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Abstract. The determination of the interface shape between two fluids dur-
ing the process of viscous fingering (Saffman–Taylor instability) in a Hele-
Shaw cell is addressed here. The parametric equations describing this inter-
face are obtained in an explicit analytic form. With these results, a number
of interface shapes are presented, including shapes with opposite sides in
contact that are considered as the onset of droplet pinch-off.

1. Introduction

Viscous fingering (Saffman–Taylor instability [8]) is the formation of patterns in
the interface between two fluids in a Hele-Shaw cell. It occurs during injection
when a less viscous fluid displaces a more viscous one in planar or non-planar
Hele-Shaw cell [7]. It can also occur due to gravity with or without taking into
account chemical or thermal effects [1, 9] if a horizontal interface separates two
fluids of different densities and the heavier fluid is above the other one. A closely
related problems appear in the study of the collapse of nanotubes [10] and rings
exposed to uniform externed presure [2].
Saffman–Taylor instability also occurs in many other frameworks, e.g. in a Hele–
Shaw cell subjected to pressure, radial magnetic field or rotation.
Let the interface be given by means of the coordinates x(s), z(s) in a certain Carte-
sian coordinate frame in the Euclidean plane with s being the interface arclength.
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The unit tangent vector t(s) and the unit normal vector n(s) are related to the
curvature κ(s) through the Frenet-Serret formulas

t′(s) = κ(s)n(s), n′(s) = −κ(s)t(s).

Nye et al [5] studied gravitationally driven Saffman-Taylor fingering using oil
above air in a Hele-Shaw cell. They derived the expression

κ =
dφ

ds
= −Z

for the curvature of the interface between the two fluids and

X(ψ) = −
√
2

∫
ψ2 − c

(1− (ψ2 − c)2)1/2
dψ

where ψ = (c+cosφ)1/2 and (X,Z) are the scaled coordinates. It is not a surprize
that the relation κ = −Z obtained by Nye et al [5] gives rise to the prominent Euler
elasticae curves [11].

It is shown by many authors, see e.g., Leandro et al [4] and Oliveira et al [6], that
in a rotating Hele-Shaw cell the equation, balancing the centrifugal force and the
surface tension can be integrated to yield the expression

κ(r) = Ω(r2 − r̊2)

for the curvature of the interface between the two fluids, where r =
√
x2 + z2 is

the radius, Ω is the dimensionless angular velocity and r̊ is the radius at which κ(r)
vanishes.

Figure 1. The angles in the approximation by Leandro et al [4].
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In these papers, the embedding ϕ = ϕ(r) of the interface is obtained in terms of
the angle ψ (see Fig. 1) by the following two integrals

ψ = arcsin

(
1

r

∫ r

r̊
tκ(t)dt+

r̊

r
sinψ0

)
(1)

ϕ = ϕ0 +

∫ r

r̊

1

t
tanψ(t)dt. (2)

However, the integrals are too complicated and the authors of the aforementioned
papers proceed the analysis evaluating the foregoing integrals numerically.
Here, we follow another way to determine the parametric equations for the in-
terface in an explicit analytic form by introducing a fictitious dynamical system
and present its explicit solutions in terms of Jacobian elliptic functions and elliptic
integrals.

2. Parametric Equations of the Interface

It is easy to see that Frenet–Serret formulae can be written as the following system
for the coordinates of the position vector r(s) = (x(s), z(s)) of the interface

x′′ + κ(r)z = 0, z′′ − κ(r)x = 0, κ(r) = Ω(r2 − r̊2).

Such a dynamical system is studied by the authors of the present analysis within
another context in [3, 12]. It is shown in these papers that the coordinates of the
position vector can be expressed through the curvature κ(s) and the slope angle

φ(s) =

∫
κ(s)ds

in the form

x(s) =
1

2Ω

dκ(s)

ds
cosφ(s) +

1

4Ω
(κ 2(s)− µ) sinφ(s)

z(s) =
1

2Ω

dκ(s)

ds
sinφ(s)− 1

4Ω
(κ 2(s)− µ) cosφ(s)

Hence, if the curvature κ(s) and the slope angle φ(s) are known functions of the
arclength, the foregoing expressions for x(s) and z(s) are parametric equations of
the interface.
In polar coordinates the foregoing dynamical system transforms to an independent
differential equation for r(s) and another equation for the polar angle. Substituting
the expression r2 = r̊2 + κ/Ω in the equation for r(s), one easily obtains the
following equation for the curvature

κ′′ + κ3 − µκ− 4Ω = 0, µ = Ω2r̊2. (3)
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It possesses an apparent first integral of form(
κ′
)2

= P (κ(s)), P (κ) = 2E − 1

4
κ4 +

1

2
µκ2 + 4Ωκ

where E = 1
4Ω

2r̊2
(
16− Ω2r̊6

)
.

3. Explicit Formulae for the Curvature and the Slope Angle

We now proceed with description of the solutions to equation (3) for the curva-
ture. Depending on the values of the coefficients µ, Ω and E, two cases for the
intrinsic equation of the interface and the corresponding slope angle φ(s) are to be
considered (see Fig. 2).
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Figure 2. The graphs of the polynomials representing the Case 1-left,
and the Case 2-right.

Case 1. The polynomial P (κ) has two real roots α < β and two complex conjugate
roots γ and δ. In this case there exist both periodic and nonperiodic solutions for
the curvature κ (s).
The Periodic solutions exist in the cases when (3α + β)(α + 3β) ̸= 0 and η =
(γ − δ)/(2i) ̸= 0. They are of the form

κ1 (s) =
(Aβ +Bα)− (Aβ −Bα) cn(us, k)

(A+B)− (A−B) cn(us, k)

φ1 (s) =
Aβ −Bα

A−B
s+

(A+B) (α− β)

2u (A−B)
Π

(
−(A−B)2

4AB
, am(us, k), k

)

+
α− β

2u

√
k2 + (A−B)2

4AB

arctan

√k2 + (A−B)2

4AB

sn (us, k)

dn (us, k)
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where

A =

√
4η2 + (3α+ β)2, B =

√
4η2 + (α+ 3β)2, u =

1

4

√
AB

k =
1√
2

√√√√1− 4η2 + (3α+ β) (α+ 3β)√
[4η2 + (3α+ β) (α+ 3β)]2 + 16η2(β − α)2

·

Nonperiodic solutions are obtained in the cases in which

(3α+ β)(α+ 3β) = η = 0

and are of the form

κ2 (s) = ζ − 4ζ

1 + ζ2s2
, φ2 (s) = ζs− 4 arctan (ζs)

where ζ = α if 3α+ β = 0 and ζ = β if α+ 3β = 0.
A few examples of simple curves that are appropriate for the observed interface
shapes in the fixed Cartesian frame (above) and in the moving co-frame associated
with the curve (below) are shown in Fig. 3.

Figure 3. Examples of interface shapes in the fixed Cartesian frame
(above) and in the moving co-frame associated with the curve (below).

In a rotating Hele-Shaw cell, there exist values of the angular velocity at which the
interface exhibits shapes with points of contact that can be considered as the onset
of drop formation and separation (see Fig. 4).
Case 2. The polynomial P (ξ) has four real roots α < β < γ < δ. Then, two
periodic solutions exist

κ3 (s) = δ − (δ − α) (δ − β)

(δ − β) + (β − α) sn2 (us, k)

φ3 (s) = δs− δ − α

u
Π

(
β − α

β − δ
, am(us, k), k

)
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Figure 4. Examples of interface shapes with points of contact in the
fixed Cartesian frame (above) and in the moving co-frame associated
with the curve (below).

and

κ4 (s) = β +
(γ − β) (δ − β)

(δ − β)− (δ − γ) sn2 (us, k)

φ4 (s) = βs− β − γ

u
Π

(
δ − γ

δ − β
, am(us, k), k

)
where

u =
1

4

√
(γ − α) (δ − β), k =

√
(β − α) (δ − γ)

(γ − α) (δ − β)
·

Curvatures belonging to the Case 2 always give rise to self-intersecting curves.
Fig. 5 comprises an example of four-fold symmetric curves in the fixed Cartesian
frame (above) and in the moving co-frame associated with the curve (below). The
figure in the most right column clarifies the actual size and positions of the two
curves.
In conclusion, the explicit parameterization of the fluid interface in a rotating Hele–
Shaw cell presented here gives rise to the equilibrium shapes presented in Fig. 3.
At sufficiently high values of the rotation velocity Ω, the shapes in Fig. 3 evolve to
the ones shown in Fig. 4 which may be regarded as the formation of drops and the
onset of droplet pinch-off.
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