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Abstract. We derive the extended entanglement entropy and the Fisher in-
formation metric in the case of quantum models, described by time-independent
diagonal quadratic Hamiltonians. Our research is conducted within the frame-
work of Thermo field dynamics. We also study the properties of the Fisher
metric invariants to identify the phase structure of the quasi-particle systems
in equilibrium.
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1. Introduction

One of the most challenging problems in modern physics is the intrinsic prop-
erty of quantum systems to develop entanglement between their subsystems. A
well-suited quantity, characterizing this process, is the geometric or entanglement
entropy (EE), which is usually obtained by a trace over the degrees of freedom
situated in a subspace of the whole system.
To better understand the intrinsic features of this kind of problems one can refer
to the powerful tools of information geometry [1, 2]. The key concept here is the
so-called Fisher information metric (FIM) [6], which defines a natural distance
between different probability distributions, represented as points on a statistical
manifold. By construction FIM can be defined as the Hessian of the entanglement
entropy. Furthermore, the Fisher metric describes a continuous setting even if
the underlying features of the system are discrete, which allows one to apply the
classical methods of differential geometry as well.
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Our interest is focused mainly on the study of quantum entanglement entropy and
the Fisher information metric for generic bosonic systems in equilibrium, described
by a diagonal time-independent quadratic Hamiltonians. The latter Hamiltonians
often arise in important branches of physics such as condensed matter physics,
quantum field theory and string theory.
Although one can always start with non-diagonal Hamiltonian, it is more efficient
to work with diagonal matrices due to considerable simplification in the calcula-
tions of EE and FIM. For example, the Hamiltonian can be brought to diagonal
form by an appropriate Bogoliubov transformation [4]. Such transformation mixes
the creation and annihilation operators, but leaves the form of the commutation
relations invariant. The new diagonal Hamiltonian now describes a quasi-particle
system with a new set of creation and annihilation operators but the same energy
eigenvalues as the original one.
In general it is difficult to calculate the entanglement entropy. However, the recent
progress in Thermo field dynamics (TFD) [3, 13] offers relatively straightforward
way of treating quantum states, which facilitates the derivation of the EE and the
FIM. TFD requires the construction of a specific statistical state [7, 12]

|Ψ〉 =
1

Z

∑
n

e−
β H
2 |n, ñ〉 (1)

defined in the so-called double Hilbert space, defined as a direct product of the
original Hilbert space with basis |n〉 and an isomorphic copy of it with basis |ñ〉.
Here Z = Z(β) is the partition function and β = 1/T is the inverse temperature.
In [11] was shown that the extended state |n, ñ〉 = |n〉

⊗
|ñ〉 is invariant for

any orthogonal complete set {|α〉}, i.e.,
∑

n |n, ñ〉 =
∑

α |α, α̃〉. Therefore the
statistical state |Ψ〉 is independent of the chosen representation. This important
result is known as “the general representation theorem” in TFD. It allows one to
apply the TFD formalism even for non-equilibrium systems.
This paper is organized as follow. In Section 2 we calculate the extended entan-
glement entropy (EEE) and the Fisher information metric for bosonic systems in
equilibrium, described by diagonal time-independent quadratic Hamiltonian. All
calculations are conducted within the TFD formalism. In Section 3 we analyse
the properties of the scalar curvature of the Fisher metric for two dimensional sta-
tistical manifold, spanned by the values of the inverse scaled temperatures. We
apply that knowledge to identify the phase structure of the quasi-particle systems
in equilibrium. We shortly summarize our results in Section 4.

2. Fisher Metric for Time-Independent Quadratic Hamiltonians

Let us consider bosonic quasi-particle systems whose phase structure can be ex-
plored by a two dimensional statistical manifold. In this case one can choose the
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following diagonal time-independent Hamiltonian

Ĥ =
∞∑

n1,2=0

(E1 n1 + E2 n2 + E3 n3 + E0) |n1, n2, n3〉 〈n1, n2, n3| (2)

where E0 is the energy in the ground state, while Ei, i = 1, 2, 3, are real energy
coefficients, derived after some proper diagonalization procedure. The operator
n̂i = â†i âi is the i-th number operator built by the product of the creation and
annihilation operators, satisfying standard commutation relations

[âi, â
†
j ] = δij , [âi, âj ] = [â†i , â

†
j ] = 0, i, j = 1, 2, 3 . (3)

The Hilbert state vectors, |{ni}〉, span the energy basis (the eigenvectors of the
Hamiltonian)1 with the following normalization condition

〈m1, m2, m3|n1, n2, n3〉 = δm1, n1 δm2, n2 δm3, n3 . (4)

In order to find the entanglement entropy and the Fisher metric, we have to compute
some relevant statistical quantities. The first such quantity is the partition function
Z, which is straightforward to compute

Z(K1, K2) = Tr1,2,3ê−β H =

∞∑
`1,2,3=0

〈`1, `2, `3|ê−β H |`1, `2, `3〉

(5)

=
e−K0

(1− e−K1) (1− e−K2) (1− e−K3)

where K0 = β E0, Ki = β Ei, i = 1, 2, 3, are the so-called inverse scaled tem-
peratures, and β = 1/T , (kB = 1). The ordinary density matrix in equilibrium
follows immediately

ρ̂eq(K1, K2) =
ê−β H

Z
=

1

Z

∞∑
n1,2,3=0

e
−

3∑
i=1

Ki ni+K0

|n1, n2, n3〉 〈n1, n2, n3| .

(6)

In the TFD formulation one introduces fictitious system, which is an isomorphic
copy of the original quantum one, thus doubling the size of the Hilbert space. This

1The energy basis in this case is not essential, due to the general representation theorem in TFD.
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trick leads to the definition of the following statistical state |Ψ〉

|Ψ〉 =
∞∑

n1,2,3=0

√
ρeq |n1, n2, n3〉 |ñ1, ñ2, ñ3〉

(7)

=
1√
Z

∞∑
n1,2,3=0

e−
1
2
(K1 n1+K2n2+K3 n3+K0) |n1, n2, n3〉 |ñ1, ñ2, ñ3〉 .

One can now use (7) to compose the matrix elements of an extended density oper-
ator as follow

ρ̂ = |Ψ〉 〈Ψ| = 1

Z

∞∑
n1,2,3=0

∞∑
m1,2,3=0

e−
1
2
(K1 (n1+m1)+K2 (n2+m2)+K3 (n3+m3)+2K0)

× |n1, n2, n3〉 〈m1, m2, m3| |ñ1, ñ2, ñ3〉 〈m̃1, m̃2, m̃3| . (8)

By assumption the system is in equilibrium, therefore of interest to us is only the
quantum entanglement between its subsystems. Partitioning of quantum systems
is not unique and depends on their intrinsic granularity. For our purpose one can
choose a bipartite system, namely

{n1, n2, n3} = {n1, n2}+ {n3} = A+B (9)

traditionally called “Alice” and “Bob”. After this simple partitioning one can trace
out the degrees of freedom in Bob’s subsystem, so that only the degrees of freedom
seen by Alice remain

ρ̂A = TrBρ̂ =
∞∑
`3=0

∞∑
˜̀
3=0

〈`3|〈˜̀3|ρ̂ |`3〉 |˜̀3〉

=
(
eK1 − 1

) (
eK2 − 1

) ∞∑
n1,2=0

∞∑
m1,2=0

e−
K1 (2+n1+m1)+K2 (2+n2+m2)

2

× |n1, n2〉 〈m1, m2| |ñ1, ñ2〉 〈m̃1, m̃2| . (10)

Finally, tracing over the degrees of freedom in system A, one is left with the ex-
tended entanglement entropy between Alice’s and Bob’s subsystems

SA (K1, K2) =−TrA (ρ̂A log ρ̂A)

=
1

2
coth

K1

4
coth

K2

4

(
K1

(
1 + coth

K1

4

)
−2 ln

(
eK1 − 1

))
(11)

+
1

2
coth

K1

4
coth

K2

4

(
K2

(
1 + coth

K2

4

)
−2 ln

(
eK2 − 1

))
.
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Equation (11) allows us to calculate the Fisher information metric. It can be ex-
pressed as the Hessian of the entanglement entropy [8, 9]

gab =
∂2SA

∂Ka ∂Kb
, a, b = 1, 2 . (12)

Explicitly one has the following expressions for the components of the metric

g11 =
1

64
coth

K2

4
csch2 K1

4

[
K1

(
3 + 5 coth2 K1

4
+ 7 csch2 K1

4

)
+4 tanh

K1

4
+ 4 coth

K1

4

(
K1 − 5 +K2

(
1 + coth

K2

4

)
(13)

−2 log
[(

eK1 − 1
) (

eK2 − 1
)])]

g12 = g21 =
1

32
csch2 K1

4
csch2 K2

4

[
K1

(
1 + 2 coth

K1

4

)
(14)

+K2

(
1 + 2 coth

K2

4

)
− 2 log

[(
eK1 − 1

) (
eK2 − 1

)]
− 4

]

g22 =
1

64
coth

K1

4
csch2 K2

4

[
K2

(
3 + 5 coth2 K2

4
+ 7 csch2 K2

4

)
+4 tanh

K2

4
+ 4 coth

K2

4

(
K2 − 5 +K1

(
1 + coth

K1

4

)
(15)

−2 log
[(

eK1 − 1
) (

eK2 − 1
)])]

.

The metric components are positive defined by construction, which is a neces-
sary condition for thermodynamic stability (see [10] and references therein). From
information-theoretic point of view the Fisher metric represents a continuous set-
ting even if the underlying features of the system are discrete. This allows one to
take advantage of the powerful framework of differential geometry to treat statisti-
cal structures as geometrical ones.

In our case the parameter space, spanned by the inverse scaled temperatures (K1,
K2), is now two dimensional. Therefore one can study the parameter manifold by
only investigating the properties of its scalar curvature. The latter is well known
result in differential geometry, where in 2d space the Riemannian and Ricci cur-
vatures are just multiples of the scalar curvature, e.g. there is only one degree
of freedom. In the following section we investigate the properties of the Ricci
invariant of the Fisher metric and comment on its relation to the strength of the
interactions and the critical phase points in the quasi-system.
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3. Applications to Phase Transitions

It is known fact that FIM defines a Riemannian metric on the space of parameters
[1, 2, 6] for variety of statistical systems. Such geometrization is often useful in
the analysis of the phase structure for number of statistical models [5, 10]. Here
the scalar curvature, R, plays a crucial role, e.g. a non-interacting model shows
flat geometry (R = 0), while the curvature diverges at the critical points of an
interacting one.
An advantage of the probabilistic description of the system’s phase structure is that
it does not necessary require the existence of order parameters. This is useful for
analysing systems, where such parameter is difficult to identify.
In this section we analyse the scalar curvature, R = Rab g

ab, of the Fisher infor-
mation metric (12), where Rab = Rcacb is the Ricci tensor and

Rabcd =
R

2
(gac gbd − gbc gad) (16)

is the Riemann curvature tensor in two dimensions. It is well-established that in
two dimensions there is only one independent component of the curvature tensor,
say R1212, thus the Riemann tensor and the Ricci scalar are related by

R =
2R1212

g11 g22 − g12 g21
· (17)

The explicit expression for R is too lengthy to be presented here. However its
graphical representation near the origin (K1 = K2 = 0) is shown in Fig. 1.

Figure 1. The Ricci scalar curvature R for high temperatures (low in-
verse scaled temperatures, K1,K2 < 1). The curvature is positive de-
fined implying elliptic geometry on the statistical manifold. The local
maximum of the curvature depicts the strongest interactions between
the constituents of the quasi-system.
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One notes that in this region the Ricci scalar is positive defined. The positive
scalar curvature suggest elliptic geometry in the thermodynamic parameter space,
while the local maximum corresponds to the strongest interaction between the con-
stituents of the quasi-system.

Figure 2. The Ricci scalar curvature R far from the origin, K1,K2 >
1. The curvature is negative implying hyperbolic geometry on the sta-
tistical manifold. The absolute value of the local minimum of the cur-
vature depicts the strongest interactions between the constituents of the
quasi-system.

For large values of the inverse scaled parameters (lower temperatures) the Ricci
scalar is not positive defined as shown in Fig. 2.
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Figure 3. Free quasi-system, R = 0.

In this case the geometry in the space of parameters is hyperbolic. The absolute
value of the local minimum of R corresponds to the strongest interactions in the
hyperbolic case.
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There is a level curve along which the scalar curvature is zero, thus separating the
hyperbolic from the elliptic case as shown in Fig. 3.
The latter depicts flat geometry corresponding to free non-interacting quasi-system.
There are also two more non-singular flat cases, namely at the origin and at infinity.
The smooth, non-singular behaviour of the 2d scalar curvature R, for all points
on the parameter space (all physically admissible values of K1,2), implies that the
quasi-system, described by the Hamiltonian from equation (2), is thermodynami-
cally stable and does not undergo any second order phase transitions. However, the
Fisher metric is singular at the origin (for very high temperatures), which suggests
that at this particular point the system may undergo a first order phase transition.

4. Conclusion

In this work we have found explicit expressions for the extended entanglement
entropy and the Fisher information metric for quantum models, described by par-
ticular diagonal quadratic Hamiltonian. The investigation has been conducted for
systems in thermal equilibrium and within the framework of Thermo field dynam-
ics.
The analytical and the graphical study of the 2d information scalar curvature de-
picted three different geometric regions, corresponding to the type of the interac-
tions between the constituents of the quasi-system.
Near the origin (for high temperatures) the scalar curvature is positive suggesting
an elliptic type of geometry on the statistical manifold. The absolute value of
the depicted local maximum corresponds to particular temperatures for which the
interactions in the system are at their maximum strength.
Far from the origin (for lower temperatures) the geometry on the statistical mani-
fold is hyperbolic (negative scalar curvature). The absolute value of the graphically
depicted local minimum corresponds to the maximum strength of the interactions
in the hyperbolic case.
The thin curvature line, separating the elliptic and the hyperbolic geometries, cor-
responds to flat statistical manifold. According to the established terminology this
curve defines the temperatures at which the system is non-interacting. Flat ge-
ometry is found also at the origin point (infinite temperature) and at infinity (zero
temperature).
The analysis also showed that the scalar curvature contains no singularities, thus
effectively rendering the quasi-system thermodynamically stable. In other words,
there are no critical phase points for which the system can undergo a second order
phase transition. This result is necessary, but not sufficient to dismiss the existence
of such points in the system. This is due to many factors, one of which is the choice
of thermal parameters, in this case the inverse scaled temperatures, which may not
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be sensitive to some physically important features of the system. In this case a
change of coordinates may be appropriate.
Finally, we consider the investigation of non-equilibrium systems with the methods
presented in this paper, to be more important and interesting with wide scope of
applications. We intend to conduct such investigation in the near future.
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