
Fifteenth International Conference on
Geometry, Integrability and Quantization
June 7–12, 2013, Varna, Bulgaria
Ivaïlo M. Mladenov, Andrei Ludu
and Akira Yoshioka, Editors
Avangard Prima, Sofia 2014, pp 106–116
doi: 10.7546/giq-15-2014-106-116

GROUP CLASSIFICATION OF VARIABLE COEFFICIENT
K(m,n) EQUATIONS

KYRIAKOS CHARALAMBOUS, OLENA VANEEVA† and
CHRISTODOULOS SOPHOCLEOUS

Department Math & Statistics, University of Cyprus, Nicosia CY 1678, CYPRUS
†Institute of Mathematics, National Academy of Sciences of Ukraine, 3
Tereshchenkivska Str, Kiev 01601, UKRAINE

Abstract. Lie symmetries of K(m,n) equations with time-dependent coef-
ficients are classified. Group classification is presented up to widest possible
equivalence groups, the usual equivalence group of the whole class for the
general case and the conditional equivalence groups for special values of the
exponents m and n. Examples on reduction of K(m,n) equations (with
initial and boundary conditions) to nonlinear ordinary differential equations
(with initial conditions) are presented.

1. Introduction

In order to understand the role of nonlinear dispersion in the formation of patterns
in liquid drops, Rosenau and Hyman [17] introduced a generalization of the KdV
equation of the form

ut + ε(um)x + (un)xxx = 0

where ε = ±1. Such equations, that are known as K(m,n) equations, have the
property for certain values of m and n their solitary wave solutions are of compact
support. In other words, they vanish identically outside a finite core region. Further
study followed in the references [13–16].
Here we consider a class of variable coefficient K(m,n) equations of the form

ut + ε(um)x + f(t) (un)xxx = 0 (1)

where f is an arbitrary nonvanishing function of the variable t, n and m are ar-
bitrary constants with n ̸= 0, and ε = ±1. Note that the more general class

106



Group Classification of Variable Coefficient K(m,n) Equations 107

(appeared, e.g., in [24]) of the form

ut + g(t)(um)x + f(t)(un)xxx = 0, fn ̸= 0 (2)

reduces to class (1) via the transformation t̃ = ε
∫
g(t)dt, x̃ = x, ũ = u. This

transformation maps the class (2) into its subclass (1), where f̃ = εf/g. This is
why without loss of generality it is sufficient to study class (1), since all results on
exact solutions, symmetries, conservation laws, etc. for class (2) can be derived
from those obtained for (1) using the above transformation.

Lie symmetries have already been classified for many classes of constant coeffi-
cient partial differential equations (PDEs) and for many classes of PDEs involving
functions with a range of forms. Typically, extra symmetries exist for particular
forms of these functions. The classical method of finding Lie symmetries is first
to find infinitesimal transformations, with the benefit of linearization, and then to
extend these to groups of finite transformations. This method is easy to apply and
well-established in the last decades [2,4,5,7,8]. This leads to a continuing interest
in finding exact solutions to nonlinear equations using Lie symmetries.

In the present paper, we carry out the Lie group classification for the class (1). All
point transformations that link equations from the class are described. Firstly, we
find equivalence group of the entire class and then derive three of its subclasses
that have nontrivial conditional equivalence groups. The obtained Lie symmetries
are employed also to a specific boundary value problem.

2. Equivalence Transformations

If two PDEs are connected by a point transformation then these equations are called
similar [8] (it is possible also to consider a similarity up to contact transforma-
tions). Similar PDEs have similar sets of solutions, symmetries, conservation laws
and other related information. Therefore, an important problem is the study of
point transformations linking equations from a given class of PDEs. Such transfor-
mations are called admissible [11] (or form-preserving [6]) ones. Admissible trans-
formations that preserve the differential structure of the class and transform only
its arbitrary elements are called equivalence transformations and form a group.
Notions of different kinds of equivalence group can be found, e.g., in [22].

The results on admissible transformations for equations from the class (1) are
given in the following theorems. We exclude linear equations, i.e., equations with
(n,m) ∈ {(1, 0), (1, 1)}, from the present analysis. The proofs of these theorems
are omitted. The detailed procedure of how to construct equivalence transforma-
tion (or point transformations in general) can be found, for example, in [21, 22].
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Theorem 1. The usual equivalence group G̃ of the class (1) is formed by the trans-
formations

t̃ = ± δ1δ
1−m
3 t+ δ0, x̃ = δ1x+ δ2, ũ = δ3u

f̃ = ± δ21δ
m−n
3 f, ε̃ = ± ε, ñ =n, m̃ = m

where δj , j = 0, 1, 2, 3, are arbitrary constants with δ1δ3 ̸= 0.

It appears that if (n,m) ∈ {(n, 0), (n, 1), (1, 2)}, then there exist nontrivial con-
ditional equivalence groups of the class (1) that are wider than G̃, namely the fol-
lowing assertions are true.

Theorem 2. The class (1) with m = 0,

ut + f(t) (un)xxx = 0 (3)

admits the usual equivalence group G∼
(n,0) consisting of the transformations

t̃ = T (t), x̃ = δ1x+ δ2, ũ = δ3u, f̃ =
δ31δ

1−n
3

Tt
f, ñ = n

where δj , j = 1, 2, 3, are arbitrary constants with δ1δ3 ̸= 0, T (t) is an arbitrary
smooth function with Tt ̸= 0.

Theorem 3. The generalized equivalence group G̃(n,1) of the class (1) with m = 1

ut + εux + f(t) (un)xxx = 0 (4)

comprises the transformations

t̃ = T (t), x̃ = δ1(x− εt)± εT (t) + δ2, ũ = δ3u

f̃ =
δ31δ

1−n
3

Tt
f, ε̃ = ±ε, ñ = n

where δj , j = 1, 2, 3, are arbitrary constants with δ1δ3 ̸= 0, T (t) is an arbitrary
smooth function with Tt ̸= 0.

Theorem 4. The generalized equivalence group G̃(1,2) of the class

ut + ε(u2)x + f(t)uxxx = 0 (5)

consists of the transformations

t̃ =
αt+ β

γt+ δ
, x̃ =

κx+ µ1t+ µ0

γt+ δ
, ε̃ = ±ε

ũ = ±2εκ(γt+ δ)u− κγx+ µ1δ − µ0γ

2ε(αδ − βγ)
, f̃ =

κ3

αδ − βγ

f

γt+ δ

where α, β, γ, δ, µ1, µ0, and κ are constants defined up to a nonzero multiplier,
κ(αδ − βγ) ̸= 0.



Group Classification of Variable Coefficient K(m,n) Equations 109

The equations from the class (4) can be reduced to ones (with tilded variables)
from the class (3) by the additional equivalence transformation

t̃ = t, x̃ = x− εt, ũ = u.

Therefore, the case m = 1 being equivalent to the case m = 0 will be excluded
from the classification list.

3. Lie Symmetries

We perform the group classification of class (1) within the framework of the clas-
sical Lie approach [4, 5, 7, 8]. We search for operators of the form

Γ = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u

which generate one-parameter groups of point-symmetry transformations of an
equation from class (1). Any such vector field, Γ, satisfies the infinitesimal in-
variance criterion, i.e., the action of the third prolongation, Γ(3), of the operator Γ
on equation (1) results in the condition being an identity for all solutions of this
equation. That is, we require that

Γ(3)
[
ut + εmum−1ux + nf(t)

(
un−1uxxx + 3(n− 1)un−2uxuxx

+(n− 1)(n− 2)un−3u3x
)]

= 0
(6)

identically, modulo equation (1).
Equation (6) is an identity in the variables ux, uxx, utx, uxxx and utxx. Coeffi-
cients of different powers of these variables, which must be equal to zero, lead to
the determining equations on the coefficients τ , ξ and η. Firstly, we use the general
results on point transformations between evolution equations [6], which simplify
the forms of the coefficient functions. Specifically, we have τ = τ(t) and ξ =
ξ(t, x). Since the procedure is quite straightforward [4, 5, 7, 8], we omit the de-
tailed analysis. However, we point out that the classification of Lie symmetries is
complete.
The coefficient of uxxx gives the equation

[ftτ + f(τt − 3ξx)]u+ (n− 1)fη = 0

from which we deduce that the analysis needs to be split in two exclusive cases:
n ̸= 1 and n = 1.
I. If n ̸= 1, the coefficient function η takes the form

η = − [ftτ + f(τt − 3ξx)]u

(n− 1)f
·
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The coefficients of uxx (or u2x), ux and the term independent of the derivatives in
(6) produce the following determining equations, respectively

n(2n+ 1)fξxx = 0

εm [(m− n)fτt − (3m− n− 2)fξx + (m− 1)ftτ ]u
m

−n(8n+ 1)f2ξxxxu
n + (n− 1)fξtu = 0

3εmf2ξxxu
m + 3nf3ξxxxxu

n −
[
f2τtt + fftτt + ffttτ − f2

t τ − 3f2ξtx
]
u = 0.

Solution of the above determining equations leads to the forms of τ(t), ξ(t, x) and
f(t). The forms of f(t) are determined using the method of furcate split suggested
in [10]. Lie symmetries according to the forms of f(t) are tabulated in Table 1.

Table 1. Classification of the equations (1) with n ̸= 1. Here k is an
arbitrary nonzero constant. In Cases 6a and 6b ε = 1 and ε = −1,
respectively.

# n m f(t) Basis of Amax

1 any any any ∂x

2 any n+2
3 any ∂x, x∂x + 3

n−1u∂u

3 any 0 1 ∂t, ∂x, x∂x + 3
n−1u∂u, 3t∂t + x∂x

4 −1
2 0 1 ∂t, ∂x, x∂x − 2u∂u, 3t∂t + x∂x, x

2∂x − 4xu∂u

5 any any 1 ∂t, ∂x, (3m−n−2)t∂t + (m−n)x∂x − 2u∂u

6a −1
2 −1

2 1 ∂t, ∂x, 3t∂t + 2u∂u,

sinx ∂x − 2 cosxu∂u, cosx ∂x + 2 sinxu∂u

6b −1
2 −1

2 1 ∂t, ∂x, 3t∂t + 2u∂u, e
x∂x − 2exu∂u, e

−x∂x + 2e−xu∂u

7 any any tk ∂x, (3m−n−2)t∂t + (km− k+m−n)x∂x + (k−2)u∂u

8 any n+2
3 t2 ∂x, x∂x + 3

n−1u∂u, t∂t + x∂x

9 any any et ∂x, (3m−n−2)∂t + (m−1)x∂x + u∂u

Remark 5. All cases presented in Table 1 except Cases 3 and 4 are classified up to
G̃-equivalence. For Cases 3 and 4, where m = 0, we used the equivalence group
G̃(n,0) that is wider than G̃. Thus, the equation (3) with n ̸= −1/2 admits the
four-dimensional Lie symmetry algebra with the basis operators

1

f(t)
∂t, ∂x, x∂x +

3

n− 1
u∂u, 3

∫
f(t)dt

f(t)
∂t + x∂x
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irrespectively of the form of the function f . Here and throughout the paper, an inte-
gral with respect to t should be interpreted as a fixed antiderivative. If n = −1/2,
then the Lie symmetry algebra of the equation (3) is five-dimensional, spanned by
the above operators and the additional operator x2∂x− 4xu∂u. Using the equiva-
lence transformation t̃ =

∫
f(t)dt, x̃ = x, ũ = u from the group G̃(n,0), we reduce

these cases to ones with f = 1 (cf Cases 3 and 4 of Table 1).

II. If n = 1, the coefficient of uxuxx implies that ηuu = 0, and so η = η1(t, x)u+
η0(t, x). We use the fact that τ = τ(t), ξ = ξ(t, x) and the above form for η and
from (6) to obtain the following determining equations

ftτ + f(τt − 3ξx) = 0

η1x − ξxx = 0

εm
(
τt − ξx + (m− 1)η1

)
um+εm(m− 1)η0um−1+(3fη1xx − ξt − fξxxx)u = 0

εmη1xu
m+1 + εmη0xu

m + (η1t + fη1xxx)u
2 + (η0t + fη0xxx)u = 0.

We solve the above system and adduce the results in Table 2. It is worthy to
note that the group classification problem for the class of equations ut + um̄ux +
f̄(t)uxxx = 0 with m̄f̄ ̸= 0, that are similar to equations of the form (1) with
n = 1, was carried out in [12, 20].

Remark 6. The group classification of the class (1) with n = 1 and m ̸= 2 is
performed up to G̃-equivalence. For the classification of Lie symmetries of the
equations (1) with n = 1 and m = 2 we used the wider conditional equivalence
group G̃(1,2). Since transformations from the group G̃(1,2) are quite complicated,
we adduce also the additional cases of Lie symmetry extensions of equations (1)
with n = 1 and m = 2 that are inequivalent with respect to the group G̃ to Cases
6–9 of Table 2.
1. f = (t+ β)kt1−k, k ̸= 0, 1, β ̸= 0: ⟨∂x, 2εt∂x + ∂u, Γ3⟩, where

Γ3 = 6εt(t+ β)∂t + 2ε (3t+ β(2− k))x∂x + [3x− 2ε(3t+ β(k + 1))u]∂u

2. f = te
1
t : ⟨∂x, 2εt∂x+∂u, 6εt

2∂t+2ε(3t−1)x∂x+(3x−2ε(3t+2)u)∂u⟩
3. f = t : ⟨∂x, 2εt∂x+∂u, 3t∂t+2x∂x−u∂u, 2εt

2∂t+2εtx∂x+(x−2εtu)∂u⟩.
From the first sight it looks like the counterpart to Case 9 of Table 1 is missed.
At the same time it appears that the function f = λ exp

(
k arctanαt+β

γt+δ

)
locally

coincides with the function f̌ = λ̌ exp(k arctan(α̌t+ β̌)), see [9] for details.

The primary use of Lie symmetries is to obtain a reduction of variables. Similarity
variables appear as first integrals of the characteristic system

dt

τ
=

dx

ξ
=

du

η
·
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Table 2. Classification of the class (1) with n = 1. Here k is an ar-
bitrary constant satisfying the following constraints: k ̸= 0 in Case 3,
k ̸= 0, 1 and k > 1/2 mod G̃(1,2) in Case 7, k > 0 mod G̃(1,2) in
Case 9.

# f(t) Basis of Amax

m ̸= 2

1 any ∂x

2 1 ∂t, ∂x, 3(m− 1)t∂t + (m− 1)x∂x − 2u∂u

3 tk ∂x, 3(m− 1)t∂t + (m− 1)(k + 1)x∂x + (k − 2)u∂u

4 et ∂x, 3(m− 1)∂t + (m− 1)x∂x + u∂u

m = 2

5 any ∂x, 2εt∂x + ∂u

6 1 ∂t, 2εt∂x + ∂u, ∂x, 3t∂t + x∂x − 2u∂u

7 tk ∂x, 2εt∂x + ∂u, 3t∂t + (k + 1)x∂x + (k − 2)u∂u

8 et ∂x, 2εt∂x + ∂u, 3∂t + x∂x + u∂u

9 ek arctan t
√
t2 + 1 ∂x, 2εt∂x + ∂u, 6ε(t

2 + 1)∂t + 2ε(3t+ k)x∂x

+(2ε(k − 3t)u+ 3x)∂u

Here, we can reduce a PDE in two independent variables into an ordinary differ-
ential equation (ODE) using a one-dimensional subalgebra of Lie symmetry alge-
bra. Reductions could be obtained from any symmetry which is an arbitrary linear
combination

∑s
i=1 aiΓi, where s is the number of basis operators of maximal Lie

symmetry algebra of the given PDE. To ensure that a minimal complete set of re-
ductions is obtained from the Lie symmetries of equation (1), we construct the
so-called optimal system of one-dimensional subalgebras. Ovsiannikov [8] proved
that the optimal system of solutions consists of solutions that are invariant with re-
spect to all proper inequivalent subalgebras of the symmetry algebra. More detail
about construction of optimal sets of subalgebras can be found in [7, 8].
As an example for a reduction into an ordinary differential equation, we consider
Case 7 of Table 2 which corresponds to the variable coefficient KdV equation

ut + ε(u2)x + tkuxxx = 0 (7)
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that admits the three-dimensional Lie symmetry algebra

Γ1 = ∂x, Γ2 = 2εt∂x + ∂u, Γ3 = 3t∂t + (k + 1)x∂x + (k − 2)u∂u.

Depending on the value of k an optimal system of one-dimensional subalgebras of
this Lie symmetry algebra consists of the subalgebras

⟨Γ1⟩, ⟨Γ2 + σΓ1⟩, ⟨Γ3⟩ if k ̸= −1, 2

⟨Γ1⟩, ⟨Γ2 + σΓ1⟩, ⟨Γ3 + aΓ1⟩ if k = −1

⟨Γ1⟩, ⟨Γ2 + σΓ1⟩, ⟨Γ3 + aΓ2⟩ if k = 2.

Here, σ ∈ {−1, 0, 1}, a ∈ R.
Reductions associated with the subalgebra ⟨Γ1⟩ are not considered since they lead
to constant solutions only. The ansatz constructed with the subalgebra ⟨Γ2 + σΓ1⟩
has the form u =

x

2εt+ σ
+ ϕ(ω) with the similarity variable ω = t. This ansatz

reduces equation (7) to the ODE (2εω + σ)ϕω + 2εϕ = 0, whose general solution
is ϕ =

c1
2εω + σ

, where c1 is an arbitrary constant. The corresponding solution

of (7) takes the form

u =
x+ c1
2εt+ σ

·

It is fair to note that this solution satisfies equations of the form (5) for arbitrary f .
Other reductions depend on the value of the exponent k. We adduce the ansatzes
together with the corresponding reduced equations

k ̸= −1, 2. ⟨Γ3⟩ : u = t
k−2
3 ϕ(ω), ω = xt−

k+1
3

3ϕωωω + 6εϕϕω − (k + 1)ϕωω + (k − 2)ϕ = 0

k = −1. ⟨Γ3 + aΓ1⟩ : u =
1

t
ϕ(ω), ω = x− a

3
ln t

3ϕωωω + 6εϕϕω − aϕω − 3ϕ = 0

k = 2. ⟨Γ3 + aΓ2⟩ : u =
a

3
ln t+ ϕ(ω), ω =

x

t
− 2aε

3
ln t

3ϕωωω + 6εϕϕω − 3ϕωω − 2aεϕω + a = 0.

We note that the latter two cases are equivalent. Indeed, the equation

ut + ε(u2)x + t2uxxx = 0

is mapped to the equation

ũt̃ + ε(ũ)2x̃ + t̃−1ũx̃x̃x̃ = 0

by the following transformation from the group G̃(1,2)

t̃ =
1

t
, x̃ = −x

t
, ũ =

2εtu− x

2ε
·
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4. Application of Lie Symmetries to a Boundary Value Problem

There exist several approaches exploiting Lie symmetries to reduce of boundary-
value problems (BVPs) for PDEs to those for ODEs. The classical technique sug-
gested in [1, 3] is to require that both equation and boundary conditions are left
invariant under the one-parameter Lie group of infinitesimal transformations. Of
course the infinitesimal approach is usually applied, i.e., a basis of operators of
Lie invariance algebras is used instead of finite transformations from the corre-
sponding Lie symmetry group (see, e.g., [2, Section 4.4]). Firstly, the symmetries
of a PDE should be derived and then the boundary conditions should be checked
to determine whether they are also invariant under the action of the generators of
the symmetries found. In the case of a positive answer, the BVP for the PDE was
reduced to a BVP for an ODE. Using this technique, a number of boundary-value
problems were solved successfully (see, e.g., [18, 19, 23]).
We consider the following initial and boundary value problem

ut + ε(um)x + tk(un)xxx = 0, t > 0, x > 0 (8)

u(x, 0) = 0, x > 0

u(0, t) = q(t), ux(0, t) = 0, uxx(0, t) = 0, t > 0.
(9)

We look for a nonconstant solution using the “direct” approach suggested by Blu-
man [2, 3].
We have derived the Lie symmetries for the variable coefficient equation (8) and
now we examine which of these symmetries leave the initial and boundary condi-
tions of the problem invariant. The procedure starts by assuming a general sym-
metry of the form

Γ =

s∑
i=1

αiΓi (10)

where s is the number of basis operators of maximal Lie symmetry algebra of
the given partial differential equation and αi, i = 1, . . . , s, are constants to be
determined.
Equation (8) admits for arbitrary n, m and k a two-dimensional Lie symmetry
algebra with the basis operators

Γ1 = ∂x, Γ2 = (3m− n− 2)t∂t + (km− k +m− n)x∂x + (k − 2)u∂u.

The general symmetry (10) takes the form

Γ = α1∂x + α2 [(3m− n− 2)t∂t + (km− k +m− n)x∂x + (k − 2)u∂u] .
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Application of Γ to the first boundary condition x = 0, u(t, 0) = q(t) gives
α1 = 0 and q(t) = γt

k−2
3m−n−2 , m ̸= n+2

3 . Using the second extension of Γ

Γ(2) = 3nt∂t + (k + 1)nx∂x + (k − 2)u∂u + (k − nk − n− 2)ux∂ux

+(k − 2nk − 2n− 2)uxx∂uxx

where the unused terms have been ignored, it can be shown that it leaves invariant
the initial condition and the remaining two boundary conditions of (9). Finally,
symmetry Γ produces the transformation

u = t
k−2

3m−n−2ϕ(ω), ω = xt−
km−k+m−n

3m−n−2 (11)

which reduces the problem (8)–(9) into

(ϕn)′′′ + ε(ϕm)′ − km− k +m− n

3m− n− 2
ωϕ′ +

k − 2

3m− n− 2
ϕ = 0

ϕ(0) = γ, ϕ′(0) = 0, ϕ′′(0) = 0.

The latter Initial Value Problem can be solved numerically and then the solution
of Initial BVP (8)–(9) can be recovered using the transformation (11). For de-
tails see [20], where a similar problem for generalized KdV equations was solved
successfully using finite difference method.
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