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Abstract. The reductions of the integrable N -wave type equa
tions solvable by the inverse scattering method with the generalized 
Zakharov Shabat system L and related to some simple Lie algebra g 
are analyzed. Special attention is paid to the Z2 -reductions including 
ones that can be embedded also in the Weyl group of g. The con
sequences of these restrictions on the structure of the dresing factors 
are outlined. An example of 4-wave equations (with application to 
nonlinear optics) and its gauge equivalent are given.

1. Introduction

The aim of the present paper is to study the class of N -wave equations [1,8,11 — 
13], their generalizations to simple Lie algebras [2,5] and their gauge equivalent 
ones extending the results in [6]. We describe their scattering data, dressing 
factors, 1-soliton solutions and outline some of their reductions.
The A—wave type equations related to the simple Lie algebras can be solved 
by applying the inverse scattering method for the generalized Zakharov-Shabat 
system [5]:

( 1)
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where J  — 1 -4 belongs to the Cartan subalgebra f) of g and the
potential matrix

Q(x,t)  =  qa(x, t )Ea + p a( x , t ) E - a (2)
a > 0

takes values in g/f). Here LL0 are the root vectors of the simple Lie algebra 
0, r  =  rankg and A+ is the set of positive roots of 0. The ISM allows us to 
write the considered A-wave system as a compatibility condition

[L(A),M(A)] =  0 (3)

for the pair of Lax operators L{A) and M(A), where

M(X)4,=  ( i - ^  +  [ / ,Q ( j - , i ) ] - A /^ ( x , i ,A )  =  0 , (4)

and I  = E L ,  h H . k G 1). The N -wave system related to 0 has the form:

i[J,Q t] - i [ J ,Q x] +  [ [ / ,Q ]J J ,Q ]]= 0 . (5)

The zero-curvature condition (3) is invariant under the action of the group 
of gauge transfonnations [15]. Therefore the gauge equivalent systems are 
again completely integrable, posses hierarchy of Hamiltonian structures, etc 
([1,6,13,15]).
In Section 2 we describe the general form of the gauge equivalent N -wave 
systems. In Section 3 we reformulate the Riemann-Hilbert problem (RHP) for 
the gauge equivalent systems, introduce the scattering data and describe their 
time evolution. In Section 4 we outline folowing [3,4] the consequences of 
the Z2 reductions for the gauge equivalent systems. In Section 5 we extend 
the Zakharov Shabat dressing method [6,14,12,13] for the gauge equivalent 
systems related to the orthogonal algebras and provide the general form of their 
1-soliton solutions. These results are applied on the example of 4-wave system 
related to the algebra B2 so(5) in Section 6.

2. General Form of the Gauge Equivalent Systems

Let us first fix the notation and the normalizations of the basis of 0. By A+ 
(A_) we denote the set of positive (negative) roots of the algebra with respect 
to the ordering provided by J , namely a  G A ± if a(J)  ^  0. By {Ea. H,}, 
a  G A, i =  1 , . . . ,  r we denote the Cartan -Weyl basis of 0 with the standard 
commutation relations, see [7],
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Let us now go to the gauge equivalent systems. The notion of gauge equivalence 
allows one to associate with the iV-wave system an equivalent one [6] solvable 
by the inverse scattering method for the gauge equivalent linear problem:

L x/j(x , t, A) 

Mip(x, t, A)

i ----AŜ ) 4>(x, t , A) =  0 ,
da: )

i “j“ -  A/(S')^ $(x, t ,  A) =  0
(6)

where ip(x, t, A) =  g_1 (x, t )k(x,  t, A),

S  =  Adff J  =  g~x (x, t)Jg(x,  t ), (7)

and g(x , t ) =  U'(x. TO) is the Jost solution at A =  0. The zero-curvature 
condition [L, M ] =  0 gives:

St - - T / (S) =  ° (8)

where f ( S )  =  J2rp=o ®PS 2p+1 is an odd polynomial of S. It is natural that 
f ( S )  — g~1(x, t )Ig(x, t ) ,  i. e., it is uniquely detennined by I. Both J  and I  
belong to the Cartan subalgebra 1) so they have common set of eigenspaces. 
In order to express f ( S )  through their eigenvalues Jk and I k we introduce the 
diagonal matrix-valued functions:

m j ) = t  n  e *> w
J k  s ^ k  J k J s

where by H ek we denote the element in f) dual to the basis vector ek in the 
root space of g. Using (9) and applying Adg we get:

r

r =  X > A -(J ) ,  (10)
k = 1

f ( S ) =  g~1(x, t )Ig(x, t )  = i r i kf k(S) ■ (11)
k = 1

In addition S ( x , t ) satisfies the characteristic equations:

( 12)
k = 1

where k0 — 0 if q ~  Cr or Dr and k0 — 1, if g ~  B r.
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Then the equation gauge equivalent to (1) becomes:
r — 1

(13)
p = l

The function S(x,  / ) G g is also subject to constraints; one of them is provided 
by (12). To construct the others we assume that g ~  B r or Dr and use the 
typical representation of g. It this settings we easily see that all odd powers 
of H ek also belong to the Cartan subalgebra (p Thus we conclude that all odd 
powers of S  also belong to g. The invariance properties of the trace lead to:

r

trace(J2fc) =  2 ^  J ?  =  trace(S)2k , (14)
k=1

for k =  1 ,. . .  ,r . The conditions (14) are precisely r  independent algebraic 
constraints on S. Solving for them we conclude that the number of independent 
coefficients in S  is equal to the number of roots |A| of g.

3. Fundamental Analytic Solutions and Scattering Data for Gauge 
Equivalent Systems

The direct scattering problem for the Lax operator (1) is based on the Jost 
solutions:

lim t/j(x, X) elXJx =  11, lim (j)(x, A) elXJx — 11 , (15)
X — K30 X — > —  OO

and the scattering matrix:

T(A) =  (I/.(x,A))-1</.(x,A), (16)

The fundamental analytic solutions (FAS) A) of L( \ )  are analytic func
tions of A for A ^  0 and are related to the Jost solutions by [5]

^ ( x ,  A) =  0(x, A)S'± (A) =  ip(x, X)TT(X)D±(X) (17)

where T ± (A), S ± (X) and D ±(A) are the factors of the Gauss decomposition 
of the scattering matrix:

T(A) =  T~(X)D+(X)S+(X) =  T +(X)D~ (X)S~ (X) , (18)

where S  = S'-1 , the superscripts +  (resp. —) in T ± (A) and S’±(A) mean 
upper- (resp. lower-)triangularity; for the diagonal factors D ± (A) these super
scripts mean that D ± are analytic functions of A for Im A > 0 and Im A < 0 
respectively.
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On the real axis £+(x, A) and £ (x, A) are related by

?+(.T,A)=r(:c,A)G„(A), G„(A) = S+(A)S-(A), (19)

and the function G0(A) can be considered as a minimal set of scattering data 
in the case of absence of discrete eigenvalues of (1) [10,5],
If the potential Q(x, t ) of L{ A) (1) satisfies equation (5) then S'± (A) and T ± ( A) 
satisfy the linear equation:

AQ± AJ1±
i - 5 r - A [ / ,5 ±] = 0 ,  i - - X [ I , T ± ] = 0 ,  (20)

while the functions D ± (A) are time-independent. In other words D ±(A) can 
be considered as the generating functions of the integrals of motion of (5).
In order to determine the scattering data for the gauge equivalent equations we 
need to start with the FAS for these systems:

A) =  g~1(x, t )^±(x, X)g- (21)

where =  lim g(x , t ) and due to (16) and g_ =  T(0). In order to ensure
X—>— CO

that the functions ^ ( x ,  A) are analytic with respect to A the scattering matrix 
T(0) at A =  0 must belong to the corresponding Cartan subgroup $). Then 
Equation (21) provide the fundamental analytic solutions of L. We can calculate 
their asymptotics for x — ±oo and thus establish the relations between the 
scattering matrices of the two systems:

lim £+(x, \)  = e - iXJxT(0)S+( \ ) f ( 0 )  (22)
X —? — OG

lim f+(x,A) =  e - iXJxT - ( X )D +(X)T(0) (23)
x  —̂ cxj

with the result:

f  (A) =  T(A)T(0). (24)

Obviously T(0) =  11. The factors in the corresponding Gauss decompositions 
are related by:

5 ± (A) =  T(0)S± (A)T(O), f ± (A)

L>±(A) =  D ±(A)T(0).

On the real axis again the FAS £+(x, A) and ^“ (x, A)

i +(x, A) =  |-(x ,A )G 0(A)

= T ± { A)
(25)

are related by:

(26)
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with the normalization condition £(x, A — 0) =  11 and (70(A) — S +(X)S (A) 
again can be considered as a minimal set of scattering data.

4. Z2-reductions

The numerous Z2 -reductions have been recently classified for the TV-wave 
equations [3,4] using the reduction group introduced by Mikhailov [9]. They 
can easily be reformulated for the gauge equivalent systems. Here we briefly
outline the main steps in this. In [4] we studied four type of reductions:

a) Ci[^W{x = U(x, t, A), rj = ± l , (27)

b) C21[ u T(a',t, -A )) := —U(x, t, A), (28)

c) Cal[ i r ( x ,t,rj A*)) =  —U(x, t, A), V =  ± 1 , (29)

d) C41fU(x, t,T]X)) = U(x, t, A), 7j =  ±1 (30)

where U(x,t ,X) — [J,Q(x,t)] — AJ  is the potential part of the Lax operator 
(1) and Ck, />: =  1. . . . .  4 are involutive automorphisms of the Lie algebra g. 
The reductions for the gauge equivalent systems are obtained from (27-30) 
by replacing U(x,t ,  A) by AS(x, t) .  In order to describe their effect on the 
coefficients of S(x , t )  we parametrize it by:

r

S ( x , t ) =  E  Sk(x , t )Hek +  X! Sa(x, t )Ea . (31)
k = 1 a £ A

These coefficients are subject to the constraints (14). For example, we have:

1 4 r
-  trace S 2(x,t) = (s, s) +  ^  ----- r Sa(x, t ) S - a(x, t) = ^  J l  (32)
1  a G A +  \ a ’ a ) k = 1

where by s(x, t) we have denoted the r-component vector s(x, t ) =
(sl5.. . , s r)(x,t)  and (s,s) = E L i sl-
The automorphisms Ck that we will use below will be of two types: elements 
of the Cartan subgroup (type 1) or of the Weyl group Wg of g (type 2). For 
the type 1 reductions we will use

K  = ex pH%, K - ' E a K  = e - ^ a)E a (33)
—̂

where k is the vector in the root space dual to e f). Such reductions impose 
on S(x, t )  the following constraints:

S — a qe (k,a) *
a •)la) s*k =  r]sk , (34)
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lb) S . a = eii;’a)Sa , (35)

lc) sl = ~ 1lsk , Sa =  -r}e~{k'a)S*a , (36)

ld) Sa = e ~ ^ S a . (37)

In the cases lb) and Id) the reduction does not affect sk(x, t ).
In applying the type 2 reductions we have to keep in mind that the Weyl 
reflection wa with respect to the root a  acts on the Cartan-Weyl basis as 
follows:

Hw„(k) ’ wa{.Ep) 7la,pEp, (38)

where f3' =  wa{(3) — j3 — ^  a  and Ua take values ±1. The restrictions
(a, a)

on S(x, t ) imposed by the type 2 reductions are as follows:

2a) wa(s*]) = VS, Sp V^ot,pS'—p, (39)

2b) Wa(s) = S, Sp. ^ct,pS—p 5 (40)

2c) Wa(s*]) =  - v s , Sp. T]Tla^pSp. (41)

2d) Wa(s) = Vs, Sp, Vna,pSp • (42)

5. Dressing Factors and 1-Soliton Solutions

The main idea of the dressing method is starting from a FAS (^)} (x, A) of L with 
potential «S(0) to construct a new singular solution A) of the RHP (26)
with singularities located at prescribed positions A^. Then the new solutions 
^ ( t , A) will correspond to a potential ,S'( i, of L with two discrete eigenvalues 
Af. It is related to the regular one by the dressing factors u(x. A):

Ifi) (x , A) =  u(x,  A)£(% (x, A )^:1 (A), 
u_(A) =  lim u(x, A),

X ^  —  OO

and the dressing factors for the gauge equivalent equations u(x,  A) are related
to u(x,  A) by

u(x,  A) =  (x , t)u 1 (x, A =  0)u(x, X)g(o) . (44)
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If g ~  A r then the gauge equivalent dressing factors are

5(x’A) =  “ + ( t § - 1) P l ’ C l ( A ) = x ^ v
=  \n(x))(m(x)\ (45)

1 (m(x)\n(x))

\n(x)) =^+(A+)|n0), (m(x) \ = (m0|4“ (Ar)

where |n0) and (m0\ are constant vectors and these dressing factors satisfy the 
equation:

dw
i —;— — XuS(q) =  0 . (46)

dx

If q ~  B r , D r the dressing factors take the form [3]:

u{x,  X) =  11 +  (Cl(A) -  1 )P1 +  (c-^A) -  1 )P_! (47)

s(x’A ) = i + ( l S - i ) p + ( t S ) - i ) p -  (48)

where P_1(x) — S 0P j  (x ) S q1 , Pi(x) is the rank one projector (45), P± 1 —
9(o]P±i9(o)(x,t). If 0 ~  B r then N  = 2r + 1,

r

So =  £ ( - l ) fc+1(£ «  +  E u + ( -1  )rE r+1,r+1; (49)
k=1

k = N  -  k +  1, =  SikSmi; if 0 ^  D r then V -  2; and

So (£ »  +  £ « ) •
k=1

(50)

If the dressing factors of the gauge equivalent equations satisfy (46) then the 
projectors P±1 satisfy the equations:

dP
i - ; X1 A5(o) — Ax 5(i)Pi =  0 ,dx

dP-i
dx +  Aj1" P _ i P (0) — A|" S ( i ) P - i  — 0 ,

and the “dressed” potential can be obtained by:

. A  ̂ -  Af d
S(i) — S(o) +  i( o ) A  ̂X1 dx

(Px(x) -  P_ i(x) ) .

(51)

(52)
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The dressing factors can be written in the form:

u(x, A) =  exp In ci (A ) 
ci(0)

p(x) , (53)

where p(x) — P1 — P_\ G 0 and consequently u(x, A) belongs to the corre
sponding orthogonal group.
Making use of the explicit form of the projectors P±i(x) valid for the typical 
representation of B r we have [3]

p{x) —
(min)

Y , h k{x)Hek
k = i

(min)
Y ,  ( P J x ) E a +  P_a(x)E_„) (54)

a £ A x

where we assumed S (0) =  J, g(o) =  1. Thus

hk(x ,t ) =  n0̂km0̂ e 2viyk -  n0!-km0jk e~2viyk

{m\n) = ^ { n 0ykm 0yke2viyk + «-o,fĉ o,fc e 2viVk) +  n0,r+iTOo,r+i
k=1

( P1 J ks •> for a — ek — es

> II > coi for a = ek +  es
1 Pk,r+15 for a  =  ek .

Here 1 < k, s < r, pi — Re A*, z/i — Im A+ and

Vk =  JkX +  I kt, Vk = -Vk, Vr+1 = o . (56)

The corresponding result for the D r series is obtained fonnally if in the above 
expressions (55) and (56) we put n0;r+i =  m 0>r+i — 0. Thus f \ r+1 — Pr+i,k — 
0 and the last terai in the right hand side of (m\n) (55) is missing.
The Ar-soliton solutions can be obtained by applying successively N  times the 
dressing procedure.
It is easy to determine the effect of each of the reductions (27 30) on the 
fundamental analytic solutions and on the scattering matrix of both L(A) and 
L{A). Here we will only formulate the properties of the dressing factors (32) 
and (33):

a) Cilu^ (x,r]X*)^j = u~x (x, X ) ,

b) C2 (uT(x, — A)j = u ~ 1(x, A),

c) C3( V ( x,?7A*)) =  u(x, A),

(57)

(58)

(59)
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d) C4 (u(x, rj\) j =  u(x, A). (60)

Obviously the concrete restrictions on the corresponding eigenvalues X[ and 
Af and on the projectors P±1 will depend on the choice of the automorphisms 
Ck- Skipping the details we formulate some of them:

la) \ - = n { X + Y ,  K ~ 1P i 1K  = P±1 , \m) = K \ n *) (61)

where K  — K*\

lb) Ar = - K , K ^ P ^ K = P± 1, | m) — K\n) (62)

lc) Af

*ii K - ' P ^ K = Pl, |m) =  S 0K \ n ‘ ) (63)

2a) Ar wa(P± l) = P± 1, Im) = wa\n*) , (64)

2b) Ar = - K , Wa{P±l) = P± 1, |m) = wa\n), (65)

2c) Ar = 5 Wa(P*) = P - 1, \m) =  S0wa\n*}. (66)

Here we have made use of the fact that to each element wa e W0 we can 
relate an inner automorphism of g, i. e., there exist a nondegenerate matrix wa 
belonging to the group © and such that:

wa(X) = WaXil)-1 (67)

for each element l e g .
Applying the above restrictions to (32) and (33) we will get dressing factors 
satisfying automatically the corresponding reduction conditions. Finally the 
corresponding soliton solutions can be recovered from (37).
The dressing factors (32) and (33) are the simplest possible ones if we choose 
the algebra g to an orthogonal one. More complicated dressing factors should 
contain at least four poles and zeroes in A whose residues can again be recon
structed from the ‘bare’ solutions of L{A). These problems will be addressed 
in future publications.

6. Examples

Let us give some examples of the above constructions. As such we will use the 
4-wave equations related to the B2 so(5) algebra and their gauge equivalent. 
We also construct their one-soliton solutions.
The algebra so(5) has four positive roots: e1 ± e 2, e1 and e2. The corresponding 
4-wave system subject to the reduction (27) with C1(X) — K ~ xX K  and
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K  = diag(K1, K 2, 1, K 2:K 1), K % =  ±1 and p =  1 has the form:

i( J\ ~  J2)(ho,t ~  i(G — -̂2)0.10,x +  2nKxK2qxxqlx =  0 5 
î 2<7oi,t — i-̂ 2̂ oi,a; +  K{KxK2q\xqx2 +  <7n<7io) =  0 , 

-  iMu,® +  K(KxK2q12qox -  <?io7oi) =  0 ,
i( J\ +  J2)qi2,t ~  +  12)912,21 — 2Kqn q01 = 0

where k — J i / 2 — J2I 1 and the subscripts 10, 01, 11 and 12 refer to the roots 
ex — e2, el5 e2 and eL +  e2 respectively. This system with K x =  K 2 =  1 is 
known to have applications in nonlinear optics, see [13,3] and the references 
therein. Its gauge equivalent has the form:

St - f x S x - f 3(S3)x = 0,
I 2J \ - I x J l  _  /, Jo -  />■/, (69)

h  ~  J i M J f  -  J i ) ’ h  ~  J i U J ?  -  Jl)

where the 5x5 matrix S  is constrained by K  1S ( x , t ) K  =  S ( x , t ) and:

trace S'2 =  2( J2 +  ), trace S 4 — 2( J 4 +  ),
S ( S 2 -  Jx)(S2 -  J 22) = 0 .

(70)

Here we write down the 1-soliton solution for a special choice of the soliton 
parameters:

no,i =  l ,  n 0,2 = p , no,3 =  ^ ( p 2 -  1)
no,fc 5 nr0,fc  ̂ , iG  =  1 iG =  iG

(71)

We also assume that p > 1 is real. The choice (71) obviously satisfies (61). In
serting this choice into the general formulae (54-55) after some rearrangements 
we get:

(m|n) =  2(Kx cosh(2z/1y1) +  K 2p2 cosh(2uxy2) + p2 -  1), 

hi = 2Kx sinh(2Uxjjx), h2 = 2K2p2 sinh(2uxy2) ,
Pei±e2 =  p e ~^i(yi±y2) (k 2 Qvdv^v2) +  Ki  e—i(viTv2)j } (?2)

Pei =  xj2(p2 -  l ) e~ illiyi ( eUlVl - K x e ~ viyi) ,

Pe2 =  xj2(p2 -  1) e~iyiy2 {eUlV2 + K 2e~UlV2) ,

and P_a =  P*. If we let p =  1 we get a 1-soliton solution associated with the 
D2 ~  Ax © Ax subalgebra; if we put p =  0 the result is a 1-soliton solution 
associated with the so(3) subalgebra of B 2. In both subcases the subsets of
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roots (resp. {±ei ±  e2} and {±ei, ± e2}) for which ^  0 contain only roots 
with the same length.

7. Discussion

We outlined the construction of the class of nonlinear evolution equations gauge 
equivalent to the iV-wave equations. Although at some point we made explicit 
use of the typical representation of q we believe that in fact these results may 
be extended to any irreducible representation of q.
It remains also to be studied the internal structure of the soliton solutions of 
both (5) and (8) and the Ar-soliton interactions. Another open problem is the 
study of the Z2-reductions of (8) along the ideas outlined in [3,4].
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