
Fourteenth International Conference on
Geometry, Integrability and Quantization
June 8–13, 2012, Varna, Bulgaria
Ivaïlo M. Mladenov, Andrei Ludu
and Akira Yoshioka, Editors
Avangard Prima, Sofia 2013, pp 74–86
doi: 10.7546/giq-14-2013-74-86

f -BIHARMONIC MAPS BETWEEN RIEMANNIAN MANIFOLDS

YUAN-JEN CHIANG

Department of Mathematics, University of Mary Washington, Fredericksburg
VA 22401, USA

Abstract. We show that if ψ is an f -biharmonic map from a compact Rie-
mannian manifold into a Riemannian manifold with non-positive curvature
satisfying a condition, then ψ is an f -harmonic map. We prove that if the
f -tension field τf (ψ) of a map ψ of Riemannian manifolds is a Jacobi field
and ϕ is a totally geodesic map of Riemannian manifolds, then τf (ϕ ◦ ψ) is
a Jacobi field. We finally investigate the stress f -bienergy tensor, and relate
the divergence of the stress f -bienergy of a map ψ of Riemannian manifolds
with the Jacobi field of the τf (ψ) of the map.

1. Introduction

Harmonic maps between Riemannian manifolds were first established by Eells
and Sampson in 1964. Afterwards, there are two reports and one survey paper
by Eells and Lemaire [15–17] about the developments of harmonic maps up to
1988. Chiang, Ratto, Sun and Wolak also studied harmonic and biharmonic maps
in [4–9]. f -harmonic maps which generalize harmonic maps, were first intro-
duced by Lichnerowicz [25] in 1970, and were studied by Course [12,13] recently.
The f -harmonic maps relate to the equation of the motion of a continuous sys-
tem of spins with inhomogeneous neighbor Heisenberg interaction in mathematical
physics. Moreover, F -harmonic maps between Riemannian manifolds were first
introduced by Ara [1,2] in 1999, which could be considered as the special cases of
f -harmonic maps.
Let f : (M1, g) → (0,∞) be a smooth function. By definition the f -biharmonic
maps between Riemannian manifolds are the critical points of f -bienergy

Ef2 (ψ) =
1

2

∫
M1

f |τf (ψ|2dv
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where dv the volume form determined by the metric g. The f -biharmonic maps
between Riemannian manifolds which generalized biharmonic maps by Jiang [20,
21] in 1986, were first studied by Ouakkas, Nasri and Djaa [27] in 2010.
In section two, we describe the motivation, and review f -harmonic maps and their
relationship with F -harmonic maps. In Theorem 3.1, we show that if ψ is an
f -biharmonic map from a compact Riemannian manifold into a Riemannian man-
ifold with non-positive curvature satisfying a condition, then ψ is an f -harmonic
map. It is well-known from [18] that if ψ is a harmonic map of Riemannian man-
ifolds and ϕ is a totally geodesic map of Riemannian manifolds, then ϕ ◦ ψ is
harmonic. However, if ψ is f -biharmonic and ϕ is totally geodesic, then ϕ ◦ ψ
is not necessarily f -biharmonic. Instead, we prove in Theorem 3.3 that if the f -
tension field τf (ψ) of a smooth map ψ of Riemannian manifolds is a Jacobi field
and ϕ is totally geodesic, then τf (ϕ ◦ ψ) is a Jacobi field. It implies Corollary
3.4 [8] that if ψ is a biharmonic map between Riemannian manifolds and ϕ is to-
tally geodesic, then ϕ ◦ ψ is a biharmonic map. We finally investigate the stress
f -bienergy tensors. If ψ is an f -biharmonic of Riemannian manifolds, then it usu-
ally does not satisfy the conservation law for the stress f -bienergy tensor Sf2 (ψ).
However, we obtain in Theorem 4.2 that if ψ : (M1, g) → (M2, h) be a smooth
map between two Riemannian manifolds, then

divSf2 (Y ) = ±⟨Jτf (ψ)(Y ), dψ(Y )⟩ for all Y ∈ Γ(TM1) (1)

where divSf2 is the divergence of Sf2 and Jτf (ψ) is the Jacobi field of τf (ψ) (there
is a - or + sign convention in the formula). Hence, if τf (ψ) is a Jacobi field, then
ψ satisfies the conservation law for Sf2 . It implies Corollary 4.4 [22] that if ψ is
a biharmonic map between Riemannian manifolds, then ψ satisfies the conserva-
tion law for the stress bi-energy tensor S2(ψ). We also discuss a few applications
concerning the vanishing of the stress f -bienergy tensor.

2. Preliminaries

2.1. Motivation

In mathematical physics, the equation of the motion of a continuous system of
spins with inhomogeneous neighborhood Heisenberg interaction is

∂ψ

∂t
= f(x)(ψ ×△ψ) +∇f · (ψ ×∇ψ) (2)

where Ω ⊂ Rm is a smooth domain in the Euclidean space, f is a real-valued
function defined on Ω, ψ(x, t) ∈ S2, and × is the cross product in R3 and △ is the
Laplace operator in Rm. Such a model is called the inhomogeneous Heisenberg
ferromagnet [10,11,14]. Physically, the function f is called the coupling function,



76 Yuan-Jen Chiang

and is the continuum of the coupling constant between the neighboring spins. It is
known from [18] that the tension field of a map ψ into S2 is τ(ψ) = △ψ+|∇ψ|2ψ.
Observe that the right hand side of (2) can be expressed as

ψ × (fτ(ψ) +∇f · ∇ψ). (3)

Hence, ψ is a smooth stationary solution (i.e., ∂ψ∂t = 0) of (2) if and only if

fτ(ψ) +∇f · ∇ψ = 0 (4)

i.e., ψ is an f -harmonic map. Consequently, there is a one-to-one correspondence
between the set of the stationary solutions of the inhomogeneous Heisenberg spin
system (2) on the domain Ω and the set of f -harmonic maps from Ω into S2. The
inhomogeneous Heisenberg spin system (2) is also called inhomogeneous Landau-
Lifshitz system (cf. [19, 23, 24]).

2.2. f -harmonic Maps

Let f : (M1, g) → (0,∞) be a smooth function. Many aspects of the f -harmonic
maps which generalize harmonic maps, were studied in [12, 13, 19, 24] recently.
Let ψ : (M1, g) → (M2, h) be a smooth map from anm-dimensional Riemannian
manifold (M1, g) into an n-dimensional Riemannian manifold (M2, h). A map
ψ : (M1, g) → (M2, h) is f -harmonic if and only if ψ is a critical point of the
f -energy

Ef (ψ) =
1

2

∫
M1

f |dψ|2dv.

In terms of the Euler-Lagrange equation, ψ is f -harmonic if and only if the f -
tension field

τf (ψ) = fτ(ψ) + dψ(grad f) = 0 (5)

where τ(ψ) = TrgDdψ is the tension field of ψ. In particular, when f = 1,
τf (ψ) = τ(ψ).
Let F : [0,∞) → [0,∞) be a C2 function such that F ′ > 0 on (0,∞). F -
harmonic maps between Riemannian manifolds were introduced in [1, 2]. For a
smooth map ψ : (M1, g) → (M2, h) of Riemannian manifolds, the F -energy of ψ
is defined by

EF (ψ) =

∫
M1

F (
|dψ|2

2
)dv. (6)

When F (t) = t, (2t)p/2

p (p ≥ 4), (1 + 2t)α (α > 1, dimM1 = 2), and et, they
are the energy, the p-energy, the α-energy of Sacks-Uhlenbeck [28], and the ex-
ponential energy, respectively. A map ψ is F -harmonic if and only if ψ is a crit-
ical point of the F -energy functional. In terms of the Euler-Lagrange equation,
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ψ :M1 →M2 is an F − harmonic map if and only if the F -tension field

τF (ψ) = F ′(
|dψ|2

2
)τ(ψ) + ψ∗

(
grad(F ′(

|dψ|2

2
))

)
= 0. (7)

Proposition 1. 1) If ψ : (M1, g) → (M2, h) an F-harmonic map without crit-
ical points (i.e., |dψx| ̸= 0 for all x ∈ M1), then it is an f -harmonic map with
f = F ′( |dψ|

2

2 ). In particular, a p-harmonic map without critical points is an f-
harmonic map with f = |dψ|p−2.
2) [15, 25]. A map ψ : (Mm

1 , g) → (Mn
2 , h) is f -harmonic if and only if ψ :

(Mm
1 , f

2
m−2 g) → (Mn

2 , h) is a harmonic map.

Proof: 1) It follows from (5) and (7) immediately (cf. Corollary 1.1 in [26]).
2) See [15]. �

3. f -biharmonic maps

Let f : (M1, g) → (0,∞) be a smooth function. f -biharmonic maps between Rie-
mannian manifolds which generalized biharmonic maps [20,21], were first studied
by Ouakkas, Nasri and Djaa [27] recently. An f -biharmonic map ψ : (M1, g) →
(M2, h) between Riemannian manifolds is the critical point of the f -bienergy func-
tional

(E2)f (ψ) =
1

2

∫
M1

||τf (ψ)||2dv (8)

where the f -tension field τf (ψ) = fτ(ψ) + dψ(grad f). In terms of Euler-
Lagrange equation, ψ is f -biharmonic if and only if the f -bitension field of ψ

(τ2)f (ψ) = ±△f
2τf (ψ)± fR′(τf (ψ), dψ)dψ = 0 (9)

where

△f
2τf (ψ) = D̄fD̄τf (ψ)− fD̄Dτf (ψ) =

m∑
i=1

(D̄eifD̄eiτf (ψ)− fD̄Deiei
τf (ψ)).

Here, D, D̄ are the connections on TM1, ψ
−1TM2, respectively, {ei}1≤i≤m is a

local orthonormal frame at any point in M1, and R′ is the Riemannian curvature of
M2. There is a + or - sign convention in (9), and we take + sign in the context for
simplicity. In particular, if f = 1, then (τ2)f (ψ) = τ2(ψ), the bitension field of ψ.

Theorem 2. If ψ : (M1, g) → (M2, h) is a f-biharmonic map from a compact
Riemannian manifold M1 into a Riemannian manifold M2 with non-positive cur-
vature satisfying

⟨fD̄eiD̄eiτf (ψ)− D̄eifD̄eiτf (ψ), τf (ψ)⟩ ≥ 0 (10)
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then ψ is f -harmonic.

Proof: Since ψ :M1 →M2 is f -biharmonic, it follows from (9) that

(τ2)f (ψ) = D̄fD̄τf (ψ)− fD̄Dτf (ψ) + fR′(τf (ψ), dψ)dψ = 0. (11)

Suppose that the compact supports of the maps ∂ψt

∂t and D̄ei
∂ψt

∂t ({ψt} ∈ C∞(M1×
(−ϵ, ϵ),M2) is a one parameter family of maps with ψ0 = ψ) are contained in the
interior of M . We compute

1

2
f△||τf (ψ)||2 = f⟨D̄eiτf (ψ), D̄eiτf (ψ)⟩+ f⟨D̄∗D̄τf (ψ), τf (ψ)⟩

= f⟨D̄eiτf (ψ), D̄eiτf (ψ)⟩+ f⟨D̄eiD̄eiτf (ψ)

−D̄Deiei
τf (ψ)), τf (ψ)⟩

= f⟨D̄eiτf (ψ), D̄eiτf (ψ)⟩+ ⟨fD̄eiD̄eiτf (ψ) (12)

−D̄eifD̄eiτf (ψ) + D̄eifD̄eiτf (ψ)− fD̄Deiei
τf (ψ), τf (ψ)⟩

= f⟨D̄eiτf (ψ), D̄eiτf (ψ)⟩+ ⟨fD̄eiD̄eiτf (ψ)

−D̄eifD̄eiτf (ψ), τf (ψ)⟩ − ⟨f(R′(dψ, dψ)τf (ψ), τf (ψ)⟩≥0

(where D̄∗D̄ = D̄D̄ − D̄D [20]) by (10), (11), f > 0 and R′ ≤ 0. It implies that

1

2
△||τf (ψ)||2 ≥ 0.

By applying the Bochner’s technique, we know that ||τf (ψ)||2 is constant and that

D̄eiτf (ψ) = 0 for all i = 1, 2, ...m.

It follows from Eells-Lemaire [15] results that τf (ψ)=0, i.e., ψ is f -harmonic on
M1. �

Corollary 3 ([20]). If ψ : (M1, g) → (M2, h) is a biharmonic map from a com-
pact Riemannian M1 manifold into a Riemannian manifold M2 with non-positive
curvature, then ψ is harmonic.

Proof: When f = 1 and ψ : M1 → M2 is a biharmonic map from a compact
Riemannian M1 manifold into a Riemannian manifold M2 with non-positive cur-
vature, (11) becomes

τ2(ψ) = D̄∗D̄τ(ψ) +R′(τ(ψ), dψ)dψ = 0.

The identity (13) reduces to

1

2
△||τ(ψ)||2 = ⟨D̄eiτ(ψ), D̄eiτ(ψ)⟩+ ⟨D̄∗D̄τ(ψ), τ(ψ)⟩

= ⟨D̄eiτ(ψ), D̄eiτ(ψ)⟩ − ⟨R′(dψ, dψ)τ(ψ), τ(ψ)⟩ ≥ 0
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since ψ is biharmonic, and M2 is a Riemannian manifold with non-positive cur-
vature R′. Note that (10) is automatically satisfied. It follows from the similar
arguments as Theorem 3.1 that ψ is harmonic. �

It is well-known from [18] that if ψ : (M1, g) → (M2, h) is a harmonic map of
two Riemannian manifolds and ϕ : (M2, h) → (M3, k) is totally geodesic of two
Riemannian manifolds, then ϕ ◦ ψ : (M1, g) → (M3, k) is harmonic. However,
if ψ : (M1, g) → (M2, h) is an f -biharmonic map, and ϕ : (M2, h) → (M3, k)
is totally geodesic, then ϕ ◦ ψ : (M1, g) → (M3, k) is not necessarily an f -
biharmonic map. We obtain the following theorem instead.

Theorem 4. If τf (ψ) is a Jacobi field for a smooth map ψ : (M1, g) → (M2, h) of
two Riemannian manifolds, and ϕ : (M2, h) → (M3, k) is a totally geodesic map
of two Riemannian manifolds, then τf (ϕ ◦ ψ) is a Jacobi field.

Proof: Let D,D′, D̄, D̄′, D̄′′, D̂, D̂′ and D̂′′ are the respective connections on
TM1, TM2, ψ

−1TM2, ϕ
−1TM3, (ϕ ◦ ψ)−1TM3, T

∗M1 ⊗ ψ−1TM2, T
∗M2 ⊗

ϕ−1TM3 and T ∗M1⊗ (ϕ ◦ ψ)−1TM3. Then we have

D̄′′
Xd(ϕ ◦ ψ)(Y ) = (D̂′

dψ(X)dϕ)dψ(Y ) + dϕ ◦ D̄Xdψ(Y ) (13)

for all X, Y ∈ Γ(TM1). We have also

RM3(dϕ(X ′), dϕ(Y ′))dϕ(Z ′) = Rϕ
−1TM3(X ′, Y ′)dϕ(Z ′) (14)

for all X ′, Y ′, Z ′ ∈ Γ(TM2).
It is well-known from [18] that the tension field of the composition ϕ ◦ ψ is given
by

τ(ϕ ◦ ψ) = dϕ(τ(ψ)) + TrgDdϕ(dψ, dψ) = dϕ(τ(ψ))

since ϕ is totally geodesic. Then the f -tension field of the composition of ϕ ◦ψ is

τf (ψ ◦ ϕ) = dϕ(τf (ψ)) + f TrgDdϕ(dψ, dψ) = dϕ(τf (ψ))

since ϕ is totally geodesic. Recall that {ei}mi=1 is a local orthonormal frame at any
point inM1, and let D̄∗D̄ = D̄ekD̄ek −D̄Dek

ek and D̄′′∗D̄′′ = D̄′′
ek
D̄′′
ek
−D̄′′

Dek
ek

.
Then we have

D̄′′∗D̄′′τf (ϕ ◦ ψ) = D̄′′∗D̄′′(dϕ ◦ τf (ψ))
(15)

= D̄′′
ek
D̄′′
ek
(dϕ ◦ τf (ψ))− D̄′′

Dek
ek
(dϕ ◦ τf (ψ)).

We derive from (13) that

D̄′′
ek
(dϕ ◦ τf (ψ)) = (D̂′

D̂ejdψ(ek)
dϕ)(τf (ψ)) + dϕ ◦ D̄ek(τf (ψ))

= dϕ ◦ D̄ekτf (ψ)
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since ϕ is totally geodesic. Therefore, we arrive at

D̄′′
ek
D̄′′
ek
(dϕ ◦ τf (ψ)) = D̄′′

ek
(dϕ ◦ D̄ekτf (ψ)) = dϕ ◦ D̄ekD̄ekτf (ψ) (16)

and

D̄′′
Dek

ek
(dϕ ◦ τ(ψ)) = dϕ ◦ D̄Dek

ekτf (ψ). (17)

Substituting (16), (17) into (16), we deduce

D̄′′∗D̄′′τf (ϕ ◦ ψ) = dϕ ◦ D̄∗D̄τf (ψ). (18)

On the other hand, it follows from (14) that

RM3(d(ϕ ◦ ψ)(ei), τf (ϕ ◦ ψ))d(ϕ ◦ ψ)(ei)

= Rϕ
−1TM3(dψ(ei), τf (ψ))dϕ(dψ(ei))

= dϕ ◦RM2(dψ(ei), τf (ψ))dψ(ei). (19)

By (18) and (19), we obtain

D̄′′∗D̄′′τf (ϕ ◦ ψ) +RM3(d(ϕ ◦ ψ)(ei), τf (ϕ ◦ ψ))d(ϕ ◦ ψ)(ei)

= dϕ ◦ [D̄∗D̄τf (ψ) +RM2(dψ(ei), τf (ψ))dψ(ei)]. (20)

Consequently, if τf (ψ) is a Jacobi field, then τf (ϕ ◦ ψ) is a Jacobi field. �
Corollary 5 ( [8]). If ψ : (M1, g) → (M2, h) is a biharmonic map between
two Riemannian manifolds and ϕ : (M2, h) → (M3, k) is totally geodesic, then
ϕ ◦ ψ : (M1, g) → (M3, k) is a biharmonic map.

Proof: If f = 1 and ψ : (M1, g) → (M2, h) is a biharmonic map of two Rie-
mannian manifolds, then τf (ψ) = τ(ψ) is a Jacobi field. We can apply the analo-
gous arguments as Theorem 3.3, and (20) becomes

D̄′′∗D̄′′τ(ϕ ◦ ψ) +RM3(d(ϕ ◦ ψ)(ei), τ(ϕ ◦ ψ))d(ϕ ◦ ψ)(ei)

= dϕ ◦ [D̄∗D̄τ(ψ) +RM2(dψ(ei), τ(ψ))dψ(ei)]

i.e., τ2(ϕ ◦ψ) = dϕ ◦ (τ2(ψ)), where τ2(ψ) is the bi-tension field of ψ. Hence, we
can conclude the result. �

4. Stress f -bienergy Tensors

Let ψ : (M1, g) → (M2, h) be a smooth map between two Riemannian manifolds.
The stress energy tensor is defined by Baird and Eells [3] as

S(ψ) = e(ψ)g − ψ∗h

where e(ψ) = |dψ|2
2 · Thus we have divS(ψ) = −⟨τ(ψ), dψ⟩. Hence, if ψ is

harmonic, then ψ satisfies the conservation law for S (i.e., divS(ψ) = 0). In
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[27], the stress f -energy tensor of the smooth map ψ : M1 → M2 was similarly
defined as

Sf (ψ) = fe(ψ)g − fψ∗h

and they obtained

divSf (ψ) = −⟨τf (ψ), dψ⟩+ e(ψ)df.

In this case, an f -harmonic map usually does not satisfy the conservation law
for Sf . In particular, by letting f = F ′(dψ|

2

2 ), then Sf (ψ) = F ′(dψ|
2

2 )e(ψ)g

−F ′(dψ|
2

2 )ψ∗h. It is different than following Ara’s idea [1] to define SF (ψ)

= F ( |dψ|
2

2 )g − F ′(dψ|
2

2 )ψ∗h, and we have

divSF (ψ) = −⟨τF (ψ), dψ⟩.
It implies that if ψ : M1 → M2 is an F -harmonic map between Riemannian
manifolds, then it satisfies the conservation law for SF .
The stress bienergy tensors and the conservation laws of biharmonic maps between
Riemannian manifolds were first studied by Jiang [22] in 1987. Following his
notions, we define the stress f -bienergy tensor of a smooth map as follows.

Definition 6. Let ψ : (M1, g) → (M2, h) be a smooth map between two Rie-
mannian manifolds. The stress f -bienergy tensor of ψ is defined by

Sf2 (X,Y ) =
1

2
|τf (ψ)|2⟨X, Y ⟩+ ⟨dψ, D̄(τf (ψ)⟩⟨X, Y ⟩

(21)
−⟨dψ(X), D̄Y τf (ψ)⟩ − ⟨dψ(Y ), D̄Xτf (ψ)⟩

for all X, Y ∈ Γ(TM1).

Remark that if ψ : (M1, g) → (M2, h) is an f -biharmonic map between two
Riemannian manifolds, then ψ does not necessarily satisfy the conservation law
for the stress f -bienergy tensor Sf2 . Instead, we obtain the following theorem.

Theorem 7. If ψ : (M1, g) → (M2, h) be a smooth map between two Riemannian
manifolds, then we have

divSf2 (Y ) = ±⟨Jτf (ψ)(Y ), dψ(Y )⟩ for all Y ∈ Γ(TM1) (22)

where Jτf (ψ) is the Jacobi field of τf (ψ).

Proof: For the map ψ :M1 →M2 between two Riemannian manifolds, set Sf2 =
K1 +K2, where K1 and K2 are (0, 2)-tensors defined by

K1(X,Y ) =
1

2
|τf (ψ)|2⟨X,Y ⟩+ ⟨dψ, D̄τf (ψ)⟩⟨X,Y ⟩

K2(X,Y ) = −⟨dψ(X), D̄Y τf (ψ)⟩ − ⟨dψ, D̄Xτf (ψ)⟩.
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Let {ei} be the geodesic frame at a point a ∈M1, and write Y = Y iei at the point
a. We first compute

divK1(Y ) =
∑
i

(D̄eiK1)(ei, Y ) =
∑
i

(ei(K1(ei, Y )−K1(ei, D̄eiY ))

=
∑
i

(ei(
1

2
|τf (ψ)|2Y i +

∑
k

⟨dψ(ek), D̄ekτf (ψ)⟩Y
i)

−1

2
|τf (ψ)|2Y iei −

∑
k

⟨dψ(ek), D̄ekτf (ψ)⟩Y
iei))

= ⟨D̄Y τf (ψ), τf (ψ)⟩+
∑
i

⟨dψ(Y, ei), D̄eiτf (ψ)⟩ (23)

+
∑
i

⟨dψ(ei), D̄Y D̄eiτf (ψ)⟩

= ⟨D̄Y τf (ψ), τf (ψ)⟩+Tr⟨D̄dψ(Y, .), D̄.τf (ψ)⟩

+Tr⟨dψ(.), D̄2τf (ψ)(Y, .)⟩.

We then compute

divK2(Y ) =
∑
i

(D̄eiK2)(ei, Y ) =
∑
i

(ei(K2(ei, Y )−K2(ei, D̄eiY ))

= −⟨D̄Y τf (ψ), τf (ψ)⟩ −
∑
i

⟨D̄dψ(Y, ei), D̄eiτf (ψ)⟩

−
∑
i

⟨dψ(ei), D̄eiD̄Y τf (ψ)− D̄DeiY
τf (ψ)⟩

(24)
+⟨dψ(Y ),△τf (ψ)⟩ = −⟨D̄Y τf (ψ), τf (ψ)⟩

−Tr⟨D̄dψ(Y, .), D̄.τf (ψ)⟩

−Tr⟨dψ(.), D̄2τf (ψ)(., Y )⟩+ ⟨dψ(Y ),△τf (ψ)⟩.

Adding (24) and (25), we arrive at

divSf2 (Y ) = ±⟨dψ(Y ), △τf (ψ) +
∑
i

⟨dψ(ei), R′(Y, ei)τf (ψ)⟩

(25)
= ±⟨Jτf (ψ)(Y ), dψ(Y )⟩

where Jτf (ψ) is the Jacobi field of τf (ψ). �

Corollary 8. If τf (ψ) is a Jacobi field (i.e., Jτf (ψ) = 0) for a map ψ :M1 →M2,

then it satisfies the conservation law (i.e., divSf2 = 0) for the stress f -bienergy
tensor Sf2 .
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Theorem 9 ([22]). If ψ : (M1, g) → (M2, h) is biharmonic between two Rie-
mannian manifolds, then it satisfies the conservation law for stress bienergy tensor
S2

Proof: If f = 1 and ψ : (M1, g) → (M2, h) is biharmonic, then (26) yields to

divS2(Y ) = ±⟨dψ, △τ(ψ) +
∑
i

(dψ(ei), R
′(Y,Xi)τ(ψ)⟩

= ±⟨Jτ(ψ)(Y ), dψ(Y )⟩ = ±⟨τ2(ψ), dψ(Y )⟩

where τ2(ψ) is the bi-tension field of ψ (i.e., τ(ψ) is a Jacobi field). Hence, we can
conclude the result. �

Proposition 10. Let ψ : (M1, g) → (M2, h) be a submersion such that τf (ψ)
is basic, i.e., τf (ψ) = W ◦ ψ for W ∈ Γ(TM2). Suppose that W is Killing and
|W |2 = c2 is non-zero constant. If M1 is non-compact, then τf (ψ) is a non-trivial
Jacobi field.

Proof: Since τf (ψ) is basic

Sf2 (X,Y ) = (
c2

2
+ ⟨dψ, D̄τf (ψ)⟩)(X,Y )− ⟨dψ(X), D̄Y τf (ψ)⟩

(26)
−⟨dψ(Y ), D̄Xτf (ψ)⟩

where X,Y ∈ Γ(TM1). Let a be a point in M1 with the orthonormal frame
{ei}mi=1 such that {ej}nj=1 are in THa M1 = (T Va M1)

⊥ and {ek}mk=n+1 are in
T Va M1 = Ker dψ(a). Because W is Killing, we have

⟨dψ, D̄τf (ψ)⟩(a) =
∑
j

⟨dψa(ej), D̄ejτf (ψ)⟩+
∑
k

⟨dψa(ek), D̄ekτf (ψ)⟩

(27)
=

∑
j

⟨dψa(ej), DM2

dψa(ej)
W ⟩ = 0.

Therefore,

Sf2 (a)(X,Y ) =
c2

2
(X,Y ) + ⟨dψa(X), DM2

dψa(Y )W ⟩

−⟨dψa(Y ), DM2

dψa(X)W ⟩ = c2

2
(X,Y ).

IfM1 is not compact, Sf2 = c2

2 g is divergence free and τf (ψ) is a non-trivial Jacobi
field due to c ̸= 0. �

Proposition 11. If ψ : (M2
1 , g) → (M2, h) is a map from a surface with Sf2 = 0,

then ψ is f -harmonic.
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Proof: Since Sf2 = 0, it implies

0 = TrSf2 = |τf (ψ)|2 + 2⟨D̄τf (ψ), dψ⟩ − 2⟨D̄τf (ψ), dψ⟩ = |τf (ψ)|2.

�

Proposition 12. If ψ : (Mm
1 , g) → (M2, h) (m ̸= 2) with Sf2 = 0, then

1

m− 2
|τf (ψ)|2(X,Y ) + ⟨D̄Xτf (ψ), dψ(Y )⟩+ ⟨D̄Y τf (ψ),dψ(X)⟩ = 0 (28)

for X, Y ∈ Γ(T (M1)).

Proof: Suppose that Sf2 = 0, it implies TrSf2 = 0. Therefore

⟨D̄τf (ψ), dψ⟩ = − m

2(m− 2)
|τf (ψ)|2, m ̸= 2. (29)

Substituting it into the definition of Sf2 , we arrive at

0 = Sf2 (X,Y ) = − 1

m− 2
|τf (ψ)|2(X,Y )

(30)
−⟨D̄Xτf (ψ >, dψ(Y ) > −⟨D̄Y τf (ψ), dψ(X)⟩.

�

Corollary 13. If ψ : (M1, g) → (M2, h) (m > 2) with Sf1 = 0 and rank ψ ≤
m− 1, then ψ is f-harmonic.

Proof: Since rankψ(a) ≤ m − 1, for a point a ∈ M1 there exists a unit vector
Xa ∈ Ker dψa. Letting X = Y = Xa, (28) gives to τf (ψ) = 0. �

Corollary 14. If ψ : (M1, g) → (M2, h) is a submersion (m > n) with Sf2 = 0,
then ψ is f-harmonic.
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