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Abstract. We consider the recursion operator approach to the soliton equa-
tions related to a sl(3,C) generalized Zakharov-Shabat auxiliary linear sys-
tem in pole gauge and show that the recursion operator can be identified with
the dual to a Nijenhuis tensor for a Poisson-Nijenhuis structure on the mani-
fold of potentials.

1. Introduction

The soliton equations or completely integrable equations have been object of in-
tense study even from their discovery. Their most essential property is that they
admit a Lax representation [L,A] = 0. In it L,A are linear operators on ∂x, ∂t
depending also on some functions qi(x, t), 1 ≤ i ≤ s (‘potentials’) and a spectral
parameter λ. The equation [L,A] = 0 should be satisfied identically in λ and in
this way the Lax equation [L,A] = 0 is equivalent to a system of partial differential
equations for qi(x, t). Usually one fixes the linear problem Lψ = 0 (auxiliary lin-
ear problem) and considers all the evolution equations (of certain form of course)
one can obtain changing the operator A. These equations are called nonlinear evo-
lution equations (NLEEs) associated (related) with L (or with the linear system
Lψ = 0). There are several different schemes to resolve them but the essential
point is that the Lax representation permits to pass from the original evolution de-
fined by the equation to the evolution of some spectral data related to the problem
Lψ = 0 which is linear and consequently easily found. From this data the po-
tentials can be recovered by a process called Inverse Scattering Method, see the
monograph books [4, 6].

342



Poisson-Nijenhuis Structure for Generalized Zakharov-Shabat System in Pole . . . 343

The Generalized Zakharov-Shabat (GZS) system presented below is a paradigm
of auxiliary linear problem. It can be written as follows

Lψ = (i∂x + q(x)− λJ)ψ = 0. (1)

Here q(x) and J belong to some fixed simple Lie algebra g in some finite dimen-
sional irreducible representation. The element J is regular, that is the kernel of adJ
(adJ(X) ≡ [J,X], X ∈ g) is the Cartan subalgebra h ⊂ g. The potential q(x)
belongs to the orthogonal completion h⊥ of h with respect to the Killing form

⟨X,Y ⟩ = tr(adX adY ), X, Y ∈ g. (2)

Therefore q(x) =
∑

α∈∆ qαEα whereEα are the root vectors, ∆ is the root system
of g. The scalar functions qα(x) defined on R, are complex valued, smooth and
rapidly vanishing for x → ±∞, we can assume that qα(x) are of Schwartz type.
The functions qα are called also ‘potentials’ and we shall consider q(x) as a point
in an infinite dimensional manifold - the manifold of potentials. The classical
Zakharov-Shabat system is obtained for g = sl(2,C), J = diag(1,−1).

Remark 1. We assume that the basic properties of the semisimple Lie algebras
(real and complex) are known. All definitions and normalizations we use coincide
with those made in [11] and are almost universally accepted.

Remark 2. When Generalized Zakharov-Shabat systems on different algebras are
involved we say that we have Generalized Zakharov-Shabat g-system to underline
it is on the algebra g, but when we work on a fixed algebra its symbol is usually
omitted.

Referring for the details to [10] we simply remind that the adjoint solutions of GZS
operator L are functions of the type w = mXm−1 where X is a constant element
from g and m is fundamental solution of Lm = 0. Let us denote by wa and wd

the orthogonal projection (with respect to the Killing form) of w over h⊥ and h
respectively. If one denotes the orthogonal projector on h⊥ by π0 then of course
wa = π0w and wd = (1− π0)w. One of the most important facts from the theory
of GZS system is that if a suitable set of adjoint solutions (wi(x, λ)) is taken then
roughly speaking for λ belonging to the spectrum of L the functions wa

i (x, λ) form
a complete sets in the space of potentials. If one expands a potential over the subset
of the adjoint solutions as coefficients one gets the minimal scattering data for L.
Thus passing from the potentials to the scattering data can be considered as a sort
of Fourier transform, called generalized Fourier transform. For this transform the
functions wa

i (x, λ) play the role the exponents play in the usual Fourier transform.
This interpretation was given for the first time in [1] and after that has been de-
veloped in a number of works, see for example the monograph books [6, 12] for
comprehensive study of sl(2,C)-case and bibliography, [2, 10] for more general
situations.
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I. The recursion operators (generating operators, Λ-operators) are the operators for
which the functions wa

i (x, λ) are eigenfunctions and therefore for the generalized
Fourier transform they play the same role as the differentiation operator plays in
the usual Fourier transform method. Their explicit form can be found in a number
of articles, and books, see for example [6]. For the above reasons the recursion
operators Λ± (usually one says just recursion operator) play important role in the
theory of soliton equations - it is a theoretical too which apart from explicit so-
lutions can give most of the information about the NLEEs, [6, 23]. In particular,
through them can be obtained:

i) The hierarchies of the nonlinear evolution equations solvable through L
ii) The conservation laws for these NLEEs

iii) The hierarchies of Hamiltonian structures for these NLEEs.

There is another important trend in the theory of the recursion operators, it is re-
lated with the study of the recursion operators related to gauge-equivalent systems.
Taking as example the GZS system, assume that we make a gauge transformation
of the type ψ 7→ ψ−1

0 ψ = ψ̃ where ψ0 is a fundamental solution to GZS system
corresponding to λ = 0. Then if we denote S = ψ−1

0 Jψo and the orbit of the
coadjoint representation of the Lie group G corresponding to g by OJ we shall
obtain that ψ̃ is a solution of the following linear problem

L̃ψ̃ = i∂xψ̃ − λSψ̃ = 0, S ∈ OJ . (3)

One can choose different fundamental solutions ψ0 and one will obtain different
behavior for S when x 7→ ±∞ but usually for ψ0 is taken the Jost solution that
satisfies limx→−∞ ψ0 = 1. The system (3) is called GZS system in pole gauge in
contrast to the system (1) which is called GZS system in canonical gauge.
The theory of the NLEEs related with the GZS auxiliary problem in canonical
gauge (L) is in direct connection with the theory of the NLEEs related with the
GZS auxiliary problem in pole gauge (L̃). The NLEEs for both systems are in one-
to-one correspondence and are called gauge-equivalent equations. This beautiful
construction has been discovered for the first time in the famous work of Zakharov
and Takhtadjan, [22] in which there has been proved the gauge-equivalence of
two famous equations - the Heisengerg ferromagnet equation and the nonlinear
Schrödinger equation.
In fact the constructions for the systemL and its gauge equivalent L̃ are in complete
analogy. Instead of the fixed Cartan subalgebra h = ker adJ we have ‘moving’
Cartan subalgebra hS(x) = ker adS(x), ‘moving’ space h⊥S (x) orthogonal (with
respect to the Killing form) to hS(x) (and consequently moving projector πS(x))
etc. We have the corresponding adjoint solutions m̃ = ψ̃Xψ̃−1 where ψ̃ is a
solution of L̃ψ̃ = 0 and X is a constant element in g. If we denote by m̃a and m̃d
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the projections of m̃(x) on h⊥S (x) and hS(x) respectively then the corresponding
recursion operators are constructed using the fact that the functions m̃a must be
eigenfunctions for them.

Let us make the following agreement. Though the Cartan subalgebra hS(x), its
orthogonal space h⊥S (x) and the projector πS(x), depend on x we shall not write
it explicitly unless there is a posibility of confusion. So for example in the case
of a function X(x) that is defined on R and such that X(x) ∈ h⊥S (x) we shall
write simply X ∈ h⊥S , for two functions X(x) and Y (x) we shall write instead of
X(x) = Y (x) simply X = Y and so on.

For GZS system in pole gauge everything is easily reformulated and the only real
difficulty is to calculate all the quantities that are expressed through q and its de-
rivative through S and its derivatives. There is a clear procedure how to achieve
that goal but in each particular case it requires new calculations. The procedure has
been developed in detail in our PhD thesis [20], outlined in [7, 8] (for the sl(2,C)
case) and in more general cases in [9]. In the case of sl(3) the procedure has been
carried out in detail in [21] - for all these references see also [6].

II. The recursion operators for GZS have also beautiful geometric meaning. It can
be shown that their adjoint operators can be interpreted as Nijenhuis tensors on the
manifolds of ‘potentials’ where the evolution defined by [L,A] = 0 occurs. The
point is that one of characteristic properties of the soliton equations is that they
are not simply Hamiltonian but they are Hamiltonian with respect to two different
compatible Poisson structures. The property is called bi-Hamiltonian property of
the NLEEs solvable through the corresponding linear problem. A Poisson structure
on a manifold M is a field of linear mapsm 7→ Pm : T ∗

m(M) 7→ Tm(M) such that
for any two smooth functions f, g the expression {f, g}(m) = ⟨dgm, Pm(df)m⟩ is
a Poisson bracket. (Here ⟨ , ⟩ is the canonical pairing between Tm(M) and T ∗

m(M)
- the tangent and cotangent spaces at m ∈ M). Compatible Poisson structures are
called such Poisson structures P,Q for which their linear combination aP + bQ
(where a, b are constants) is also a Poisson tensor. It turns out that compatible
Poisson structures give rise to Nijenhuis tensors in case one of it is invertible.

Indeed, if Q is invertible, then one can define N = P ◦ Q−1 and N is a field of
linear maps m 7→ Nm : Tm(M) 7→ Tm(M) such that the so called Nijenhuis
bracket [N,N ] of N is zero. Then the manifold of potentials is endowed with
a very special geometric structure - Poisson-Nijenhuis (P-N) structure of coupled
Poisson tensor and a Nijenhuis tensor. The properties of the P-N structure are re-
sponsible to the fact that the symmetries of the soliton equations have ‘hereditary’
properties and that there are infinitely many Hamiltonian structures for the corre-
sponding NLEEs. This interpretation was found by F. Magri in his pioneer works
[13, 14], one can see all the details of the theory in [3] or in [6], we shall assume
that it is known and shall not describe it here.
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As a matter of fact there is a nice picture of the relation of the P-N structures on
the manifold of potentials for the GZS system in canonical gauge, the manifold of
potentials for the same system in pole gauge and the manifold of the corresponding
Jost solutions, see [6, Ch. 15].
Together with the possibility to calculate the recursion operators for GZS system in
pole gauge through the gauge transformation, there exists another option - to cal-
culate directly the P-N structure on the manifold of potentials using the compatible
Poisson structures and then to find the conjugate to the Nijenhuis tensor. In this
work we shall use it and then shall compare our result with the Recursion Operator
already known in the case sl(3,C), see [21]. Our motivation comes from the fact
that there has been some renewed interest in the GZS system in pole gauge and its
reductions recently, see [5].

2. P-N Structure for GZS Pole Gauge Hierarchy. The sl(3,C) Case

Consider the GZS pole gauge sl(3,C)-system in general position - that is the
smooth function S(x) with domain R, see (3), is subject only to the require-
ments that S(x) ∈ OJ and S(x) tends fast enough to some constant values when
x 7→ ±∞. For J we shall assume that J = diag(λ1, λ2, λ3),

∑
i λi = 0, where

all λi ̸= 0. Of course J must be regular, so that ker adJ coincides with the Cartan
subalgebra of the diagonal matrices in sl(3,C).
Let us consider a more general case then in the above when the algebra g is arbi-
trary simple algebra. Let S(x) is smooth, have values in g and when x → ±∞
the function S(x) tend fast enough to constant values. These functions of this type
form an infinite dimensional manifold which we shall denote by M. Then it is
reasonable to assume that the tangent space TS(M) at S consists of all the smooth
functionsX : R 7→ g vanishing fast enough when x 7→ ±∞. We denote that space
by F(g). We shall also assume that the ‘dual space’ T ∗

S(M) is equal to F(g) and if
α ∈ T ∗

S(M), X ∈ TS(M) then

α(X) = ⟨⟨α,X⟩⟩ ≡
+∞∫

−∞

⟨α(x), X(x)⟩dx (4)

where ⟨ , ⟩ is the Killing form of sl(3,C).

Remark 3. In other words, we identify T ∗
S(M) and TS(M) using the bi-linear

form ⟨⟨ , ⟩⟩. We do not want to make the definitions more precise, since we will
speak rather about a geometric picture then about precise results. Such results
can be obtained only after profound study of the spectral theory of L and L̃. In
particular, we put dual space in quotation marks because it is clearly not equal to
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the dual of F(g). We mention however that the term ‘allowed’ functional H means

that
δH

δS
∈ T ∗

S(M) ∼ TS(M).

First we note that the operators

α 7→ P (X) = i∂xα, α ∈ T ∗
S(M) (5)

α 7→ Q(α) = adS(α), S ∈ M. (6)

It is a fact from the general theory that these Poisson tensors are compatible, [6,
Ch. 15]. In other words P+Q is also a Poisson tensor. Let us also mention that the
tensor Q is the canonical Kirillov tensor which acquires the above form because
the algebra is simple and coadjoint and adjoint representation are equivalent.
Now let OJ be the orbit of the coadjoint representation of G (the group that cor-
responds to g) passing through J . Let us consider the set of smooth functions
f : R 7→ OJ such that when x → ±∞ they tend fast enough to constant values.
The set of this functions is denoted by N and clearly can be considered as subman-
ifold of M. If S ∈ N the tangent space TS(N ) consists of all smooth functions
X , tending to zero fast enough when x 7→ ±∞ and such that X(x) ∈ TS(x)(OJ)
(Recall that OJ is a smooth manifold in a classical sense.) We again assume that
T ∗
S(N ) ∼ TS(N ) and that these spaces are identified via ⟨⟨ , ⟩⟩.

The Poisson tensors P and Q can be restricted from M to N . The question how
to restrict a Poisson tensor on submanifold has been considered in detail in the
literature, see for example [17] and [18, 19]. We shall use a simplified version of
the results obtained in these papers, proved in [15, 16]. We call it first restriction
theorem.

Theorem 1. Let M be Poisson manifold with Poisson tensor P and M̄ ⊂ M be
a submanifold. Let us denote by j the inclusion map of M̄ into M, by X ∗

P (M̄)m
the subspace of covectors α ∈ T ∗

m(M) such that

Pm(α) ∈ djm(Tm(M̄)) = Im(djm), m ∈ M̄ (7)

here Im denotes the image and T⊥(M̄)m – the set of all covectors atm ∈ M van-
ishing on the subspace Im(djm), m ∈ M̄ also called the annihilator of Im(djm)
in T ∗

m(M). Let the following relations hold

X ∗
P (M̄)m + T⊥(M̄)m = T ∗

m(M), m ∈ M̄ (8)

X ∗
P (M̄)m ∩ T⊥(M̄)m ⊂ ker(Pm). (9)

Then there exists unique Poisson tensor P̄ on M̄, j-related with P , that is

Pm = djm ◦ P̄m ◦ (djm)∗. (10)
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The proof of the theorem is constructive. First, one takes β ∈ T ∗
m(M̄), then

represents (j∗β)m as α1 + α2 where α1 ∈ X ∗
P (M̄)m, α2 ∈ T⊥(M̄)m and finally

puts P̄m(β) = Pm(α1) (we identify m and j(m) here).
Restricting the Poisson tensor Q is easy, one readily get that the restriction Q̄ is
given by the same formula as before

α 7→ Q̄(α) = adS(α), S ∈ N , α ∈ T ∗
S(N ). (11)

The tensor P is a little harder to restrict. The restriction we present below has been
preformed in various works in the simplest case g = sl(2,C), see for example
[16]. We do it now in the case g = sl(3,C), in other words starting from here the
algebra g will be sl(3,C).
First, let us introduce some facts and notation. Since J is a regular element from
the Cartan subalgebra h then each element S from the orbit OJ is also regular,
hS(x) = ker adS(x) is a Cartan subalgebra of sl(3,C) and we have

sl(3,C) = hS(x)⊕ h⊥S (x) (12)

(sl(3,C) is constant, so we do not write sl(3,C)(x)).
If X ∈ TS(N ) = h⊥S then X(x) ∈ h⊥S (x) (we recall that these spaces depend on
x) but in addition X is smooth and vanishes rapidly when x 7→ ±∞. We shall
denote the set of these functions by F(h⊥S ). So according to our notation X ∈ h⊥S
and X ∈ F(h⊥S ). Using the same logic, for X ∈ F(h⊥S ) we write adS(X) which
means the function adS(x)X(x) belonging to F(h⊥S ).
We have some facts about J that we introduce in the below propositions. For the
proofs see [21].

Proposition 1. The matrices J and J1 = J2 − 1
3tr(J

2)1 span the Cartan subalge-
bra h = keradJ .

As a consequence, for S ∈ OJ the matrices S and S1 = S2 − 2
31 span the Cartan

subalgebra hS of sl(3,C). On h⊥S the operator adS is invertible.

Proposition 2. The matrix J satisfies the equation

J3 =
1

2
C2J +

1

3
C31, C2 = λ21 + λ22 + λ23, C3 = λ31 + λ32 + λ33. (13)

Proposition 3. If S ∈ OJ = {X̃ ; X̃ = gJg−1, g ∈ SL(3,C)} then S satisfies
(13), that is S3 = 1

2C2S + 1
3C31. If in addition for all λi, λi ̸= 0 the inverse is

also true, that is any S that satisfies the equation S3 = 1
2C2S + 1

3C31 belongs to
the orbit.

The Killing form of sl(3,C) is equal to 6trXY and one has the following useful
identities

⟨J, J⟩ = 6C2, ⟨J1, J1⟩ = C2
2 , ⟨J, J1⟩ = 6C3. (14)
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The Killing form is invariant with respect to the adjoint action, so we also have

⟨S, S⟩ = 6C2, ⟨S1, S1⟩ = C2
2 , ⟨S, S1⟩ = 6C3. (15)

The Gram matrix

T =

(
⟨J, J⟩ ⟨J, J1⟩
⟨J1, J⟩ ⟨J1, J1⟩

)
=

(
6C2 6C3

6C3 C2
2

)
(16)

has determinant d1 = 6(C3
2 − 6C2

3 ). Of course d1 ̸= 0. One can show that

d1 = 12(λ1 − λ2)
2(λ2 − λ3)

2(λ1 − λ3)
2 ≡ 12d. (17)

Therefore

T−1 =
1

12d

(
⟨J1, J1⟩ −⟨J, J1⟩
−⟨J1, J⟩ ⟨J, J⟩

)
=

1

12d

(
C2
2 −6C3

−6C3 6C2

)
. (18)

Now we are in position to perform the restriction of P on N . For S ∈ N we have

X ∗
P (N )S = {α ; i∂xα ∈ F(h⊥)} (19)

T⊥(N )S = {α ; ⟨⟨α,X⟩⟩ = 0, X ∈ F(h⊥S )}. (20)

We see that T⊥(N )S is the set of smooth functions α(x) such that α ∈ hS tends to
zero fast enough when x 7→ ±∞. We shall denote this space by F(hS). Naturally,
F(hS) ⊂ F(hS)0, where the space F(hS)0 consists of all smooth functions X(x)
such that X ∈ h and such that X tends to some constant values when x 7→ ±∞.
Since S and S1 span hS , we have that S, S1 ∈ F(hS)0 and

F(hS)0 = {X ; X = a(x)S(x) + b(x)S1(x), a(x), b(x)− smooth,
(21)

a(x), b(x) tend to some constant values when x 7→ ±∞}
F(hS) = {X ; X = a(x)S(x) + b(x)S1(x), a(x), b(x)− smooth,

(22)
lim

x→±∞
a(x) = lim

x→±∞
b(x) = 0}

Let us consider now X ∗
P (N )S ∩ T⊥(N )S . It consists of elements

α = a(x)S(x) + b(x)S1(x)

such that i∂xα ∈ F(h⊥S ). But

i∂xα = ia(x)Sx + ib(x)(S1)x + iaxS(x) + ibxS1(x)

so we must have ⟨i∂xα(x), S(x)⟩ = ⟨i∂xα(x), S1(x)⟩ = 0. Now, let us note that
from (15) follows that

⟨S(x), Sx(x)⟩ = ⟨S1(x), (S1)x(x)⟩ = 0, ⟨S1(x), Sx(x)⟩ = −⟨(S1)x(x), Sx(x)⟩.

Next
⟨S1, Sx⟩ = 6 tr(SxS

2) = 2 tr(S3)x.



350 Alexander B. Yanovski

Using Proposition 3 we get that ⟨S1, Sx⟩ is proportional to trSx = 0. In this way
we see that Sx, (S1)x belong to F(h⊥S ) and therefore ax = bx = 0. Then a and b
can be only identically zero and

X ∗
P (N )S ∩ T⊥(N )S = {0} ⊂ kerPS .

Consider now arbitrary α ∈ T ∗(N )S . We want to represent it as α1 + α2, where
α1 ∈ X ∗(N )S , α2 ∈ T⊥(N )S . Therefore, α2 = A(x)S(x) + B(x)S1 with
A(x), B(x) vanishing when x 7→ ±∞. In addition, we must have

i∂xα = i∂xα1 + iA(x)Sx + iB(x)(S1)x + iAxS(x) + iBxS1 (23)

where i∂xα1 ∈ F(h⊥S ). Taking the Killing form with S and S1 we get the system

⟨∂xα, S(x)⟩ = Ax⟨J, J⟩+Bx⟨J, J1⟩ (24)

⟨∂xα, S1(x)⟩ = Ax⟨J, J1⟩+Bx⟨J1, J1⟩
(25)

and therefore (
Ax

Bx

)
= T−1

(
⟨∂xα, S(x)⟩
⟨∂xα, S1(x)⟩

)
(26)

where T is the Gram matrix introduced earlier. So we obtain(
A
B

)
= T−1

(
∂−1
x ⟨∂xα, S(x)⟩

∂−1
x ⟨∂xα, S1(x)⟩

)
. (27)

Remark 4. In all the theory of the recursion operators and their geometric interpre-
tation usually the expressions on which the operator ∂−1

x acts are total derivatives.
Thus the same results will be obtained choosing for ∂−1

x any of the following op-
erators

x∫
−∞

. dy,

x∫
+∞

. dy,
1

2

 x∫
−∞

. dy +

x∫
+∞

. dy

 . (28)

However, one uses more frequently the third expression when one writes the cor-
responding Poisson tensors in order to make them explicitly skew-symmetric.

Returning to our task, for α ∈ T ∗(N )S let us put

α = α1 + α2 (29)

α1= α− α2 (30)

α2= (S, S1)T
−1

(
∂−1
x ⟨∂xα, S(x)⟩

∂−1
x ⟨∂xα, S1(x)⟩

)
. (31)
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One checks that α1, α2 lie in the spaces X ∗(N )S , T
⊥(N )S respectively. Thus the

conditions of the first restriction theorem are fulfilled. Noting that for β ∈ T ∗
S(N )

we have dj∗Sβ = πS(β) we find that the restriction P̄ of P on N has the form

P̄ (β) = iπS∂xβ − i (Sx, (S1)x)T
−1

(
∂−1
x ⟨∂xβ, S(x)⟩

∂−1
x ⟨∂xβ, S1(x)⟩

)
. (32)

The Poisson tensor Q̄ is invertible on N , so one can construct a Nijenhuis N =
P̄ ◦ ad−1

S tensor which evaluated at X ∈ F(h⊥S ) gives

N(X) = iπS∂x(ad
−1
S X)− i (Sx, (S1)x)T

−1

(
∂−1
x ⟨∂x(ad−1

S X), S(x)⟩
∂−1
x ⟨∂x(ad−1

S X), S1(x)⟩

)
. (33)

Taking into account that ⟨ad−1
S (X), S⟩ = ⟨ad−1

S (X), S1⟩ = 0 the above can be
cast into equivalent form

N(X) = iπS∂x(ad
−1
S X) + i (Sx, (S1)x)T

−1

(
∂−1
x ⟨ad−1

S X)Sx(x)⟩
∂−1
x ⟨ad−1

S X, (S1)x(x)⟩

)
. (34)

From the general theory of the compatible Poisson tensors now follows that

Theorem 2. The Poisson tensor field Q̄ and the Nijenhuis tensor field N endow
the manifold N with a P-N structure.

The final step is to calculate the dual of the tensor N with respect to the pairing
⟨⟨ , ⟩⟩. A quick calculation, taking into account that adS is skew-symmetric with
respect to the Killing form, gives for α ∈ F(h⊥S )

N∗(α) = i ad−1
S

[
πS∂xα+ (Sx, (S1)x)T

−1

(
∂−1
x ⟨αSx(x)⟩

∂−1
x ⟨α, (S1)x(x)⟩

)]
(35)

or equivalently

N∗(α) = i ad−1
S

[
πS∂xα− (Sx, (S1)x)T

−1

(
∂−1
x ∂x⟨αS(x)⟩

∂−1
x ⟨∂xα, S1(x)⟩

)]
. (36)

But if we write the above in components we shall see that these are the recursion
operators Λ̃± for the GZS system in pole gauge, see [21]. Thus our results confirm
the idea that the recursion operators and the Nijenhuis tensors are dual objects.

3. Conclusion

In this article we have found the P-N structure on the manifold of potentials N
for the GZS system in pole gauge on the algebra sl(3,C) obtaining geometric
interpretation of the recursion operators.
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