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Abstract. In this paper we study fundamental equations of geodesic map-
pings of manifolds with affine connection onto (pseudo-) Riemannian man-
ifolds. We proved that if a manifold with affine (or projective) connection
of differentiability class Cr (r ≥ 2) admits a geodesic mapping onto a
(pseudo-) Riemannian manifold of class C1, then this manifold belongs to
the differentiability classCr+1. From this result follows if an Einstein spaces
admits non-trivial geodesic mappings onto (pseudo-) Riemannian manifolds
of classC1 then this manifold is an Einstein space, and there exists a common
coordinate system in which the components of the metric of these Einstein
manifolds are real analytic functions.
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1. Introduction

To the theory of geodesic mappings and transformations were devoted many pa-
pers, these results are formulated in a large number of research papers and mono-
graphs [3, 5–12, 14–28], etc.
First we studied the general properties of geodesic mappings of manifolds with
affine and projective connection onto (pseudo-) Riemannian manifolds in depen-
dence on the smoothness class of these geometric objects. Here we present some
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well known facts, which were proved by Weyl [28], Thomas [26], Mikeš and Bere-
zovski [17], see [5, 16, 20–22, 24].
In these results no details about the smoothness class of the metric, respectively
connection, were stressed. They were formulated “for sufficiently smooth” geo-
metric objects.
In the papers [10–12] we proved that these mappings preserve the smoothness
class of the metrics of geodesically equivalent (pseudo-) Riemannian manifolds.
We prove that this property generalizes in a natural way for a more general case.

2. Main Theorems

Let An = (M,∇) and Pn = (M,H) be manifolds with affine and projective con-
nection, respectively; and V̄n = (M, ḡ) be a (pseudo-) Riemannian manifold. The
functions Γhij(x), Πh

ij(x) and ḡij(x) are components of ∇, H and ḡ in the coor-
dinate system (U, x), U ⊂ M , and An, Pn and V̄n belong to the differentiability
class Cr if these functions are Cr.
Hinterleitner and Mikeš [12] proved the following theorems.

Theorem 1. If Pn ∈ Cr (r ≥ 2) admits geodesic mappings onto a (pseudo-)
Riemannian manifold V̄n ∈ C2, then V̄n ∈ Cr+1.

Theorem 2. If An ∈ Cr (r ≥ 2) admits geodesic mappings onto a (pseudo-)
Riemannian manifold V̄n ∈ C2, then V̄n ∈ Cr+1.

In this paper we proved a generalization of these theorems.

Theorem 3. If Pn ∈ Cr (r ≥ 2) admits geodesic mappings onto a (pseudo-)
Riemannian manifold V̄n ∈ C1, then V̄n ∈ Cr+1.

Theorem 4. If An ∈ Cr (r ≥ 2) admits geodesic mappings onto a (pseudo-)
Riemannian manifold V̄n ∈ C1, then V̄n ∈ Cr+1.

From the last Theorem and our results [10] for geodesic mappings of Einstein
spaces we have the following theorem.

Theorem 5. If the Einstein space Vn admits a non-trivial geodesic mapping onto a
(pseudo-) Riemannian manifold V̄n ∈ C1, then V̄n is an Einstein space. Moreover,
there exists a common coordinate system in which the components of the metric Vn
and V̄n are real analytic functions.

Theorem 5 generalize results by Mikeš [15], see [6, 16, 20], which were proved in
the case when Vn and V̄n ∈ C3.
The above results about geodesic mappings of Einstein spaces are valid globally,
this follows from the paper [4] by DeTurk and Kazhdan, see [1, p. 196], in which it
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is shown that in an Einstein manifold exists a real analytic coordinate system, i.e.,
in which the components of the metric tensor are real analytic functions.

3. Geodesic Mapping Theory for Manifolds With Affine and
Projective Connections

Let An = (M,∇) and Ān = (M̄, ∇̄) be manifolds with affine connections ∇
and ∇̄, respectively.

Definition 6. A diffeomorphism f : An → Ān is called a geodesic mapping of An
onto Ān if f maps any geodesic in An onto a geodesic in Ān.

Because geodesics are independent of the antisymmetric parts of connections, we
suppose that ∇ and ∇̄ are connections without torsion. A manifold An admits a
geodesic mapping onto Ān if and only if the Levi-Civita equations (Weyl [28], see
[5, p. 56], [20, p. 130], [21, p. 260], [22, p. 166])

∇̄XY = ∇XY + ψ(X)Y + ψ(Y )X (1)

hold for any tangent fields X,Y and where ψ is a differential form on M (= M̄ ).
If ψ ≡ 0 then f is affine or trivially geodesic.
Eliminating ψ from the formula (1) Thomas [27], see [5, p. 98], [21, p. 263],
obtained that equation (1) is equivalent to

Π̄(X,Y ) = Π(X,Y ) for all tangent vectors X,Y (2)

where

Π(X,Y ) = ∇(X,Y )− 1

n+ 1
(trace(V → ∇VX) · Y + trace(V → ∇V Y ) ·X)

is the Thomas’ projective parameter or Thomas’ object of projective connection.
A geometric object Π that transforms according to a similar transformation law
as Thomas’ projective parameters is called a projective connection, and manifolds
on which an object of projective connection is defined is called a manifold with
projective connection, denoted by Pn. Such manifolds represent an obvious gen-
eralization of affine connection manifolds.
A projective connection on Pn will be denoted by H. Obviously, H is a mapping
TPn × TPn → TPn, i.e., (X,Y ) 7→ HXY . Thus, we denote a manifold M with
projective connection H by Pn = (M,H). See [5, p. 99], [21, p. 264].
We restricted ourselves to the study of coordinate neighborhoods (U, x) of the
points p ∈ An (Pn) and f(p) ∈ Ān (P̄n). The points p and f(p) have the same
coordinates x = (x1, . . . , xn).
We assume that An, Ān, Pn, P̄n ∈ Cr (∇, ∇̄,H, H̄ ∈ Cr) if their components
Γhij(x), Γ̄hij(x),Πh

ij(x), Π̄h
ij(x) ∈ Cr on (U, x), U ⊂ M , respectively. Here Cr is

the smoothness class.
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Formulae (1) and (2) in the common system (U, x) have the local form

Γ̄hij(x) = Γhij(x) + ψi(x)δhj + ψj(x)δhi and Π̄h
ij(x) = Πh

ij(x)

respectively, where ψi are components of ψ and δhi is the Kronecker delta.
It is seen that in a manifold An = (M,∇) with affine connections∇ there exists a
projective connectionH (i.e., Thomas projective parameter) with the same smooth-
ness. The opposite statement is not valid, for example if ∇ ∈ Cr (⇒ H ∈ Cr and
also H̄ ∈ Cr) and ψ(x) ∈ C0, then ∇̄ ∈ C0.
Let ∇, ∇̃ and H be connections on M and their components Γhij , Γ̃hij and Πh

ij in
a certain common coordinate system (U, x) have the following form

Γ̃hij(x) = Πh
ij(x) = Γhij(x)− 1

n+ 1

(
δhi Γααj(x) + δhj Γααi(x)

)
. (3)

These connections have common geodesics. The connection ∇̃ is a normal con-
nection, see Cartan [2] and Thomas [26], see (37.4) in [5, p. 105], [21, p. 282].
Because Γ̃ααj(x) = 0 the connection ∇̃ is equaffine (if Γ̃hij(x) ∈ C1 the Ricci ten-
sor in Ãn is symmetric). A global construction we obtained in the papers [10, 12].
So instead of the connection Γhij(x) we can use Γ̃hij(x), which has the same differ-
entiability (or greater), and Γ and Γ̄ have common geodetics.

4. Geodesic Mappings From Equiaffine Manifolds Onto (Pseudo-)
Riemannian Manifolds

Let a manifold An = (M,∇) ∈ C0 admit a geodesic mapping onto a (pseudo-)
Riemannian manifold V̄n = (M, ḡ) ∈ C1, i.e., the components ḡij(x) ∈ C1(U). It
is known [17], see [20, p. 145], that equations (1) are equivalent to the following
Levi-Civita equations

∇kḡij = 2ψkḡij + ψiḡjk + ψḡik. (4)

If An is an equiaffine manifold then ψ has the following form

ψi = ∂iΨ, Ψ =
1

n+ 1
ln
√
|det ḡ| − ρ, ∂iρ =

1

n+ 1
Γααi, ∂i = ∂/∂xi.

Mikeš and Berezovski [24], see [20, p. 150], proved that the Levi-Civita equations
(1) and (4) are equivalent to

∇kaij = λiδjk + λjδik (5)

where
a) aij = e2Ψ ḡij and b) λi = −e2Ψ ḡiαψα. (6)

Here ‖ḡij‖ = ‖ḡij‖−1. On the other hand

ḡij = e2Ψĝij , Ψ = ln
√
| det ĝ| − ρ, ‖ĝij‖ = ‖aij‖−1. (7)
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Equation (5) can be written in the following explicit form

∂ka
ij = λiδjk + λjδik − aαiΓ

j
αk − a

αjΓiαk. (8)

If we have An = (M,∇) with general connection∇, just replace this connection in
formula (8) by a normal affine connection, which is equiaffine, from the discussion
about formulas (3) follows

∂ka
ij = λiδjk + λjδik − aαiΠ

j
αk − a

αjΠi
αk. (9)

5. Proof of Theorem 3

Evidently, from the discussion about formula (3) we obtain that from Theorem 3
follows Theorem 4. Below we can prove this Theorem.
The following lemma is true.

Lemma 7. Let Pn ∈ C1 admit a geodesic mapping onto the Riemannian space
V̄n ∈ C1, then for the tensor components aij(x) exist partial derivatives of second
order with the possible exception ∂iiaii and ∂ijaij (i 6= j and no summation over
indices).

Proof: We will analyze formulas (9) under the conditions that Πh
ij(x) ∈ C1. In the

following the Einstein summation convention will be used only for greek indices.
Formula (9) for k 6= i and k 6= j has the following form

∂ka
ij = −aαiΠj

αk − a
αjΠi

αk. (10)

Evidently, from (10) directly follows the existence of the partial derivatives ∂klaii

and ∂klaij for any l and any different indices i, j, k.
After integrating (10) with i = j we obtain

aii = ãii − 2

∫ xk

xk0

aαiΠi
αk dτk (11)

where the function ãii does not depend on the variable xk.
Because aii(x)|xk=xk0

= ãii, the function ãii is differentiable, and

∂ia
ii = ∂iã

ii − 2

∫ xk

xk0

∂i(a
αiΠi

αk) dτk. (12)

Here we used properties of the integrals with parameters, see [13, p. 665].
Differentiating (12) with respect to xk we obtain the derivative ∂ikaii

∂ika
ii = −2 ∂i(a

αiΠi
αk) .
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From (9) with i = j = k we get

∂ia
ii = 2λi − 2 aαiΠi

αi. (13)

Differentiating (13) with respect to xk we show the existence of ∂kλi.
Finally, after substituting j = k to (9) we get

∂ka
ik = λi − aαiΠk

αk − aαkΠi
αk (14)

and from this we obtain the existence of the partial derivative ∂klaik for any l 6= i
and i 6= k.
Evidently, the lemma is proved. �

Proof: Finally we will prove Theorem 3.
We analyze equations (9). We suppose Πk

ij(x) ∈ Cr, r ≥ 2. Based on Lemma 7
we obtain all second partial derivatives of aij(x), except ∂iiaii and ∂ijaij . Ana-
logically all partial derivatives of λi(x) exist, excluding ∂iλi(x).
Formula (9) with i = j = 1 and k = 2 has the following form

∂2a
11 = −2a11Π1

12 +G (15)

where G = − 2
n∑

α=2
a1αΠ1

α2. Evidently, G ∈ C1, and from Lemma 7 follows the
existence ∂11G.
Further we solve equation (15) with respect to the unknown function a11, we find

a11 = CA+B (16)

where C is a function, that does not depend on the coordinate x2

A = exp
(
−2

∫ x2

x20

Π1
12(x1, τ2, x3, . . . ) dτ2

)
and B = A

∫ x2

x20

G/A dτ2.

The functions A and B are twice differentiable in x1. This assertion follows from
the differentiability of the functions G, Πh

ij and from properties of integrals with
parameters, see [13, p. 665]. Because a11(x1, x2

0, x
3, . . . , xn) = C, there exists

the partial derivative ∂1C.

On the other side using equations (9) we get

∂1a
11 = 2λ1 − 2a1αΠ1

α1 and ∂2a
12 = λ1 − a1αΠ2

α2 − a2αΠ1
α2. (17)

After excluding λ1 from (17) using (16) obtain the following condition

∂2a
12 = 1/2 ∂1CA+H (18)

where
H = 1/2 (C∂1A+ ∂1B) + a1αΠ1

α1 − a1αΠ2
α2 − a2αΠ1

α2.
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With the subsequent integration we get

a12 = C̃ + 1/2 ∂1C

∫ x2

x20

A(x1, τ2, x3, . . . ) dτ2 +

∫ x2

x20

H(x1, τ2, x3, . . . ) dτ2

where C̃ is a function that does not depend on the coordinate x2.
Because a12(x1, x2

0, x
3, . . . , xn) = C̃, there exists ∂1C̃, and from the existence of

∂1a
12, ∂1A and ∂1H follows the existence of ∂11C. Then, from (16), (17) and (18)

the existence of ∂11a
11, ∂1λ

1 and ∂21a
12 follow. Elementary, aij ∈ C2. From this

and (7) follows that also ḡij ∈ C2 and V̄n ∈ C2.
Finally, from Theorem 1 follows Theorem 3. �
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