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Abstract. Many exactly solvable models are based on Lie algebras. The
pairing interaction is important in nuclear physics and its exact solution for
identical particles in non-degenerate single-particle levels was first given
by Richardson in 1963. His solution and its generalization to Richardson-
Gaudin quasi-exactly solvable models have attracted the attention of many
contemporary researchers and resulted in the exact solution of the isovector
pn-pairing within the SO(5) RG-model and the equal strength spin-isospin
pn-pairing within the SO(8) RG-model. Basic properties of the RG-models
are summarized and possible applications to nuclear physics are emphasized.

1. Introduction

Symmetry is one of the most important paradigms in modern physics. Any Lie
group and its Lie algebra have a naturally defined action on a product of spaces
(representations). Thus, they are very suitable for a multi-particle system with an
underling symmetry. Usually, this means that the relevant operators are well de-
fined for one particle as well as for any number of particles. This allows one to find
exact solutions to a problem, with a given underlining symmetry, by referring to
the relevant representation theory of the symmetry group at place. As a result many
exactly solvable models are build using Lie algebra representation theory. A well
known examples are the theories with SO(3) and SU(2) rotational symmetry, the
Elliott’s U(3) symmetry model [4–7], the Wigner’s SU(4) spin-isospin symmetry
[17], and many more that play a major role in nuclear physics. For example, the
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SO(8) and Sp(6) Ginnocchio models, the Fermion Dynamical Symmetry Mod-
els (FDSM), and the three dynamical symmetries of the Interacting Boson Model
(IBM).

A nuclear many-body system near equilibrium can be viewed as subject to a mean
field Harmonic Oscillator (HO) potential

H0 =
p⃗2

2m
+

1

2
k2x⃗2.

Since the symmetry group of the three-dimensional HO is U(3) one can easily
see its relevance in the description of nuclei [4]. It is well know that one can
understand the magic numbers and the shell structure of nuclei within the three-
dimensional HO approximation [11]. Using the HO single-particle states one can
write a general Hamiltonian with one- and two-body terms

H =
∑
i

εia
+
i ai +

1

4

∑
i,j,k,l

Vij,kla
+
i a

+
j akal.

Here, ai and a+j are fermion annihilation and creation operators, εi single-
particle energies, and Vij,kl = ⟨ij|V |kl⟩ two-body interaction matrix elements.

The simplest extension of the HO Hamiltonian is to add quadruple interaction
terms Q ·Q and/or spin-orbit interaction L.S. This has been well studied by Elliott
and his collaborators [4–7].

Another important interaction is the pairing interaction in nuclei

HP =
∑
i

2εini − g
∑
i,j

a+↑,ia
+
↓,ia↑,ja↓,j . (1)

Here ni is the number operator for pairs. The exact solution of the pairing inter-
action between identical particles in non-degenerate single particle levels was first
given by Richardson [14, 15]. His solution and its generalization to Richardson-
Gaudin quasi-exactly solvable models (RG-models) have attracted the attention of
various contemporary researchers - resulting in the exact solution of the isovector
proton-neutron pairing in nuclei within the SO(5) RG-model [3] - to be discussed
in Section 4.1 and the equal strength spin-isospin proton-neutron pairing within the
SO(8) RG-model [12] to be summarized in in Section 4.2. Basic properties of the
integrable RG-models are summarized in Section 3 and their possible applications
to variety of nuclear physics models are emphasized in Section 5. In the next sec-
tion we briefly discuss few dynamical symmetry models of importance to nuclear
systems.
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2. Some Exactly Solvable Nuclear Models

A quantum system has a dynamical symmetry if the Hamiltonian can be expressed
as a function of the Casimir operators of a subgroup chain. A typical example of
a rank two dynamical symmetry is the Elliott’s SU(3) model that is used in the
description of deformed nuclei [4–7]

Hdef = εN + χQ ·Q. (2)

This Hamiltonian can be rewritten as a linear combinations of the Casimir operator
of the su(3) Lie algebra C

su(3)
2 = (Q · Q + 3L2)/4 involving the quadrupole-

quadrupole interaction Q · Q and the Casimir operator L2 of the SO(3) subgroup
of the angular momentum. Thus we have a group chain reduction SO(3) ⊂ SU(3)
that provides exact solution to our initial Hamiltonian (2)

Hso(3)⊂su(3) = εN +
1

2J
L2 + aC

su(3)
2 .

Here N counts the number of particles with energy ε of a particular HO shell and
L2 lifts the l-degeneracy of a particular harmonic oscillator shell.
A common feature of the dynamical symmetry nuclear models, is that they are all
defined for a degenerate single particle levels. Since single particle energy splitting
breaks the dynamical symmetry, it is usually expected that this will prevent the
model to be exactly solvable. For example, spin-orbit interaction l · s lifts the total
angular momentum degeneracy j = l + 1/2 and j = (l + 1) − 1/2 and destroys
the SU(3) symmetry [10]. Although, the single particle energy splitting breaks the
dynamical symmetry it may still preserve the exact solvability. The pairing model
with non-degenerate single particle levels, whose exact solution has been found by
Richardson, represents a unique example of an exactly solvable model with these
characteristics [14, 15]. The model is exactly-solvable due to the special extension
of the relevant dynamical symmetry algebra to a spectral Gaudin algebra.

3. Spectral Lie Algebras

A Gaudin algebra G (g) is an infinite dimensional extension of the Lie algebra g
that associates to any generator Xα ∈ g a parameter dependent generator Xα (λ) ∈
G (g) satisfying the following commutation relations [16]

[
Xα (λ) , Xβ (µ)

]
=
∑
γ

Γαβ
γ

Xγ (λ)−Xγ (µ)

λ− µ
· (3)

Here Γαβ
γ are the structure constants of the Lie algebra g, λ and µ are complex

spectral parameters. One can form Hermitian operators by using the dot product
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defined via the g-invariant metric tensor gαβ ∼ Tr(ad(Xα)ad(Xβ))

K (λ) = X(λ) ·X(λ). (4)

K (λ) are not Casimir operators because they do not commute with all generators
of G (g). However, these operators commute among themselves, i.e.,

[K (λ) ,K (µ)] = 0. (5)
This implies that the system is integrable and K(λ) are the integrals of motion.
There is a unique rational realization1 of the generators Xα (λ) in terms of L copies
of the generators of the Lie algebra g given by the following expression

Xα (λ) =

L∑
i=1

1

zi − λ
Xα

i + ρα. (6)

The zi are L arbitrary numbers, which will ultimately be related to the single par-
ticle energies. Here we deviate from [16] by introducing the set of arbitrary pa-
rameters ρα. However, most of the expressions related to the Gaudin algebra (3)
derived for the case ρα = 0 are still valid because Xα (λ) → Xα (λ) + ρα is an
algebra isomorphism. The shift of the elements of G by the ρ parameters is a key
to the symmetry breaking in the model.

3.1. Richardson-Gaudin Operators

For the realization (6) of the Gaudin algebra, the integrals of motion are

K (λ) = ρ · ρ+
∑
i

C
(i)
2

(zi − λ)2
+ 2

∑
i

Ri

zi − λ
·

Here C(i)
2 is the second Casimir operator of the i-th copy of g. Thus the first two

terms are constants for states built on a tensor product of irreducible representations
of g. The Ri are the Richardson-Gaudin operators [2, 9] and are one-half of the
residue of K(λ) at λ = zi

Ri =
∑
j( ̸=i)

Xi ·Xj

zi − zj
+ ξi, ξi = ρ ·Xi. (7)

By taking the residues of (5) at λ = zi and µ = zj one can see that the Ri opera-
tors commute among themselves. Therefore, they define a new set of integrals of
motion. Thus any function of the Ri operators can be used as a model Hamiltonian
for this integrable system. In particular, any linear combination of the Ri operators
is at most quadratic in the generators.

1There are non-rational Gaudin algebra realizations but we will not consider them here.
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For a singular semi-simple algebras, the eigenvalues of the Ri operators can be
obtained from the eigenvalues k(λ) of the K(λ) operator given in [16] by taking
the appropriate residue (1/2 Res(k(λ), λ = zi))

ri = Λi · ρ+
∑
j( ̸=i)

Λi · Λj

zi − zj
+

r∑
a=1

Ma∑
α=1

Λi · πa

zi − ea,α
· (8)

Here ea,α are solutions of the generalized Richardson equations [1, 13, 16]

r∑
b=1

Mb∑
β=1

′
πb · πa

eb,β − ea,α
−

L∑
i=1

Λi · πa

zi − ea,α
= ξ · πa (9)

and L is the number of copies of the algebra g and Λi is the weight for the i-th
copy. The Λi · πa are actually the eigenvalues of the generators Ha = πa

sh
s at the

lowest/highest weigh state of the i-th copy of g. The πa
s are the components of the

positive simple roots2 πa of the Lie algebra g in the Cartan-Weyl basis ([hs, Ea] =
πa
sE

a), and ξ ·πa = πa
sρ

s, where ρs are the components of the symmetry breaking
one-body operator ξ = ρshs along the Cartan generators hs. The rank of g is r
and Ma are positive numbers related to the eigenvalues ma of Ha at the desired
eigenstate (Ma =

∑
i Λ

a
i −ma

i ).

3.2. Symmetry Breaking

Although one can use any function of Ri as a Hamiltonian, there is a particular
liner combination of the Gaudin operators Ri that results in a simple expression
which is linear in the spectral parameters ea,α. From this expression one can see
that the breaking of the g-symmetry is due to the ξ terms

H =
∑
i

ziRi =
∑
i

ziξi −
1

2

(
C2 −

∑
i

C
(i)
2

)
. (10)

In general zi ̸= zj , thus the term
∑

i ziξi would mix different irreps because it will
not commute with the total Casimir operator C2 that is built from the generators
X =

∑
iXi. The final symmetry of this Hamiltonian is determined by the set of

generators that commute with ξ. In order to see that the eigenvalues of (10) are lin-
ear in the spectral parameters ea,α one has to multiply the generalized Richardson
equations (9) by ea,α and sum over all the indexes. After some manipulations one
would observe that the last term in (8) appears in the relevant expressions.
As we already discussed in the previous section, common feature of the dynamical
symmetry nuclear models is that they are all defined for degenerate single particle

2Ea is a simple root vector if it cannot be witten as a commutator of any other two positive root
vectors.
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levels. Single particle energy splitting breaks the dynamical symmetry but may still
preserve the integrability. The pairing model with non-degenerate single particle
levels, whose exact solution has been found by Richardson, along with the above
discussed Richardson-Gaudin constructions are examples of exactly solvable mod-
els with such characteristics [14].

Models based on fermion realization of the generators of the type a+αa
+
β , such as the

sp(2n) algebras, are naturally suitable for non-degenerate single particle systems.
This is related to the fact that the fermion realizations of the corresponding Cartan
generators are related to the fermion number operators. This is an easy observation
if one looks at the commutator [X+

αβ , X
−
αβ] = nα + nβ − 1 where the non-Cartan

generators are in the form X+
αβ = a+αa

+
β and (aα)

+ = a+α . Note that nα and nβ

enter on an equal footing. In contrast models that are built on generators of the
form X+

αβ = a+αaβ , such as su(n) algebras, result in Cartan generators of the form
nα − nβ.

4. Pairing in Nuclei

Now we will direct our discussion towards the applications of the generalized
Richardson-Gaudin models in nuclear physics. For this reason we shall specify
zi to be related to the single particle energies εi by the expression zi = 2εi. ρ

α

to be non-zero only for Xα that are elements of the Cartan algebra of g, that is
ρa ̸= 0 and a = 1...r. Then a “pairing” like Hamiltonian HP is obtained from (10)
by considering HP = gH and its form is

HP =
∑
i

2εiδ · hi − g
∑
β∈Ω+

∑
i̸=j

Y −β
i Yβ,j

EP =
r∑

a=1

Ma∑
α=1

ea,αδa, g =
∏
ρa ̸=0

1

ρa
, δa = gρa.

Here the EP are the eigenvalues of HP and Yβ are the positive root vectors with
respect to the chosen Cartan algebra {ha} of g. Now g plays the row of a coupling
constant for the two-body interaction term Y −βYβ.

This is particularly clear in the case of the pairing model where g=su(2) with
generators Y+ = a+↑ a

+
↓ , Y− = a↑a↓ and h = a+↑ a↑ + a+↓ a↓. Since there is only

one Cartan generator h, there is only one ρ = 1
g , and δ = 1, and EP results in the

usual expression of a sum over the pair energies ei, EP =
∑M

i=1 ei for the standard
pairing Hamiltonian (1).



232 Vesselin G. Gueorguiev and Jorge Dukelsky

4.1. T=1 Proton-Neutron Pairing as SO(5) RG-model

To better illustrate the current framework we will briefly discuss the T = 1 pairing
in proton-neutron systems which is related to an so(5) Lie algebra [13]. In this case
the one-level system is constructed from various proton-proton, neutron-neutron,
and proton-neutron pairs. By choosing the Cartan generators to be the total particle
number operator h2 = 1 − (N̂p + N̂n)/2 and the third projection of the isospin
h1 = T0 = (N̂p − N̂n)/2. We find the positive root vectors3 of the algebra to be
the hard boson annihilation operators {b(µ) : µ = 1, 2, 3} = {n−

↑ n
−
↓ , (p

−
↑ n

−
↓ +

n−
↑ p

−
↓ )/

√
2, p−↑ p

−
↓ } plus the isospin rising operator T+ = (p+↓ n

−
↓ + p+↑ n

−
↑ )/

√
2.

The simple root vectors are {b(3), T+} and b(3) = p−↑ p
−
↓ is the singular root vector

[16]. In the chosen basis the corresponding commutation relations are

[h2, h1] = 0, [b(µ), b(ν)] = 0, µ, ν =1, 2, 3

[h2, b(µ)] = b(µ), [h2, T+] = 0, [h1, T+] =T+

[h1, b(1)] = b(1), [h1, b(2)] = 0, [h1, b(3)] = − b(3)

[b(3), T+] = b(2), [T+, b(2)] = b(1), [T+, b(1)] = 0.

By including the conjugated operators one closes the algebra so(5). The isospin
sub-algebra suT (2) ⊂ so(5) is generated by the so(5) generators that are not re-
lated to the singular root vector b(3) = p−↑ p

−
↓ . That is, suT (2) is generated by T+,

T− = (T+)
+, and [T+, T−] = T0 = h1. Even more, all the given so(5) generators

can be recognized as suT (2) tensor operators.
Since so(5) is a rank two algebra, we have two types of spectral parameters: e1,α
and e2,β which we will denote by wα and vβ in the following discussion. The upper
bounds M1 and M2, for the indices α and β, are related to the isospin T and the
total number of pairs M via the expressions M1 = M − T and M2 = M. The
scalar products of the simple roots are (π2, π2) = 2, (π1, π1) = 1, (π2, π1) = −1.
If we consider now the spherical shell model, where protons and neutrons can
occupy single particle states with quantum numbers (j,mj) then the sub-index ↑
corresponds to mj > 0 and ↓ to mj < 0 and the single particle index i labels the
states (j, |mj |). Due to the rotational symmetry, we can use the angular momentum
j instead of i but have to take into account the corresponding degeneracy Ωj =
(2j + 1)/2. Finally the weights Λa

i are the same for any i and correspond to the
fundamental representation of so(5), that is, Λ1 = 0, and Λ2 = 1. Putting all this
together with the choice ρ1 = 0, ρ2 = −1/g, and zi = 2εi in the generalized
Richardson equating (9) we obtain the equations for the proton-neutron T = 1

3Positiveness of a root vector is determined by the positiveness of the corresponding eigenvalues:
first with respect to hr , if zero then one has to look at hr−1 and so on.
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pairing that were given also by Links et al [13] and Asorey et al [1]

1

g
=

L∑
i=1

Ωi

2εi − vα
+

M∑
β ̸=α

2

vα − vβ
+

M−T∑
γ=1

1

wγ − vα
(11)

0 =
M∑
α=1

1

vα − wγ
+

M−T∑
δ ̸=γ

1

wγ − wδ
, E =

M∑
α=1

vα.

The spectral parameters vα have the same meaning as pair energies. If one allows
for isospin breaking then one has to set ρ1 = ∆ ̸= 0 [3].

4.2. Spin-Isospin pn-pairing as SO(8) RG-model

In the previous section on our discussion of the T=1 proton-neutron pairing as
SO(5) RG-model, we considered the intrinsic symmetry space to be the isospin
suT (2) symmetry while the extrinsic spaces labeled by i were related to the total
spin states (j,mj). In particular, the pairs operators {b(µ), b+(µ)} and the suT (2)
algebra generators {T0, T±} were time-reversal invariant. For the study of the spin-
isospin pn-pairing it is appropriate to consider the Wigner’s suST (4) = suS(2) ×
suT (2) as intrinsic symmetry of the system [17] and the orbital angular momentum
(l,ml) as the extrinsic space labeled with i in the appropriate sums. This way the
protons and neutrons are described by the operators: ali,m;s,σ;t,τ where s = t = 1

2
or briefly ali,m,σ,τ . The pair operators are defined as isovector and spinvector tensor
operators

Pτi =
√

Ωli [aliali ]
001
00τ , Dσi =

√
Ωli [aliali ]

010
0σ0 .

The Ωli = (2li + 1)/2) appears here due to the structure of the Clebsch-Gordan
coefficients <lm, l − m|00>. The Wigner’s su(4) along with the u(1) number
operator N = Nn↑ +Nn↓ +Np↑ +Np↓ = 2n which is double of the pair number
operator n, form u(4) algebra with the following 16 generators

Xτ1σ1τ2σ2i =
∑
m

a+lim,τ1σ1
alim,τ2σ2

that are u(1), suS(2), and suT (2) tensors up to a factor
√
Ωli

Ni ∼
[
a+li ali

]000
000

, Sσi ∼
[
a+li ali

]010
0σ0

, Tτi ∼
[
a+li ali

]001
00τ

, Yστi ∼
[
a+li ali

]011
0στ

.

The relevant hamiltonian has equal spin and isospin pairing strength

HP =

L∑
i

2εini − g
∑
ij,µ

(P †
µiPµj +D†

µiDµj)
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with eigenvalues: E =
∑M1

α eα where each M1 pair contributes pair energies eα
determined by the four equations [12]

1

g
=

L∑
i

Ωi

2ϵi − eα
−

M1∑
α′(̸=α)

2

eα′ − eα
+

M2∑
α′

1

ωα′ − eα

0 = −
M1∑
α′

1

eα′ − ωα
+

M2∑
α′(̸=α)

2

ωα′ − ωα
−

M3∑
α′

1

ηα′ − ωα
−

M4∑
α′

1

γα′ − ωα

0 = −
M2∑
α′

1

ωα′ − ηα
+

M3∑
α′ (̸=α)

2

ηα′ − ηα

0 = −
M2∑
α′

1

ωα′ − γα
+

M4∑
α(′ ̸=α)

2

γα′ − γα
·

Since this is SO(8) RG model of rank is 4 there are 4 sets of spectral parameters.
The number of spectral parameters in each set is determined by the relevant u(4)
Wigner multiplet. For a given number of pairs M , these u(4) multiplets can be
classified using Young tableaux. Each multiplet is defined by a partition of M in
4 numbers, [λ1λ2λ3λ4], constrained by:

∑
iΩi ≥ λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ 0.

The labels λi are related to the number of pairs in the lowest/highest weight state.
Thus M1 = λ1 + λ2 + λ3 + λ4 is the number of pairs M , M2 = λ2 + λ3 + λ4,
M3 = λ3 + λ4, and M4 = λ4.

5. Conclusions and Discussions

Using the Cartan classification of the semi-simple Lie algebras one can see that
many physics models can be generalized within the above framework. Table 1
presents the semi-simple Lie algebras up to rank four and the corresponding main
fermion models. R&R denotes the model developed by G. Rosensteel and D. Rowe
and TCF stands for Trapped Cold Fermions [8].

Table 1. Lie algebra structures associated with important nuclear
physics models. Pairing models are listed in boldface. The symbol
∼ indicates the isomorphisms of the corresponding Lie algebras.

rank n An su(n+ 1) Bn so(2n+ 1) Cn sp(2n) Dn so(2n)

1 su(2) pairing so(3) ∼ su(2) sp(2) ∼ su(2) so(2) ∼ u(1)
2 su(3) Elliott so(5) T=1 pairing sp(4) ∼ SO(5) so(4) ∼ su(2)⊕ su(2)
3 su(4) Wigner so(7) ⊂ so(8) FDSM sp(6) R&R so(6) ∼ su(4) TCF
4 su(5) so(9) sp(8) so(8) Evans, FDSM
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The RG-models are a new important mathematical tool to study the behavior of
physical systems. They are finding applications to the such fields of studies as
super-conducting grains, atomic nuclei, and trapped fermion atoms.
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