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Abstract. In [1], the generalization of Laguerre’s function of direction 
for a surface in ordinary space to a hypersurface of a Riemannian space 
is obtained. The Laguerre’s function of direction for a hypersurface of a 
Weyl space has been derived in [2], In this paper, the generalization of 
Laguerre’s function of direction to a hypersurface of generalized Weyl 
space is made.

1. Introduction

An n-dimensional differentiable manifold Wn is said to be a Weyl space if it 
has a symmetric conformal metric tensor and a symmetric connection V 
satisfying the compatibility condition given by the equation

Vk9ij ~ 2TkgtJ = 0 , (1.1)

where Tk are the components of a covariant vector field and V/<; denotes the 
usual covariant derivative.
Let r}/,. denote the coefficients of the connection V. Then, from the compati
bility condition given by (1.1) we get

r 5* =  { ^ }  -  {S^Tk + KTJ ~ 9 U9JkTl) . (1.2)

Under a renormalization of the fundamental tensor of the form g^ =  A2 gtJ an 
object A  admitting a transformation of the form A  =  APA  is called a satellite 
with weight \p\  of the metric tensor gtJ.
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The prolonged covariant derivative of the satellite A  relative to V, denoted 
by VA is defined by [3]

VkA = VkA - p T kA .  (1.3)

An n-dimensional differentiable manifold having an asymmetric connection 
V* and asymmetric conformal metric tensor g*3 preserved by V* is called a 
generalized Weyl space [4], Such a generalized Weyl space will be denoted
by GWn.
In local coordinates, we then have

v fc* s ; - 2r fc*0* = o ,  (1.4)

where Tk are the components of a covariant vector field called the comple
mentary vector field of the generalized Weyl space.
The prolonged covariant derivative of the satellite A, with weight {p}, relative 
to V* is defined as

v ; a  =  v ; a  -  pt ; a  , (i.5>

where Vk denotes the usual covariant derivative.
Assume that g*- is broken up into the sum of its symmetric and anti-symmetric 
parts g*^ and g*^, respectively, so that we have

&  = + 9 h  ■ <l 6 >

Let us consider the generalized Weyl space GWn having the same complemen
tary vector field T  as that of the Weyl space Wn having the symmetric part of 
g*j as its metric tensor. The Weyl space Wn is called the associate space to the 
generalized Weyl space GWn [5].
The coefficients L'jk of the connection V* are obtained from the compatibility 
condition as [6]

ri _  -pi I
^ j k  L j k  ' 2 ^ k l 9 ( j h) + ̂ j l 9 ( h k) + ̂ j k 9 ( h l)h 9*(li)

or, putting

Q j k  —  9  ^ k l 9 ( j h ) +  ^ j l 9 ( h k ) +  ^ j k 9 ( h l )
h  * 9*(li)

we have

(1.7)

(1.8)

L )k  —  Tjfc +  Q )k  ■> (1 .9 )
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where Vtl-k — L'jk — L'kj are the components of the torsion tensor of the 
connection V*.

2. Frenet Formulas in a Generalized Weyl Space

Let t  be the tangent vector field, normalized by the condition =  L to
the curve C : x l =  x l (s) in the associate Weyl space Wn of the generalized 
Weyl space GWn and let s be the arclength of C measured from a fixed point 
on C.
The prolonged derivatives of t  along C, relative to V and V* denoted, respec-
. , u St , 8*t tively, by — and —  are given by

5s 5s

T s = t ’^ '

r  =

8*tl
5s

dxh
ds

(2.1)

Frenet formulae for Wn can be written as [3],

5t*
5s = K ti , -  KÏ,

r + 1 r+ 1 br — 1 1

t lQ =  f  , K = K = 0
0 n

(2.2)

r =  0,1, . . . ,  n — 1

where k is the r-th curvature of the curve C.
r

Similarly, the Frenet formulae for the space GWn can be written in the form

S*t
Ss _ r + l r+1

K* =  K* =  0 
0 n

(2.3)

where k* is the r-th curvature of the curve C relative to GWn.
r

If vl is the contravariant components of any vector v  in GWn, by using (1.9) 
and (2.1), we get

5*r*
7 7

5vl
57 +  QJ k u  1

k (2.4)
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Replacing v% in (2.4) by f0, . . .  fn_1 and using (2.1) we obtain respectively

7 7  =

7 7  =  («*2 - > f l) + Q)kt[tk

7 7  =  (« 4  -  ÿ i )  +
(2.5)

s*t:n—l
ÔS

-  K en_2 +  Q%lktdn_xt kn—l
These formulae may be replaced by the single equation

7 7  =  ( ^ A 1 -  «*r-l) +  Qjkt3r tk ■ (2-6)

Let us find the relationship between the curvatures k and k* of the curve C
n n

relative to Wn and GWn.
Since the vectors f0, U , . . . , fn_i are mutually orthogonal

glijfiptq =  L 7 =  1,2, . . . , n ;  p, q = 0, 1, . . . ,  n -  1. (2.7)

Multiplying (2.2) by _x and summing over i and j  we find

? =  ) * L -  <2'8)
Using (2.3), (2.6) and (2.8) we obtain

k* = k -  Qhjk thr tJr_ 1 , (2.9)
r r

where 0(ÿ)QL =

3. Laguerre’s Function of Direction in a Generalized Weyl 
Hypersurface

Let GWn be a hypersurface with coordinates ul(i =  1, 2, . . . ,  n) in a general
ized Weyl space GWn+1 with coordinates x a(a — l , 2 , . . . , n , n + l ) .
Suppose that the metrics of GWn and GWn+1 are elliptic and that they are 
given respectively, by g*- du 1 duJ and g*ab dxa dxb which are connected by the 
relations

* * CL b
9tJ = 9abXi x3 > i, j  =  1, 2, . . . ,  n; a, 6 =  1, 2, . . . ,  n +  1
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from which it follows that

9(ij) =  9 (ab) Xt X ĵ > 9[ij] — 9[ab]Xi xbj >

where x“ denotes the covariant derivative of x a with respect to ul.
Let n a be the contravariant components of the vector field in GWn+] normal 
to GWn and let it be normalized by the condition g*abn an h — 1. Then, we have

9*ab)nanb = 1 - (3-1)

The moving frame {xza,n a} on GWn reciprocal to the moving frame {x®, n a} 
is defined by [7]

nan a =  1, n ax“ =  0 , nax la =  0 , x“x^ =  . (3.2)

On the other hand, differentiating covarianty x“ with respect to uk, we get

V X  =  = A kna + B\kx]

which yields, with the help of (3.1) and (3.2)

A ik =  9 (ab)(Vk x i ) n b, B \ k = x£(VfeX )  •

The normal curvature and the geodesic torsion of the curve C  in GWn are
respectively,

Pn = A m W  (3.3)

Tg =  A m ^ t3! • (3-4)

If the generalized prolonged derivative of (3.3) in the direction of C is taken 
and if the fact that the weight of p*n is {—1} is used, we find that

Ss
— t hX7* n*— 1 VhPr

— tn(^hPn +  Thp.

=  t Vft*(A(y)(V ) + t"T hpl

= t h( V l A {m) t X  + + A {mt h( V X ) t '  + t hThp

and hence

Ss
=  th(V (A (m) tV  + 2Al,l}t h(V(t’ )t' + thThp; (3.5)
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By virtue of (2.1), (2.3) and (3.4) the equation (3.5) reduces to

or, putting

we obtain

S'Pn
ÔS

= t h(V^A(tj))PC +  2 r> *  +

c = S’A
8s

-  2T*K*

£ = thÇV;Am )tV  + tSThA M)tHj (3.6)

which is the generalized Laguerre’s function of direction to a hypersurface 
in a generalized Weyl space. If, in particular, Th =  0, i. e. if the space is 
Riemannian, then we obtain the expression for Laguerre’s direction function of 
a Riemannian hyper surf ace.

Definition. A curve in a hypersurface will be called a Laguerre line i f  and 
only if  the Laguerre function o f direction along the curve vanishes identically.

The differential equation of Laguerre lines on a generalized Weyl hypersurface 
is, by (3.6)

£  = + T hA (lj)f  F th =  0.
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