v ] ,  7  — W ^ U  ■ (14)

The unitary operator U is given by the formula (8), 7 matrices here may be 
easily found according to (14). The explicit form of 7 matrices is as follows:

■1 0 0 0 ■ ■ 0 0 0 r
0 1 0 0

C , — 1 0 0 —i 0
0 0 1 0 7 = 0 i 0 0
0 0 0 -1 . .-1 0 0 0.

■0 0 i 0- ■0 —i 0 O'
0 0 0 1 C, i 0 0 0
—i 0 0 0 -4 c II 0 0 0 1
.0 -1 0 0. 0 0 -1 0.

(15)

We call the representation (15) the bosonic representation of the 7 matrices. 
In this representation the imaginary unit i is represented by the 4 x 4  matrix 
operator.

v w t =  i r ,

■0 i 0 0
r = —i 0 0 0

0 0 0 -1
.0 0 -1 0

r2 = i. (16)

Due to the unitarity of the operator U in (8), the 7'' matrices not only obey the 
Clifford Dirac algebra

+ Y T  =  W "  (17)

but also have the same Hermitian properties as the Pauli-Dirac 7^ matrices:

7°t =  7° , 7fci =  —7fe . (18)

Thus, the formulae (15) give indeed an exotic representation of matrices.
Now the proof of the theorem is reduced to the verification that all the gener­
ators (12) obey the commutation relations of the P{ 1,3) group and commute 
with the operator of the generalized Maxwell equations (4-5), which can be 
rewritten in the Dirac form

^ d jl8{x) = 0 (19)

(for some details see [41,42]). □
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This result about the generalized Maxwell equations (4) means the following. 
From group theoretical point of view these equations can describe both bosons 
and fermions. This means that one has direct group-theoretical grounds to 
apply these equations for the description of electron, as it is presented below 
in Section 5.
A distinctive feature of the equation (4) for the system £ — (£, £°) (i. e. for 
the system of interacting irreducible (0,1) and (0,0) fields) is the following. 
It is a manifestly covariant equation with minimal number of components, i. e. 
the equation without redundant components for this system.
Note that each of the three representations (10) of the P ( l ,  3) group is a local 
one, because each matrix part of transformations (10) (matrices A, F{A) and 
S (A)) does not depend on the coordinates x  e  R4, and, consequently, the 
generators (12) belong to the Lie class of operators. Each of the transformations 
in (10) may be understood as connected with special relativity transformations 
in the space-time M4 =  {x}, i. e. with transformations in the manifold of inertial 
frame of references.
We emphasize that the equation (19) has the form of massless Dirac equation 
for fermionic fields. In such consideration of equation (19) the A' matrices 
may be chosen in arbitrary representation (e. g., in each of representations of 
Pauli-Dirac, Majorana, Weyl, etc). However, only in exotic representation (15) 
equation (19) is the Maxwell equation for the system of interacting electromag­
netic £ = E  — iH  and scalar £° = E° — iH° fields (therefore, we have called 
the representation (15) the bosonic one). Thus, if one considers the equation 
(19) as bosonic one, the representation of f i ‘ matrices and their explicit form 
must be fixed in the form (15). In the case of bosonic interpretation of Eq. (7) 
one must fixes the explicit form of x 1' in standard Pauli-Dirac representation 
and fixes the form of T as in (8).
It follows from the Eqs (4) that the field £ =  (£, £°) is massless, i. e. dvdu£ lx =
0. Therefore it is interesting to note that neither P v , nor P TS symmetries 
cannot be extended to the local conformal (7(1, 3) symmetry. Only the spinor 
Cs representation of (7(1,3) group, obtained from the local P s representation,
is the symmetry group for the generalized Maxwell equations (4). This fact is

—  ̂ — > — *

understandable: the electromagnetic field £ =  E  — iff obeying Eqs (4) is not 
free, it interacts with the scalar field £°.
Consider the particular case of standard (non-generalized) Maxwell equations, 
namely, the case of equations (4) without magnetic charge and current densities,
1. e. the case when H° — 0 but E° fi 0. The symmetry properties of such 
standard equations are strongly restricted in comparison with the generalized 
Eqs (4): they are invariant only with respect to tensor-scalar (spin 1 and 0) 
representations of Poincare group defined by the corresponding representation
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(0,1) © (0,0) of the proper ortochronous Lorentz group SL(2JC). Other 
symmetries mentioned in the theorem are lost for this case too. The proof 
of this assertion follows from the fact that the vector ( 1 5 | ) and the spinor

(0, transformations of £ =  (£, £°) mix the £° and £ components
of the field £, and only the tensor-scalar (0,1) © (0,0) transformations do not 
mix them.
For the free Maxwell equation in vacuum without sources (the case E° =  H° = 
0) the losing of above mentioned symmetries is evident from the same reasons. 
Moreover, it is well known that such equations are invariant only with respect 
to tensor (spin 1) representations of Poincare and conformal groups and with

—  ̂ —a —  ̂ —>
respect to dual transformation: E  —> H , H  —> —E. We have obtained the ex­
tended 32-dimensional Lie algebra [18] (and the corresponding group) of invari­
ance of free Maxwell equations, which is isomorphic to (7(1,3) ©(7(1,3) ©dual 
algebra. We were successful to prove it appealing not to Lie class of symmetry 
operators but to a more general, namely, to the simplest Lie-Backlund class 
of operators. The corresponding generalization of symmetries of Eqs (4) pre­
sented in the above theorem leads to a wide 246-dimensional Lie algebra in the 
class of first order Lie-Backlund operators. Thus, the Maxwell equations (4) 
with electric and magnetic gradient-like sources have the maximally possible 
symmetry properties among the standard and generalized equations of classical 
electrodynamics.
The general solution of Eqs (4) was found in [21,22] directly by the application 
of Fourier method. In terms of helicity amplitudes dl (k) this solution has the 
form

[<7ei +  c3(e3 +  e4)] e lkx 
+  [c*2ei +  c*4(e3 +  e4)] elkx

where the 4-component basis vectors eQ are taken in the form

©' "el" 63 'O'
ei = 0 5 e2 — 0 5 63 — 0

, e4 —
_1_

(20)

(21)

Here the 3-component basis vectors which, without any loss of generality, can 
be taken as

e~i =
uo

1

2 {k1k l + k2k2)

u)k2 — i E k 3 

—ujE  — i k2E  
i ( E E  +  k2k2)_

62 — 61 , e3 7  ( 22)

are the eigenvectors for the quantum-mechanical helicity operator for the spin
s — 1.
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Note that if the quantities if0, H° in Eqs (1) are some given functions for which 
the representation

E° -  iH° d 3k
2co 

(27r)3
c3 e~ikx +  c4 eikx (23)

is valid, then Eqs (1) are the Maxwell equations with the given sources, j e — 
—d^E°, j “ag =  — (we call these 4 currents the gradient-like sources). In 
this case the general solution of the Maxwell equations (1-4) with the given 
sources, as follows from (20), has the form

H{x) =  i / d3k

2(27t)3 +  +  e lkX +  C'C‘

 ̂2(2tt)3 ~  c2^2 +  ^  e~ikX +  C'C'

(24)

where the amplitudes of longitudinal waves e3exp(—ikx)  are a  =  c3 +  c4, 
ft =  c3 — c4 and c3, c4 are determined by the functions if0, H° according to 
the Eq. (23).
The longitudinal electromagnetic waves were the object of long time investi­
gation by Hvorostenko [13]. Here we are able (i) to add to his results the exact 
solution of the Maxwell equations with gradient-like sources which contains 
such a waves and (ii) to make the assertion about location of these waves in the 
same space-time area where the gradient-like sources are located (the reason: 
the amplitudes c3, c4 which define this waves and the gradient-like sources are 
the same).
Now, knowing the operator U from (8), it is easy to obtain the relationship

—> —^

between the amplitudes ar {k), br (k ) determining the well known fermionic
— ^

solution of the massless Dirac equation, and the amplitudes ca (k), determin­
ing the bosonic solution (20). Corresponding formulae relating fermionic and 
bosonic amplitudes were found in [21,22], Therefore, the fermionic states may 
be constructed over bosonic states. This assertion finishes the consideration of 
group-theoretical grounds of our model.

3. New Classical Electrodynamical Hydrogen Atom Model

The generalized Maxwell equations (1) may be extended on the case of specific 
inneratomic medium. Namely these equations are put into the ground of our 
model of the atom.
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Consider the weakly generalized Maxwell equations with gradient-type sources 
in a medium:

rot H  -  d0cE  =  j e , rot E  + d0pH  = j mag ,
^

div sE  — pe , div pH  = pmag,
(25)

where E  and H  are the electromagnetic field strengths, e and p are the electric 
and magnetic permeabilities of the medium being the same as in the electro­
dynamical hydrogen atom model of Sallhofer [34,36,23]:

e{x ) =  1 —
d>(x) +  m 0

UJ
p(x) — 1 —

<T(x) — m Q
to

(26)

where d>(x) =  —Ze2/r  (we use the units: h — c — 1). The current and charge 
densities in equations (25) have the form

je = grad E° , j mag =  -  grad H° , 

pe =  —£pd0E° +  E  grad e , pmag =  epd0H Q +  H  grad p, ,
(27)

where E °, H° is the pair of functions (two real scalar fields) generating the 
densities of gradient-like sources.
One can easily see that equations (25) are not standard electrodynamical equa­
tions known from the Maxwell theory. These equations have the additional 
terms which can be considered as the magnetic current and charge densities 
— in one possible interpretation, or equations (25) can be considered as the 
equations for compound system of electromagnetic (E ,H ) and scalar E °,H °  
fields in another possible interpretation.
Contrary to [39,40], here the equations (25) are solved directly by means of 
separation of variables method. It is useful to rewrite these equations in the 
mathematically equivalent form where the sources are maximally simple:

where

rot H  -  ed0E  = j e , 

div eE  — pe ,

rot E  +  pd0H  = Jmag ,
— *

div pH  = pmag,
(28)

je = grad E° , Jmag =  -  grad H° , Pe pd0E °, pmag = -£ d 0H° . (29)

Consider the stationary solutions of equations (28). Assuming the harmonic 
time dependence for the functions 77°, H°

E° (t,x ) — E°a (x ) cos cut +  E°b (x ) sin cut,
H° (t, x) =  Ha (x ) cos cut +  H°b (x ) sin ix t ,

(30)
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we are looking for the solutions of equations (28) in the form

E(t, x) =  E a (x ) cos cot +  E b (x ) sin cot, 

H ( t , x ) =  H a (x ) cos cot +  H B (x) sin cot.
(31)

For the 16 time-independent amplitudes we obtain the following two nonlinked 
subsystems

and

grad E a ,
—* —> 

rot E b — co(iHA — -

=  utiE°A , div fiHA — —coeH b

grad E°b , rot E  A +  cofiHB = -

= —co/i E b , div fiHB =  (xeH a

r°lB 5

r°lA >

(32)

(33)

Below we consider only the first subsystem (32). It is quite enough because 
the subsystems (32) and (33) are connected with transformations

E H , H —E , eE  -
£ —> fl , fJ,

l iH , (iH
* £ ,

-e E  ,
(34)

which are the generalizations of duality transformation of free electromagnetic 
field. Due to this fact the solutions of subsystem (33) can be easily obtained 
from the solutions of subsystem (32).
Furthermore, it is useful to separate equations (32) into the following subsys­
tems:

and

coeE I  -  dxH \  +  d2H \  +  d3E°a =  0 

coeH°b -  d j i f i  +  d2H \  +  d3H i = 0 
—cofiEA — dxE B +  d2E B +  d3E B =  0 

cofiHsA -  dxE 2B +  d2E \  -  d3H°B = 0

uoeE \  -  dxH 3A + d3H \  +  dxE \  =  0 
coeE ^  — d3HA +  d\ H a +  d2E A = 0 

-  d2E \  +  d3E 2B -  dxH°B = 0 
coiiH\ -  d3E xB + dxE 3B -  d2H°B = 0 .

Assuming the spherical symmetry case, when <f>(x) =  4>(r), r  =  \x\, we are 
making the transition into the spherical coordinate system and looking for the
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solutions in the spherical coordinates in the form

( E , H ) ( f )  =  H) (r)/(£ ,„ , ( M ) ,  (37)

where E  =  (E ,E °), H  = We choose for the subsystem (35) the
d’Alembert Ansatz in the form

E°a CE4R H4PrH: e~'m *+ 

= CEkR EkP ^  e - ^ +  

H% = Ch4R E4P ^  e ~ ^  

H \ = CHkR HkPrHl e~ifTlk4

k = 1 ,2 ,3 . (38)

We use the following representation for d i, ()■>. d3 operators in spherical coor­
dinates

p=Fira <?)/'■'<
d ^ C R F ? ^™ 4, = cos (j)(Rtl+1P^+1 -  R i_lP[n+1'

21 + 1 / + 1

d2C R P r e Tim4> =

_|_ g T i ( 77i  — 1)4> Q  _____ p m  _

sin 6 1 r ’
e =pi n u j)(J

21 + 1 sin m ^ i P r - t 1 -  R ^-iP iit1)

+ eTi(m-l )4>C ™ p r n R
sin 6 r

(39)

pTi rruf>n
dsCRPre*™ * = ( R l+1(l + m ) P ^  + R _ ,(l - m  + 1)P,™ ) .

Substitutions (38) and (39) together with the assumptions

R e,x — R e ? ‘̂Ea —  Ie i R h,, —R h i lH„ ~
fh1 = m 2 =  m 3 — 1 =  m 4 — 1 =  m ,

=  i Cr2 , Ce2 = -iCEl , Ch4 — ~ Ch3

e g = e g { i k + m  + 1), C k =  - e g  == c \

e g = c k { k — m ) , Ih = Ie ~  1 := l k

C g = - c k ( i r II •H -  rn ) , e g II 1 O ts ̂ 4- 
^ 11 1= c 11

FSII
= - + ( !

HI
'E + m + 1 ) , Ik =  Ik  +  1 = ln

i C E4 5

(40)

into the subsystem (35) guarantee the separation of variables in these equations 
and lead to a pair of equations for the two radial functions R E, R H (for the
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subsystem (36) the procedure is similar):

eujR e 

eujR ^
r h,-i ~  0 ,

r h,i+ i — 0 ^

R , a  =

f I C j R H  +  R E) l+2 ~  0  5

fiujRH +  R e _i+1 =  0 ,

(41)

(42)

For the case <b =  —ze2/r  the equations (41, 42) coincide exactly with the 
radial equations for the hydrogen atom of the Dirac theory and, therefore, the 
procedure of their solution is the same as in textbooks on relativistic quantum 
mechanics. It leads to the well-known Sommerfeld Dirac formula for the fine 
structure of the hydrogen spectrum. We note only that here the discrete picture 
of energy spectrum in the domain 0 < to < m 0c2 is guaranteed by the demand 
for the solutions of the radial equations (41), (42) to decrease at infinity (when 
r —> oo). From the equations (41), (42) and this condition the Sommerfeld- 
Dirac formula

to — tohyd
n j

m 0c

K  i  + (n,. + gfc2 — a? y

(43)

follows, where the notations of the Dirac theory (see, e. g. [1]) are used: nr — 
n — k, k — j  +  1/2, a  =  e2/He. Let us note once more that the result (43) 
is obtained here not from the Dirac equation, but from the Maxwell equations 
(25) with sources (27) in the medium (26).
Substituting (40) into (38) one can easy obtain the angular part of the hydrogen 
solutions for the (E, H . E (>. H°) field and calculate according to (27) the cor­
responding currents and charges. Let us write down the explicit form for the 
set of electromagnetic field strengths (E, H), which are the hydrogen solutions 
of equations (25), and also for the currents and charges generating these field 
strengths (the complete set of solutions is represented in [39,40]):

'(—l +  m  — 1)^+1 cos mef) '(/ +  m  +  1 )Plm sin m0"
R e (l — m +  1 )P™1 sin 7710 II (l + m  + 1 ) p r cos m0

- P ^ i 1 cos (m  +  1)0 . - P r +1sm(m +  1 )4> .
j l  =  grad R f f P ^ 1 cos (to +  1)0

JLs = ~  Srad Rlep i l t l sin(m +  (44)
Pi = ~ (£r Ie),i+2 p r +1 cosO  +  !)</>

Pmag = ~ (PR h ),-1 P l l t1 Sin<> +  !)0
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" [l +  m ) P f1 COS 7710 "

, H n  =  R ^
" ( — l +  m )Pln s i n  7770"

E 11 =  R f (—l — m)P[21 s i n  7770 ( — 1 +  777)P{n COS 7770
p m + i  c o s (m  _|_ 1 ) 0 - P , m + 1  s in (7 7 7  +  l ) 0 _

j 1/  =  grad R IJP [n+1 cos (to +  1)0

.Eag =  -  Srad R e sin(m +  1)0 (45)
pi1 = -  {eR e ) _ 1+! i^m+1 cos(t?7 +  1)0

Pmig =  -  sH m  +  1)0 •

In one of the possible interpretations the states of the hydrogen atom are de­
scribed by these field strength functions E, H  generated by the corresponding 
currents and charge densities.
It is evident from (25) that currents and charges in (44 45) are generated by 
scalar fields (E °,H ° ). Corresponding to (44-45), the (E °,H ° ) solutions of 
equations (25) are the following:

E 10 = R ih P T +1 cos (m  +  1)0, H 10 = P ^ P / ^ 1 sin (m  +  1)0,
E no = R f  P f +1 cos(m +  1)0, H 110 = R ”  P;m+1 sin(m +  1)0. ( }

As in quantum theory, the numbers n — 0,1, 2, . . . ,  j  — k — |  =  l mp |  
(k = 1, 2, . . . ,  n) and m  = —l, + mark both the terms (43) and
the corresponding exponentially decreasing field functions E ,H  (and E °,H °)  
in (44-46), i. e. they mark the different discrete states of the classical elec­
trodynamical field (and the densities of the currents and charges) which by 
definitions describes the corresponding states of hydrogen atom in the model 
under consideration.
Note that the radial equations (41), (42) cannot be obtained if one neglects 
the sources in equations (29), or one (electric or magnetic) of these sources. 
Moreover, in this case there is no solution effectively concentrated in atomic 
region.
Now we can show on the basis of this model that the assertions known as Bohr’s 
postulates are the consequences o f equations (25) and o f their classical inter­
pretation, i. e. these assertions can be derived from the model, there is no neces­
sity to postulate them outside the framework of the classical physics as it was in 
Bohr’s theory. To derive the first Bohr’s postulate one can calculate the general­
ized Pointing vector for the hydrogen solutions (44-46), i. e. for the compound 
system of stationary electromagnetic and scalar fields (E, H . E (}. TI(})

Pgen =  j  d 3x(E x H  -  EE° -  H H ° ) . (4 7 )
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The straightforward calculations show that not only the vector (47) is identically 
equal to zero but the Pointing vector itself and the term with scalar fields 

are also identically equal to zero:

P =  [  d3x (E x H )  = 0 , f  d3x(E E °  +  H H °) = 0 . (48)

This means that in stationary states the hydrogen atom does not emit any 
Pointing radiation neither due to the electromagnetic (E, H) field, nor to the 
scalar (E°. H°) field. That is the mathematical proof of the first Bohr postulate.
The similar calculations of the energy for the same system

W = i  j  d3x (E2 + H 2 + El  + Hi) (49)

give a constant W n/, depending on n, l (or n, j)  and independent of m. In our 
model this constant is to be identified with the parameter u> in equations (1) 
which in the stationary states of (E ,H ,E ° ,H °)  field appears to be equal to 
the Sommerfeld-Dirac value u;^d (43). By abandoning the h = c =  1 system 
and putting arbitrary A  in equations (25) instead of h we obtain final u;^d with 
A  instead of h. Then the numerical value of h can be obtained by comparison 
of containing A  with the experiment. These facts complete the proof of 
the second Bohr postulate.
This result means that in this model the Bohr postulates are no longer postu­
lates, but direct consequences of the classical electrodynamical equation (25). 
Moreover, this means that together with Dirac or Schrodinger equations we 
have now the new equation which can be used for finding the solutions of 
atomic spectroscopy problems. In a contrast to the well-known equations of 
quantum mechanics our equation is classical.
Being aware that a few interpretations of quantum mechanics (e. g. Copenhagen, 
statistical, Feynman’s, Everett’s, transactional, see e. g. [5,15,43,31]) exist, we 
are far from thinking that the interpretation here can be the only one. But the 
main point is that now the classical interpretation (without probabilities) is 
possible.
Today we prefer the following interpretation of hydrogen atom in the approach, 
when one considers only the motion of electron in the external field of the 
nucleon. In our model the interacting field of the nucleon and electron is rep­
resented by the medium with permeabilities e, /i given by the formulae (26). 
The atomic electron is interpreted as the stationary electromagnetic-scalar wave 
(E, H. E °7 H°) in medium (26), i. e. as the stationary electromagnetic wave in­
teracting with massless scalar fields (E°. H °), or with complex massless scalar
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field S° = E° — iH° with spin s — 0. In other words, the electron can be inter­
preted as an object having the structure consisting of a photon and a massless 
meson with zero spin connected, probably, with leptonic charge. The role of 
the massless scalar field is the following: it generates the densities of electric 
and magnetic currents and charges which are the secondary objects in
such model. The mass is the secondary parameter too. There is no electron as 
an input charged massive corpuscle in this model! The mass and the charge 
of electron appear only outside such atom according to the law of electromag­
netic induction and its gravitational analogy. That is why no difficulties of 
Rutherford Bohr’s model (about different models of atom see, e. g. [23]) of 
atom are present here! The Bohr postulates are shown to be the consequences 
of the model. This interpretation is based on the hypothesis of bosonic nature 
of matter (on the speculation of the bosonic structure of fermions) according to 
which all the fermions can be constructed from different bosons (something like 
new SUSY theory). Of course, before the experiment intended to observe the 
structure of electron and before the registration of massless spinless meson it is 
only the hypothesis but based on the mathematics presented here. We note that 
such massless spinless boson has many similar features with the Higgs boson 
and the transition here from intra-atomic (with high symmetry properties) to 
macroelectrodynamics (with loss of many symmetries) looks similarly to the 
symmetry breakdown mechanism.
The successors of magnetic monopole can try to develop here the monopole 
interpretation (see [26] for the review and some new ideas about the monopole) 
— we note that there are few interesting possibilities of interpretation but we 
want to mark first of all the mathematical facts which are more important than 
different ways of interpretation.

4. The Unitary Relationship Between the Relativistic Quantum 
Mechanics and Classical Electrodynamics in Medium

Let us consider the connection between the stationary Maxwell equations

rot H  — coeE  =  grad E  , rot E  — to pH  =  — grad H  ,

div E  = copE0 , div H  = -coeH0 ,

which follow from the system (32) after omitting indices A, B, and the station­
ary Dirac equation following from the ordinary Dirac equation

(17^  -  mo +  7 °$ ) ^  =  0 , =  ( tf“ ) , (51)
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with m 0 /  0 and the interaction potential T> /  0. Assuming the ordinary time 
dependence

for the stationary states and using the standard Pauli-Dirac representation for 
the 7 matrices, one obtains the following system of equations for the compo­
nents 4'° of the spinor 4':

where e and /i are the same as in (26). After substitution in Eqs (54) instead 
of the following column

one obtains Eqs (50). A complete set of 8 transformations with the same role 
was obtained with the help of the Pauli Gursey symmetry operators [14] in 
our papers [37,38].
The relationship (54) may be written down in terms of unitary operator sim­
ilarly to that in (8). Further consideration of unitary relationship between the 
equations (50) and (53) is similar to the procedure in Section 1 and may be 
omitted. The details were published in [39,40].
The mathematical facts considered here prove the one-to-one correspondence 
between the solutions of the stationary Dirac equation and the stationary 
Maxwell equations with 4-currents of gradient-like type. Hence, one can, us­
ing (54), write down the hydrogen solutions of the Maxwell equations (25) (or 
(28)) starting from the well-known hydrogen solutions of the Dirac equation 
(51), i. e. without special procedure of finding the solutions of the Maxwell 
equations, see [39,40],

5. Lamb Shift

It is very useful to consider the case of Lamb shift in the approach presented

(52)

+  (<9i — id2) ^  +  =  0 ,
ic js^2 +  (di +  ic^)^3 — 93,T4 =  0 ,
io;/i4/3 +  (d1 — ic)2)4/2 +  =  0 ,

+  (<9i +  i^ j th 1 — <934/2 =  0 .

(53)

=  [ -H 0 + iE 3, - E 2 + iE \E °  + iH 3, - H 2 + iH 1]J . (54)

here. This specific quantum electrodynamical effect (as modem theory asserts) 
can be described here in the framework of classical electrodynamics of media. 
In order to obtain the Lamb shift one must add to T(.T) =  —Z e2jr  in (2) the
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quasipotential (known, e. g. from [12], which follows, of course, from quantum 
electrodynamic s)

Ze4
607r2mo

S(r) (55)

and solve the equations (1) for such medium similarly to the procedure of 
Section 2 (of course, by another approximation method). Finally one obtains 
the Lamb shift correction to the Sommerfeld-Dirac formula (43). Such Lamb 
shift can be interpreted as a pure classical electrodynamical effect. It can be 
considered here as a consequence of polarization of medium (26) and not of po­
larization of such abstract concept as the vacuum in quantum electrodynamics. 
This brief consideration of the example mentioned in the title of this section 
demonstrates that our approach can essentially extend the limits of classical 
theory application in microworld, which was the main purpose of our investi­
gations.

6. A Brief Remark About Gravity

The unified theory of electromagnetic and gravitational phenomena may be 
constructed within the approach under consideration in the following way. The 
main primary equations again are written as (1) and gravity is considered as a 
medium in these equations, i. e. the electric £ and magnetic /i permeabilities of 
the medium are some functions of the gravitational potential 4>grav:

£ £-(4>grav) 5 /̂ (4?grav) • (56)

Gravity as a medium may generate all the phenomena which in standard Ein­
stein’s gravity are generated by Riemannian geometry. For example, the re­
fraction of the light beam near a big mass star is a typical medium effect in 
such a unified model of electromagnetic and gravitational phenomena. The 
idea of such consideration consists in the following. The gravitational in­
teraction between massive objects may be represented as the interaction with 
some medium, similarly as in Eqs (25) the electromagnetic interaction between 
charged particles.

7. Conclusions

One of the conclusions of our investigation presented here and in [41,42,18,19] 
is that a field equation itself does not answer the question what kind of parti­
cles (Bose or Fermi) are described by this equation. To answer this question 
one needs to find all representations of the Poincare group under which the 
equation is invariant. If more than one such Poincare representations are found
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[41,42,18,19], including the representations with integer and half-integer spins, 
then the given equation describes both Bose and Fermi particles, and both 
quantization types (Bose and Fermi) [21,22] of the field function, obeying 
this equation, satisfy the microcausality condition. The strict group-theoretical 
ground of this assertion is the following [41,42]: both weakly generalized 
Maxwell equations (1) (with e — p — 1) and Dirac equation (7) (with ra0 =  0, 
4> =  0) are invariant with respect to three different local representations of 
Poincare group, namely the standard spinor, vector and tensor-scalar represen­
tations generating by the (0, | f , 0), ( | , \ ), (0,1) ® (0,0) representations 
of the Lorentz S L (2, C) group, respectively.
A few words can be said about the interpretation of the Dirac 4/ function. As 
follows from the consideration presented here, e. g. from the relationships (8) 
and (54), the new interpretation of the Dirac 4/ function can be suggested too: 
4/ function is the combination of the electromagnetic field strengths (E, H)  
and two scalar fields (E ° ,H °) generating the electromagnetic sources, i. e. in 
this case the probability or Copenhagen interpretation of the function 4/ is not 
necessary.
The main conclusion is that the limit of classical theory application in the 
microworld may be essentially extended on the basis of equations and models 
which are considered here. Lamb shift may be explained as the classical effect 
in the framework of the classical model of atom.

Acknowledgements

The authors are much grateful to Prof. Hans Sallhofer for numerous discus­
sions of the details and essential support of the main idea, and to Prof. Boris 
Struminsky for useful discussions of alternatives in gravity.
This work is supported by the National Fund of Fundamental Researches of 
Ukraine, grant #02.07/253.

References

[1] Bethe H. and Salpeter E., Quantum Mechanics o f One- and Two-Electron Atoms, 
Springer, Berlin 1957.

[2] Borhgardt A., Wave Equations for the Photon, Sov. Phys. JETP 34(2) (1958) 
334-341.

[3] Campolattaro A., New Spinor Representation o f Maxwell Equations, Int. J. Theor. 
Phys. 19(2) (1980) 99-126.

[4] Campolattaro A., Generalized Maxwell Equations and Quantum Mechanics, In- 
temat. J. Theor. Phys. 29(2) (1990) 141-155.



Lamb Shift in Classical Electrodynamical Model of Atom 429

[5] Cramer J., The Transactional Interpretation o f Quantum Mechanics, Rev. Mod. 
Phys. 58(3) (1986) 647-687.

[6] Da Silveira A., Dirac-like Equation for the Photon, Z. Naturforsch A34 (1979) 
646-647.

[71 Darwin C., The Wave Equations o f the Electron, Proc. Roy. Soc. London A118 
(1928) 654-680.

[8] Daviau C., Electromagnetisme, monopoles magnetiques at ondes de matiere dans 
I ’algebre d ’espace-temps, Ann. Fondation. Louis de Broglie 14(3) (1989) 273- 
390.

[9] Daviau C. and Lochak G., Sur un modele d ’equation spinorielle non lineaire, 
Ann. Fondation. Louis de Broglie 16(1) (1991) 43-71.

[10] Giannetto E., A Majorana -Oppenheimer Formulation o f Quantum Electrodynam­
ics, Lett. Nuov. Cim. 44(3) (1985) 140-144.

[Ill Good R., Particle Aspect o f the Electromagnetic Field Equations, Phys. Rev. 
105(6)(1957)1914-1919.

[12] Halzen F. and Martin A., Quarks and Leptons, John Wiley & Sons, New York 
1984.

[13] Hvorostenko N., Longitudinal Electromagnetic Waves, Sov. Phys. J. (Izvestiya 
Vuzov) Ser. Physics. #7 (1992) 24-29.

[14] Ibragimov N., Invariant Variation Problems and Conservation Laws, Theor. 
Math. Phys. 1(3) (1969) 350-359.

[15] Jammer M., The Philosophy o f Quantum Mechanics. The Interpretations o f Quan­
tum Mechanics in Historical Perspective, Wiley, New York 1974.

[ 16] Keller J., On the Electron Theory, Proc. of the Int. Conf. “The Theory of Electron”, 
Mexico 24-27 September 1995, Adv. Appl. Cliff. Algebras 7 (Special) (1997) 3- 
26.

[17] Keller J., The Geometric Content o f the Electron Theory, Adv. Appl. Cliff. Alge­
bras 9(2) (1999) 309-395.

[18] Krivsky I. and Simulik V., Lagrangian for Electromagnetic Field in the Terms 
o f Field Strengths and Conservation Laws, Ukrainian Phys. J. 30(10) (1985) 
1457-1459.

[19] Krivsky I. and Simulik V., Foundations o f Quantum Electrodynamics in Field 
Strengths Terms, Naukova Dumka, Kiev 1992.

[20] Krivsky I. and Simulik V., The Dirac Equation and Spin 1 Representation. Rela­
tionship with the Symmetries o f the Maxwell Equation, Theor. Math. Phys. 90(3) 
(1992) 388-406.

[21] Krivsky I. and Simulik V., Unitary Connection in Maxwell-Dirac Isomorphism 
and the Clifford Algebra, Adv. Appl. Cliff. Alg. 6(2) (1996) 249-259.

[22] Krivsky I. and Simulik V., The Maxwell Equations with Gradient-type Currents 
and their Relationship with the Dirac Equation, Ukrainian Phys. J., 44(5) (1999) 
661-665.

[23] Lakhtakia A., Models and Modelers o f Hydrogen, World Scientific, London 1996.



430 V. Simulik and I. Krivsky

[24] Laporte O. and Uhlenbeck G., Application o f Spinor Analysis to the Maxwell and 
Dirac Equations, Phys. Rev. 37 (1931) 1380-1397.

[25] Ljolje K., Some Remarks on Variational Formulations o f Physical Fields, Fortschr. 
Phys. 36(1) (1988) 9-32.

[26] Lochak J., The Symmetry Between Electricity and Magnetism and the Problem o f 
the Existance o f the Magnetic Monopole In: Advanced Electromagnetism, World 
Scientific, London 1995 pp 105 148.

[27] Lomont J., Dirac-like Wave Equations for Particles o f Zero Rest Mass and their 
Quantization, Phys. Rev. 111(6) (1958) 1710-1716.

[28] Mignani R., Recami E. and Baldo M., About a Dirac-like Equation for the Photon 
According to Ettore Majorana, Lett. Nuovo Cimento 11(12) (1974) 572-586.

[29] Moses H., A Spinor Representation o f Maxwell’s Equations, Nuovo Cimento 
Suppl. 7(1) (1958) 1-18.

[30] Oppenheimer J., Note on Light Quanta and the Electromagnetic Field, Phys. Rev. 
38 (1931) 725-746.

[31] Paty M., Are Quantum Systems Physical Objects with Physical Properties, Eur. 
J. Phys. 20 (1999) 373-388.

[32] Rodrigues W. Jr. and de Oliveira E., Dirac and Maxwell equations in the Clifford 
and Spin-Clifford Bundles, Int. J. Theor. Phys. 29(4) (1990) 397-412.

[33] Rodrigues W. Jr. and Vaz J. Jr., From Electromagnetism to Relativistic Quantum 
Mechanics, Found. Phys. 28(5) (1998) 789-814.

[34] Sallhofer H., Elementary Derivation o f the Dirac Equation I, Z. Naturforsch A33 
(1978) 1379-1381.

[35] Sallhofer H., Hydrogen in Electrodynamics. VI. The General Solution, Z. Natur­
forsch A45 (1990) 1361-1366.

[36] Sallhofer H. and Radharose D., Here Erred Einstein, World Scientific, London
2001.

[37] Simulik V., Relationship Between the Symmetry Properties o f the Dirac and 
Maxwell Equations. Conservation Laws, Theor. Math. Phys. 87 (1991) 76-85.

[38] Simulik V., Some Algebraic Properties o f Maxwell-Dirac Isomorphism, Z. Natur­
forsch A49 (1994) 1074-1076.

[39] Simulik V., Solutions o f the Maxwell Equations Describing the Spectrum o f Hy­
drogen, Ukrainian Mathematical J. 49(7) (1997) 1075-1088.

[40] Simulik V. and Krivsky I., Clifford Algebra in Classical Electrodynamical Hy­
drogen Atom Model, Adv. Appl. Cliff. Algebras 7(1) (1997) 25-34.

[41] Simulik V. and Krivsky I., Fermionic Symmetries o f the Maxwell Equations with 
Gradient-like Sources, Proc. of the Int. Conf. “Symmetry in Nonlinear Mathe­
matical Physics”, Kiev 7-13 July, 1997 p. 475-482.

[42] Simulik V. and Krivsky I., Bosonic Symmetries o f the Massless Dirac Equation, 
Adv. Appl. Cliff. Algebras 8(1) (1998) 69-82.

[43] Sudbery A., Quantum Mechanics and the Particles o f Nature, Cambridge Uni­
versity Press, Cambridge 1986.


	LAMB SHIFT IN CLASSICAL ELECTRODYNAMICAL MODEL OF ATOM

	1.	Introduction

	2.	Weakly Generalized Maxwell Equations with Maximal Symmetry Properties

	e (1,0) ©(0,0),

	(12)

	(15)

	vwt = i r,

	r2 = i. (16)

	(20)

	(21)

	2{k1kl + k2k2)

	u)k2 — i Ek3 —ujE — i k2E i (EE + k2k2)_


	7 (22)

	3.	New Classical Electrodynamical Hydrogen Atom Model

	4.	The Unitary Relationship Between the Relativistic Quantum Mechanics and Classical Electrodynamics in Medium

	5.	Lamb Shift

	S(r)

	6.	A Brief Remark About Gravity

	7.	Conclusions

	References






