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Abstract. In this paper we review some interesting results obtained through
the Newman-Janis algorithm, a solution generating technique employed in
General Relativity. We also describe the use of this algorithm in different
theories, namely f(R), Einstein-Maxwell-Dilaton gravity, Braneworld, Born-
Infeld Monopole and we focus on the validity of the results.

1. Introduction

In order to find new solutions of Einstein field equations, several methods were
introduced, such as the Newman-Penrose formalism and a technique founded by
Newman and Janis [15]. In the recent years, many papers have appeared focusing
on the Newman-Janis algorithm, considered as a solution generating technique
which provides metrics of reduced symmetries from symmetric ones. Our aim is
to give a summary of the use of this method and to review the most interesting
applications in different gravity theories.

The outline of this paper is as follows: in Section 2, we present the general pro-
cedure of the Newman-Janis algorithm (henceforth NJA). In Section 3, we review
the interesting attempts made in General Relativity, focusing on the most intrigu-
ing results. In Section 4, we have analyzed how to apply this technique to the
f(R) modified theories of gravity, by following the procedure used in GR. Then, in
Section 5, an application of NJA in the Einstein-Maxwell-dilaton-axion Gravity is
discussed. Finally we draw some conclusions.
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2. A Brief Description of the Method

Following [15], we show how it is possible to derive the Kerr solution from the
Schwarzschild one through the NJA. Let us start by writing the Schwarzschild
metric, considered as a static spherically symmetric seed metric, in advanced
Eddington-Finkelstein coordinates (i.e., the grr component is eliminated by a change
of coordinates and a crossterm is introduced)

ds2 =

(
1− 2m

r

)
du2 + 2dudr− r2(dϑ2 + sin2 ϑdφ2).

By introducing the formalism of null tetrad, the contravariant metric components
may be written as

gµν = lµnν + lνnµ −mµm̄ν −mνm̄µ (1)

where

lµl
µ = mµm

µ = nµn
µ = 0

lµn
µ = −mµm̄

µ = 1

lµm
µ = nµm

µ = 0.

For the Schwarzschild spacetime the null tetrad vectors (lµ, nµ,mµ, m̄µ) are

lµ = δµ1

nµ = δµ0 − 1

2

(
1− 2m

r

)
δµ1

mµ =
1√
2r

(
δµ2 +

i

sinϑ
δµ3

)
m̄µ =

1√
2r

(
δµ2 − i

sinϑ
δµ3

)
.

Now, let the coordinate r to take complex values so the complex conjugate of r
appears

lµ = δµ1

nµ = δµ0 − 1

2

(
1−m

[
1

r
+

1

r̄

])
δµ1

mµ =
1√
2r̄

(
δµ2 +

i

sinϑ
δµ3

)
m̄µ =

1√
2r

(
δµ2 − i

sinϑ
δµ3

)
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then it is possible to perform the following complex coordinate transformation on
the null vectors

r′ = r + ia cosϑ, u′ = u− ia cosϑ, ϑ′ = ϑ, φ′ = φ

where a is a real parameter. By requiring that r′ and u′ are real (that is considering
the transformations as a complex rotation of the ϑ, φ plane), one obtains the new
tetrad

lµ = δµ1

nµ = δµ0 − 1

2

(
1− 2mr′

r′2 + a2 cos2 ϑ

)
δµ1

mµ =
1√

2(r′ + ia cosϑ)

[
ia sinϑ(δµ0 − δµ1 ) + δµ2 +

i

sinϑ
δµ3

]
m̄µ =

1√
2(r′ − ia cosϑ)

[
−ia sinϑ(δµ0 − δµ1 ) + δµ2 − i

sinϑ
δµ3

]
.

The contravariant components of a new metric can be defined from the above null
vectors according to equation (1). This gives the promised Kerr solution in ad-
vanced null coordinates. By performing a transformation on the null coordinate u
and the angle coordinate φ, one obtains the usual representation of the Kerr metric
in Boyer-Lindquist coordinates.
The same procedure can be used to get the Kerr-Newman metric from the Reissner-
Nordström one [14]. The first two exact solutions obtained through the Newman-
Janis algorithm are the vacuum solution (Kerr) and the electro-vacuum solution
(Kerr-Newman).

3. The NJA in General Relativity

After the introduction of the NJA which allows to generate the Kerr solution from
Schwarzschild metric and the Kerr-Newman solution from Reissner-Nordström
metric, this method has been applied with the aim to generate new solutions. In
this section we discuss some interesting results obtained in different cases.
Generally the NJA has been treated as an useful procedure for generating new
solutions of Einstein’s equations from known static spherically symmetric ones,
thus the method turns out to be suitable for studying rotating systems in General
Relativity.
Precisely in [5], in order to show that new metrics can be obtained, the Newman-
Janis technique with a different complex coordinate transformation is applied to
the Schwarzschild solution in null polar coordinates, as follows

r′ = r + i(a cosϑ+ b), u′ = u− i(a cosϑ+ 2b ln(sinϑ)) + 2ib ln(tanϑ/2).
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The final result is a solution of Einstein’s equations in vacuum and appears as a
combination of Kerr metric and the NUT space metric. It depends, in fact, on three
arbitrary parameters m, a and b. When a = b = 0 the Schwarzschild solution is
obtained; if a = 0 it becomes the NUT space and if b = 0 it becomes the Kerr
solution. Subsequently, it was demonstrated that by performing a more general
complex coordinate transformation, see [6], it is possible to find the most general
solution of Einstein field equations obtainable in this way and in which a non van-
ishing cosmological constant is allowed. With this result by setting Λ = 0 one
recovers the standard form of the NUT space. However, in this way it is impossi-
ble to find the Kerr solution with the cosmological constant and, in particular, this
shows that the Carter’s Kerr de Sitter metric cannot be obtained with the NJA.

An explanation concerning the success of this “trick” is shown in [10]. Here, is
pointed out that, as ensues from [16] where the Kerr-Schild metric is obtained by
performing an imaginary displacement (ia) of the coordinates, a complex transla-
tion of coordinates is allowed in GR when a coordinates system is found in which
the pseudo energy-momentum tensor vanishes or the Einstein equations are linear.
This works only in an algebraically special Kerr-Schild geometry.

Several attempts have been made by using the NJA to generate the interior Kerr
solutions ([8], [11], [13], [18]) but these were unsuccessful in finding a solution
that is both physically reasonable and can be matched smoothly to the Kerr metric.
In particular, in [11] the algorithm was indeed applied to an interior spherically
symmetric metric to describe an internal source model for the Kerr exterior solu-
tion. The resulting metric was then matched to the vacuum Kerr solution on an
oblate spheroid. In [8], in order to obtain new possible sources for Kerr metric,
the NJA was applied to a generic static spherically symmetric seed metric. Then,
to join any two stationary and axially symmetric metrics, the Darmois-Israel junc-
tion conditions were imposed on a suitable separating hypersurface, thus having a
vanishing surface stress-energy tensor.

For this reason, these results were considered as starting point to perform a gen-
eralization of the algorithm and to demonstrate why this method is successful. To
do this, is necessary to remove some of the ambiguities appearing in the original
derivation, as shown in [7], where it was also considered the problems arising when
the rotation is included.

Subsequently, the Newman-Janis method, combined with the Wang-Wu technique,
(see [13]), was used to generate new embedded solutions describing more compli-
cated systems, like Kerr-Newman-de Sitter. Furthermore it was shown that all
rotating embedded solutions can be written in Kerr-Schild form which seems the
most suitable form for the validity of NJA.
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In a more recent paper [18], in order to obtain Kerr interior solutions, starting from
the Schwarzschild solution, the NJA is performed. Then a discussion of the Slowly
Rotating Limit is also presented.
By starting with these results, a more deep analysis, concerning the ambiguities
which arise in dealing with the NJA and the problems appearing when the cosmo-
logical constant is introduced, has been given in [1].

4. The NJA in f(R)-gravity

Fourth order theories appear as a quite natural modification of GR theory. They
consist in a straightforward generalization of the Lagrangian in the Einstein-Hilbert
action by choosing a generic function of the Ricci scalar, f(R). The field equa-
tions following from this modified Lagrangian are of fourth order, i.e., they contain
derivatives up to the fourth order of the components of the metric with respect to
the spacetime coordinates. Recently, the interest in f(R) theories, in particular in
spherically symmetric solutions of f(R) is increased. This should be the starting
point to test the validity of the NJA in f(R) gravity, see [2].

4.1. The Standard Procedure

Let us consider the spherically symmetric metric as

ds2 = (α+ βr)dt2 − 1

2
(

βr

α+ βr
)dr2 − r2(dϑ2 + sin2 ϑdφ2).

By following the standard procedure as shown in Section 2, the metric is written in
Eddington-Finkelstein coordinates (u, r, ϑ, φ) and its null tetrad is

lµ = δµ1

nµ =

(√
2

βr

)
δµ0 −

(
−1− 2α

rβ

)
δµ1

mµ =
1√
2r

(
δµ2 +

i

sinϑ
δµ3

)
m̄µ =

1√
2r

(
δµ2 − i

sinϑ
δµ3

)
.

After the complexification of the radial coordinate r, it is possible to apply the NJA
as usual

r′ = r + ia cosϑ, u′ = u− ia cosϑ.

The resulting null tetrad appears in the following from
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lµ = δµ1

nµ = −
[
1 +

α

β

ℜ(r)
Σ2

]
δµ1 −

(√
2

βΣ

)
δµ0

mµ =
1√

2(r + ia cosϑ)

[
ia(δµ0 − δµ1 ) sinϑ+ δµ2 +

i

sinϑ
δµ3

]
m̄µ =

1√
2(r − ia cosϑ)

[
−ia(δµ0 − δµ1 ) sinϑ+ δµ2 − i

sinϑ
δµ3

]
where Σ =

√
r2 + a2 cos2 ϑ. Now, making a gauge transformation (see also [8]),

in order that the only off-diagonal term is gφt, one obtains an axially symmetric
metric as expected

gµν =


r(α+βr)+a2β cos2 ϑ

Σ 0 0 a(−2Ξ+ΓΣ3/2) sin2 ϑ
2Σ

· βΣ2

2αr+Λ 0 0

· · −Σ2 0

· · · −
[
Σ2 − a2(Ξ−ΓΣ3/2) sin2 ϑ

Σ

]
sin2 ϑ


where

Λ = β(a2 + r2 +Σ2), Ξ = αr + βΣ2, Γ =
√
2β.

The method can be also applied to any spherically solution derived in f(R)-gravity.

5. The NJA and “Rotating Dilaton-axion Black Hole"

In this section we discuss the application of the Newman-Janis method in Einstein-
Maxwell-dilaton-axion gravity, which is an interesting generalization of Einstein-
Maxwell theory obtained in the low energy limit of the heterotic string theory.
Precisely, in [20] is shown how the NJA can be used to derive the rotating dilaton-
axion black hole solution from the static spherically symmetric charged dilaton
black hole solution, found by Gibbons and independently by Garfinkle, Horowitz
and Strominger. Since Sen (see [17]), was able to generate the rotating charged
black hole solution by starting from the Kerr solution, it seems natural to verify if
the Sen’s solutions can be generated via NJA from the GGHS solutions.
The first step is to write the metric describing the dilaton black hole solution,
namely GGHS, in the suitable form directly generated from the Schwarzschild
solution [21]

ds2 =

(
1− r1

r

1 + r2
r

)
dt2 −

(
1− r1

r

1 + r2
r

)−1

dr2 − r2
(
1 +

r2
r

)
(dϑ2 + sin2 ϑdφ2)
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where r1 + r2 = 2M , r2 = Q2

M and M and Q are the mass and the charge of the
dilaton black hole. After expressing the metric in advanced coordinates with

dt = du+

(
1− r1

r

1 + r2
r

)−1

dr

is it possible to introduce the null tetrad

lµ = δµ1

nµ = δµ0 − 1

2

(
1− r1

r

1 + r2
r

)
mµ =

1√
2r
√

1 + r2
r

(
δµ2 +

i

sinϑ
δµ3

)
m̄µ =

1√
2r
√

1 + r2
r

(
δµ2 − i

sinϑ
δµ3

)
.

Following the standard procedure, one obtains the new null tetrad

lµ = δµ1

nµ = δµ0 − 1

2

(
1− r1r

Σ

1 + r2r
Σ

)
δµ1

mµ =
1√

2(r + ia cosϑ)

1√
1 + r2r

Σ

(
δµ2 + ia cosϑ(δµ0 − δµ1 ) +

i

sinϑ
δµ3

)
m̄µ =

1√
2(r − ia cosϑ)

1√
1 + r2r

Σ

(
δµ2 − ia cosϑ(δµ0 − δµ1 )−

i

sinϑ
δµ3

)
where Σ = r2 + cos2 ϑ. After further simplifications and a suitable choice of
coordinates, the rotating dilaton-axion black hole metric reads

ds2 =

(
1− 2Mr

Σ̃

)
dt2 − Σ̃

(
dr2

∆
+ dϑ2

)
+

4Mra sin2 ϑ

Σ̃
dtdφ

−
(
r(r + r2) + a2 +

2Mra2 sin2 ϑ

Σ̃

)
sin2 ϑdφ2

where
Σ̃ = r(r + r2) + a2 cos2 ϑ, ∆ = r(r − r1) + a2.

The final result coincides with what is expected. However it is known that the static
spherically symmetric charged dilaton black hole is also a solution to the truncated
theory without axion field (i.e., Einstein-Maxwell-dilaton gravity) but, in this case,
the Newman-Janis method does not work. The reason should be that the full theory
has a larger symmetry group than the truncated one, [20].
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6. Other Theories: Braneworld and Born Infeld Monopole

The Newman-Janis algorithm has been also applied in Braneworld theory and in
Born-Infeld theory in an attempt to verify if this method is successful in generating
rotating solutions also in other theories.

6.1. The NJA in Braneworld

In the framework of Braneworld, the NJA is applied to three static, spherically
symmetric seed metrics in the following form [19]

ds2 = −e2φ(r)dt2 + e2λ(r)dr2 + r2dΩ2

with three different choices of the functions e2φ(r) and e2λ(r), which are respec-
tively

e2φ(r) =

[
(1 + ϵ)

√
1− 2M

r
− ϵ

]2

, e2λ(r) =

(
1− 2M

r

)−1

e2φ(r) =

(
1− 2M

r

)
, e2λ(r) =

(
1− 3M

2r

)(
1− 2M

r

) (
1− ro

r

)
e2φ(r) =

(
1− 2M

r
− 4

3

Ml2

r3

)
, e2λ(r) =

(
1− 2M

r
− 2Ml2

r3

)−1

.

It is noticed that all these three metrics reduce to the Schwarzschild solution in the
appropriate limits which are respectively

ϵ→ 0, r0 → 3m/2, l → 0

where l is the curvature lenght. After the usual complexification and the introduc-
tion of Boyer-Lindquist coordinates, the resulting metric is

ds2 =− e2φdt2 − 2a sin2 ϑeφ(eλ − eφ)dtdψ +
Σ

∆
dr2 +Σdϑ2

+ sin2 ϑ[Σ + a2 sin2 ϑeφ(2eλ − eφ)]dψ2

where the exponential functions become
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eφ(r) =

[
(1 + ϵ)

√
1− 2Mr

Σ
− ϵ

]
, eλ(r) =

(
1− 2Mr

Σ

)−1/2

eφ(r) =

(
1− 2Mr

Σ

)1/2

, eλ(r) =

(
1− 3Mr

2Σ

)1/2(
1− 2Mr

Σ

)1/2 (
1− ror

Σ

)1/2
eφ(r) =

(
1− 2Mr

Σ
− 4

3

Ml2r

Σ2

)1/2

, eλ(r) =

(
1− 2Mr

Σ
− 2Ml2r

Σ2

)−1/2

and

Σ = r2 + a2 cos2 ϑ, ∆ = Σe−2λ + a2 sin2 ϑ.

It is straightforward to see that all three metrics obtained do not satisfy the condi-
tion to be a valid braneworld solution, i.e., R = 0, so that it appears that the NJA
in this form is not useful to get more general rotating Braneworld Black Holes so-
lutions from the static, spherically symmetric ones, even though it partially works
in order to generate the metric for a rotating source on the brane and for the tidal
Kerr-Newman black hole.

6.2. The NJA in Born Infeld Monopole

The Born-Infeld theory is a non linear generalization of Maxwell electrodynamics,
considered as the only completely exceptional regular non linear electrodynam-
ics. With the advent of new developments of the string and brane theories, the BI
electrodynamics has undergone a revival interest.

The application of the NJA to the static spherically symmetric metric of a Born-
Infeld monopole, firstly investigated by Hoffmann [12], is discussed in [4]. The
aim is to determine if the metric obtained via NJA coincides with the metric ob-
tained from the Born-Infeld monopole with rotation. By following the original
steps given by Newman and Janis, the starting metric in Eddington-Finkelstein
coordinates is

ds2 = −
(
∆

r2

)
du2 − 2dudr + r2(dϑ2 + sin2 ϑdφ2)

where

u = t− r − f(r), ∆ = r2 − 2GMr +Q2(r)
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and Q2(r) is a complicated function of the Born-Infeld radius. Performing the
usual complex transformation, the final result, in the suitable Boyer-Lindquist co-
ordinates, is

gµν =


a sin2 ϑ−∆

ρ2
0 0 a sin2 ϑ[∆−(r2+a2)]

ρ2

0 ρ2

∆ 0 0
0 0 ρ2 0

a sin2 ϑ[∆−(r2+a2)]
ρ2

0 0 −
[
sin2ϑ[(r2+a2)2−∆a2 sin2 ϑ]

ρ2

]


where ∆ ≃ r2 − 2GMr +Q2(r) + a2.
This metric corresponds to the Kerr metric in Boyer-Lindquist coordinates when
Q(r) = 0 and to the static Born-Infeld monopole when a = 0. It results that, even
though this new metric reproduce the behavior of the metric for a rotating spherical
charged source, it cannot be associated with the source of the rotating Born-Infeld
monopole. This aspect is deeply analyzed in [4], where this problem is pointed out
comparing the structure of the energy-momentum tensors (considered on the same
basis vectors) for both metrics. From this study it comes out that the interpretation
given by Newmann and Janis to the complex coordinates transformations works
only for a linear theory.

7. Conclusion

In this paper we have summarized the principal results obtained through the appli-
cation of the NJA. We have taken into account two class of theories in which the
method is successful: the f(R)-theories and the Einstein-Maxwell-Dilaton grav-
ity. Is is worth noting some interesting aspect which arise from the application
of method in these theories. In f(R)-theories it should be verified if the resulting
metric is a solution of Einstein modified equations. As pointed out in Section 5,
in the truncated theory without axion field the NJA does not generate the expected
rotating solution.
Then we have considered two classes of theories in which the NJA does not return
the expected results: the Braneworld scenario and the Born-Infeld theory. In both
cases it is still unclear why this method fails and it seems useful to perform a
modification of the algorithm in order to extend its application to other theories.
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