ROTARY DIFFEOMORPHISM ONTO MANIFOLDS WITH AFFINE CONNECTION

HANA CHUDÁ, JOSEF MIKEŠ ${ }^{\dagger}$ and MARTIN SOCHOR ${ }^{\dagger}$
Dept. of Mathematics, FAI, Tomas Bata University, 76000 Zlin, Czech Republic
\dagger Dept. of Algebra and Geometry, Palacky University, 77900 Olomouc, Czech Republic

Abstract

In this paper we will introduce a newly found knowledge above the existence and the uniqueness of isoperimetric extremals of rotation on two-dimensional (pseudo-) Riemannian manifolds and on surfaces on Euclidean space. We will obtain the fundamental equations of rotary diffeomorphisms from (pseudo-) Riemannian manifolds for twice-differentiable metric tensors onto manifolds with affine connections.

MSC: 53B05, 53B20, 53B30, 53A05
Keywords: Isoperimetric extremals of rotation rotary diffeomorphism, manifolds with affine connection, pseudo- Riemannian space, Riemannian spaces, two dimensional manifold

1. Introduction

A special diffeomorphism between (pseudo-) Riemannian manifolds and manifolds with affine and projective connections, for which maps any special curve onto a special curve, were studied in many works. For example geodesic mappings, for which any geodesic maps onto geodesic [1,3-5,13-16,18, 19, 21,22,25]. Analogically holomorphically-projective and F-planar mappings for which any analytic and F-planar curve maps onto analytic and F-planar curve, respectively [$4,13,15,16,18,20,21]$. An almost geodesic mapping is defined as, that one for which geodesic is mapped onto almost geodesic curve [13, 15, 16, 21].
In this sense was introduced the following definition.

Definition 1. A diffeomorphism between two-dimensional (pseudo-) Riemannian manifolds is called rotary if any geodesic is mapped onto isoperimetric extremal of rotation.

The above definition was introduced by Leiko [6, 7, 9-12] for surfaces S_{2} on Euclidean space and two-dimensional (pseudo-) Riemannian manifold V_{2}.
The isoperimetric extremals of rotation have a physical meaning as can be interpreted as trajectories of particles with a spin, see $[6,8]$. These results are local and are based on the known fact that a two-dimensional Riemannian manifold V_{2} is implemented locally as a surface S_{2} on Euclidean space. Therefore, we will deal more with the study of V_{2}, i.e., the inner geometry of S_{2} and assuming that metrics of these manifolds have a differentiability class C^{4}. Further Mikeš, Sochor and Stepanova [17] improved above results for differentiability classes C^{3}.
In this paper we generalize the above notion of rotary diffeomorphism.
Let $V_{2}=(M, g)$ be a two-dimensional (pseudo-) Riemannian manifold M with a metric g and $\bar{A}_{2}=(\bar{M}, \bar{\nabla})$ be a two-dimensional manifold \bar{M} with an affine connection $\bar{\nabla}$.

Definition 2. A diffeomorphism $f: V_{2} \rightarrow \bar{A}_{2}$ is called rotary if any isoperimetric extremal of rotation on V_{2} is mapped onto geodesic from \bar{A}_{2}.

We founded the fundamental equations for which V_{2} admit rotary diffeomorphisms onto \bar{A}_{2}. These results are generalized results obtained in papers [7, 17].

2. Isoperimetric Extremals of Rotation

A (pseudo-) Riemannian manifold $V_{2}=(M, g)$ belongs to the smoothness class C^{r} if its metric $g \in C^{r}$, i.e., its components $g_{i j}(x) \in C^{r}(U)$ in some local map (U, x), $U \subset M$. We suppose that the differentiability class r is equal to $0,1,2, \ldots, \infty, \omega$, where $0, \infty$ and ω denote continuous, infinitely differentiable and real analytic functions, respectively.
Let $\ell:\left(s_{0}, s_{1}\right) \rightarrow M$ be a parametric curve with the equation $x=x(s), \lambda=\mathrm{d} x / \mathrm{d} s$ be a tangent vector and s is the arc length. The following formulas are developed by analogy with the Frenet formulas for manifold V_{2} (cf. [2, 17])

$$
\begin{equation*}
\nabla_{s} \lambda=k \cdot \nu \quad \text { and } \quad \nabla_{s} \nu=-\varepsilon \varepsilon_{\nu} k \cdot \lambda \tag{1}
\end{equation*}
$$

where k is the Frenet curvature (k is geodesic curvature if $\ell \subset S_{2} \subset E_{3}$), ν represents a unit normal vector field along ℓ orthogonal to the unit tangent vector λ, i.e., $\langle\lambda, \lambda\rangle=g_{i j} \lambda^{i} \lambda^{j}=\varepsilon= \pm 1$ and $\langle\nu, \nu\rangle=g_{i j} \nu^{i} \nu^{j}=\varepsilon_{\nu}= \pm 1$, where λ^{h} and ν^{h} are components of λ and ν.

The operator ∇_{s} is covariant derivative along ℓ with respect to the Levi-Civita connection ∇ of metric g

$$
\nabla_{s} \lambda^{h} \equiv \frac{d \lambda^{h}}{d s}+\lambda^{\alpha} \Gamma_{\alpha \beta}^{h}(x(s)) \lambda^{\beta} \quad \text { and } \quad \nabla_{s} \nu^{h} \equiv \frac{d \nu^{h}}{d s}+\nu^{\alpha} \Gamma_{\alpha \beta}^{h}(x(s)) \lambda^{\beta}
$$

where $\Gamma_{i j}^{h}$ are the Christoffel symbols of V_{2}, i.e., components of Levi-Civita connection ∇.
Recall the scalar product of the vectors λ, ξ which is defined by $\langle\lambda, \xi\rangle=g_{i j} \lambda^{i} \xi^{j}$ and $|\lambda|=\sqrt{\left|g_{\alpha \beta} \lambda^{\alpha} \lambda^{\beta}\right|}$ is the length of a vector λ.
Hence, we may conclude that formulas (1) hold if tangent vector λ and $\nabla_{s} \lambda$ are not isotropic, i.e., $|\lambda| \neq 0$ and $\left|\nabla_{s} \lambda\right| \neq 0$. Further, we present functionals of length and rotation of the curve $\ell: x=x(t)$

$$
s[\ell]=\int_{t_{0}}^{t_{1}} \sqrt{|\lambda|} \mathrm{d} t \quad \text { and } \quad \theta[\ell]=\int_{t_{0}}^{t_{1}} k(t) \mathrm{d} t .
$$

Using these functionals [7] introduce the following
Definition 3. A curve ℓ is called the isoperimetric extremal of rotation if ℓ is extremal of $\theta[\ell]$ and $s[\ell]=$ const with fixed ends.

It is possible to prove (cf. [7, 10])
Theorem 1. A curve ℓ is an isoperimetric extremal of rotation if and only if, its Frenet curvature k and Gaussian curvature K are proportional

$$
k=c \cdot K
$$

where c is constant.
Mikeš, Sochor and Stepanova [17] proved the following
Theorem 2. The equation of isoperimetric extremal of rotation can be written in the form

$$
\begin{equation*}
\nabla_{s} \lambda=c \cdot K \cdot F \lambda \tag{2}
\end{equation*}
$$

where c is constant.
The Theorem 2 follows from assertion, that holds for unit normal $\nu= \pm F \lambda$, where structure F is tensor $\binom{1}{1}$ which satisfies the conditions

$$
F^{2}=-e \cdot \mathrm{Id}, \quad g(X, F X)=0, \quad \nabla F=0
$$

For Riemannian manifold V_{2} is $e=+1$ and F is a complex structure and for (pseudo-) Riemannian manifold is $e=-1$ and F is a product structure. This tensor F is uniquely defined (with the respect to the sign) with using skew-symmetric
and covariantly constant discriminant tensor $\varepsilon_{i j}$, which is defined

$$
F_{j}^{h}=g^{h i} \varepsilon_{i j}, \quad \varepsilon_{i j}=\sqrt{\left|g_{11} g_{22}-g_{12}^{2}\right|} \cdot\left(\begin{array}{cc}
0 & 1 \tag{3}\\
-1 & 0
\end{array}\right)
$$

Above Theorem 2 for $V_{2} \in C^{2}$ holds. In this case from equation (2) follows that in tangent direction λ_{0} at the point x_{0} passes through a isoperimetric extremal of rotation curve.
On (pseudo-) Riemannian manifold $V_{2} \in C^{3}$ in tangent direction λ_{0} at the point x_{0} passes through just only one isoperimetric extremal of rotation curve [17]. Moreover, with simple analysis of equation (2) we find that sufficient condition of uniquely isoperimetric extremal of rotation curve is $V_{2} \in C^{2}$ and Gaussian curvature K is differentiable [13, pp. 127-128]. This property proved Leiko [6,7] for $V_{2} \in C^{4}$.

3. Necessary Conditions of Rotary Diffeomorphisms

Let V_{2} be a two-dimensional (pseudo-) Riemannian manifold with the metric g, and \bar{A}_{2} be a two-dimensional manifold \bar{M} with affine connection $\bar{\nabla}$. On (pseudo-) Riemannian manifold V_{2} is ∇ a Levi-Civita connection and F is above structure, for which the equation (2) is satisfied.
Assume a rotary diffeomorphism $f: V_{2} \rightarrow \bar{A}_{2}$, i.e., any isoperimetric extremal of rotation of manifold V_{2} maps onto a geodesic of \bar{A}_{2}. Since f is a diffeomorphism, we can impose local coordinate system on M and \bar{M}, respectively, such that locally $f: V_{2} \rightarrow \bar{A}_{2}$ maps points onto points with the same coordinates x, and $M=\bar{M}$. Remark that $V_{2} \in C^{r}$ if $g_{i j}(x) \in C^{r}$, and $\bar{A}_{2} \in C^{r}$ if $\bar{\Gamma}_{i j}^{h}(x) \in C^{r}$. In next we consider that $K \neq 0$, otherwise the mapping is geodesic.
We obtain
Theorem 3. Let V_{2} admits rotary mapping f onto \bar{A}_{2}. If V_{2} and \bar{A}_{2} in common coordinate system belong differentiability class C^{2} and C^{1}, respectively, then Gaussian curvature K on V_{2} is differentiable.

Proof: Let assumptions of Theorem 3 hold. Let $\gamma: x=x(s)$ be an isoperimetric extremal of rotation on V_{2} for which the following equation is valid

$$
\begin{equation*}
\frac{\mathrm{d} \lambda^{h}}{\mathrm{~d} s}+\Gamma_{i j}^{h}(x(s)) \lambda^{i} \lambda^{j}=c \cdot K(x(s)) \cdot F_{i}^{h}(x(s)) \cdot \lambda^{i} \tag{4}
\end{equation*}
$$

and $\bar{\gamma}=f(\gamma): x=x(\bar{s})$ be a geodesic on \bar{A}_{2} for which the following equation is valid

$$
\frac{\mathrm{d}^{2} x^{h}}{\mathrm{~d} \bar{s}^{2}}+\bar{\Gamma}_{i j}^{h}(x(\bar{s})) \frac{\mathrm{d} x^{i}}{\mathrm{~d} \bar{s}} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} \bar{s}}=0
$$

where $\Gamma_{i j}^{h}$ and $\bar{\Gamma}_{i j}^{h}$ are components of ∇ and $\bar{\nabla}$, parameters s is arc length on γ and \bar{s} is canonical parameter of $\bar{\gamma}, \lambda^{h}=\mathrm{d} x^{h}(s) / \mathrm{d} s$ and $\overline{\lambda^{h}}=\mathrm{d} x^{h}(\bar{s}) / \mathrm{d} \bar{s}$.
Evidently $\bar{s}=\bar{s}(s)$ holds. In this case, the equations of geodesic are modify:

$$
\begin{equation*}
\frac{\mathrm{d} \lambda^{h}}{\mathrm{~d} s}+\bar{\Gamma}_{i j}^{h}(x(s)) \lambda^{i} \lambda^{j}=\bar{\varrho}(s) \cdot \lambda^{h} \tag{5}
\end{equation*}
$$

where $\bar{\varrho}(s)$ is a certain function of parameter s.
After subtraction equations (4) and (5) we obtain

$$
\begin{equation*}
P_{i j}^{h}(x) \lambda^{i} \lambda^{j}=\bar{\varrho}(s) \cdot \lambda^{h}-c \cdot K(x(s)) \cdot F_{i}^{h}(x(s)) \cdot \lambda^{i}, \tag{6}
\end{equation*}
$$

where $P_{i j}^{h}(x)=\bar{\Gamma}_{i j}^{h}(x)-\Gamma_{i j}^{h}(x)$ is the deformation tensor of connections ∇ and $\bar{\nabla}$, see [13, pp. 181-183].
Contracting equations (6) with $g_{h i} \lambda^{i}$ we obtain

$$
c K e \varepsilon=\lambda_{\gamma} F_{h}^{\gamma} P_{\alpha \beta}^{h} \lambda^{\alpha} \lambda^{\beta}
$$

and we can rewrite this equation using (3) in the following form

$$
\begin{equation*}
c K e \varepsilon=\varepsilon_{\gamma h} P_{\alpha \beta}^{h} \lambda^{\alpha} \lambda^{\beta} \lambda^{\gamma} . \tag{7}
\end{equation*}
$$

Through differentiation formulas (7) we make sure that $K(x(s)) \in C^{1}$. And because these properties apply in any direction, then K is differentiable.

Hence we may conclude from Theorem 3 following
Theorem 4. If Gaussian curvature $K \notin C^{1}$, then rotary diffeomorphism $V_{2} \rightarrow \bar{A}_{2}$ does not exist.

4. Fundamental Equations of Rotary Diffeomorphisms

As it was mentioned in Introduction, we find fundamental equations of rotary diffeomorphism $V_{2} \rightarrow \bar{A}_{2}$ from Definition 1, where $V_{2} \in C^{2}$ and $\bar{A}_{2} \in \bar{C}^{1}$. Moreover on the basis the Theorem 3, we can assume that necessary Gaussian curvature $K \in C^{1}$.
For rotary diffeomorphism $V_{2} \rightarrow \bar{A}_{2}$ formulas (6) and (7) hold. After subsequent derivation formula (7) by parameter s we obtain

$$
c K_{\delta} \lambda^{\delta} e \varepsilon=\varepsilon_{\gamma h} P_{\alpha \beta, \delta}^{h} \lambda^{\alpha} \lambda^{\beta} \lambda^{\gamma} \lambda^{\delta}+\varepsilon_{\gamma h} P_{\alpha \beta}^{h}\left(2 \nabla_{s} \lambda^{\alpha} \lambda^{\beta} \lambda^{\gamma}+\lambda^{\alpha} \lambda^{\beta} \nabla_{s} \lambda^{\gamma}\right)
$$

where and $K_{\delta}=\partial K / \partial x^{\delta}$ and "," denotes the covariant derivative with respect to Levi-Civita connection. After substituting (2) we get

$$
c K_{\delta} \lambda^{\delta} e \varepsilon=\varepsilon_{\gamma h} P_{\alpha \beta, \delta}^{h} \lambda^{\alpha} \lambda^{\beta} \lambda^{\gamma} \lambda^{\delta}+c K \varepsilon_{\gamma h} P_{\alpha \beta}^{h}\left(2 F_{\delta}^{\alpha} \lambda^{\beta} \lambda^{\gamma} \lambda^{\delta}+\lambda^{\alpha} \lambda^{\beta} F_{\delta}^{\gamma} \lambda^{\delta}\right)
$$

Using formula (7) we eliminate the constant c, and we obtain equation

$$
\begin{equation*}
\varepsilon_{\gamma h} \partial_{\delta}(\ln |K|) P_{\alpha \beta}^{h} \lambda^{\alpha} \lambda^{\beta} \lambda^{\gamma} \lambda^{\delta}-\varepsilon_{\gamma h} P_{\alpha \beta, \delta}^{h} \lambda^{\alpha} \lambda^{\beta} \lambda^{\gamma} \lambda^{\delta}=I_{1} \cdot I_{2} \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
& I_{1}=e \varepsilon \varepsilon_{\gamma h} P_{\alpha \beta}^{h} \lambda^{\alpha} \lambda^{\beta} \lambda^{\gamma} \\
& I_{2}=\varepsilon_{\gamma h} P_{\alpha \beta}^{h}\left(2 F_{\delta}^{\alpha} \lambda^{\beta} \lambda^{\gamma} \lambda^{\delta}+F_{\delta}^{\gamma} \lambda^{\alpha} \lambda^{\beta} \lambda^{\delta}\right) \tag{9}
\end{align*}
$$

Evidently, on the right side of formula (8) is a polynomial of the sixth degree, respectively λ^{1} and λ^{2}, but on the left side is a polynomial of the fourth degree. Further, we study formulas (8) at a point x_{0} and we choose for it such a coordinate system, that at the point x_{0} metric has form $\mathrm{d} s^{2}=\mathrm{d} x^{1^{2}}+e \mathrm{~d} x^{2}$, where $e= \pm 1$. At this point x_{0} it holds

$$
g_{i j}=\left(\begin{array}{ll}
1 & 0 \\
0 & e
\end{array}\right), \quad \varepsilon_{i j}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \text { and } \quad F_{i}^{h}=\left(\begin{array}{rr}
0 & 1 \\
-e & 0
\end{array}\right)
$$

Because λ^{h} is in (pseudo-) Riemannian manifold V_{2} a unit vector, then at the point x_{0} holds $g_{i j} \lambda^{i} \lambda^{j}=\lambda^{1^{2}}+e \lambda^{2^{2}}=\varepsilon= \pm 1$, i.e.,

$$
\lambda^{1^{2}}=\varepsilon-e \lambda^{2^{2}}
$$

Therefore we have to λ^{1} consider as a function of variable λ^{2} with domain of definition $\mathcal{D}=\langle-1 ; 1\rangle$ for $e=1$ and $\mathcal{D}=\mathbb{R}$ for $e=-1$. With simple analysis of equation (8) we find members which contain maximum degree of $\lambda^{2}{ }^{6}$ and $\lambda^{1} \cdot \lambda^{2^{5}}$ on the right side of equation

$$
\begin{equation*}
I=I_{1} \cdot I_{2} \tag{10}
\end{equation*}
$$

We compute I_{1} and I_{2} in the special coordinate system at the point x_{0}

$$
\begin{aligned}
& I_{1}=\lambda^{2^{3}} \cdot A+\lambda^{2^{2}} \cdot B+\ldots \\
& I_{2}=\lambda^{2^{3}} \cdot(-3 B)+\lambda^{2^{2}} \lambda^{1} \cdot(3 e A)+\ldots
\end{aligned}
$$

where " ..." means other members of polynomials I_{1}, I_{2} and

$$
\begin{equation*}
A=P_{11}^{1}-2 P_{12}^{2}-e P_{22}^{1} \quad \text { and } \quad B=P_{22}^{2}-2 P_{12}^{1}-e P_{11}^{2} \tag{11}
\end{equation*}
$$

Finally, I has the following form

$$
I=I_{1} \cdot I_{2}=\lambda^{2^{6}} \cdot 6 e A B+\lambda^{1} \lambda^{2^{5}} \cdot\left(B^{2}-e A^{2}\right)+\ldots
$$

Because $\lambda^{2} \in \mathcal{D}$ is random, then coefficients by λ^{26} and $\lambda^{1} \cdot \lambda^{2^{5}}$ have to be vanishing. It implies $A B=0$ and $B^{2}-e A^{2}=0$. From this follows $A=B=0$. As a consequence of (11) the deformation tensor has the following form

$$
\begin{equation*}
P_{i j}^{h}=\delta_{i}^{h} \psi_{j}+\delta_{j}^{h} \psi_{i}+\theta^{h} g_{i j} \tag{12}
\end{equation*}
$$

where ψ_{i} and θ^{h} are covector and vector fields.
Equation (6) is necessary and sufficient condition for existence of rotary diffeomorphism $f: V_{2} \rightarrow \bar{A}_{2}$. Substitute from (12) into the equation (6). We obtain:

$$
\begin{equation*}
\varepsilon \theta^{h}=\left(\bar{\rho}-2 \psi_{\alpha} \lambda^{\alpha}\right) \lambda^{h}-c K \cdot F_{\alpha}^{h} \lambda^{\alpha} \tag{13}
\end{equation*}
$$

Contracting (13) with $g_{h \alpha} \lambda^{\alpha}$ we obtain $\left(\bar{\rho}-2 \psi_{\alpha} \lambda^{\alpha}\right)=\theta_{\alpha} \lambda^{\alpha}$ where $\theta_{i}=g_{i \alpha} \theta^{\alpha}$. Therefore formula (13) takes the form

$$
\begin{equation*}
\varepsilon \theta^{h}=\theta_{\alpha} \lambda^{\alpha} \lambda^{h}-c K \cdot F_{\alpha}^{h} \lambda^{\alpha} \tag{14}
\end{equation*}
$$

Differentiating (14) along the curve ℓ of parameter s, we obtain

$$
\begin{equation*}
\varepsilon \cdot \theta_{, \alpha}^{h} \lambda^{\alpha}=\theta_{\alpha, \beta}^{h} \lambda^{\alpha} \lambda^{\beta} \cdot \lambda^{h}-e F_{i}^{\alpha} \theta_{\alpha} \lambda^{j} \cdot\left(\theta_{j}-\partial_{j} \ln |K|\right) \lambda^{j} \cdot F_{k}^{h} \lambda^{k} . \tag{15}
\end{equation*}
$$

After a detailed analysis of degrees of λ^{h} in the equation (15), we get

$$
\begin{equation*}
\theta_{j}^{h}=\theta^{h}\left(\theta_{j}+\partial_{j} \ln |K|\right)+\nu \delta_{j}^{h} \tag{16}
\end{equation*}
$$

where ν is a function on V_{2}.
Theorem 5. (Pseudo-) Riemannian manifold V_{2} admits rotary mapping onto \bar{A}_{2} if and only if equation (16) in V_{2} holds.

Proof: The statement of Theorem 5 follows from previous analysis of the equation (6). If in (pseudo-) Riemannian manifold V_{2} equation (16) holds for any vector field θ^{h}, then the affine connection of \bar{A}_{2} is constructed according to (12).

The vector field θ^{h} is a special case of torse-forming field, see [13, 18, 21, 24]. In general case this field satisfies

$$
\theta_{i}^{h}=\nu \delta_{j}^{h}+\theta^{h} a_{i}
$$

where a_{i} is a covector. If a function a_{i} is gradient-like, then a vector field θ^{h} is concircular [13, 18, 21, 23, 25]. In our sense, vector field θ^{h} is concircular, if covector $\left(\theta_{j}+\partial_{j} \ln |K|\right)$ is gradient-like.

References

[1] Dini U., On a Problem in the General Theory of the Geographical Representations of a Surface on Another, Ann. Mat. 3 (1869) 269-294.
[2] Gray A., Modern Differential Geometry of Curves and Surfaces with Mathematica, Second Edition, CRC Press, Boca Raton 1997.
[3] Hinterleitner I., Geodesic Mappings on Compact Riemannian Manifolds with Conditions on Sectional Curvature, Publ. Inst. Math. (Beograd) (N.S.) 94 (2013) 125-130.
[4] Hinterleitner I. and Mikeš J., Fundamental Equations of Geodesic Mappings and Their Generalizations, J. Math. Sci. 174 (2011) 537-554.
[5] Hinterleitner I. and Mikeš J., Geodesic Mappings and Differentiability of Metrics, Affine and Projective Connections, Filomat 29 (2015) 1245-1249.
[6] Leiko S., Conservation Laws for Spin Trajectories Generated by Isoperimetric Extremals of Rotation, Gravitation and Theory of Relativity 26 (1988) 117-124.
[7] Leiko S., Rotational Diffeomorphisms on Surfaces on Euclidean Spaces, Math. Notes 47 (1990) 261-264.
[8] Leiko S., Variational Problems for Rotation Functionals, and Spin-Mappings of Pseudo-Riemannian Spaces, Sov. Math. 34 (1990) 9-18.
[9] Leiko S., Extremals of Rotation Functionals of Curves in a Pseudo-Riemannian Space, and Trajectories of Spinning Particles in Gravitational Fields, Russian Acad. Sci. Dokl. Math. 46 (1993) 84-87.
[10] Leiko S., Isoperimetric Extremals of a Turn on Surfaces in the Euclidean Space \mathbb{E}^{3}, Izv. Vyshh. Uchebn. Zaved. Mat. 6 (1996) 25-32.
[11] Leiko S., On the Conformal, Concircular, and Spin Mappings of Gravitational Fields. J. Math. Sci. 90 (1998) 1941-1944.
[12] Leiko S., Isoperimetric Problems for Rotation Functionals of the First and Second Orders in (Pseudo) Riemannian Manifolds, Russ. Math. 49 (2005) 45-51.
[13] Mikeš J. et al, Differential Geometry of Special Mappings, Palacky Univ. Press, Olomouc 2015.
[14] Mikeš J., Geodesic Mappings of Affine-Connected and Riemannian Spaces, J. Math. Sci. 78 (1996) 311-333.
[15] Mikeš J., Holomorphically Projective Mappings and their Generalizations, J. Math. Sci. 89 (1998) 1334-1353.
[16] Mikeš J., Berezovski V., Stepanova E. and Chudá H., Geodesic Mappings and their Generalizations, J. Math. Sci. 217 (2016) 607-623.
[17] Mikeš J., Sochor M. and Stepanova E., On the Existence of Isoperimetric Extremals of Rotation and the Fundamental Equations of Rotary Diffeomorphisms, Filomat 29 (2015) 517-523.
[18] Mikeš J., Vanžurová A. and Hinterleitner I., Geodesic Mappings and Some Generalizations, Palacky Univ. Press, Olomouc 2009.
[19] Najdanović M., Zlatanović M. and Hinterleitner I., Conformal and geodesic mappings of generalized equidistant spaces, Publ. Inst. Math. (Beograd) (N.S.) 98 (2015) 71-84.
[20] Petrov A., Modeling of the Paths of Test Particles in Gravitation Theory, Gravit. and the Theory of Relativity 4-5 (1968) 7-21.
[21] Sinyukov N., Geodesic Mappings of Riemannian Spaces, Nauka, Moscow 1979.
[22] Stepanov S., Shandra I. and Mikeš J., Harmonic and Projective Diffeomorphisms, J. Math. Sci. 207 (2015) 658-668.
[23] Yano K., Concircular Geometry I-IV, Proc. Imp. Acad. Tokyo 16 (1940) 195-200, 354-360, 442-448, 505-511.
[24] Yano K., On the Torse-Forming Directions in Riemannian Spaces Proc. Imp. Acad. Tokyo 20 (1944), 340-345.
[25] Zlatanović M., Velimirović L. and Stanković M., Necessary and Sufficient Conditions for Equitorsion Geodesic Mapping, J. Math. Anal. Appl. 435 (2016) 578-592.

