
Eighteenth International Conference on
Geometry, Integrability and Quantization
June 03–08, 2016, Varna, Bulgaria
Ivaïlo M. Mladenov, Guowu Meng
and Akira Yoshioka, Editors
Avangard Prima, Sofia 2017, pp 130–137
doi: 10.7546/giq-18-2017-130-137

ROTARY DIFFEOMORPHISM ONTO MANIFOLDS WITH
AFFINE CONNECTION

HANA CHUDÁ, JOSEF MIKEŠ† and MARTIN SOCHOR†

Dept. of Mathematics, FAI, Tomas Bata University, 760 00 Zlin, Czech Republic
† Dept. of Algebra and Geometry, Palacky University, 779 00 Olomouc, Czech
Republic

Abstract. In this paper we will introduce a newly found knowledge above
the existence and the uniqueness of isoperimetric extremals of rotation on
two-dimensional (pseudo-) Riemannian manifolds and on surfaces on Eu-
clidean space. We will obtain the fundamental equations of rotary diffeomor-
phisms from (pseudo-) Riemannian manifolds for twice-differentiable metric
tensors onto manifolds with affine connections.
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1. Introduction

A special diffeomorphism between (pseudo-) Riemannian manifolds and mani-
folds with affine and projective connections, for which maps any special curve
onto a special curve, were studied in many works. For example geodesic map-
pings, for which any geodesic maps onto geodesic [1,3–5,13–16,18,19,21,22,25].
Analogically holomorphically-projective and F -planar mappings for which any
analytic and F -planar curve maps onto analytic and F -planar curve, respectively
[4, 13, 15, 16, 18, 20, 21]. An almost geodesic mapping is defined as, that one for
which geodesic is mapped onto almost geodesic curve [13, 15, 16, 21].
In this sense was introduced the following definition.
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Definition 1. A diffeomorphism between two-dimensional (pseudo-) Riemannian
manifolds is called rotary if any geodesic is mapped onto isoperimetric extremal
of rotation.

The above definition was introduced by Leiko [6, 7, 9–12] for surfaces S2 on Eu-
clidean space and two-dimensional (pseudo-) Riemannian manifold V2.
The isoperimetric extremals of rotation have a physical meaning as can be inter-
preted as trajectories of particles with a spin, see [6,8]. These results are local and
are based on the known fact that a two-dimensional Riemannian manifold V2 is
implemented locally as a surface S2 on Euclidean space. Therefore, we will deal
more with the study of V2, i.e., the inner geometry of S2 and assuming that metrics
of these manifolds have a differentiability class C4. Further Mikeš, Sochor and
Stepanova [17] improved above results for differentiability classes C3.
In this paper we generalize the above notion of rotary diffeomorphism.
Let V2 = (M, g) be a two-dimensional (pseudo-) Riemannian manifold M with
a metric g and Ā2 = (M̄, ∇̄) be a two-dimensional manifold M̄ with an affine
connection ∇̄.

Definition 2. A diffeomorphism f : V2 → Ā2 is called rotary if any isoperimetric
extremal of rotation on V2 is mapped onto geodesic from Ā2 .

We founded the fundamental equations for which V2 admit rotary diffeomorphisms
onto Ā2. These results are generalized results obtained in papers [7, 17].

2. Isoperimetric Extremals of Rotation

A (pseudo-) Riemannian manifold V2 = (M, g) belongs to the smoothness classCr

if its metric g ∈ Cr, i.e., its components gij(x) ∈ Cr(U) in some local map (U, x),
U ⊂M . We suppose that the differentiability class r is equal to 0, 1, 2, . . . ,∞, ω,
where 0,∞ and ω denote continuous, infinitely differentiable and real analytic
functions, respectively.
Let `: (s0, s1)→M be a parametric curve with the equation x = x(s), λ = dx/ds
be a tangent vector and s is the arc length. The following formulas are developed
by analogy with the Frenet formulas for manifold V2 (cf. [2, 17])

∇sλ = k · ν and ∇sν = −ε εν k · λ (1)

where k is the Frenet curvature (k is geodesic curvature if ` ⊂ S2 ⊂ E3), ν rep-
resents a unit normal vector field along ` orthogonal to the unit tangent vector λ,
i.e., 〈λ, λ〉 = gijλ

iλj = ε = ±1 and 〈ν, ν〉 = gijν
iνj = εν = ±1, where λh and

νh are components of λ and ν.
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The operator ∇s is covariant derivative along ` with respect to the Levi-Civita
connection∇ of metric g

∇sλh ≡
dλh

ds
+ λαΓhαβ (x(s)) λβ and ∇sνh ≡

dνh

ds
+ ναΓhαβ (x(s)) λβ

where Γhij are the Christoffel symbols of V2, i.e., components of Levi-Civita con-
nection∇.
Recall the scalar product of the vectors λ, ξ which is defined by 〈λ, ξ〉 = gijλ

iξj

and |λ| =
√
|gαβλαλβ| is the length of a vector λ.

Hence, we may conclude that formulas (1) hold if tangent vector λ and ∇sλ are
not isotropic, i.e., |λ| 6= 0 and |∇sλ| 6= 0. Further, we present functionals of length
and rotation of the curve ` : x = x(t)

s[`] =

∫ t1

t0

√
|λ| dt and θ[`] =

∫ t1

t0

k(t) dt.

Using these functionals [7] introduce the following

Definition 3. A curve ` is called the isoperimetric extremal of rotation if ` is ex-
tremal of θ[`] and s[`] = const with fixed ends.

It is possible to prove (cf. [7, 10])

Theorem 1. A curve ` is an isoperimetric extremal of rotation if and only if, its
Frenet curvature k and Gaussian curvature K are proportional

k = c ·K

where c is constant.

Mikeš, Sochor and Stepanova [17] proved the following

Theorem 2. The equation of isoperimetric extremal of rotation can be written in
the form

∇sλ = c ·K · Fλ (2)

where c is constant.

The Theorem 2 follows from assertion, that holds for unit normal ν = ±Fλ, where
structure F is tensor

(
1
1

)
which satisfies the conditions

F 2 = −e · Id, g(X,FX) = 0, ∇F = 0.

For Riemannian manifold V2 is e = +1 and F is a complex structure and for
(pseudo-) Riemannian manifold is e = −1 and F is a product structure. This ten-
sor F is uniquely defined (with the respect to the sign) with using skew-symmetric
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and covariantly constant discriminant tensor εij , which is defined

F hj = ghiεij , εij =
√
|g11g22 − g212| ·

(
0 1
−1 0

)
. (3)

Above Theorem 2 for V2 ∈ C2 holds. In this case from equation (2) follows that
in tangent direction λ0 at the point x0 passes through a isoperimetric extremal of
rotation curve.
On (pseudo-) Riemannian manifold V2 ∈ C3 in tangent direction λ0 at the point
x0 passes through just only one isoperimetric extremal of rotation curve [17].
Moreover, with simple analysis of equation (2) we find that sufficient condition
of uniquely isoperimetric extremal of rotation curve is V2 ∈ C2 and Gaussian cur-
vature K is differentiable [13, pp. 127–128]. This property proved Leiko [6, 7] for
V2 ∈ C4.

3. Necessary Conditions of Rotary Diffeomorphisms

Let V2 be a two-dimensional (pseudo-) Riemannian manifold with the metric g,
and Ā2 be a two-dimensional manifold M̄ with affine connection ∇̄. On (pseudo-)
Riemannian manifold V2 is ∇ a Levi-Civita connection and F is above structure,
for which the equation (2) is satisfied.
Assume a rotary diffeomorphism f : V2 → Ā2, i.e., any isoperimetric extremal of
rotation of manifold V2 maps onto a geodesic of Ā2. Since f is a diffeomorphism,
we can impose local coordinate system onM and M̄ , respectively, such that locally
f : V2 → Ā2 maps points onto points with the same coordinates x, and M = M̄ .
Remark that V2 ∈ Cr if gij(x) ∈ Cr, and Ā2 ∈ Cr if Γ̄hij(x) ∈ Cr. In next we
consider that K 6= 0, otherwise the mapping is geodesic.
We obtain

Theorem 3. Let V2 admits rotary mapping f onto Ā2. If V2 and Ā2 in com-
mon coordinate system belong differentiability class C2 and C1, respectively, then
Gaussian curvature K on V2 is differentiable.

Proof: Let assumptions of Theorem 3 hold. Let γ : x = x(s) be an isoperimetric
extremal of rotation on V2 for which the following equation is valid

dλh

ds
+ Γhij(x(s)) λiλj = c ·K(x(s)) · F hi (x(s)) · λi (4)

and γ̄ = f(γ): x = x(s̄) be a geodesic on Ā2 for which the following equation is
valid

d2xh

d s̄ 2
+ Γ̄ h

ij(x(s̄))
dxi

d s̄

dxj

d s̄
= 0,



134 Hana Chudá, Josef Mikeš and Martin Sochor

where Γhij and Γ̄ h
ij are components of ∇ and ∇̄, parameters s is arc length on γ

and s̄ is canonical parameter of γ̄, λh = dxh(s)/ds and λ̄h = dxh(s̄)/ds̄.
Evidently s̄ = s̄(s) holds. In this case, the equations of geodesic are modify:

dλh

ds
+ Γ̄hij(x(s)) λiλj = %̄(s) · λh (5)

where %̄(s) is a certain function of parameter s.
After subtraction equations (4) and (5) we obtain

P hij(x)λiλj = %̄(s) · λh − c ·K(x(s)) · F hi (x(s)) · λi, (6)

where P hij(x) = Γ̄ h
ij(x) − Γhij(x) is the deformation tensor of connections ∇ and

∇̄, see [13, pp. 181–183].
Contracting equations (6) with ghiλi we obtain

cK e ε = λγF
γ
h P

h
αβ λ

αλβ

and we can rewrite this equation using (3) in the following form

cK e ε = εγh P
h
αβλ

αλβλγ . (7)

Through differentiation formulas (7) we make sure that K(x(s)) ∈ C1. And be-
cause these properties apply in any direction, then K is differentiable. �

Hence we may conclude from Theorem 3 following

Theorem 4. If Gaussian curvatureK /∈ C1, then rotary diffeomorphism V2 → Ā2

does not exist.

4. Fundamental Equations of Rotary Diffeomorphisms

As it was mentioned in Introduction, we find fundamental equations of rotary dif-
feomorphism V2 → Ā2 from Definition 1, where V2 ∈ C2 and Ā2 ∈ C̄1. More-
over on the basis the Theorem 3, we can assume that necessary Gaussian curvature
K ∈ C1.
For rotary diffeomorphism V2 → Ā2 formulas (6) and (7) hold. After subsequent
derivation formula (7) by parameter s we obtain

cKδ λ
δeε = εγh P

h
αβ,δλ

αλβλγλδ + εγh P
h
αβ(2∇sλαλβλγ + λαλβ∇sλγ)

where and Kδ = ∂K/∂xδ and “ , ” denotes the covariant derivative with respect to
Levi-Civita connection. After substituting (2) we get

cKδ λ
δeε = εγh P

h
αβ,δλ

αλβλγλδ + cK εγh P
h
αβ(2Fαδ λ

βλγλδ + λαλβF γδ λ
δ).

Using formula (7) we eliminate the constant c, and we obtain equation

εγh∂δ(ln |K|)P hαβλαλβλγλδ − εγhP hαβ,δλαλβλγλδ = I1 · I2 (8)
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where
I1 = eε εγh P

h
αβλ

αλβλγ

I2 = εγh P
h
αβ(2Fαδ λ

βλγλδ + F γδ λ
αλβλδ).

(9)

Evidently, on the right side of formula (8) is a polynomial of the sixth degree,
respectively λ1 and λ2, but on the left side is a polynomial of the fourth degree.
Further, we study formulas (8) at a point x0 and we choose for it such a coordinate
system, that at the point x0 metric has form ds2 = dx1

2
+ edx2

2, where e = ±1.
At this point x0 it holds

gij =

(
1 0
0 e

)
, εij =

(
0 1
−1 0

)
and F hi =

(
0 1
−e 0

)
.

Because λh is in (pseudo-) Riemannian manifold V2 a unit vector, then at the
point x0 holds gijλ

iλj = λ1
2

+ e λ2
2

= ε = ±1, i.e.,

λ1
2

= ε− e λ22.

Therefore we have to λ1 consider as a function of variable λ2 with domain of
definition D = 〈−1; 1〉 for e = 1 and D = R for e = −1. With simple analysis of
equation (8) we find members which contain maximum degree of λ26 and λ1 · λ25

on the right side of equation
I = I1 · I2. (10)

We compute I1 and I2 in the special coordinate system at the point x0

I1 = λ2
3 ·A+ λ2

2 ·B + . . .

I2 = λ2
3 · (−3B) + λ2

2
λ1 · (3eA) + . . .

where “ . . . ” means other members of polynomials I1, I2 and

A = P 1
11 − 2P 2

12 − eP 1
22 and B = P 2

22 − 2P 1
12 − eP 2

11. (11)

Finally, I has the following form

I = I1 · I2 = λ2
6 · 6eAB + λ1λ2

5 · (B2 − eA2) + . . .

Because λ2 ∈ D is random, then coefficients by λ2
6 and λ1 · λ25 have to be

vanishing. It implies AB = 0 and B2 − eA2 = 0. From this follows A = B = 0.
As a consequence of (11) the deformation tensor has the following form

P hij = δhi ψj + δhj ψi + θhgij (12)

where ψi and θh are covector and vector fields.
Equation (6) is necessary and sufficient condition for existence of rotary diffeo-
morphism f : V2 → Ā2. Substitute from (12) into the equation (6). We obtain:

εθh = (ρ̄− 2ψαλ
α)λh − cK · F hαλα. (13)
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Contracting (13) with ghαλα we obtain (ρ̄ − 2ψαλ
α) = θαλ

α where θi = giαθ
α.

Therefore formula (13) takes the form

εθh = θαλ
αλh − cK · F hαλα. (14)

Differentiating (14) along the curve ` of parameter s, we obtain

ε · θh,αλα = θhα,βλ
αλβ · λh − e Fαi θαλj · (θj − ∂j ln |K|)λj · F hk λk. (15)

After a detailed analysis of degrees of λh in the equation (15), we get

θhj = θh(θj + ∂j ln |K|) + ν δhj (16)

where ν is a function on V2.

Theorem 5. (Pseudo-) Riemannian manifold V2 admits rotary mapping onto Ā2 if
and only if equation (16) in V2 holds.

Proof: The statement of Theorem 5 follows from previous analysis of the equa-
tion (6). If in (pseudo-) Riemannian manifold V2 equation (16) holds for any vector
field θh, then the affine connection of Ā2 is constructed according to (12). �

The vector field θh is a special case of torse-forming field, see [13, 18, 21, 24]. In
general case this field satisfies

θhi = νδhj + θh ai

where ai is a covector. If a function ai is gradient-like, then a vector field θh

is concircular [13, 18, 21, 23, 25]. In our sense, vector field θh is concircular, if
covector (θj + ∂j ln |K|) is gradient-like.
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