LAGUERRE'S FUNCTION OF DIRECTION IN A GENERALIZED WEYL HYPERSURFACE

GÜLER GÜRPINAR ARSAN and GÜLÇIN ÇIVI

Faculty of Science and Letters, Istanbul Technical University
80626 Maslak-Istanbul, Turkey

Abstract

In [1], the generalization of Laguerre's function of direction for a surface in ordinary space to a hypersurface of a Riemannian space is obtained. The Laguerre's function of direction for a hypersurface of a Weyl space has been derived in [2]. In this paper, the generalization of Laguerre's function of direction to a hypersurface of generalized Weyl space is made.

1. Introduction

An n-dimensional differentiable manifold W_{n} is said to be a Weyl space if it has a symmetric conformal metric tensor $g_{i j}$ and a symmetric connection ∇ satisfying the compatibility condition given by the equation

$$
\begin{equation*}
\nabla_{k} g_{i j}-2 T_{k} g_{i j}=0 \tag{1.1}
\end{equation*}
$$

where T_{k} are the components of a covariant vector field and ∇_{k} denotes the usual covariant derivative.
Let $\Gamma_{j k}^{i}$ denote the coefficients of the connection ∇. Then, from the compatibility condition given by (1.1) we get

$$
\Gamma_{j k}^{i}=\left\{\begin{array}{c}
i \tag{1.2}\\
j k
\end{array}\right\}-\left(\delta_{j}^{i} T_{k}+\delta_{k}^{i} T_{j}-g^{l i} g_{j k} T_{l}\right)
$$

Under a renormalization of the fundamental tensor of the form $\tilde{g}_{i j}=\lambda^{2} g_{i j}$ an object A admitting a transformation of the form $\tilde{A}=\lambda^{p} A$ is called a satellite with weight $\{p\}$ of the metric tensor $g_{i j}$.

The prolonged covariant derivative of the satellite A relative to ∇, denoted by $\nabla \vec{\nabla} A$ is defined by [3]

$$
\begin{equation*}
\dot{\nabla}_{k} A=\nabla_{k} A-p T_{k} A . \tag{1.3}
\end{equation*}
$$

An n-dimensional differentiable manifold having an asymmetric connection ∇^{*} and asymmetric conformal metric tensor $g_{i j}^{*}$ preserved by ∇^{*} is called a generalized Weyl space [4]. Such a generalized Weyl space will be denoted by $G W_{n}$.
In local coordinates, we then have

$$
\begin{equation*}
\nabla_{k}^{*} g_{i j}^{*}-2 T_{k}^{*} g_{i j}^{*}=0, \tag{1.4}
\end{equation*}
$$

where T_{k}^{*} are the components of a covariant vector field called the complementary vector field of the generalized Weyl space.
The prolonged covariant derivative of the satellite A, with weight $\{p\}$, relative to ∇^{*} is defined as

$$
\begin{equation*}
\dot{\nabla}_{k}^{*} A=\nabla_{k}^{*} A-p T_{k}^{*} A, \tag{1.5}
\end{equation*}
$$

where ∇_{k}^{*} denotes the usual covariant derivative.
Assume that $g_{i j}^{*}$ is broken up into the sum of its symmetric and anti-symmetric parts $g_{(i j)}^{*}$ and $g_{[i j]}^{*}$, respectively, so that we have

$$
\begin{equation*}
g_{i j}^{*}=g_{(i j)}^{*}+g_{[i j]}^{*} . \tag{1.6}
\end{equation*}
$$

Let us consider the generalized Weyl space $G W_{n}$ having the same complementary vector field T as that of the Weyl space W_{n} having the symmetric part of $g_{i j}^{*}$ as its metric tensor. The Weyl space W_{n} is called the associate space to the generalized Weyl space $G W_{n}$ [5].
The coefficients $L_{j k}^{i}$ of the connection ∇^{*} are obtained from the compatibility condition as [6]

$$
\begin{equation*}
L_{j k}^{i}=\Gamma_{j k}^{i}+\frac{1}{2}\left[\Omega_{k l}^{h} g_{(j h)}^{*}+\Omega_{j l}^{h} g_{(h k)}^{*}+\Omega_{j k}^{h} g_{(h l)}^{*}\right] g^{*(l i)} \tag{1.7}
\end{equation*}
$$

or, putting

$$
\begin{equation*}
Q_{j k}^{i}=\frac{1}{2}\left[\Omega_{k l}^{h} g_{(j h)}^{*}+\Omega_{j l}^{h} g_{(h k)}^{*}+\Omega_{j k}^{h} g_{(h l)}^{*}\right] g^{*(l i)} \tag{1.8}
\end{equation*}
$$

we have

$$
\begin{equation*}
L_{j k}^{i}=\Gamma_{j k}^{i}+Q_{j k}^{i}, \tag{1.9}
\end{equation*}
$$

where $\Omega_{j k}^{i}=L_{j k}^{i}-L_{k j}^{i}$ are the components of the torsion tensor of the connection ∇^{*}.

2. Frenet Formulas in a Generalized Weyl Space

Let \mathbf{t} be the tangent vector field, normalized by the condition $g_{(i j)}^{*} t^{i} t^{j}=1$, to the curve $C: x^{i}=x^{i}(s)$ in the associate Weyl space W_{n} of the generalized Weyl space $G W_{n}$ and let s be the arclength of C measured from a fixed point on C.

The prolonged derivatives of \mathbf{t} along C, relative to ∇ and ∇^{*} denoted, respectively, by $\frac{\dot{\delta} t}{\delta s}$ and $\frac{\dot{\delta}^{*} t}{\delta s}$ are given by

$$
\begin{gather*}
\frac{\dot{\delta} t^{i}}{\delta s}=t^{j} \dot{\nabla}_{j} t^{i}, \quad \frac{\dot{\delta}^{*} t^{i}}{\delta s}=t^{j} \dot{\nabla}_{j}^{*} t^{i} \tag{2.1}\\
t^{h}=\frac{\mathrm{d} x^{h}}{\mathrm{~d} s}
\end{gather*}
$$

Frenet formulae for W_{n} can be written as [3],

$$
\begin{gather*}
\frac{\dot{\delta} t_{r}^{i}}{\delta s}=\underset{r+1}{\kappa} t_{r+1}^{i}-\underset{r}{\kappa} t_{r-1}^{i} \tag{2.2}\\
t_{0}^{i}=t^{i}, \quad \underset{0}{\kappa}=\underset{n}{\kappa}=0 \\
r=0,1, \ldots, n-1
\end{gather*}
$$

where κ is the r-th curvature of the curve C.
Similarly, the Frenet formulae for the space $G W_{n}$ can be written in the form

$$
\begin{equation*}
\frac{\dot{\delta}^{*} t_{r}^{i}}{\delta s}=\underset{r+1}{\kappa^{*}} t_{r+1}^{i}-\kappa_{r}^{*} t_{r-1}^{i}, \quad \underset{0}{*}=\kappa_{n}^{*}=0 \tag{2.3}
\end{equation*}
$$

where κ_{r}^{*} is the r-th curvature of the curve C relative to $G W_{n}$.
If v^{i} is the contravariant components of any vector \boldsymbol{v} in $G W_{n}$, by using (1.9) and (2.1), we get

$$
\begin{equation*}
\frac{\dot{\delta}^{*} v^{i}}{\delta s}=\frac{\dot{\delta} v^{i}}{\delta s}+Q_{j k}^{i} v^{j} t^{k} \tag{2.4}
\end{equation*}
$$

Replacing v^{i} in (2.4) by $t_{0}^{i}, t_{1}^{i}, t_{2}^{i}, \ldots t_{n-1}^{i}$ and using (2.1) we obtain respectively

$$
\begin{align*}
& \frac{\dot{\delta}^{*} t_{0}^{i}}{\delta s}=\kappa_{1} t_{1}^{i}+Q_{j k}^{i} t^{j} t^{k} \\
& \frac{\dot{\delta}^{*} t_{1}^{i}}{\delta s}=\left(\underset{2}{\kappa} t_{2}^{i}-\kappa_{1} t^{i}\right)+Q_{j k}^{i} t_{1}^{j} t^{k} \\
& \frac{\dot{\delta}^{*} t_{2}^{i}}{\delta s}=\left(\underset{3}{\kappa} t_{3}^{i}-\underset{2}{\kappa} t_{1}^{i}\right)+Q_{j k}^{i} t_{2}^{j} t^{k} \tag{2.5}\\
& \cdots \\
& \frac{\dot{\delta}^{*} t_{n-1}^{i}}{\delta s}=-\underset{n-1}{\kappa_{n-2} t_{n-2}^{i}+Q_{j k}^{i} t_{n-1}^{j} t^{k}}
\end{align*}
$$

These formulae may be replaced by the single equation

$$
\begin{equation*}
\frac{\dot{\delta}^{*} t_{r}^{i}}{\delta s}=\left(\underset{r+1}{\kappa} t_{r+1}^{i}-\kappa_{r} t_{r-1}^{i}\right)+Q_{j k}^{i} t_{r}^{j} t^{k} \tag{2.6}
\end{equation*}
$$

Let us find the relationship between the curvatures $\underset{n}{\kappa}$ and κ_{n}^{*} of the curve C relative to W_{n} and $G W_{n}$.
Since the vectors $t_{0}, t_{1}, \ldots, t_{n-1}$ are mutually orthogonal

$$
\begin{equation*}
g_{(i j)}^{*} t_{p}^{i} t_{q}^{j}=\delta_{q}^{p} \quad i, j=1,2, \ldots, n ; \quad p, q=0,1, \ldots, n-1 \tag{2.7}
\end{equation*}
$$

Multiplying (2.2) by $g_{(i j)}^{*} t_{r-1}^{j}$ and summing over i and j we find

$$
\begin{equation*}
\underset{r}{\kappa}=-g_{(i j)}^{*}\left(\frac{\dot{\delta} t_{r}^{i}}{\delta s}\right) t_{r-1}^{j} \tag{2.8}
\end{equation*}
$$

Using (2.3), (2.6) and (2.8) we obtain

$$
\begin{equation*}
\kappa_{r}^{*}=\underset{r}{\kappa}-Q_{h j k} t_{r}^{h} t_{r-1}^{j} t^{k} \tag{2.9}
\end{equation*}
$$

where $g_{(i j)}^{*} Q_{h k}^{i}=Q_{h j k}$.

3. Laguerre's Function of Direction in a Generalized Weyl Hypersurface

Let $G W_{n}$ be a hypersurface with coordinates $u^{i}(i=1,2, \ldots, n)$ in a generalized Weyl space $G W_{n+1}$ with coordinates $x^{a}(a=1,2, \ldots, n, n+1)$.
Suppose that the metrics of $G W_{n}$ and $G W_{n+1}$ are elliptic and that they are given respectively, by $g_{i j}^{*} \mathrm{~d} u^{i} \mathrm{~d} u^{j}$ and $g_{a b}^{*} \mathrm{~d} x^{a} \mathrm{~d} x^{b}$ which are connected by the relations

$$
g_{i j}^{*}=g_{a b}^{*} x_{i}^{a} x_{j}^{b}, \quad i, j=1,2, \ldots, n ; \quad a, b=1,2, \ldots, n+1
$$

from which it follows that

$$
g_{(i j)}^{*}=g_{(a b)}^{*} x_{i}^{a} x_{j}^{b}, \quad g_{[i j]}^{*}=g_{[a b]}^{*} x_{i}^{a} x_{j}^{b},
$$

where x_{i}^{a} denotes the covariant derivative of x^{a} with respect to u^{i}.
Let n^{a} be the contravariant components of the vector field in $G W_{n+1}$ normal to $G W_{n}$ and let it be normalized by the condition $g_{a b}^{*} n^{a} n^{b}=1$. Then, we have

$$
\begin{equation*}
g_{(a b)}^{*} n^{a} n^{b}=1 \tag{3.1}
\end{equation*}
$$

The moving frame $\left\{x_{a}^{i}, n_{a}\right\}$ on $G W_{n}$ reciprocal to the moving frame $\left\{x_{i}^{a}, n^{a}\right\}$ is defined by [7]

$$
\begin{equation*}
n_{a} n^{a}=1, \quad n_{a} x_{i}^{a}=0, \quad n^{a} x_{a}^{i}=0, \quad x_{i}^{a} x_{a}^{j}=\delta_{i}^{j} . \tag{3.2}
\end{equation*}
$$

On the other hand, differentiating covarianty x_{i}^{a} with respect to u^{k}, we get

$$
\dot{\nabla}_{k}^{*} x_{i}^{a}=\nabla_{k}^{*} x_{i}^{a}=A_{i k} n^{a}+B_{i k}^{j} x_{j}^{a}
$$

which yields, with the help of (3.1) and (3.2)

$$
A_{i k}=g_{(a b)}^{*}\left(\dot{\nabla}_{k}^{*} x_{i}^{a}\right) n^{b}, \quad B_{i k}^{j}=x_{a}^{j}\left(\dot{\nabla}_{k}^{*} x_{i}^{a}\right)
$$

The normal curvature and the geodesic torsion of the curve C in $G W_{n}$ are respectively,

$$
\begin{align*}
& \rho_{n}^{*}=A_{(i j)} t^{i} t^{j} \tag{3.3}\\
& \tau_{g}^{*}=A_{(i j)} t^{i} t_{1}^{j} . \tag{3.4}
\end{align*}
$$

If the generalized prolonged derivative of (3.3) in the direction of C is taken and if the fact that the weight of ρ_{n}^{*} is $\{-1\}$ is used, we find that

$$
\begin{aligned}
\frac{\dot{\delta}^{*} \rho_{n}^{*}}{\delta s} & =t^{h} \dot{\nabla}_{h}^{*} \rho_{n}^{*} \\
& =t^{h}\left(\nabla_{h}^{*} \rho_{n}^{*}+T_{h} \rho_{n}^{*}\right) \\
& =t^{h}\left[\nabla_{h}^{*}\left(A_{(i j)} t^{i} t^{j}\right)\right]+t^{h} T_{h} \rho_{n}^{*} \\
& =t^{h}\left(\nabla_{h}^{*} A_{(i j)}\right) t^{i} t^{j}+A_{(i j)} t^{h}\left(\nabla_{h}^{*} t^{i}\right) t^{j}+A_{(i j)} t^{h}\left(\nabla_{h}^{*} t^{j}\right) t^{i}+t^{h} T_{h} \rho_{n}^{*}
\end{aligned}
$$

and hence

$$
\begin{equation*}
\frac{\dot{\delta}^{*} \rho_{n}^{*}}{\delta s}=t^{h}\left(\nabla_{h}^{*} A_{(i j)}\right) t^{i} t^{j}+2 A_{(i j)} t^{h}\left(\nabla_{h}^{*} t^{j}\right) t^{i}+t^{h} T_{h} \rho_{n}^{*} \tag{3.5}
\end{equation*}
$$

By virtue of (2.1), (2.3) and (3.4) the equation (3.5) reduces to

$$
\frac{\dot{\delta}^{*} \rho_{n}^{*}}{\delta s}=t^{h}\left(\nabla_{h}^{*} A_{(i j)}\right) t^{i} t^{j}+2 \tau_{g}^{*} \kappa_{1}^{*}+t^{h} T_{h} A_{(i j)} t^{i} t^{j}
$$

or, putting

$$
\mathcal{L}=\frac{\dot{\delta}^{*} \rho_{n}^{*}}{\delta s}-2 \tau_{g}^{*} \kappa_{1}^{*}
$$

we obtain

$$
\begin{equation*}
\mathcal{L}=t^{h}\left(\nabla_{h}^{*} A_{(i j)}\right) t^{i} t^{j}+t^{h} T_{h} A_{(i j)} t^{i} t^{j} \tag{3.6}
\end{equation*}
$$

which is the generalized Laguerre's function of direction to a hypersurface in a generalized Weyl space. If, in particular, $T_{h}=0$, i. e. if the space is Riemannian, then we obtain the expression for Laguerre's direction function of a Riemannian hypersurface.

Definition. A curve in a hypersurface will be called a Laguerre line if and only if the Laguerre function of direction along the curve vanishes identically.

The differential equation of Laguerre lines on a generalized Weyl hypersurface is, by (3.6)

$$
\mathcal{L}=\left[\left(\nabla_{h}^{*} A_{(i j)}\right) t^{i} t^{j}+T_{h} A_{(i j)} t^{i} t^{j}\right] t^{h}=0
$$

References

[1] Özdeĝer A., Some Functions of Direction in a Subspace of a Riemannian Space, Bulletin of the Istanbul Technical University 33(2) (1980) 48-53.
[2] Uysal A., Laguerre's Function in a Weyl Hypersurface, C. R. Bulgarian Acad. Sci. 46(7) (1993) 21-22.
[3] Hlavaty V., Theorie d'immersion d'une W_{m} dans W_{n}, Ann. Soc. Polon. Math., 21 (1949) 196-206.

