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Abstract. In this work, a continuum model is used to determine in analytic
form a class of unduloid-like equilibrium shapes of single-wall carbon nano-
tubes subjected to uniform hydrostatic pressure. The parametric equations of
the profile curves of the foregoing shapes are presented in explicit form by
means of elliptic functions and integrals.

1. Introduction

The study of the mechanical response of carbon nanotubes subjected to different
types of loading has attracted a lot of attention in the last two decades. This interest
emerged shortly after the experimental discovery of multi-wall [11] and single-wall
[2,12] carbon nanotubes and the reported progress in their large-scale synthesis [6].
It is motivated to a large extend by the observed remarkable mechanical and shape-
dependent thermal, optical and electrical properties of these carbon allotropes with
promising applications in nano technology.
It is observed (see, e.g. [25]) that under different growth conditions, carbon nano-
tubes take different kinds of stable or metastable shapes (straight, curved, helical).
The aim of the present work is to give an analitic description of a class of axisym-
metric equilibrium shapes of single-wall carbon nanotubes (SWCNT’s) subjected
to uniform hydrostatic pressure. For that purpose we use the continuum model de-
veloped by Ou-Yang et al [18, 20, 22]. This model is based on the continuum limit
of the interatomic interaction potential proposed by Lenosky et al [14] to describe
the deformation energy of a single layer of curved graphite carbon, which has been
modified recently by Tu and Ou-Yang [22] to take into account that the energy
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costs due to the in-plane and out-of-plane bond angle changes of the carbon-atom
lattice upon deformation are different.

2. Deformation Energy and Shape Equation

In continuum limit, both the Lenosky potential [14] and its modification introduced
in [22] yield one and the same expression for the deformation energy (see [20,22]),
namely

F =

∫
S

[
kc
2
(2H)2 + kGK +

kd
2
(2J)2 + k̃Q

]
dA (1)

where S is a surface representing the atomic lattice of the deformed nanotube as a
two-dimensional continuum, H and K are its mean and Gaussian curvatures, dA
is the area element on the surface S, J and Q are the first and second invariants
of the in-plane deformation tensor, which are often referred to as the “mean” and
“Gaussian” strains, respectively, and kc, kG, kd and k̃ are constants given through
the bond-bending parameters used in the respective atomic lattice model (see [14,
22]).
It should be noted that expression (1) for the deformation energy follows as well
from other continuum theories for carbon nanostructures based on the interatomic
interaction potentials of Tersoff-Brenner [3, 19] type and developed using kine-
matic assumption such as the Cauchy-Born rule or its modifications (see [1] and
references therein).
It is noteworthy that the functional F is quite similar to the deformation energy
of an isotropic thin elastic shell modelled within the framework of the nonlinear
Kirchhoff-Love shell theory (see e.g. [13]) and coincides with it if kG/kc = k̃/kd
(see [21, 22] for more details). This corresponds fairly well to the observed elastic
behaviour of the carbon nanotubes
and their essentially two-dimensional atomic lattice structure with intrinsic hexag-
onal symmetry. Actually, Yakobson et al [26] developed, apparently motivated by
the aforementioned properties of the carbon nanotubes, a continuum mechanics
approach based on this shell theory for exploration of their mechanical properties
and deformed configurations. It should be acknowledged that this article has had
a huge impact on the continuum modelling of the mechanical behaviour of carbon
nanostructures.
Within the present study, the second term in the deformation energy F accounting
for the in-plane deformation is neglected since the contribution of the bond stretch-
ing to the deformation energy is less than 1% (see [14]). Instead of this, the carbon
nanotube is assumed to be inextensible upon deformation. Moreover, we assume
that a uniform hydrostatic pressure p is applied to the deformed surface S .
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According to all these assumptions, the equilibrium shapes of a carbon nanotube
are determined by the extremals of the bending part of the deformation energy F
under the constraints of fixed total area A and enclosed volume V . This scheme
yields the functional

Fb =

∫
S

[
1

2
kc(2H + c0)

2 + kGK

]
dA+ λ

∫
S
dA+ p

∫
dV (2)

where λ is the Lagrange multiplier corresponding to the constraint of fixed total
area, which is interpreted as a tensile stress, the pressure p appears as another
Lagrange multiplier corresponding to the constraint of fixed enclosed volume V
and the extra constant c0 is added to take into account the screw dislocation core-
like deformation as it was suggested by Xie et al [25].
The energy functional (2) is well-known in the theory of lipid bilayer membranes.
In the model proposed by Helfrich [9], its local extrema determine the equilibrium
shapes of such a membrane, the constant c0 (called the spontaneous curvature)
being introduced to reflect the asymmetry of the membrane or its environment. The
corresponding Euler-Lagrange equation, further referred to as the shape equation,
was derived by Ou-Yang and Helfrich [17] and reads

∆H + (2H + c0)
(
H2 − c0

2
H −K

)
− λ

kc
H = − p

2kc
· (3)

Here ∆ is the Laplace-Beltrami operator on the surface S.
An exhaustive analytic description of the cylindrical shapes corresponding to the
translationally-invariant solutions of the shape equation (3) is presented in Vassilev
et al [23] and Djondjorov et al [4]. It is worth noting that Zang et al [27, 28]
have compared recently cross-sections of single-wall carbon nanotubes subjected
to uniform hydrostatic pressure obtained by the solutions of equation (3) and by
molecular dynamics simulations. As a result, an excellent agreement was observed,
see [28, Figure 3]. This observation justifies the applicability of the considered
continuum model at least as far as the determination of the cylindrical equilibrium
shapes of single-wall carbon nanotubes under hydrostatic pressure is concerned.

3. Axisymmetric Equilidrium Shapes

Suppose that a part of an axisymmetrically deformed SWCNT admits graph para-
metrization. This means that it may be thought of as a surface of revolution ob-
tained by revolving around the z-axis a plane curve Γ laying in the xOz-plane,
which is determined by the graph (x, z(x)) of a function z = z(x), see Fig. 1. For
each such surface the general shape equation (3) reduces to the following nonlinear
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Figure 1. Sketch of a surface of revolution obtained by revolving
around the z-axis a plane curve Γ laying in the xOz-plane, which is
defined by the graph (x, z(x)) of a function z = z(x). Here, φ is the
(tangent) slope angle.

third-order ordinary differential equation

cos3 φ
d3φ

dx3
= 4 sinφ cos2 φ

d2φ

dx2
dφ

dx
− cosφ

(
sin2 φ− 1

2
cos2 φ

)(
dφ

dx

)3

+
7 sinφ cos2 φ

2x

(
dφ

dx

)2

− 2 cos3 φ

x

d2φ

dx2 (4)

+

(
λ

kc
+

c20
2

− 2c0 sinφ

x
− sin2 φ− 2 cos2 φ

2x2

)
cosφ

dφ

dx

+

(
λ

kc
+

c20
2

− sin2 φ+ 2 cos2 φ

2x2

)
sinφ

x
− p

kc

(derived by Hu and Ou-Yang in [10]) where φ is the angle between the x-axis and
the tangent vector to the profile curve Γ, i.e., the tangent (slope) angle, considered
as a function of the variable x.
In 1995, Naito et al [16] discovered that the shape equation (4) has the following
class of exact solutions

sinφ = ax+ b+ dx−1 (5)
provided that a, b and d are real constants, which meet the conditions

p

kc
− 2a2c0 − 2a

(
c20
2

+
λ

kc

)
= 0 (6)

b

(
2ac0 +

c20
2

+
λ

kc

)
= 0 (7)

b
(
b2 − 4ad− 4c0d− 2

)
= 0 (8)

and
d
(
b2 − 4ad− 2c0d

)
= 0. (9)
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Three types of solutions of form (5) to equation (4) are distinguished in [16] on
the ground of conditions (6) – (9): (i) b = d = 0, (ii) d = 0, b = ±

√
2 and (iii)

b = 0. For the purposes of the present paper, however, it is convenient to classify
these solutions, which actually depend on the values of the constants c0, λ and p,
in another way. The following six types of solutions of form (5) to equation (4)
can be distinguished on the ground of conditions (6) – (9) depending on the values
of the constants c0, λ and p.
Case A. If c0 = 0, λ = 0, p = 0, then the solutions to equation (4) of the form (5)
are sinφ = ax, sinφ = ax±

√
2 and sinφ = dx−1, the respective surfaces being

spheres, Clifford tori and catenoids.
Case B. If c0 = 0, λ ̸= 0, p = 0, then the solutions of the considered type reduces
to sinφ = dx−1 (catenoids).
Case C. If c0 = 0, λ ̸= 0, p ̸= 0 and p = 2aλ, then only one branch of the regarded
solutions remains, namely sinφ = ax (spheres).
Case D. If c0 ̸= 0, λ = 0, p = 0, then one arrives at the whole family of Delaunay
surfaces (see [7, 8, 15]) corresponding to the solutions of the form

sinφ = −1

2
c0x+

d

x
· (10)

Case E. If c0 ̸= 0, λ ̸= 0, p = 0 and
λ

kc
= −1

2
c0 (2a+ c0)

one gets only solutions of the form sinφ = ax (spheres).
Case F. If c0 ̸= 0, λ ̸= 0, p ̸= 0, then four different types of solutions of form (5)
to equation (4) are encountered: (a) sinφ = ax (spheres) if

p

kc
= 2a

(
λ

kc
+ ac0 +

c20
2

)
(11)

(b) sinφ = ax±
√
2 (Clifford tori) if
p

kc
= −2a2c0,

λ

kc
= −1

2
c0 (4a+ c0) (12)

(c) solutions of the form (10) (Delaunay surfaces) if

p+ c0λ = 0 (13)

(d) solutions of the form

sinφ = −1

4
c0

(
b2 + 2

)
x+ b− 1

c0x
(14)

which take place provided that
p

kc
= −1

8
c30

(
b2 + 2

)2
,

λ

kc
=

1

2
c20

(
b2 + 1

)
. (15)
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4. Parametric Equations of the Unduloid-Like Surfaces

Below, we derive the parametric equations of the surfaces corresponding to the
solutions of form (14) to equation (4).
First, it is clear that the variable x must be strictly positive or negative, otherwise
the right-hand side of equation (5) is both undefined and its absolute value is greater
than one, which is in contradiction with the sin-function appearing in the left-hand
side of this relation.
Next, according to the meaning of the tangent angle

dz

dx
= tanφ (16)

which for the foregoing class of solutions (14) implies(
dz

dx

)2

=

[
b− 1

c0x
− 1

4c0
(
b2 + 2

)
x
]2

1−
[
b− 1

c0x
− 1

4c0 (b
2 + 2)x

]2 · (17)

In terms of an appropriate new variable t, relation (17) may be written in the form(
dx

dt

)2

= − 1

u2
Q1(x)Q2(x) (18)(

dz

dt

)2

=
1

4u2
(Q1(x) +Q2(x))

2 (19)

where

u = − 4

c0 (2 + b2)3/4

Q1(x) = x2 − 4 (b+ 1)

c0 (b2 + 2)
x+

4

c20 (b
2 + 2)

(20)

Q2(x) = x2 − 4 (b− 1)

c0 (b2 + 2)
x+

4

c20 (b
2 + 2)

· (21)

It should be noticed that the roots of the polynomial Q(x) = Q1(x)Q2(x) read

α =
2 sign (b)

c0
√
b2 + 2

h− 1

h+ 1
, β =

2 sign (b)

c0
√
b2 + 2

h+ 1

h− 1

γ =
4b

c0 (b2 + 2)
− α+ β

2
+ i

2
√
2|b|+ 1

c0 (b2 + 2)
(22)

δ =
4b

c0 (b2 + 2)
− α+ β

2
− i

2
√

2|b|+ 1

c0 (ϵ2 + 2)
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where

h =

√
1 + |b|+

√
2 + b2

1 + |b| −
√
2 + b2

· (23)

Hence, equation (18) has real-valued solutions if and only if at least tow of these
roots are real and different. Evidently, the roots γ and δ can not be real, but α and
β are real provided that |b| > 1/2 as follows be relations (22) and (23).
Now, using the standard procedure for handling elliptic integrals (see [24, §22.7]),
one can express the solution x(t) of equation (18) in the form

x(t) =
2 sign (b)

c0
√
b2 + 2

(
1− 2h

h+ cn(t, k)

)
(24)

where

k =

√
1

2
− 3

4
√
2 + b2

·

Consequently, using expressions (20) and (21), one can write down the solution
z(t) of equation (19) in the form

z (t) =
1

u

∫ [
x2(t)− 4 b x(t)

c0 (b2 + 2)
+

4

c20 (b
2 + 2)

]
dt. (25)

Finally, performing the integration in the right-hand-side of equation (25), one
obtains

z(t) = u

[
E(am(t, k), k)− sn(t, k) dn(t, k)

h+ cn(t, k)
− t

2

]
· (26)

Thus, for each couple of values of the parameters c0 and b, (24) and (26) are the
sought parametric equations of the contour of an axially symmetric unduloid-like
surface corresponding to the respective solution of the membrane shape equation
(4) of form (14).

(a) (b)

Figure 2. Unduloid-like surfaces obtained using the parametric equa-
tions (24) and (26) for: (a) p/kc = 0.6962, (b) p/kc = 1.1250.
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