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Abstract. Our work has been inspired among others by the work of Arnold,
Kozlov and Neihstadt. Our goal is to carry out a thorough analysis of the
geometric problems we are faced with in the dynamics of affinely rigid bod-
ies. We examine two models: classical dynamics description by d’Alembert
and vakonomic one. We conclude that their results are quite different. It is
not yet clear which model is practically better.

1. Introduction

One of the examples, which was very interesting for us, was an affinely rigid body,
i.e., a body rigid in the sense of affine geometry, in other words, homogeneously
deformable body. So, the subject of our interest is the case of uniformly deformable
objects. There are usually some groups responsible for the geometry of the phys-
ical space or space-time. Mostly it is such groups like the isometry group, affine
group, conformal group, Poincare group, Galilei group, etc. Configuration spaces
of various constrained continua very often happen to be homogeneous spaces of
those groups. One of the examples, which was very interesting for us, was a body
rigid in the sense of affine geometry. Such a body we call affinely rigid body. It
can be for instance the model of internal degrees of freedom in Eringen’s micro-
morphic continuum. There are also other interesting examples like, e.g., molecular
vibrations. Let us notice there is plenty of misunderstandings here. Often one does
not distinguish between two procedures: the first one of finding special solutions of
continua in terms of affine motion and the second one of the dynamically restricted
problem of affine motion. We are looking for the special solutions of unconstrained
problems, rather then of the constrained dynamics with its characteristic reaction
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Figure 1. Degrees of freedom of an affine body.

forces. An interesting argument is that both the deformation and stress tensors are
constant within the homogeneously deformable body.
Obviously, finite bodies with boundary cannot have a constant deformation tensor,
except theirs interior. In virtue of the d’Alembert principle, reactions responsible
for the affine rigidity do not vanish. However, their monopole and dipole distribu-
tions do vanish. It means that the total reaction force and the dipole distribution
of reactions do vanish. Because of this, if we describe the configuration of affine
body by

xi(r, φ; t) = ri(t) + φi
K(t)aK

then ri are coordinates of the centre of mass, φi
K are internal (relative) parameters,

and aK are material variables, as it is shown on the picture below.
To describe equations of motion we use the following symbols

• M is the total mass of the body

M =

∫
dµ

• JKL is the co-moving tensor of inertia in the material space, thus, constant

JKL =

∫
aKaLdµ(a)

• the centre of mass is placed at aK = 0, hence

JK =

∫
aKdµ(a) = 0

• F i is the total force

F i =

∫
F i(a)dµ(a)
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• NKL is the co-moving dipole of forces distribution, therefore, its spatial
(Eulerian) components are given by

N ij =

∫
φi

Kφj
La

KaLdµ(a) = φi
Kφj

L

∫
aKaLdµ(a).

Then using the above symbols we obtain that the equations of motion have the
form

M
d2ri

dt2
= F i, φi

K
d2φj

L

dt2
JKL = N ij .

Let us quote some alternative balance forms of the above equations of motion

dpi

dt
= F i,

dKij

dt
=

dφi
K

dt

dφj
L

dt
JKL +N ij

where pi is a linear momentum and K is an affine spin. Respectively they are
given in the form

pi = M
dri

dt
, Kij = φi

K
dφj

L

dt
JKL.

In other words
dpi

dt
= F i,

dKij

dt
= Ωi

mKmj

where Ωi
m is an affine speed, called also Eringen’s gyration. We define it as

follows

Ωi
j =

dφi
A

dt
φ−1A

j

or in the co-moving representation

Ω̂A
B = φ−1A

iΩ
i
jφ

j
B.

The kinetic energy is given by the sum of translational Ttr and internal Tint kinetic
energies:

T = Ttr + Tint =
M

2
gij

dri

dt

drj

dt
+

1

2
gij

dφi
K

dt

dφj
L

dt
JKL.

So let us quote the following formula

dKij

dt
= N ij + 2

∂Tint

∂gij
.

If Lagrangian is given by

L = T − V
(
ri, φi

K

)
then pi is a generator of spatial translations and Ki

j is a generator of affine rota-
tions about the centre of mass. The angular momentum Sij given by

Sij = Kij −Kji
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thus, if N ij is symmetric, then spin is conserved, i.e.,

dSij

dt
= N ij −N ji.

We deal here with the system of n2 + n = n(n + 1) degrees of freedom (in the
n-dimensional space; physically it is 12, when n = 3) and this is just half the
dimensionality of the general solution.
The forces are potential and given by

F i = −gij
∂V

∂rj

and the momentum of forces are

N ij = −φi
A

∂V

∂φk
A
gkj .

When there exist dissipative forces non-derivable from Lagrangian or Hamiltonian,
then there appear some additional terms. In the simplest case, we choose them just
linear or quadratic in generalized velocities dri/dt and dφi

k/dt.
Let us pay attention for the point that there are some additional geometric, namely
group-implied, forces imposed on the system. Gyroscopic constraints, or rather
pseudo-holonomic constraints of rigid motion, consist of the first equation. It
means that Ωi

j , Ω̂A
B are respectively g-skew-symmetric and η-skew-symmetric

angular velocities in spatial and co-moving representations,

Ωi
j = −Ωj

i = −gjkΩ
k
lg

li, Ω̂A
B = −Ω̂B

A = −ηBCΩ̂
C
Dη

DA

where g is the metric tensor of the physical space and η is the material metric.
It is easy to see that the above conditions are holonomic and may be written down
as the conditions of isometry,

gijφ
i
Aφ

j
B = ηAB.

Then the reaction moments NR are symmetric

NRij = NRji

and our equations are independent of explicitly non-specified reactions. Of course,
gyroscopic reactions do not vanish, but their full tensor contractions with skew-
symmetric affine virtual velocities (angular velocities) are vanishing in virtue of
constraints. So, if we are taking the skew-symmetric part of original equations, we
can eliminate reaction moments and then obtain the effective equations of motion.
Interesting is the case of incompressible body, i.e., when we consider isochoric
constraints. It is traditionally very familiar and important in continuum mechanics,
first of all in fluids. The traces of affine velocities do vanish then

Tr Ω = Ωi
i = 0.
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The total contractions of such virtual Ω-s with the reaction affine moment NR must
vanish:

NR
ijΩji = NR

ijΩk
igjk = 0.

It is easy to see that then reactions are pure traces

NR
i
j = λδij , NR

ij = λgij

where

λ =
1

n
Tr NR =

1

n
gijNR

ij .

So, to eliminate the Lagrange multiplier λ, we must take the constraints condition
(i.e., detφ = const) jointly with the g-traceless part of the initial equation itself,
i.e., explicitly

φi
A
d2φj

B

dt2
JAB − 1

n
gabφ

a
A
d2φb

B

dt2
JABgij = N ij − 1

n
gabN

abgij .

We can discuss constraints implied by the linear conformal group, the group gen-
erated by rotations and dilatations. In such a case an affine velocity (gyration) has
the form

Ωi
j = ωi

j + αδij

where ωi
j is the g-skew-symmetric angular velocity, and α is an arbitrary real,

dilatational parameter, so that

gijφ
i
Aφ

j
B = ληAB, λ > 0.

The reaction-free equations of motion consist of the skew-symmetric part of the
original equation and of the g-trace of that equation, and reaction moments NR

ij

are symmetric and g-traceless

φi
A
d2φj

B

dt2
JAB − φj

A
d2φi

B

dt2
JAB = N ij −N ji

gijφ
i
A
d2φj

B

dt2
JAB = gijN

ij .

At the end, let us quote some very interesting example of non-holonomic con-
straints, when Ω is g-symmetric, the purely rotation-free motion (of course, the
only geometrically correct definition)

Ωi
j − Ωj

i = Ωi
j − gjkg

ilΩk
l = 0.

Then the reactions forces are anti-symmetric. So, the above equation must be
joined with the symmetric part of equations of motion as balance laws

φi
A
d2φj

B

dt2
JAB + φj

A
d2φi

B

dt2
JAB = N ij +N ji.
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2. Vakonomic Constraints

Let Lagrangian of the dynamical system be L (q, q̇), i.e., it is a function of general-
ized coordinates q1, . . . , qn and their velocities, but we can also take the time into
a consideration explicitly, i.e., L (t, q, q̇).
Then the constraints are given by the following expressions

Fa (q, q̇) = 0, a = 1, . . . ,m

or in the second case it may be given by

Fa (t, q, q̇) = 0.

First of all, if the constraints are linear in velocities, then

Fa (q, q̇) = ωai (q) q̇
i = ωai (q)

dqi

dt

(the summation convention is supposed here).
The variational principle constrained by Fa = 0 is given by the following expres-
sions

δ

∫
L (q(t), q̇(t)) dt = 0, Fa (q(t), q̇(t)) = 0.

Remark 1. The variations δqi (t) are subject to constraints.

The Lusternik theorem give us that the last variational principle is equivalent to the
corresponding non-restricted principle

δ

∫
L [µ] (q(t), q̇(t))dt = 0

where µ is the Lagrange multiplier and L [µ] is given by the expression

L [µ] (q(t), q̇(t)) = L(q(t), q̇(t))− µaFa(q(t), q̇(t)).

Mathematically here µa are some a priori unknown functions of time.
The variational principle for L [µ] implies that for constraints which are linear in
velocities

Fa(q(t), q̇(t)) = ωai(q(t))q̇
i(t)

we can write the following equations of motion

d

dt

∂L

∂q̇i
− ∂L

∂qi
=

dµa

dt
ωai − µa

(
∂ωaj

∂qi
− ∂ωai

∂qj

)
q̇j

Fa(q(t), q̇(t)) = ωai(q(t))q̇
i(t) = 0.

This is the system of (n+m) differential equations for the (n+m) variables
qi (t) and µa (t) as functions of time.
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Correspondingly the constraints reactions are given as follows

Ri =
dµa

dt
ωai + µa

(
∂ωai

∂qj
− ∂ωaj

∂qi

)
dqj

dt
·

For the holonomic constraints

Fa (q) = 0, a = 1, . . . ,m

in the reaction forces survives only the first term and then they are given by the
d’Alembert expression

Ri = λaωai

with the multiplier λa = dµa/dt. We see that for the holonomic constraints the
variational procedure and d’Alembert principle are identical.
This variational procedure works smoothly also for constraints nonlinear in veloc-
ities and constraints imposed on higher-order time derivatives.

3. Non-variational Non-holonomic Constraints

Let Lagrangian be L (q, q̇) and the constraints

Fa (q, q̇) = 0, a = 1, . . . ,m

which in applications mostly often are linear in velocities

Fa (q, q̇) = ωai (q) q̇
i.

Then the d’Alembert principle give us the following equations of motion

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Ri

where Ri are reaction forces, which vanish on velocities compatible with con-
straints

ωai (q) q̇
i = 0, i.e., Riq̇

i = 0.

This implies that
Ri = λaωai

but without an additional term vanishing on all generalized velocities.
By analogy the similar expressions can be written also for systems with dissipa-
tive forces. The non-constrained dynamics is given by the following equations of
motion

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Di

where Di are covariant vectors of non-variational, e.g., friction forces.
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The corresponding constrained systems is given by the expressions

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Di +Ri

Fa (q(t), q̇(t)) = ωai(q)q̇
i = 0

where Ri are the reaction forces.
There are two prescriptions for calculating Ri, namely

1. The d’Alembert prescription

Ri = λaωai = 0, i.e., Riq̇
i = 0

for every virtual velocity satisfying the constraints
2. The vaconomic prescription

Ri =
dµa

dt
ωai + µa

(
∂ωai

∂qj
− ∂ωaj

∂qi

)
dqj

dt
·

4. Non-holonomic Constraints of Rotation-less Affine Motion

The affine motion is defined as follows

ξi(t) = ri(t) + φi
A(t)a

A

where ξi are Euler coordinates and aK are Lagrange coordinates.
Then the affine velocity is given by the expression

Ωi
j =

dφi
A

dt
φ−1A

j

and its co-moving counterpart is as follows

Ω̂A
B = φ−1A

i
dφi

B

dt
= φ−1A

iΩ
i
jφ

j
B.

For the gyroscopic (metrically rigid) motion we have that

Ωi
j +Ωj

i = Ωi
j + gjaΩ

a
bg

bi = 0

i.e., they are g-antisymmetric. This is non-holonomic description of holonomic
constraints. Skew-symmetric matrices form a Lie algebra and those equations are
integrated to the orthogonal group.
By analogy, the rotation-less motion is primarily described by

Ωi
j − Ωj

i = Ωi
j − gjkg

ilΩk
l = 0

i.e., by the g-symmetry. But symmetric matrices do not form a Lie algebra. More-
over thoe are non-holonomic constraints and they are not integrated to any sub-
manifold.
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The polar decomposition of φ can be written as follows

φ = UA

where U is an orthogonal (isometric) matrix and A is an η-symmetric one

U ∈ O(U, η;V, g) , A ∈ Symm(U, η)

i.e.,
ηAB = gijφ

i
Aφ

j
B, ηACA

C
B = ηBCA

C
A.

The co-moving angular velocity ω̂ of the U -rotator is given by

ω̂ = U−1dU

dt
·

The kinetic energy can be written as the sum of the translational and internal (rel-
ative) terms as follows

T = Ttr + Tint =
M

2
gij

dri

dt

drj

dt
+

1

2
gij

dφi
A

dt

dφj
B

dt
JAB

where m is the total mass and JAB is the co-moving tensor of inertia, i.e.,

m =

∫
dµ(a), JAB =

∫
aAaBdµ(a).

In the polar decomposition the internal kinetic energy Tint becomes as follows

Tint =
1

2
ηKL

dAK
A

dt

dAL
B

dt
JAB + ηKLω̂

K
CA

C
A
dAL

B

dt
JAB

+
1

2
ηKLω̂

K
C ω̂

L
DA

C
AA

D
BJ

AB.

Obviously, ω̂ is η-skew-symmetric

ηAC ω̂
C
B = −ηBC ω̂

C
A.

The g-symmetry constraints on Ω imply that

ω̂ =
1

2

[
A−1,

dA

dt

]
=

1

2

(
A−1dA

dt
− dA

dt
A−1

)
.

Substituting this to the expression for the internal kinetic energy Tint, we obtain
that

TVak
int =

1

2
ηKL

dAK
A

dt

dAL
B

dt
JAB

+
1

4
ηKLA

−1K
D
dAD

C

dt
AC

A
dAL

B

dt
JAB

+
1

8
ηKLA

−1K
E
dAE

C

dt
AC

AA
−1L

F
dAF

D

dt
AD

BJ
AB.
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The simplest vakonomic Lagrangian is obtained by putting

LVak
int = TVak

int + V (G)

where the potential V depends on the Green deformation tensor

GAB = gijφ
i
Aφ

j
B = ηCDA

C
AA

D
B.

As the Lagrangian is expressed through A and its time derivative dA/dt, we can
subject it directly to the variational procedure by the substitution

A → A+ δA

and developing the resulting δL up to the first-order terms in δA.

Remark 2. The matrix A is η-symmetric and so must be also λK
L in the expansion

δ

∫
LVakdt =

∫
λK

L

(
A(t), Ȧ(t), Ä(t)

)
δAL

K(t)dt.

But it needs not be so from the very calculation because the summation convention
removes the skew-symmetric part. However, the true final equations of motion must
be η-symmetric

Symηλ
K

L = λK
L + ηKAηLBλ

A
B = 0

i.e,
λKL + λLK = 0

where
λKL = ηKCλ

C
L.

One can show that for the usual (non-vakonomic) constraints of the rotation-less
motion the evolution of the system is given by the symmetric part of the following
tensor equation

AJη
d2A

dt2
− 1

2
AJηA

d

dt

[
A−1,

dA

dt

]
−AJη

d

dt

[
A−1,

dA

dt

]
+

1

4
AJηA

d

dt

[
A−1,

dA

dt

]2
= N

where

Jη
K

L = JKMηML, N
KL

=AK
MAL

N N̂MN

N̂AB =φ−1A
iφ

−1B
jN

ij , N ij =− gjkφi
M

∂V
∂φk

M
·

Solving the symmetric part of our equations for A, we find A(t), then we substitute
it to ω̂ and solving equation

dU

dt
= Uω̂
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we find U(t). Finally, substituting it to

φ(t) = U(t)A(t)

we solve the problem, at least in principle.
The structures of vakonomic and d’Alembert equations are evidently different.
The variational derivative of TVak

int with respect to the symmetric tensor

AAB = ηACA
C
B = ABA

is given by

δTVak
int

δAAB

∣∣∣∣
symm

= −1

4

d2

dt2
A(A

LJ
B)L − 1

4

d

dt

((
A−1

)
(A

EJ
B)LdA

E
C

dt
AC

L

)
−1

4
ηKL

d

dt

(
dAK

E

dt

(
A−1

)
L(AAB)

D

)
JED

−1

4
ηKL

d

dt

((
A−1

)K
E
dAE

C

dt
AC

F

(
A−1

)
L(AAB)

D

)
JFD

−1

4
ηKL

dAK
E

dt

dAF
D

dt
AD

G

(
A−1

)
L(A

(
A−1

)
B)

FJ
EG

−1

4
ηKL

(
A−1

)K
E
dAE

C

dt
AC

M
dAF

D

dt
AD

N

(
A−1

)
L(A

(
A−1

)
B)

FJ
MN

+
1

4
ηKL

dAK
D

dt

(
A−1

)L
E
dAE(A

dt
JB)D

+
1

4
ηKL

(
A−1

)K
E
dAE

C

dt
AC

D

(
A−1

)L
F
dAF (A

dt
JB)D.

When there are hyperelastic forces derivable from the potential V depending only
on the Green deformation tensor, then equations of motion have the following form

δTVak
int

δAAB

∣∣∣∣
symm

= −AKCη
K(AN̂B)C

where
N̂BC = − (DV)BC .

In spite of their apparently complicated structure, the above equations are readable.
And having them solved for the time dependence of AAB , we obtain the time de-
pendence of ω̂, and then, solving (in principle) equation defining ω̂ for dependence
t → U(t), we finally obtain (in principle) φ = UA.
Let us mention that all tensor indices are shifted from their natural position with
the help of η.
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The usual d’Alembert procedure leads to the following less readable form

JAB d2AB(C

dt2
AD)

A − JA
BA

B
E
d

dt

1

2

((
A−1

)E
F
d

dt

(
AF (C

)
AD)

A

− d

dt

(
AE

F

) (
A−1

)F (C
AD)

A

)
− JA

B
dAB

E

dt

((
A−1

)E
F
d

dt

(
AF (C

)
AD)

A

− d

dt

(
AE

F

) (
A−1

)F (C
AD)

A

)
+

1

4
JA

BA
B
E

((
A−1

)E
G
d

dt

(
AG

F

)
− d

dt

(
AE

G

) (
A−1

)G
F

)((
A−1

)F
H

d

dt

(
AH(C

)
AD)A

− d

dt

(
AF

H

) (
A−1

)H(C
AD)

A

)
= N

(CD)
.
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Strange Features of the Galilei Group, J. Geom. Symmetry Phys. 26 (2012) 33–59.

[5] Gutowski R., Analytical Mechanics (in Polish), Polish Scientific Publishers – PWN,
Warszawa 1971.
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