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Abstract. We consider an integrable hierarchy of nonlinear evolution equa-
tions (NLEE) related to linear bundle Lax operator L. The Lax representa-
tion is Z2 × Z2 reduced and can be naturally associated with the symmetric
space SU(3)/S(U(1)×U(2)). The simplest nontrivial equation in the hier-
archy is a generalization of Heisenberg ferromagnetic model. We construct
the N -soliton solutions for an arbitrary member of the hierarchy by using
the Zakharov-Shabat dressing method with an appropriately chosen dressing
factor. Two types of soliton solutions: quadruplet and doublet solitons are
found. The one-soliton solutions of NLEEs with even and odd dispersion
laws have different properties. In particular, the one-soliton solutions for
NLEEs with even dispersion laws are not traveling waves while their veloc-
ities and amplitudes are time dependent. Calculating the asymptotics of the
N -soliton solutions for t → ±∞ we analyze the interactions of quadruplet
solitons.
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1. Introduction

The main object of present paper is the following coupled system of equations

iut + uxx + (uu∗x + vv∗x)ux + (uu∗x + vv∗x)xu = 0

ivt + vxx + (uu∗x + vv∗x)vx + (uu∗x + vv∗x)xv = 0
(1)

where the smooth functions u : R2 → C and v : R2 → C satisfy the algebraic con-
straint |u|2+|v|2 = 1. The system (1) is a natural candidate to be a multicomponent
generalisation of the classical Heisenberg ferromagnetic (HF) equation. It is well
known [32] that the Heisenberg ferromagnetic model is integrable in the sense of
inverse scattering method (ISM). It has a Lax pair related to the algebra su(2).
Since the time the complete integrability of HF equations was discovered, many
attempts for its generalization have been made [20–22]. A well known method
[10,12,24,26–31] to obtain new integrable nonlinear evolution equations (NLEE)
is based on imposing certain algebraic reductions on generic Lax operators. Lax
pairs associated to hermitian symmetric spaces represent a special interest in mod-
ern theory of integrable systems is study of NLEEs [1, 7, 8, 11] since the NLEEs
they produce look relatively simple.
The system (1) is also integrable in the sense of ISM. Its Lax operators are associ-
ated with the symmetric space SU(3)/S(U(1)×U(2)) with a Z2 × Z2 reduction
imposed on them [13, 15, 16].
The purpose of the present paper is to derive the soliton solutions for the integrable
hierarchy of equations related to (1) and analyse the interactions between them.
That is why this work is a natural continuation of our previous papers [13, 15, 16].
In Section 2 we start with some basic facts to be used further in the paper. Firstly
we describe the hierarchy of nonlinear equations related to (1) in terms of recursion
operators. Then we outline the spectral properties of the relevant Lax operator and
formulate direct scattering problem. The spectrum of scattering operatorL consists
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of a continuous and a discrete parts. As a result of the Z2 reductions L possesses
two configurations of discrete eigenvalues: generic ones, coming in quadruplets
±λk, ±λ∗k and purely imaginary ones coming as doublets ±iκj .

In Section 3 we derive the one-soliton solutions for the NLEEs of the hierarchy. For
this to be done we apply the Zakharov-Shabat dressing method [34–36, 38] with
a rational dressing factor with two simple poles. Due to the action of reductions
we have two types of one-soliton solutions: quadruplet solitons correspondinf to
four eigenvalues and doublet ones corresponding to two eigenvalues respectively.
We present explicit expressions for these two types of one-soliton solutions. In
order to construct general multisoliton solutions we discuss two different purely
algebraic constructions: by using a multiple pole dressing factor and by apply-
ing “one-soliton” dressing factors several times consecutively. It turns out that
the properties of the one-soliton solutions to NLEEs with even and odd dispersion
laws differ drastically. For example, the one-soliton solutions for NLEEs with even
dispersion laws are not traveling waves. Even the doublet soliton of equation (1)
exhibits two maxima (respectively minima) for |u1| (respectively for |v1|) which
first come closer to each other and then move away, one to ∞ and the other to
−∞ as time goes to t → ∞. Their velocity, as well as their amplitudes are time
dependent. These properties are similar to the ones of the boomerons and trappons
discovered by Calogero and Degasperis [2–5]. At the same time the soliton solu-
tions to the NLEEs with odd dispersion laws (e.g. the solutions of equation (19))
behave as standard solitons, i.e., they are traveling waves.

Section 4 is dedicated to interactions of quadruplet soliton solutions for the NLEE
with odd dispersion laws. In order to do this we use the classical method of Za-
kharov and Shabat, see the monographs [32,34] for a detailed exposition. Namely,
we calculate the limits of the N -soliton solutions for t → ±∞ assuming that all
solitons move with different velocities. In this way we establish that the solitons
preserve their velocities and amplitudes; the only effect of their interaction consists
in shifts of the relative mass center and the phase of solitons. We provide explicit
expressions for these shifts in terms of the poles µk of the dressing factors.

In Section 5 we briefly discuss the conservation laws of the NLEE and end up with
some conclusions.

2. Preliminaries

In this section we shall expose in brief some basic facts on Lax operators and direct
scattering problem for the integrable hierarchy of the equation (1). In doing this
we shall use a gauge covariant formulation [14, 17–19].
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2.1. Polynomial Lax Pair Related to SU(3)/S(U(1)×U(2))

The NLEEs under consideration in this paper represent a zero curvature condition
[L,A] = 0 for Lax operators L and A in the form

L(λ) = i∂x + λL1(x, t) (2)

A(λ) = i∂t +

N∑
k=1

λkAk(x, t) (3)

where λ ∈ C is the so-called spectral parameter and the functions L1 and Ak, k =
1, . . . , N take values in sl(3,C). The Lax operators are subject to the following Z2

reductions

L†(λ∗) = −L̆(λ), A†(λ∗) = −Ă(λ) (4)

CL(−λ)C = L(λ), CA(−λ)C = A(λ) (5)

where C = diag (1,−1,−1) and the operation ˘ is defined as given by the formula

L̆(λ)ψ(x, t, λ) ≡ i∂xψ(x, t, λ)− λψ(x, t, λ)L1(x, t, λ).

Due to reduction (4) the matrix coefficients of the Lax pair are hermitian matri-
ces. On the other hand the reduction (5) represents an action of Cartan’s invo-
lutive automorphism which defines the symmetric space SU(3)/S(U(1)×U(2)),
see [23, 25]. It induces a Z2-grading in the Lie algebra sl(3,C)

sl(3) = sl0(3)⊕ sl1(3), slσ(3) = {X ∈ sl(3) ; CXC = (−1)σX}. (6)

It is evident that L1, Ak ∈ sl1(3) for k being an odd integer and Ak ∈ sl0(3)
otherwise. This means that Ak for even k are block-diagonal matrices of the form

Ak =

 ∗ 0 0
0 ∗ ∗
0 ∗ ∗


while L1 and Ak for odd k have the complementary block structure. In particular,
L1 is written as

L1 =

 0 u v
u∗ 0 0
v∗ 0 0

 . (7)

The potential L1 is required to obey the following conditions

1. The eigenvalues of L1 are 0,±1, i.e., the potential satisfies the characteristic
equation L3

1 = L1.
2. The function L1(x, t)− L± where

lim
x→±∞

L1(x, t) = L± =

 0 0 eiϕ±

0 0 0
e−iϕ± 0 0

 , ϕ± ∈ R (8)
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is a Schwartz type function, i.e., it is infinitely smooth and tends to 0 faster
than any polynomial when |x| → ∞.

The grading (6) means that any function X with values in sl(3) can be split as
follows

X = X0 +X1, X0,1 ∈ sl0,1(3). (9)

Let us define the Killing form for sl(3) as follows

⟨X,Y ⟩ = tr (XY ), X, Y ∈ sl(3).

Then each component X0,1 splits into a term commuting with L1 and its orthogo-
nal complement with respect to the Killing form

X0 = X0,⊥ + κ0L2, L2 = L2
1 −

2

3
11, ⟨X0,⊥, L2⟩ = 0 (10)

X1 = X1,⊥ + κ1L1, ⟨X1,⊥, L1⟩ = 0. (11)

As a simple consequence of condition 1 aboveL1 andL2 are normalized as follows

⟨L1, L1⟩ = 2, ⟨L2, L2⟩ =
2

3
· (12)

Therefore the coefficients κ0 and κ1 are given by the following equalities

κ0 =
3

2
⟨X0, L2⟩, κ1 =

1

2
⟨X1, L1⟩. (13)

The zero curvature condition [L,A] = 0 for the pair (2), (3) leads to certain recur-
rence relations for the matrix coefficients of L and A, see [13]. Resolving them
allows one to express Ak in terms of L1 and its x-derivatives of order up to N − k.
Since the maximal order term in the operatorAmust commute with L1 there exists
two options

a) AN = c2pL2, if N = 2p

b) AN = c2p+1L1, if N = 2p+ 1

where c2p and c2p+1 are constants. Then a more detailed analysis [13] shows that
the NLEEs look as follows

a) iad−1
L1
L1,t +

p∑
q=1

c2q(Λ1Λ2)
qL2 +

p−1∑
q=0

c2q+1(Λ1Λ2)
qΛ1L1 = 0

b) iad−1
L1
L1,t +

p∑
q=1

c2q(Λ1Λ2)
qL2 +

p∑
q=0

c2q+1(Λ1Λ2)
qΛ1L1 = 0.

(14)
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The integro-differential operators Λ1 and Λ2 appeared above are given by

Λ1 = −iad−1
L1

(
π∂x(·)−

1

2
L1,x∂

−1
x ⟨∂x(·), L1⟩

)

Λ2 = −iad−1
L1

(
π∂x(· )−

3

2
L2,x∂

−1
x ⟨∂x(· ), L2⟩

) (15)

where projection π := ad−1
L1

ad L1 cuts all L1-commuting parts off. The operator

ΛX :=

{
Λ1Λ2X, X ∈ sl0(3)

Λ2Λ1X, X ∈ sl1(3)

is called a recursion operator. It can be viewed as an adjoint representation of
the operator L. Its existence manifests the hierarchies associated with NLEE (non-
linear equations, integrals of motion, simplectic forms etc) and thus plays a very
important role in the theory of solitons.

Example 1. Consider the simplest case when N = 2. Then the matrix coefficients
of the second Lax operator A read

A2 = −

 1/3 0 0
0 |u|2 − 2/3 u∗v
0 v∗u |v|2 − 2/3

 , A1 =

 0 a b
a∗ 0 0
b∗ 0 0

 (16)

a = iux + i(uu∗x + vv∗x)u, b = ivx + i(uu∗x + vv∗x)v. (17)

This L-A pair produces the two-component system
iut + uxx + (uu∗x + vv∗x)ux + (uu∗x + vv∗x)xu = 0

ivt + vxx + (uu∗x + vv∗x)vx + (uu∗x + vv∗x)xv = 0
(18)

we started our paper with (see (1)).

For completeness here we present another member of the hierarchy (14). It is the
simplest NLEE corresponding to an odd dispersion law.

Example 2. Consider the case when f(λ) = −8λ3J , i.e., c3 = −8, c2 = c1 = 0.
Then the corresponding two-component system obtains the form

ut = 8uxxx + 12(uu∗x + vv∗x)uxx + r(u, v)ux + s(u, v)u

vt = 8vxxx + 12(uu∗x + vv∗x)vxx + r(u, v)vx + s(u, v)v
(19)

where
r(u, v) = 3

[
4(|ux|2 + |vx|2) + 5(uu∗x + vv∗x)

2 + 6(uu∗x + vv∗x)x
]

s(u, v) = 3
[
2(uu∗x + vv∗x)xx + 4(|ux|2 + |vx|2)x + 5(uu∗x + vv∗x)

2
x

]
.
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Sometimes it is more convenient to deal with Lax operators written in canonical
gauge. In this gauge the operator (2) looks as follows

L̃(λ) = g−1Lg = i∂x + U0(x, t) + λJ, J = diag (1, 0,−1) (20)

where

g =

√
2

2

 1 0 −1

u∗
√
2v u∗

v∗ −
√
2u v∗

 . (21)

The second Lax operator (3) is given by

a) Ã(λ) = i∂t +

N−1∑
k=0

λkÃk(x, t) + cNλ
NI, N = 2p

b) Ã(λ) = i∂t +
N−1∑
k=0

λkÃk(x, t) + cNλ
NJ, N = 2p+ 1

(22)

where I = g−1L2 g = diag (1/3,−2/3, 1/3).

2.2. Direct Scattering Problem

In order to formulate a direct scattering problem for L, one needs to introduce the
auxiliary spectral linear system

L(λ)ψ(x, t, λ) = i∂xψ(x, t, λ) + λL1(x, t)ψ(x, t, λ) = 0. (23)

Here ψ denotes a fundamental set of solutions or a fundamental solution for short.
Since the operators (2) and (3) commute ψ also satisfies

A(λ)ψ(x, t, λ) =

(
i∂t +

N∑
k=1

λkAk(x, t)

)
ψ(x, t, λ) = ψ(x, t, λ)f(λ) (24)

as well. The matrix-valued function

f(λ) = lim
x→±∞

g−1
±

N∑
k=1

λkAk(x, t)g± (25)

is called dispersion law of the nonlinear equation (14). The unitary matrix

g± = lim
x→±∞

g(x, t) =
1√
2

 1 0 −1

0
√
2 eiϕ± 0

e−iϕ± 0 e−iϕ±
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diagonalizes the asymptotics L1,± = limx→±∞ L1(x, t). It can be proven that the
dispersion law of (14) reads

a) f(λ) =

p−1∑
q=0

c2q+1λ
2q+1J +

p∑
q=1

c2qλ
2qI

b) f(λ) =

p∑
q=0

c2q+1λ
2q+1J +

p∑
q=1

c2qλ
2qI.

(26)

The dispersion law of the two-component system (18) is −λ2I and that of (19) is
−8λ3J . It is evident from (26) that f(λ) obeys the splitting

f(λ) = f0(λ)I + f1(λ)J (27)

which is a result of the Z2 grading (6) of the Lie algebra sl(3).
A special type of fundamental solutions are the so-called Jost solutions ψ± which
are normalized as follows

lim
x→±∞

ψ±(x, t, λ)e
−iλJxg−1

± = 11. (28)

Due to (25) one can show that the asymptotic behavior of ψ± do not depend on
time and thus the definition is correct. The transition matrix

T (t, λ) = [ψ+(x, t, λ)]
−1ψ−(x, t, λ) (29)

is called scattering matrix. It can be easily deduced from relation (24) that the
scattering matrix evolves with time according to the linear differential equation

i∂tT + [f(λ), T ] = 0 (30)

which is integrated straight away to give

T (t, λ) = eif(λ)tT (0, λ)e−if(λ)t. (31)

From now on the parameter t will be fixed and we shall omit it to simplify our
notation. Due to reasons of simplicity we set ϕ+ = ϕ− = 0 as well.
The action of Z2-reductions (4), (5) imposes the following restrictions[

ψ†
±(x, λ

∗)
]−1

= ψ±(x, λ),
[
T †(λ∗)

]−1
= T (λ)

Cψ±(x,−λ)C = ψ±(x, λ), CT (−λ)C = T (λ)
(32)

on the Jost solutions and the scattering matrix.
The continuous spectrum of L fills up the real axis in the complex λ-plane. Thus
the λ-plane is divided into two regions denoted by C+ (the upper half plane) and
C− (the lower half plane). These regions represent the domains for the funda-
mental solutions χ+(x, λ) and χ−(x, λ) to be analytic functions in C+ and C−
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respectively [16]. The fundamental analytic solutions (FAS) can be constructed
by using Gauss factors in the decomposition of the scattering matrix

T (λ) = T∓(λ)D±(λ)(S±(λ))−1. (33)

The matrices S+ and T+ are upper triangular, S− and T− are lower triangular and
D± are diagonal ones. Then χ+ and χ− are expressed as follows

χ±(x, λ) = ψ−(x, λ)S
±(λ) = ψ+(x, λ)T

∓(λ)D±(λ). (34)

Due to relations (34) the FAS can be interpreted as solutions to a local Riemann
problem

χ+(x, λ) = χ−(x, λ)G(x, λ), G(λ) = (S−(λ))−1S+(λ). (35)

The established interrelation between the inverse scattering method and the Rie-
mann problem plays an important role in constructing solutions to NLEEs through
dressing method.
It can be shown that the reduction conditions (32) and equation (33) lead to the
following demands on the Gauss factors[

S+(λ∗)
]†

= [S−(λ)]−1, C̃S±(−λ)C̃ = S∓(λ)[
T+(λ∗)

]†
= [T−(λ)]−1, C̃T±(−λ)C̃ = T∓(λ)[

D+(λ∗)
]†

= [D−(λ)]−1, C̃D±(−λ)C̃ = D±(λ)

(36)

where

C̃ =

 0 0 1
0 1 0
1 0 0

 .

Finally, combining all this information we see that the FAS obey the symmetry
conditions[

χ+(x, λ∗)
]
= [χ−(x, λ)]−1, Cχ+(x,−λ)C = χ−(x, λ). (37)

3. Dressing Method and Soliton Solutions

As we mentioned in the previous section the inverse scattering method is tightly
related to Riemann-Hilbert problem. The Riemann-Hilbert problem possesses two
types of solutions: regular ones (without singularities) and singular ones. Singular
solutions can be generated by dressing regular solutions with a factor which has
prescribed singularities. The simplest types of singularities are first order poles and
zeroes. It can be proven that they correspond to poles of the resolvent of L. Hence
they are discrete eigenvalues of the Lax operator (2). The discrete eigenvalues of
L form orbits of the reduction group Z2 × Z2. There exist two types of orbits:
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generic orbits containing quadruplets of eigenvalues {±µ,±µ∗} and degenerate
orbits consisting of two imaginary eigenvalues ±iκ (doublets).

There is a very deep connection between singular solutions to Riemann-Hilbert
problem and soliton solutions to the corresponding nonlinear problem. In the
present section we are going to analyze the soliton solutions to the system (14).
For this to be done, we are going to apply the dressing method proposed in [38]
and developed in [28, 29, 35, 36]. We demonstrate that the NLEE (14) has two
types of one-soliton solutions: doublet soliton to be connected with two imaginary
discrete eigenvalues of L and quadruplet soliton connected to four eigenvalues.

3.1. Rational Dressing

The dressing method is an indirect method for solving a NLEE possessing a Lax
representation. This means that it allows one to generate a solution to the NLEE
starting from a known one. Let us assume we know a solution

L
(0)
1 =

 0 u0 v0
u∗0 0 0
v∗0 0 0


of (14) and a fundamental solution ψ0(x, t, λ) of the auxiliary linear problems

L(0)(λ)ψ0 = i∂xψ0 + λL
(0)
1 ψ0 = 0

A(0)(λ)ψ0 = i∂tψ0 +

N∑
k=1

λkA
(0)
k ψ0 = 0.

(38)

Then one constructs another function ψ1(x, t, λ) = Φ(x, t, λ)ψ0(x, t, λ) to be a
common solution to

L(1)(λ)ψ1 = i∂xψ1 + λL
(1)
1 ψ1 = 0

A(1)(λ)ψ1 = i∂tψ1 +

N∑
k=1

λkA
(1)
k ψ1 = 0

(39)

where the potential

L
(1)
1 =

 0 u1 v1
u∗1 0 0
v∗1 0 0
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is to be found. From (38) and (39) it follows that the dressing factor Φ(x, t, λ)
satisfies the following equations

i∂xΦ+ λL
(1)
1 Φ− λΦL

(0)
1 = 0 (40)

i∂tΦ+

N∑
k=1

λkA
(1)
k Φ− Φ

N∑
k=1

λkA
(0)
k = 0. (41)

We also assume that the dressing factor is regular at |λ| → 0,∞. Then from (40)
one can derive the following relation between L(1)

1 and L(0)
1

L
(1)
1 (x, t) = Φ(x, t,∞)L

(0)
1 (x, t)Φ†(x, t,∞). (42)

This equation will play a central role in our further considerations since it allows
one to generate a new solution to (14) from the given one L(0)

1 .
Due to the reduction conditions (4), (5) the dressing factor obeys the symmetries

CΦ(x, t,−λ)C = Φ(x, t, λ) (43)

Φ(x, t, λ)Φ†(x, t, λ∗) = 11. (44)

In order to obtain a nontrivial dressing we choose Φ(x, t, λ) as a rational function1

of λ with a minimal number of simple poles. At first we shall consider the case
when these poles are generic complex numbers. Hence the dressing factor looks as
follows

Φ(x, t, λ) = 11 +
λM(x, t)

λ− µ
+
λCM(x, t)C

λ+ µ
(45)

where ℜµ ̸= 0, ℑµ ̸= 0. It is evident that the reduction condition (43) is fulfilled.
On the other hand (44) leads to the conclusion that

Φ−1(x, t, λ) = 11 +
λM †(x, t)

λ− µ∗
+
λCM †(x, t)C

λ+ µ∗
· (46)

The identity Φ(λ)Φ−1(λ) = 11 must hold for any λ. Therefore after equating the
residue at λ = µ∗ to 0 one gets the equation(

11 +
µ∗M(x, t)

µ∗ − µ
+
µ∗CM(x, t)C

µ∗ + µ

)
M †(x, t) = 0. (47)

The rest of algebraic relations can be reduced to (47) due to the symmetry condi-
tions (4), (5).

1If Φ is λ-independent then it does not depend on x and t either. Thus (42) produces simply a unitary
transformation of L(0)

1 which is not essential because of U(2) gauge symmetry of the model.
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The residue M ought to be singular since otherwise it should be proportional to 11
and the dressing becomes trivial. It suffices to consider the case rankM = 1. Then
M can be decomposed in the following manner

M = |n⟩⟨m|, |n⟩ = (n1, n2, n3)
T , ⟨m| = (m∗

1,m
∗
2,m

∗
3). (48)

After substituting this representation into (47) one derives a linear system for the
three-vector |n⟩

|m⟩ − µ∗|n⟩⟨m|m⟩
2iκ

+
µ∗C|n⟩⟨m|C|m⟩

2ω
= 0 (49)

where we have used the notation ω = ℜµ, κ = ℑµ. The solution of (49) reads

|n⟩ = 1

µ∗

(
⟨m|m⟩
2iκ

− ⟨m|C|m⟩
2ω

C

)−1

|m⟩. (50)

The vector |m⟩ is an element of the projective space CP 2. Indeed, it is evident that
a rescaling |m⟩ → h|m⟩ with any complex h ̸= 0 does not change the matrix M .
Taking into account the ansatz (45) one can rewrite (42) as

L
(1)
1 = (11 +M +CMC)L

(0)
1 (11 +M +CMC)†. (51)

Notice that the dressing procedure preserves the matrix structure of L since the
factor 11 +M +CMC is a block-diagonal matrix.
We have expressed all quantities needed in terms of |m⟩ and now it remains to find
|m⟩ itself. For that purpose we rewrite equations (40), (41) in the form

Φ(x, t, λ)
(
i∂x + λL

(0)
1

)
Φ−1(x, t, λ) = λL

(1)
1

Φ(x, t, λ)

(
i∂t +

N∑
k=1

λkA
(0)
k

)
Φ−1(x, t, λ) =

N∑
k=1

λkA
(1)
k .

(52)

It is obviously satisfied at λ = 0. After equating the residues of (52) at λ = µ∗ to
0 we obtain a set of the differential equations(

11 +
µ∗M

µ∗ − µ
+
µ∗CMC

µ∗ + µ

)(
i∂x + µ∗L

(0)
1

)
|m⟩ = 0(

11 +
µ∗M

µ∗ − µ
+
µ∗CMC

µ∗ + µ

)(
i∂t +

N∑
k=1

(µ∗)kA
(0)
k

)
|m⟩ = 0.

(53)

Taking into acount (47) the equations above can be reduced to(
i∂x + µ∗L

(0)
1 (x, t)

)
|m(x, t)⟩ = h(x, t)|m(x, t)⟩(

i∂t +

N∑
k=1

(µ∗)kA
(0)
k (x, t)

)
|m(x, t)⟩ = h(x, t)|m(x, t)⟩

(54)
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for some arbitrary function h. At this point we recall that the vectors in the decom-
position (48) are not uniquely determined. Indeed, the operation |n⟩ → B−1|n⟩
and |m⟩ → B†|m⟩ for any nondegenerate 3×3 matrixB produces another decom-
position of M . It is not hard to see that it is always possible to choose B in such a
way that h ≡ 0 is fulfilled. Thus from (54) it follows that |m(x, t)⟩ is proportional
to some fundamental solution ψ0(x, t, λ) of the bare linear problem, namely

|m(x, t)⟩ = ψ0(x, t, µ
∗)|m0⟩ (55)

where |m0⟩ ∈ C3\{0} is a constant vector of integration. The new solution L(1)
1

of (14) and the solution ψ1(x, t, λ) of the corresponding linear system are param-
eterized by a complex number µ and a complex three-vector |m0⟩.
Thus we have proved the following

Proposition 3. Let L(0)
1 be a solution of (14) and ψ0(x, t, λ) be a common solu-

tion to (38). Let also µ be a complex number to fulfill ℜµ ̸= 0, ℑµ > 0 and
|m0⟩ ∈ C3\{0}. Then the matrix-valued function L(1)

1 (x, t) defined by (51) where
M = |n⟩⟨m| is determined by (50) and (55) is a solution to (14) as well. The cor-
responding fundamental solution ψ1(x, t, λ) of (39) is given by ψ1 = Φψ0 where
Φ(x, t, λ) is determined by (45), (48), (50) and (55).

Let us now consider the case when the poles of the dressing factor are imaginary,
i.e., we have

Φ(x, t, λ) = 11 + λ

(
M(x, t)

λ− iκ
+

CM(x, t)C

λ+ iκ

)
, κ ̸= 0. (56)

Then Φ−1 has the same poles as Φ and therefore the equality ΦΦ−1 = 11 already
contains second order poles. In this case the natural requirement of vanishing of
the matrix coefficients before (λ − iκ)−2 and (λ − iκ)−1 leads to the algebraic
relations

MCM † = 0 (57)(
11 +M +

CMC

2

)
CM †C+M

(
11 +CM †C+

M †

2

)
= 0. (58)

As before in order to obtain a nontrivial result M is required to be a degenerate
matrix, i.e., the decomposition (48) holds true. Then relation (57) is rewritten as

⟨m|C|m⟩ = 0. (59)

The relation (58) in its turn can be easily reduced to the following linear system
for three-vector |n⟩ (

11 +
C|n⟩⟨m|C

2

)
C|m⟩ = iσ|n⟩ (60)
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by introducing some auxiliary real function σ. That linear system allows one to
express |n⟩ through ⟨m| and σ, namely

|n⟩ =
(
iσ − ⟨m|m⟩

2
C

)−1

C|m⟩. (61)

In order to find |m⟩ and σ we turn back to the equations (52). Vanishing of the
second order poles in (52) leads to the conclusion that

|m(x, t)⟩ = ψ0(x, t,−iκ)|m0⟩ (62)

where |m0⟩ is a constant nonzero three-vector. After substituting (62) into (59) and
taking into account (4) one convinces himself that the components of the polariza-
tion vector |m0⟩ are no longer independent but satisfy the constraint

⟨m0|C|m0⟩ = 0 ⇔ |m0,1|2 = |m0,2|2 + |m0,3|2. (63)

The vanishing condition of the first order poles leads to some differential constraint
on σ(x, t) which is integrated to give

σ(x, t) = −κ⟨m0|ψ−1(x, t, iκ)ψ̇0(x, t, iκ)C|m0⟩+ σ0 (64)

where σ0 ∈ R is a costant of integration.
Thus to calculate the soliton solution itself one just substitutes the result for |n⟩ and
|m⟩ into M and uses formula (51). As it is seen the new solution is parametrized
by the polarization vector |m0⟩, the real number σ0 and the pole iκ. All this can be
formulated as the following

Proposition 4. Let there be given a solution L(0)(x, t) to (14), a common solution
ψ0(x, t, λ) to (38), real numbers κ > 0, σ0 and a complex nonzero vector |m0⟩
satisfying (63). Then the function L(1)

1 (x, t) determined by (51), (48), (61), (62)
and (64) is a solution of the system (14) too. The solution ψ1(x, t, λ) of the dressed
linear system (39) is given by ψ1 = Φψ0 where Φ is defined by (56), (48), (61),
(62) and (64).

One can apply the dressing procedure repeatedly to build a sequence of exact so-
lutions

L
(0)
1

Φ1−→ L
(1)
1

Φ2−→ . . .
ΦN−→ L

(N)
1 . (65)

More precisely this alternative procedure will be explained in Section 4.

3.2. Soliton Solutions

Let us apply the dressing procedure to the following seed solution

L
(0)
1 (x, t) =

 0 0 1
0 0 0
1 0 0

 (66)
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of equation (14). In this case a fundamental solution to (38) reads

ψ0(x, t, λ) =

 cos z(x, t)e
if0(λ)t

3 0 i sin z(x, t)e
if0(λ)t

3

0 e
−2if0(λ)t

3 0

i sin z(x, t)e
if0(λ)t

3 0 cos z(x, t)e
if0(λ)t

3

 (67)

where z(x, t) = λx+ f1(λ)t. We recall that f0(λ) and f1(λ) are even and odd part
of the dispersion law induced by the Z2 grading of sl(3), see (27).
We are going to consider the generation of a quadruplet soliton first. In this case
one uses factor (45). It is convenient to decompose the polarization vector |m0⟩
according to the eigensubspaces of the endomorphism ψ0 (67)

|m0⟩ = α

 1
0
1

+ β

 1
0

−1

+ γ

 0
1
0

 (68)

where α, β, γ are arbitrary complex constants.
If the vector |m0⟩ is proportional to one of the eigenvectors of the endomorphism
ψ0, then the corresponding matrixM does not depend on the variables x and t (due
to the projective nature of the vector |m⟩) and the corresponding solution (51) is a
simple unitary rotation of the constant solution L(0)

1 .
Thus elementary solitons correspond to vectors |m0⟩, belonging to essentially two-
dimensional invariant subspaces of ψ0, i.e., they correspond to polarization vectors
with only one zero coefficient in the expansion (68). Let us consider each of these
three cases in more detail.

Case i) α ̸= 0, β ̸= 0, γ = 0

The one-soliton solution is given by

u1(x, t) = 0

v1(x, t) = exp

{
4i arctan

(
κ cos(2ωx+ 2fR1 (µ)t+ ϕα − ϕβ)

ω cosh(2κx+ 2f I1 (µ)t+ ln |α/β|)

)}
(69)

where ϕα = argα, ϕβ = arg β. Here fR1 (λ) and f I1 (λ) are the real and the
imaginary part of the polynomial f1(λ) (respectively fR0 (λ) and f I0 (λ) stand for the
real and imaginary part of f0(λ) to be used later on). If the dispersion law of NLEE
is an even polynomial (f1(λ) ≡ 0) then the function v1 becomes stationary

v1(x, t) = exp

{
4i arctan

(
κ cos(2ωx+ ϕα − ϕβ)

ω cosh(2κx+ ln |α/β|)

)}
. (70)

A plot of that solution is presented in Fig. 1. It is easy to check that u = 0,
v = exp(if(x)) is an exact solution of (18) for any differentiable function f(x)
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Figure 1. Real and imaginary parts of the component v1 in 70 as a
function of x. Here κ = 1, ω = 10−3, α = 1, β = 1 + i.

tending to 0 when x → ±∞. This resembles the case of the three-wave equa-
tion [33] where one wave of an arbitrary shape is an exact solution of the system
and the two other waves are identically zero. The solution (70) has a simple spec-
tral characterisation and an explicitly given analytic fundamental solution of the
corresponding linear problem.
If the dispersion law contains odd powers of λ as well then the elementary soliton
is no more stationary. For example in the case of equation (19) it reads

u1(x, t) = 0, v1(x, t) = exp(4i arctan ζcub(x, t))

ζcub(x, t) =

[
κ cos 2ω[x+ 8(3κ2 − ω2)t+ (ϕα − ϕβ)/2ω]

ω cosh 2κ[x+ 8(κ2 − 3ω2)t+ ln |α/β|/2κ]

]
.

(71)

Case ii) α ̸= 0, β = 0, γ ̸= 0

In this case the solution looks as follows

u1(x, t) =
4iωκQ∗

gen exp i{ωx+ (fR0 (µ) + fR1 (µ))t+ ϕα − ϕγ}
(ω − iκ)Q2

gen

v1(x, t) = 1− 8ωκ2

(ω − iκ)Q2
gen

(72)

where ϕα = argα, ϕγ = arg γ and

Qgen = 2ωeκx+(fI0 (µ)+fI1 (µ))t+ln |α/γ| + (ω + iκ)e−κx−(fI0 (µ)+fI1 (µ))t−ln |α/γ|.
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Figure 2. Contour plot of |u1|2 (left panel) and |v1|2 (right panel) for
a generic soliton solution (73) as a function of x and t where α = γ =
κ = ω = 1.

In particular, when f(λ) = −λ2I , i.e., f0(λ) = −λ2 and f1(λ) = 0 hold, we obtain
a solution to (18)

u1(x, t) =
4iωκQ∗ exp i{ωx+ (κ2 − ω2)t+ ϕα − ϕγ}

(ω − iκ)Q2

v1(x, t) = 1− 8ωκ2

(ω − iκ)Q2

(73)

where

Q = 2ωeκ(x−2ωt)+ln |α/γ| + (ω + iκ)e−κ(x−2ωt)−ln |α/γ|.

Contour plots of |u1|2 and |v1|2 of the solutions (73) are shown in Fig. 2.
When the dispersion law is odd, say f1(λ) = −8λ3, the quadruplet solution repre-
sents a travelling wave of the form

u1(x, t) =
4iωκQ∗ exp iω[x+ 8(3κ2 − ω2)t+ (ϕα − ϕγ)/ω]

(ω − iκ)Q2

v1(x, t) = 1− 8ωκ2

(ω − iκ)Q2

(74)

where

Q = 2ωeκ(x+8(κ2−3ω2)t+ln |α/γ|/κ) + (ω + iκ)e−κ(x+8(κ2−3ω2)t+ln |α/γ|/κ).

This is an elementary soliton for the cubic flow NLEE (19).
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Case iii) α = 0, β ̸= 0, γ ̸= 0

The solution now can be obtained from the solution in the case (ii), by changing
α→ β and x→ −x.
In the cases ii) the solution (73) is a soliton of width 1/κ moving with velocity 2ω.
The corresponding soliton in the case iii) moves with a velocity −2ω.
In the generic case, when all three constants are non-zero, the solution represents a
nonlinear deformation of the above described solitons. For κ > 0 it may be viewed
as a decay of unstable time independent soliton from the case i) into two solitons,
corresponding to the cases ii) and iii) (see Fig. 2). For κ < 0, the solution is a
fusion of two colliding solitons into a stationary one.
Let us now consider dressing by a factor with two imaginery poles (doublet case),
i.e., µ = iκ. There are two essentially different cases.

Case i) α ̸= 0, β ̸= 0, γ = 0

From (63) it follows that |m0,1| = |m0,3|. It suffices to pick up m0,1 = 1 and the
third component is m0,3 = exp(iφ), φ ∈ R. The doublet solution reads

u1(x, t) = 0, v1(x, t) = exp(4i arctanΞgen(x, t))

Ξgen(x, t) =
σ0 − 2κ(x+ ḟ1(iκ)t) sinφ

cosh 2(κx+ f I1 (iκ)t) + sinh 2(κx+ f I1 (iκ)t) cosφ
·

(75)

If the dispersion law of NLEE is even polynomial, i.e., f1(λ) ≡ 0, then v1 becomes
stationary

v1(x, t) = exp

{
4i arctan

(
σ0 − 2κx sinφ

cosh 2κx+ sinh 2κx cosφ

)}
. (76)

Figure 3 presents the argument and the imaginary part of v1(x) in the stationary
case as functions of x and the phase φ.
As in the quadruplet case if the dispersion law is an odd polynomial the doublet
solution is time-depending. Let us consider the simplest example f1(λ) = −8λ3

corresponding to equation (19). Now (75) obtains the form

u1(x, t) = 0, v1(x, t) = exp(4i arctanΞcub(x, t))

Ξ cub(x, t) =
σ0 − 2κ(x+ 24κ2t) sinφ

cosh 2κ(x+ 8κ2t) + sinh 2κ(x+ 8κ2t) cosφ
·

(77)

Case ii) Generic Doublet

Now let us assume m0,2 ̸= 0. For simplicity we fix m0,2 = 1. Then the norms of
m0,1 and m0,3 are interrelated through the equality

|m0,1|2 − |m0,3|2 = 1.



On Soliton Interactions for the Hierarchy of a Generalised Heisenberg . . . 29

Figure 3. Plots of the argument (left panel) and Im v1(x) (right panel)
for the stationary solution (76 ) as a function of x and φ, κ = σ = 1.

This is why it proves to be convenient to parametrize them as follows

m0,1 = cosh θ0e
i(φ0+φ̃), m0,3 = | sinh θ0|ei(φ0−φ̃) (78)

where θ0, φ0 and φ̃ are arbitrary real numbers. Then the doublet soliton solution
reads

u1(x, t) =
2∆∗

∆2
ei(f0(iκ)t+φ0) [sinh θ+ cos φ̃+ i sinh θ− sin φ̃]

v1(x, t) = 1 +
2(2iσ − 1)

∆
+

4iσ(iσ − 1)

∆2

(79)

where

∆(x, t) = cosh2 θ+ cos2 φ̃+ cosh2 θ− sin2 φ̃− iσ

σ(x, t) = σ0 + κḟ I0 (iκ)t+ κ
(
x+ ḟ1(iκ)t

)
sinh 2θ0 sin 2φ̃

θ±(x, t) = κx+ f I1 (iκ)t± θ0.

Let us consider the special case when the dispersion law is −λ2I . The solution (79)
is significantly simplified if in addition one assumes that m0,3/m0,1 > 0 (φ̃ = 0).
The result reads

u1 =
2
(
cosh2(κx+ θ0) + i(σ0 − 2κ2t)

)(
cosh2(κx+ θ0)− i(σ0 − 2κ2t)

)2 ei(κ
2t+φ0) sinh(κx+ θ0)

v1 =

(
cosh2(κx+ θ0) + i(σ0 − 2κ2t)

cosh2(κx+ θ0)− i(σ0 − 2κ2t)

)2

(80)

− 2(
cosh2(κx+ θ0)− i(σ0 − 2κ2t)

)2 ·
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Figure 4. Contour plot of ℜu1(x, t) (left panel) and ℜ v1(x, t) (right
panel) for doublet soliton (81) as functions of x and t. Here κ = 0,
σ0 = 5 and θ0 = 0.

A plot of ℜu1(x, t) and ℜ v1(x, t) is shown in Fig. 4.

It proves to be of some interest to consider the odd dispersion case as well. In the
simplest nontrivial situation when f1(λ) = −8λ3 (equation (19)) we have

u1 =
2
(
cosh2(κx+ 8κ3t+ θ0) + iσ0

)(
cosh2(κx+ 8κ3t+ θ0)− iσ0

)2 eiφ0 sinh(κx+ 8κ3t+ θ0)

v1 =

(
cosh2(κx+ 8κ3t+ θ0) + iσ0

cosh2(κx+ 8κ3t+ θ0)− iσ0

)2

(81)

− 2(
cosh2(κx+ 8κ3t+ θ0)− iσ0

)2 ·
We have assumed above that φ̃ = 0.

Remark 5. Let us make a few short remarks on the behaviour of doublet soliton
(81). First of all it is evident that this is not a travelling wave solution. Moreover,
as it is seen from Fig. 5 the component |u1(x, t)|2 has two symmetric maxima and
one minimum at the origin (respectively |v1(x, t)|2 has two symmetric minima and
one maximum at the origin). The value of the maximum of |u1(x, t)|2 (respectively
the minimum of |v1(x, t)|2) first increases with time (σ(t) > 0) and then decreases
(σ(t) < 0). The maxima positions of u1 depend on t according to

ξ0(t) = −θ0
κ

+
1

κ
ln

(√
1 +

√
1 + σ2(t) + 4

√
1 + σ2(t)

)
(82)



On Soliton Interactions for the Hierarchy of a Generalised Heisenberg . . . 31

Figure 5. Contour plot of |u1(x, t)|2 (left panel) and |v1(x, t)|2 (right
panel) for doublet soliton solution (81) as a function of x for several
values of t: t = 0, 1, 5, 10, 20, 40.

Figure 6. The soliton velocity v(t) and position of the maxima ξ0(t)
of solution (81) as a functions of t. Here κ = σ0 = 1, θ0 = 0 and
φ̃ = 0.

where σ(t) = σ0 − 2κ2t. The soliton velocity v := dξ0/dt is not constant but
changes with t as given by

v(t) = − 2κ2tσ(t)

1 + σ2(t)

4
√

1 + σ2(t)√
1 +

√
1 + σ2(t)

· (83)

Such behavior resembles the boomerons and the trappons [4, 5]. In Fig. 6 it is
plotted the t-dependence of the soliton velocity.
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3.3. Multisoliton Solutions

As we have already mentioned the dressing procedure can be applied several times
consequently. Thus after dressing the one-soliton solution one derives a two-
soliton solution, after dressing the two-soliton solution one obtains a three-soliton
solution and so on. Of course, in doing this one is allowed to apply either of dress-
ing factors (45) and (56). Therefore the multisoliton obtained will be a certain
combination of quadruplet and doublet solitons. Another way of derivation the
multisoliton solution consists in using a dressing factor with a proper number of
poles

Φ = 11 + λ

N1∑
k=1

(
Mk

λ− µk
+

CMkC

λ+ µk

)
+ λ

N2∑
l=1

(
Pl

λ− iκl
+

CPlC

λ+ iκl

)
. (84)

As it follows from (84) the multisoliton solution obtained will be a mixture of N1

quadruplet solitons and N2 doublet ones. In order to determine the residues of Φ
one follows basically the same steps as in the case of a two-poles dressing factor.
Firstly, the identity ΦΦ−1 = 11 implies that the residues of Φ and Φ−1 fulfill some
algebraic restrictions. For example we have

lim
λ→µk

(λ− µk)ΦΦ
−1 =MkΦ

−1
k = 0, k = 1, . . . , N1 (85)

where

Φ−1
k = 11 + µk

N1∑
r=1

(
M †

r

µk − µ∗r
+

CM †
rC

µk + µ∗r

)
+ µk

N2∑
l=1

(
P †
l

µk + iκl
+

CP †
l C

µk − iκl

)
.

Apart of this type of constraints we have another one originating from vanishing
of the coefficients before the imaginery poles

lim
λ→iκl

(λ− iκl)
2ΦΦ−1 = (iκl)

2PlCP
†
l = 0, l = 1, . . . , N2 (86)

lim
λ→iκl

∂λ[(λ− iκl)
2ΦΦ−1] = iκlΘlCP

†
l C+ iκlPlCΘ†

lC = 0 (87)

where

Θl = 11 + iκl

N1∑
k=1

(
Mk

iκl − µk
+

CMkC

iκl + µk

)
+ Pl +

CPlC

2

+iκl

N2∑
s ̸=l

(
Ps

i(κl − κs)
+

CPsC

i(κl + κs)

)
.

Vanishing of the rest of poles of ΦΦ−1 leads to algebraic constraints which coin-
cide with (85)–(87) due to the action of Z2 reductions.
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Since Mk(x, t) and Pl(x, t) must be degenerate matrices one introduces their fac-
torizations Mk = |nk⟩⟨mk| and Pl = |ql⟩⟨pl|. Substituting it into (85)–(87) we
reduce the first and the third constraint to linear systems for |nk⟩ and |ql⟩

|mk⟩ =
N1∑
r=1

Brk|n r⟩+
N2∑
l=1

Dsk|q s⟩

C|pl⟩ =
N1∑
r=1

Erl|n r⟩+
N2∑
s=1

Fsl|q s⟩

(88)

where the matrix coefficients read

Brk := µ∗k

(
⟨m r|mk⟩
µr − µ∗k

− ⟨m r|C|mk⟩
µr + µ∗k

C

)
Dsk := µ∗k

(
⟨p s|mk⟩
iκs − µ∗k

− ⟨p s|C|mk⟩
iκs + µ∗k

C

)
Erl := −iκl

(
⟨m r|C|pl⟩
iκl − µk

+
⟨m r|pl⟩
iκl + µk

C

)
, Fss := iσs −

⟨p s|ps⟩
2

C

Fsl := κl

(
⟨p s|C|pl⟩
κs − κl

− ⟨p s|pl⟩
κs + κl

C

)
, s ̸= l.

By inverting the linear system (88) we can express |n r⟩ and |q s⟩ through all |mk⟩,
|p l⟩ and σl and that way determine the dressing factor in terms of the latter. The
vectors |mk⟩ and |p l⟩ as well as the functions σl can be found from the natural
requirement of vanishing of the poles in (52). The result reads

|mk(x, t)⟩ = ψ0(x, t, µ
∗
k)|mk,0⟩

|p l(x, t)⟩ = ψ0(x, t,−iκl)|p l,0⟩

σl(x, t) = −κl⟨pl,0|ψ−1(x, t, iκl)ψ̇0(x, t, iκl)C|pl,0⟩+ σl,0.

(89)

Analogously to the two-poles case the components of |pl⟩ are not independent. As
a result of (86) that the following relations holds true

⟨pl(x, t)|C|pl(x, t)⟩ = ⟨pl,0|C|pl,0⟩ = 0. (90)

Thus we have proved that the dressing factor in the multiple poles case is deter-
mined if one knows the initial fundamental solution ψ0(x, t, λ). The multisoliton
solution itself can be derived through the following formula

L
(1)
1 (x, t) = Φ(x, t,∞)L

(0)
1 (x, t)Φ†(x, t,∞) (91)

where

Φ(x, t,∞) = 11 +

N1∑
k=1

(Mk +CMkC) +

N2∑
l=1

(Pl +CPlC).
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From all said above it follows that the algorithm for obtaining the multisoliton
solution can be presented symbolically as follows

L
(0)
1 −→ {|mk⟩}N1

k=1, {|pl⟩}
N2
l=1, {σl}

N2
l=1

−→ {|nk⟩}N1
k=1, {|ql⟩}

N2
l=1 −→ {Mk}N1

k=1, {Pl}N2
l=1 −→ L

(1)
1 .

4. Interactions of Quadruplet Solitons

In this section we aim to study the interactions of solitons we have derived. We
shall restrict ourselves with quadruplet solitons for NLEEs with odd dispersion
laws. This is the simplest case since the solitons are travelling wave-type solutions.
The interactions of the other types of solitons require a special treatment and will
be done elsewhere.

Our study will be based on the Zakharov-Shabat scheme [34] applied to the re-
cursive procedure (65). Their approach consists in calculating the asymptotics of
generic N -soliton solution for t→ ±∞ and establishing the pure elastic character
of the interactions of generic soliton, i.e., solitons travelling at different velocities.
The pure elastic character of the soliton interactions is demonstrated by the fact
that for t → ±∞ the N -soliton solution splits into a sum of N one soliton solu-
tions preserving its amplitudes and velocities. The only effect of the interaction
consists in shifting the center of mass and the initial phase of the solitons.

The one-soliton dressing factor corresponding to the quadruplet case with poles at
±µk is given by

Φk(x, t, λ, µk) = 11 +
λ

λ− µk
Mk(x, t) +

λ

λ+ µk
CMk(x, t)C. (92)

The residues Mk(x, t) = |nk⟩⟨mk| are determined by the following equalities

|nk⟩ =
1

µ∗k

(
⟨mk|mk⟩
2iκk

− ⟨mk|C|mk⟩
2ωk

C

)−1

|mk⟩

|mk(x, t)⟩ = ψ0(x, t, µk)|mk0⟩, |mk0⟩ =

αk + βk
γk

αk − βk

 .

(93)

Let us now outline the alternative procedure for constructing the N -soliton solu-
tions of the NLEE (14). The idea is to apply subsequently N times the the one-
soliton dressing. For simplicity we assume that all N solitons are of quadruplet
type. As a result the sequence of mappings (65) allows us to constructs a sequence
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of Lax operators with potentials L(k)
1 , k = 1, . . . , N and eigenfunctions

χ±
(k)(x, t, λ) = Φk(x, t, λ, µk)Φk−1(x, t, λ, µk−1) . . .Φ1(x, t, λ, µ1)

(94)

×ψ0(x, t, λ)Φ
†
1,−(λ, µ1) . . .Φ

†
k−1,−(λ, µk−1)Φ

†
k,−(λ, µk)

where

Φk,−(λ, µk) = lim
x→−∞

Φk(x, t, λ, µk). (95)

The dressing factors Φk(x, t, λ, µk) are constructed in analogy with (92) as follows

Φk(x, t, λ, µk) = 11 +
λ

λ− µk
Mk(x, t) +

λ

λ+ µk
CMk(x, t)C

Mk(x, t) =
1

µ∗k

(
⟨mk|mk⟩

2iκk
− ⟨mk|C|mk⟩

2ωk
C

)−1

|mk⟩⟨mk|

|mk⟩ = Φk−1(x, t, µk, µk=1) . . .Φ1(x, t, µk, µ1)|mk⟩.

(96)

Thus for the N -soliton potential we obtain

L
(N)
1 (x, t) = lim

λ→∞
χ±
(N)(x, t, λ)L

(0)
1 .χ̂±

(N)(x, t, λ). (97)

Next we recall that we are considering NLEE with odd dispersion laws (14b).
Their one-soliton solutions are traveling waves and depend on Zk = x − Vkt,
where Vk = 1/κk im f1(µk). In particular, for the equation (19) f1(λ) = −8λ3

and Vk = 8(3µ2k − κ2k). Now let us to pick up the trajectory of the N -th soliton:
ZN ≡ x − 2ωN t/3 = fixed and evaluate the asymptotics of L(N)

1 (x, t) for t →
±∞ for fixed ZN . This will allow us to see what are the effects of the soliton
interactions on the N -th soliton.

In what follows we will assume that all solitons move with different velocities, i.e.,
Vj ̸= Vk for k ̸= j. It is natural to split the solitons in two groups

M+ ≡ {Vk ; Vk > VN}, M− ≡ {Vk ; Vj < ωN} (98)

i.e., the solitons belonging to M+ are moving faster than the N -th soliton, while
the ones belonging to M− are slower.

Now we are able to calculate the limits of Φk(x, t, λ) for t → ±∞ for fixed ZN .
To do this we firstly need to obtain the limits of the one-soliton dressing factor for
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x→ ±∞. It can be verified that

Φk,−(λ, µk) := lim
x→−∞

Φk(x, t, λ) =

 ck(λ) 0 −c′k(λ),
0 1 0

−c′k(λ) 0 ck(λ)



Φk,+(λ, µk) := lim
x→∞

Φk(x, t, λ) =

 ck(λ) 0 c′k(λ)
0 1 0

c′k(λ) 0 ck(λ)


(99)

where

ck(λ) =
µk
µ∗k

λ2 − |µk|2

λ2 − µ2k
, c′k(λ) = −µk

µ∗k

λ(µk − µ∗k)

λ2 − µ2k
·

Note that the asymptotics Φk,±(λ, µk) do not depend upon the polarization vectors
|mk0⟩ and that they commute for different values of λ. This allows us to describe
explicitly the N -soliton interactions of quadruplet solitons.

The action of Φk,±(λ, µk) on the polarization vectors produces the equalities

Φk,±(λ, µk)

αk + βk
γk

αk − βk

 =

α±
k + β±k
γk

α±
k − β±k


α±
k

αk
=
µk
µ∗k

λ± µ∗k
λ± µk

,
β±k
βk

=
µk
µ∗k

λ∓ µ∗k
λ∓ µk

·

(100)

Next we have to evaluate the asymptotics of |mk(x, t)⟩ when t → ±∞ along the
trajectory ZN (x, t) = const. This is done recursively using (99). Skipping all
technical details here we get

|mN (x, t)⟩ ≃
t→∞

∏
j∈M+

Φ+(µN , µj)
∏

j∈M−

Φ−(µN , µj)|mN (x, t)⟩

|mN (x, t)⟩ ≃
t→−∞

∏
j∈M+

Φ−(µN , µj)
∏

j∈M−

Φ+(µN , µj)|mN (x, t)⟩.
(101)
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Then from (100) and (101) one deduces that

α+
N

α
=

N∏
k=1

µk
µ∗k

∏
j∈M+

AN,j

∏
j∈M−

BN,j

α−
N

α
=

N∏
k=1

µk
µ∗k

∏
j∈M+

BN,j

∏
j∈M−

AN,j

β+N
β

=
N∏
k=1

µk
µ∗k

∏
j∈M+

BN,j

∏
j∈M−

AN,j

β−N
β

=

N∏
k=1

µk
µ∗k

∏
j∈M+

AN,j

∏
j∈M−

BN,j

AN,j =
µN + µ∗j
µN + µj

, BN,j =
µN − µ∗j
µN − µj

·

(102)

As a result we obtain that: i) the soliton interactions are purely elastic, and ii) their
effect is shifts of the relative center of mass and the phase δN = argα − arg β of
the solitons

Z±
N = ZN ∓

∑
j∈M+

zN,j ±
∑
j∈M−

zN,j

δ±N = δN ±
∑
j∈M+

ϕN,j ∓
∑
j∈M−

ϕN,j

zN,j =
1

2κN
(ln |AN,j | − ln |BN,j |), ϕN,j = arg(AN,j)− arg(BN,j).

(103)

5. Integrals of Motion

Here we will sketch briefly the direct method for finding integrals of motion, intro-
duced by Drinfel’d and Sokolov [6]. We will apply it to the system (18). In order to
do that it proves to be technically more convenient to deal with the Lax pair (20),
(22). We will use the transformation P(x, t, λ) that diagonalises simultaneously
the Lax pair L̃ and Ã

L = P−1L̃P = i∂x + λJ + L0 +
L1

λ
+ · · ·

A = P−1ÃP = i∂t + λ2I + λA−1 +A0 +
A1

λ
+ · · · .

(104)
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Here all matrix coefficients Lk, A−1 and Ak, k = 0, 1, . . . are diagonal. Using the
asymptotic expansion for P(x, t, λ)

P(x, t, λ) = 11 +
p1(x, t)

λ
+
p2(x, t)

λ2
+ · · · (105)

one can get a set of recurrence relations

U0 + Jp1 = L0 + p1J (106)

ip1,x + U0p1 + Jp2 = L1 + p1L0 + p2J (107)
...

ipk,x + U0pk + Jpk+1 = Lk + pk+1J +

k−1∑
m=0

pk−mLm (108)

...

Here we assume that all coefficients pl (l = 1, 2, . . .) are off-diagonal matrices.
In order to solve the recursion relations above, we will split each relation into a
diagonal and off-diagonal part. For example, treating this way the first relation
above one gets

L0 = Ud
0 , U f

0 = −[J, p1] (109)

where the superscripts d and f above denote projection onto diagonal and off-
diagonal part of a matrix respectively. Taking into account the explicit form of U0

for L0 we have

L0 =
i

2
(uu∗x + vv∗x)

 1 0 0
0 −2 0
0 0 1

 . (110)

Thus as a density of our first integral we can choose: I0 = u∗ux + v∗vx. It
represents momentum density of our system. For the stationary solutions (70) and
(76) the momentum density is depicted on Fig. 7. It is evidential, that the integrals
of motion are well localised function of x.
Similarly, for the second integral density one gets

I1 = |uu∗x + vv∗x|2 + 4|uvx − vux|2.

In general, the k integral of motion can be calculated through the formula

Lk =
(
U f
0pk

)d
. (111)

The matrix pk in its turn is obtained from the following recursive formula

pk = −ad−1
J

(
ipk−1,x + (U0pk−1)

f −
k−1∑
m=0

pk−1−mLm

)
. (112)
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Figure 7. Plots of the density of the first integral of motion as a
function of x evaluated on the stationary quadruplet soliton (70) for
α = β = γ = ω = 1, δ = 0 (left panel) and for the stationary doublet
soliton (76) for κ = σ0 = 1, ϕ = 0 (right panel).

Note, that the zero curvature representation is gauge invariant, i.e., [L,A] = 0 is
fulfilled. Since [Lk,Al] = 0 the commutativity of L and A is equivalent to the
following requirements

∂xA−1 = 0, ∂tLk − ∂xAk = 0, k = 0, 1, . . . (113)

Hence Lk represent densities of the integrals of motion we are interested in.

6. Conclusions

The soliton solutions for a hirarchy of NLEEs related to the symmetric space
SU(3)/S(U(1)×U(2)) are constructed. In order to obtain the soliton solutions
we have applied the dressing procedure with a two-poles dressing factor. It has
been shown that there exist two types of one-soliton solutions: quadruplet solitons
which are associated with four symmetrically located eigenvalues of L and doublet
solitons which are associated with a pair of purely imaginary eigenvalues. This re-
markable fact is a consequence of the simultaneous action of two Z2 reductions
on the Lax pair. The properties of the elementary solitons depend crucially upon
the symmetry properties the dispersion law. For example, if the dispersion law is
an even polynomial then the elementary soliton of the first type will be stationary
(see formula (70)) otherwise it is time-dependent (fomula (71)). In the case of the
doublet type solitons the situation changes significantly – the components of the
polarization vector |m0⟩ are no longer independent, see (63). This is why we have
only two cases possible: generic case and a degenerate case. In the latter case the
doublet soliton is stationary if f(λ) is an even polynomial, otherwise they are time-
depending. In the generic case a new phenomenon arises. When the dispersion law
is an even polynomial the soliton is not a travelling wave. Its behaviour resembles
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that of trapons and boomerons – the soliton velocity is not fixed but varies with
time.
We have described the quadruplet soliton interactions for NLEE with odd disper-
sion laws by calculating explicitly their asymptotics along the soliton trajectories
in the generic case (different soliton velocities). The important result consisted in
the following:

i) the N -soliton interactions are purely elastic and always split into sequences
of elementary two-soliton interactions

ii) the effect of each two-soliton interaction consists in shifts of the relative
center of mass and relative phases of each of the solitons

iii) the corresponding shifts are different from the ones for the NLS and Heisen-
berg ferromagnetic equations.
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