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Abstract. Complexified Hamiltonian dynamical systems are consid
ered with subsequent construction of real forms of Hamiltonian dy
namics by using compatible complex structures or involution opera
tors mimicking the properties of complex conjugation. This provides a 
method of associating a class of real dynamical systems to a given ini
tial (also real) one. Examples are given and the problem of integrability 
of the derived dynamical systems is also disscused.

1. Introduction

We start with a real Hamiltonian system (Ni.co, H) with n degrees of freedom 
and Hamiltonian H  depending analytically on the dynamical variables. Such 
systems can be complexified and then considered as Hamiltonian systems with 
2n (real) degrees of freedom. Our main construction relates to each compatible 
involutive automorphism C of the complexified phase space and commuting 
with the complex structure a real Hamiltonian form of the complexified system. 
Just like with each complex Lie algebra one associates several inequivalent real 
forms, so to each complexified dynamics we associate several inequivalent real 
forms which again have n real degrees of freedom just like the initial system. 
Provided C(H ) =  H  the dynamics on the real form will be well defined and
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will coincide with the dynamics on A4c restricted to A4-. If the initial system 
Tt is integrable then its real Hamiltonian forms will also be integrable. We 
also include discussion on invariant complex polarizations, their connection 
with integrable systems and the possibility they offer to define a class of new 
integrable systems starting from an initial one.
Part of the motivation comes from the fact that the so-called complex Toda 
chain (CTC) was shown to describe Ar-soli ton interactions in the adiabatic 
approximation [5,6,1], The complete integrability of the CTC is a direct con
sequence of the integrability of the real (standard) Toda chain (TC); it was 
also shown that CTC allows several dynamical regimes that are qualitatively 
different from the one of RTC [6].
Examples of non-standard (or twisted) real forms have already been studied 
by Evans and Madsen [3] in connection with the problem of positivity of 
the kinetic energy terms in the Lagrangian description and with emphasis on 
conformal WZNW models. Different real forms of Lie algebras were used 
there for construction of integrable models via Hamiltonian reduction. Here we 
present a construction of real forms of dynamics directly in terms of symplectic 
manifolds and Hamiltonians and in this sense it is a generalization of the former 
method. Examples of indefinite-metric Toda chain (IMTC) has already been 
studied by Kodama and Ye [8], In particular they note that while the solutions 
of the TC model are regular for all t , the solutions of the IMTC model develop 
singularities for finite values of t. The approach we follow here may also 
give indefinite-metric Hamiltonians but our main interest is in producing new 
integrable non-linear evolution equations (NLEE) starting from already known 
ones.

2. Involutions and Real Hamiltonian Forms

The approach we will follow in this paragraph is inspired by the basic idea 
of construction of real forms for simple Lie algebras [2]. A basic tool in the 
following construction is a Cartan-like involutive automorphism C which will 
play the role of a complex conjugation operator. We will say that C is an invo
lutive compatible automorphism on the complexified phase space Jvifin) if:

C({F,G})  = {C(F),C(G)} , C2 = H, (1)

where F  and G are analytic functions on M (2n) and involution acts on them 
by acting on the arguments: C(F(z)) = F(C(z)).  In terms of vector fields 
A, Y  G T A ic  and the lifted involution T C : TM.c —» TjCic we have:

w(TC(X),  TCiY) =  C(lv(X, Y )) , (TC)2 = 11. (2)
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Here we shall also assume that the actions of C and the proper complex conju
gation commute. Obviously C has eigenvalues 1 and —1 and splits ( Ai (̂ n})c 
into a direct sum of its two eigenspaces:

M {c n) = M 0 @ M 1. (3)

Then we define a “real” phase space of our system by:

= M Q® i M 1. (4)

Let’s introduce X  =  Yjk £k%k C A4o and Y  — VpVp C Afi where x k and yp 
forni bases of M„ and M \  respectively and ( k and r/p are complex coefficients. 
Then any element of the real form can be represented as:

Z  = X  + iV G  M {i n), (5)

and reality condition means that

C(Z) = C(Z*) = C ( X - i Y )  = X  + iY  = Z ,  (6)

where by * we have denoted the complex conjugation.
Obviously C = Cy * = * o C is a compatible involution again; then A4k will 
be the space of C-invariant variables embedded in Me-  
Along with these properties our C must be compatible with the dynamics of 
the corresponding real Hamiltonian form. If we choose functions F, G from 
jY l^n} then due to (1) {F. G) G jYlp n) too. Then if we choose a Hamiltonian 
H  G F(jYlp n>) and a dynamical variable /  E F (A 4P n> ) obviously the equation 
of motion for /

j r  = { H’f } ’ (7)

becomes naturally restricted to . Rewriting (7) into its equivalent form:

u ( X H, - ) = d H - ,  (8)

and making use of (2)we see that the vector field X H must also satisfy

C ( X H) = X H . (9)

Compatibility condition eq. (1) guarantees that A40, M.\ and A4K will be sym- 
plectic subspaces of ■ If ■M<r "> is endowed with Hamiltonian which is 
“real” with respect to C, dynamics on ( .M r , will be well defined
and will coincide with the dynamics on m, H ) restricted to A 4^n).
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If the initial Hamiltonian is integrable (i. e. being only a function of n action 
variables) then this property will be preserved. Indeed C maps Lagrangian 
submanifolds to Lagrangian submanifolds. Compatibility guarantees that La
grangian submanifold will be mapped to a coisotropic submanifold and C2 = U 
guarantees that it will actually be a Lagrangian one. Also, due to C(H) = H  
we have

H(U) = C(H(I t)) =  -ff (<?(/,)) =  H ( l t)

where 1\ =  C{I f  span a Lagrangian submanifold and H  will depend on n 
integrals of motion. Hence we will have integrable dynamics on ( .M r , ,
H)W .
Lo illustrate the construction let us assume a completely integrable system with 
I -s and (6-s as action-angle variables and choose involutions of the type:

C(Ik) =  £k(Ik)*i =  =tl

assuming that all they leave Hamiltonian invariant. As a result we will have 
well defined equations of motion for every real form corresponding to different 
choices of ek.
We stress that C must satisfy both conditions (1) and (9). Let us illiustrate what 
may happen when one of them is violated. Indeed, the case when H  is not 
“real” is not so nice. The above mentioned arguments are no more valid and 
we could actually have a nonintegrable restricted Hamiltonian H\Mr coming 
from an integrable Hamiltonian H.  As an example of loss of integrability 
(or as a counterexample to the naive expectations) one can take the integrable 
Hamiltonian H  = \ [ I i with I -s and L-s as action and angle variables and to 
assume the involution C(Il) = M (/j +  A), Cf f )  =  — A ). The resulting
Hm is obviously nonintegrable.
In such case we could follow two routes. First, we can use the restricted 
Hamiltonian:

Hm = H \Mv = \ [ H  + C(H) + i (H -  C(H)\

to define a new dynamics on (M r, cd\Mr) which may not inherit all of the 
properties of the initial one (like integrability). Second, we could employ the 
machinery of (Dirac-Bergmann style) constraints theory through which we will 
have consistent equations of motion on a submanifold of M r.

^  Due to the fact that A4 p is a symplectic submanifold, Poisson brackets between functions on 
M r will coincide with the original Poisson brackets (i. e. we will not have Dirac brackets for 
these variables despite the fact that we will be using brackets corresponding to to\M-t but not to 
u j ) .
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3. Complex Polarizations and Families of Integrable Dynamics

We shall begin this paragraph with a reminder on polarizations which are best 
known in the context of geometric quantization [13] but have a much wider 
importance.
By definition a real polarization is an integrable Lagrangian distribution. A 
complex polarization P  of a 2n-dimensional symplectic manifold (M,cv) is a 
complex integrable Lagrangian distribution. More precisely, for every m  £ M ,  
Pm is a complex Lagrangian subspace of (TmM ) c ; there is a neighbourhood 
around m  and a collection of smooth complex-valued functions { z ]. . . . .  znj 
such that P  is spanned there by (the complex conjugate of) the Hamiltonian 
vector fields of these functions ( Xz, )*; and Pm fi Pm C\TmM  has constant 
dimension for all m. There is a naturally defined Hermitian form on P  by

« x , y »  =  4 iu (A \y*), x , Y € P .

If the signature of this form, say with r ones and 8 minus ones, is the same 
at every m, P  is said to be of (r, s) type and furthermore it is positive if 
s — 0 and Kahler if r  +  s — n. There is an one-to-one correspondence 
(when they exist) between Kahler polarizations and complex structures J  on 
M  compatible with lv, i. e. J  is an automorphism of T M  such that J 2 =  —11 
and uj( J X , J Y )  = uj( X :Y)  for X , Y  £ T M .  The so called holomorphic 
polarization V  is spanned at any point by all X  — i J X  (and the antiholomorphic 
one V  by X  +  iJ X )  where X  £ T M .  The general form of J  acting on a 
symplectic frame (Va, W b) such that {Va. W b} =  Sb is:

J K  =  gabW “ and J W a =  - g aiVb

where gai, = (gab) 1 is any symmetric nonsingular n x n matrix (which when 
diagonalized has r  ones and s minus ones for a (r, s)-type polarization).
J  mimics the properties of imaginary unit and it converts M  into a complex 
manifold with local complex analytic coordinates Zi (playing the role of the 
defining set of functions for the holomorphic polarization)such that

J
d

dzi
( 10)

To make connection with the previous construction let’s note that once we have 
a J  playing the role of imaginary unit, we can define a “complex conjugation 
operator” TC being an involutive automorphism o f T M c  mapping holomorphic 
onto antiholomorphic polarizations (and vice versa):
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This is the common ground of the two approaches — J  splits T A ic  in two 
eigenspaces and TC maps them onto each other.
We could have different definitions of “creation and annihilation” variables by 
picking coordinates which diagonalize the above mentioned Hermitian form 
(or its equivalent 2a;(X , J Y )  for X, Y  e TmM).  One is free to choose J  and 
usually the first choice is among the positive ones (i. e. with s — 0 in the 
corresponding 2-form). As an example of a Kahler polarization of (1,1) type 
which is invariant for H  =   ̂[p] + pi  +  (P +  (M) we can take one defined 
locally by z1 — q1 +  ip1 and ;;2 =  q> — ip2 and with “creation and annihilation” 
variables:

ai =  (Qi +  , a\ = (q1 -  ipi)/V 2

a2 = (q2 -  ip2)/ V2 , al = (q2 + 1P2)/ V2 .

and J  acting as: J P t =  Q2, JP2 =  Qi  and JQx =  — P2, J Q 2 =  —Pi for 
qi7Pi e (TmM ) c  and Q?, P7 e (TmM )  forming symplectic frames.
In this manner we may classify our possible choices of compatible complex 
structures by their type (or signature) and inside each (r, s) type they are labeled 
by the elements of U(r,n — r).
Invariant polarizations are naturally connected with integrable dynamical sys
tems and offer coordinate-free approach to them. Invariant tori defined by 
Ii =  const (where I, and (!)t are action-angle coordinates) are real polariza
tions which are preserved by the flow of the Hamiltonian. Dynamically stable 
splitting of the complexified phase space into creation and annihilation variables 
which do not mix with each other during evolution gives us an invariant com
plex polarization. Of course, one could easily recognize that the assumption 
for existence of a dynamically stable polarization means that we are dealing 
with an integrable system.
When written in the natural coordinates for the assumed stable Kahlerian po
larization the Hermitian form is automatically diagonalized and any integrable 
Hamiltonian which by definition depends only on I - s, should also be linear in 
a\-s in order to preserve the polarization [13]. As a result Hamiltonian could 
be written (in some neighbourhood) as a H  — ]T Associated with the
initial stable polarization we have a family of polarizations which are again 
stable but with different signature of the Hermitian form. Consequently, we 
can always choose a compatible complex structure (or Kahlerian polarization 
with suitable signature from this family) such that

H  — ^ 2 ei ^ iai ai W i t h  C j  =  ± 1 .

In this manner we can obtain new dynamical systems which are again integrable. 
The introduction of various (quasi) particles, “Bogolyubov transformation”, etc,
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may be looked at as illustrations of this mechanism (see also [9] for applications 
in the BRST context).

4. Integrability

For integrability we may require either preserving of the polarization by the 
Hamiltonian flow or preserving of the complex structure: CVJ  — 0 where C 
denotes the Lie derivative and V is the dynamical vector field: ircc =  — dH.  
In purely algebraic language integrability means existence of a maximal rank 
Abelian subalgebra in the commutant of the Hamiltonian.
A recursion operator method [10] gives us another route towards integrability. 
Recursion operator is a (1,1) tensor field

t  =  0  dx^
3 dxl

with nonvanishing Nijenhuis torsion

N T(a, X , Y)  =  (a, (Ct x T  -  TCXT ) Y ),

and doubly degenerate (nowhere vanishing) eigenvalues. For example, for a non 
resonant Hamiltonian integrable dynamics admitting action-angle coordinates 
(/, 0) a class of such tensor fields is

T  =  £  A ,,( < / ) (  d t/
d

dvh
+  dip1

d
d p h

where uh
d H
d h

are the frequences and the A’s are arbitrary and functionally

independent.
If a given Hamiltonian dynamics leaves invariant this tensor field (and assuming 
analyticity), then also the complexified dynamics shall leave invariant the cor
responding tensor. By construction, the restriction to other real forms will leave 
the invariance and the Nijenhuis property unchanged provided C{H) — H.  For 
this reasons, the complexification procedure and the projection on the real part 
will give a tensor field with the same properties. Due to the fact that ex
istence of recursion operators is essentially equivalent to integrability in the 
non-resonant case, this line of argumentation gives us another instrument to 
treat the integrability of real forms.

5. Examples

Example 1. Let us first show how the standard complexification o f dynamics 
(see e. g. [12]) realized by the variables:

a, =  (q, + iPi)/V2, a* = (q, -  iPi)/y/2
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fits in the present scheme. Namely we can request that

TC{q) =  <f, TC(p) =  — p where q,p € TM .C . (11)

In this case A40 = {q}, M.\ = {p} and =  {g} +  i{p |. The action o f the
—a

complex structure is simply: J(Q)  — P, J(P)  = —Q far P , Q  £ TM..
Then the only nontrivial basic Poisson brackets among and a* which span
A4e turn into the form:

{al(t),am(t)} = \8krn , ( 12)

well known from a number o f models in field theory involving complex fields. 
Obviously, any Hamiltonian o f the type: H  = f ( p 2 +  q 2) would be “real” 
with respect to the involution chosen.

Example 2. In [7]one can find a discussion on complexified Hamiltonian sys
tems together with construction o f integrals o f motion for a list o f two- 
dimensional Hamiltonian systems. Crucial part o f the procedure is the (possibly 
p uzzli ng) rep lac ing o f the original phase space variables: q —> q\ + ip 2- P 
Pi +  i?2 - This gives an example o f the construction in Section 3 with polariza
tion o f (1,1) type.

Example 3. We shall illustrate our construction by the paradigmical example 
o f the Toda chain related to the sl(n. C) algebra:

1 n n — 1
H tc= + 03 )

Z k=1 k=1

We complexify pk and qk and choose the involution as:

C(Pk) = -P*n+i-k , C{qk) =  -q*n+1_k ■ (14)

As a result we obtain the following real forms o f the TC model:
(i) for n — 2r +  1:

r
H tci = Y.(Po,k -  Pi,k) -  Pi,r+1 +  e“2go'r cos(q1>r+1 -  q1>r)

k=1 r_! (15)
+  2 e{qo’k+1~qo-k) cos(qhk+1 -  qhk) ,

k=1

and (ii) for n =  2r:
r

H tc2 = J2(Po,k ~P\,k) +  e_2<?0r + 2 Y1 e{q°’k+1~Qo’k) cos(qi,k+i -  qhk) (16)
r — 1

k= 1 k= 1
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Since the solutions o f the CTC model are well known (see e. g. [6] and the ref
erences therein) we can easily obtain the solutions for each o f the models (15) 
and ( \6) just imposing the corresponding reductions on the initial parameters. 
It is also easy to see that these models are generalizations o f the well known 
Toda chain models associated to the classical Lie algebras [11]; indeed i f  we 
put q1}k =  0 and p1>k =  0 we find that (15) goes into the B r TC while (16) 
provides the C r TC.

This list of examples can be substantially extended.
Another approach to constructing real forms of Toda theories has been used by 
Evans and Madsen [3]. They addressed Toda fields theories in 2-dimensional 
space-time related to the real forms of the simple Lie algebras underlying 
their Lax representations. These models allow Hamiltonian formulation in 
which the (infinite-dimensional) phase space is identified with the properly 
chosen co-adjoint orbit of gK. The Cartan involution r  responsible for g : 
induces an involutive automorphism on the co-adjoint orbit which is the analog 
of C. Therefore the real forms of the Toda theories in [3]can be viewed as 
infinite-dimensional realizations of our construction.

6. Discussion

By using J 2 =  —11, it is possible to consider the eigenspaces (eigendistribu- 
tions) of TM-c associated with eigenvalue i and eigenvalue —i (see Eq. (10)) 
which give us the holomorphic and antiholomorphic polarizations. Each com
patible J  will induce a similar splitting of the tangent space into transversal 
distributions.
In this case we will have reduced dynamics on a carrier space with half di
mensions but working on a Lagrangian submanifold means that there the sym- 
plectic form will be zero and in this sense there will be no symplectic dynam
ics on it. Nevertheless, it may be quite a nice dynamics — something like
ak(t) =  ak(0)einkt for integrable systems.
Similarly, by using C2 = 11, it is possible to consider the eigenspaces (eigendis- 
tributions) of M e associated with eigenvalue 1 and eigenvalue — E Here com
patibility condition guarantees that .Mr will be a symplectic subspace and 
consequently we could have a symplectic dynamics on it. Here integrability 
could be defined again as existence of a maximal rank Abelian subalgebra in 
the commutant of the Hamiltonian.
If we are to compare the two approaches, polarizations seem to be well tailored 
to integrable systems and give us a method to pass naturally from one integrable 
system to another. The price to pay is that this is a very restrictive case and
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that in practice we have to solve our initial integrable system in order to obtain 
another invariant polarization.
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