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Abstract. We classify all proper-biharmonic Legendre curves in a Sasakian
space form and point out some of their geometric properties. Then we pro-
vide a method for constructing anti-invariant proper-biharmonic submani-
folds in Sasakian space forms. Finally, using the Boothby-Wang fibration,
we determine all proper-biharmonic Hopf cylinders over homogeneous real
hypersurfaces in complex projective spaces.

1. Introduction

As defined by Eells and Sampson in [14], harmonic maps f : (M, g) — (N, h)
are the critical points of the energy functional

1 2
B =7 [ s v,
and they are solutions of the associated Euler-Lagrange equation
7(f) = trace, Vdf =0

where 7(f) is called the tension field of f. When f is an isometric immersion
with mean curvature vector field H, then 7(f) = mH and f is harmonic if and
only if it is minimal.

The bienergy functional (proposed also by Eells and Sampson in 1964, [14]) is
defined by

1
B(f) =5 [ 1Dl v,
M
*Reprinted from JGSP 14 (2009) 21-34.
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172 Dorel Fetcu and Gezar Oniciuc

The critical points of Ey are called biharmonic maps and they are solutions of the
Euler-Lagrange equation (derived by Jiang in 1986, [20]):

m(f) = A7 (f) — trace, RN(df, 7(f)df =0

where A7 is the Laplacian on sections of f~ TN and RN (X,|Y) = VxVy —
VyVx — Vixy) is the curvature operator on V; To(f) is called the bitension
field of f. Since all harmonic maps are biharmonic, we are interested in studying
those which are biharmonic but non-harmonic, called proper-biharmonic maps.

Now, if f : M — N, is an isometric immersion into a space form of constant
sectional curvature c, then

7(fy =mH and 7m(f) = -—mA'H +em?H.
Thus f is biharmonic if and only if

ATH = mcH.

In a different way, Chen defined the biharmonic submanifolds in an Euclidean
space as those with harmonic mean curvature vector field ([10]). Replacing ¢ = 0
in the above equation we just reobtain Chen’s definition. Moreover, let f : M —
R™ be an isometric immersion. Set f = (f1,...,f")and H = (H!,..., H").
Then AYH = (AH',...,AH™), where A is the Beltrami-Laplace operator on
M, and f is biharmonic if and only if

_Af 1

ATH = A( ):—EAQf:().

m
There are several classification results for the proper-biharmonic submanifolds in
Euclidean spheres and non-existence results for such submanifolds in the space
forms manifolds N., ¢ < 0 ([4, 5, 7-10, 13]), while in spaces of non-constant
sectional curvature only a few results were obtained ([1, 12, 18,19,25,29]).

We recall that the proper-biharmonic curves of the unit Euclidean two-dimensional

sphere S? are the circles of radius %, and the proper-biharmonic curves of S? are

the geodesics of the minimal Clifford torus S! (%) x St (%) with the slope dif-

ferent from &1. The proper-biharmonic curves of S? are helices. Further, the
proper-biharmonic curves of S, n > 3, are those of S* (up to a totally geo-

desic embedding). Concerning the hypersurfaces of S”, it was conjectured in [4]

that the only proper-biharmonic hypersurfaces are the open parts of S?~* (L) or

V2
S (%) X Sz (%) with m; +mo = n — 1 and m; # mo.
Since odd dimensional unit Euclidean spheres S?"*! are Sasakian space forms
with constant y-sectional curvature one, the next step is to study the biharmonic
submanifolds of Sasakian space forms. In this paper we mainly gather the results
obtained in [15-17].
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We note that the proper-biharmonic submanifolds in pseudo-Riemannian mani-
folds are also intensively-studied (for example, see [2,3,11]).

For a general account of biharmonic maps see [22] and The Bibliography of Bihar-
monic Maps [28].
Conventions. We work in the C'*° category, that means manifolds, metrics, con-

nections and maps are smooth. The Lie algebra of the vector fields on NV is denoted
by C(T'N).

2. Sasakian Space Forms

In this section we briefly recall some basic facts from the theory of Sasakian man-
ifolds. For more details see [6].

A contact metric structure on a manifold N2"*! is given by (¢, £, 7, g), where
 is a tensor field of type (1,1) on N, £ is a vector field on IV, 7 is an one-form on
N and g is a Riemannian metric, such that

P=-T+n0¢ nE)=1

9 X, 9Y) = g(X,Y) —n(X)n(Y),  g(X,¢Y) =dn(X,Y)
forany X,Y € C(TN).
A contact metric structure (¢, £, 7, g) is Sasakian if it is normal, i.e.,

Ny +2dn®& =0
where for all X,Y € C(T'N)
No(X,Y) = [pX, 0Y] — [pX,Y] - o[ X, pY] + ¢*[X,Y]

is the Nijenhuis tensor field of .

The contact distribution of a Sasakian manifold (N, p, &, 7, g) is defined by {X €
TN;n(X) = 0}, and any integral curve of the contact distribution is called
Legendrian curve.

A submanifold M of N which is tangent to £ is said to be anti-invariant if ¢ maps
any vector tangent to M and normal to £ to a vector normal to M.

Let (N, ¢, &, 1, g) be a Sasakian manifold. The sectional curvature of a two-plane
generated by X and ¢X, where X is an unit vector orthogonal to &, is called
p-sectional curvature determined by X. A Sasakian manifold with constant (-
sectional curvature c is called a Sasakian space form and it is denoted by N (c).

A contact metric manifold (N, ¢, &, 1, g) is called regular if for any point p € N
there exists a cubic neighborhood of p such that any integral curve of £ passes
through the neighborhood at most once, and strictly regular if all integral curves
are homeomorphic to each other.



174 Dorel Fetcu and Gezar Oniciuc

Let (N, ¢, £,1m, g) be aregular contact metric manifold. Then the orbit space N =
N/¢ has a natural manifold structure and, moreover, if N is compact then N is
a principal circle bundle over N (the Boothby-Wang Theorem). In this case the
fibration 7 : N — N is called Boothby-Wang fibration. The Hopf fibration
7§27+ CP" is a well-known example of a Boothby-Wang fibration.

Theorem 1 ([24]). Let (N, ¢,&,m, g) be a strictly regular Sasakian manifold. Then
on N can be given the structure of a Kihler manifold. Moreover, if (N, ¢, &,1,9) is
a Sasakian space form N (c), then N has constant sectional holomorphic curvature
c+ 3.

Even if N is non-compact, we still call the fibration 7 : N — N of a strictly
regular Sasakian manifold, the Boothby-Wang fibration.

3. Biharmonic Legendre Curves in Sasakian Space Forms

Let (N, g) be a Riemannian manifold and ~ : I — N a curve parametrized by arc
length. Then ~y is called a Frenet curve of osculating order r, 1 < r < n, if there
exists orthonormal vector fields F+, Fs, ..., E, along « such that £, =~ = T,
VTEl = K,lEQ, VTEQ = —KJlEl + KJQEg, . VTET = —K},,-_lEr_l, where
K1,-...,Kpr—1 are positive functions on /.

A geodesic is a Frenet curve of osculating order one, a circle is a Frenet curve of
osculating order two with k1 = const, a helix of order v, r > 3, is a Frenet curve of
osculating order r with 1, ..., k,_1 constants and a helix of order three is called,
simply, helix.

In [16] we studied the biharmonicity of Legendre Frenet curves and we obtained
the following results.

Let (N27+1 o, £, 1, g) be a Sasakian space form with constant -sectional curva-
ture c and v : I — N a Legendre Frenet curve of osculating order r. Then y is
biharmonic if and only if

na(y) = V3T — R(T,V7T)T

c+3)k
= (—3k1Kk])F1 + (/1’1’ — K} — KiKS + %)EQ
3(c—1)

K
+ (2K K2 + k1K) B3 + K1Kkok3 By + 1g(EQ, oTYeT

= 0.

4

The expression of the bitension field () imposed a case-by-case analysis as
follows.



On The Geometry of Biharmonic Submanifolds 175

Casel(c=1)

Theorem 2 ([16]). If ¢ = 1 then vy is proper-biharmonic if and only if n > 2 and
either v is a circle with k1 = 1 or v is a helix with k% + k3 = 1.

Casell (c # land Fy L ©T)

Theorem 3 ([16]). Assume that ¢ # 1 and Fs | ©T. We have
1) if ¢ < —3 then y is biharmonic if and only if it is a geodesic;
2) if ¢ > —3 then y is proper-biharmonic if and only if either

a) n > 2 and vy is a circle with /@% = CZ?’, or
b) n > 3 and 7 is a helix with n% + m% = %-

Case Il (c # 1 and Fs || ¢T)
Theorem 4 ([16]). If ¢ # 1 and Es || ¢T, then {T', oT, &} is the Frenet frame field
of v and we have
1) if ¢ < 1 then vy is biharmonic if and only if it is a geodesic
2) if ¢ > 1 then ~y is proper-biharmonic if and only if it is a helix
with 2 = ¢ — 1 and kg = 1.
Remark 1. In dimension 3 the result was obtained by Inoguchi in [19] and explicit
examples are given in [15].
Case IV (¢ # 1 and g(Fs, ¢T') is not constant 0, 1 or —1)
Theorem 5 ([16]). Let ¢ # 1 and vy a Legendre Frenet curve of osculating order r
such that g(Eq, ¢T) is not constant 0, 1 or —1. We have
1) if ¢ < —3 then ~y is biharmonic if and only if it is a geodesic;
2) if ¢ > —3 then y is proper-biharmonic if and only if r > 4,
T = cosagFy + sinagFy and

K1, ko, kg = const > 0

3(c—1
Kok3 = —3(68_1) sin(2ay)

where ag € (0,27) \ {Z, m, 3} is a constant such that
c+3+3(c—1)cos®ag > 0, 3(c — 1)sin(2aq) < 0.

In order to obtain explicit examples of proper-biharmonic Legendre curves given
by Theorem 2 we used the unit Euclidean sphere S?**! as a model of a Sasakian
space form with ¢ = 1 and we proved the following
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Theorem 6 ([16]). Let v : I — S?"t1(1), n > 2, be a proper-biharmonic Le-
gendre curve parametrized by arc length. Then the parametric equation of 7y in the
Euclidean space E*"*2 = (R?"+2 () is either
1 1 1
v(s) = 7 cos (\/ﬁs)el + 7 sin (\/55) e + Eeg
where {e;,Te;} are constant unit vectors orthogonal to each other, or
1 1 1 1
§) = —=cos{As)e; + —=sin(As)ey + — cos(Bs)es + —=sin(Bs)e
7()\/5()1\/5()2\/5()3\/5()4

where A = /1 + k1, B = /1 — k1, k1 € (0,1), {e;} are constant unit vectors
orthogonal to each other such that

<61,I€3> = <61,I€4> == <€2,I€3> == <62,I€4> =0

A<61,1'€2> + B<63,I€4> =0
and T is the usual complex structure on R#"+2,

Remark 2. For the Cases II and III we also obtained the explicit equations of
proper-biharmonic Legendre curves in odd dimensional spheres endowed with the
deformed Sasakian structure introduced in [27].

In [21] are introduced the complex torsions for a Frenet curve in a complex man-
ifold. In the same way, for v : I — N a Legendre Frenet curve of osculat-
ing order r in a Sasakian manifold (N?"*1 o £ 1, g), we define the (-torsions
iy = 9(Ei, ¢E;) = —g(0Ei, Ej), i, j = 1,...,1, 0 < ].

It is easy to see that we can formulate

Proposition 1. Let v : I — N(c) be a proper-biharmonic Legendre Frenet curve
in a Sasakian space form N{c), ¢ # 1. Then ¢ > —3 and 712 is a constant.

Moreover

Proposition 2. If v is a proper-biharmonic Legendre Frenet curve in a Sasakian
space form N(c), ¢ > =3, ¢ # 1, of osculating order v < 4, then it is a circle or a
helix with constant p-torsions.

Proof: From Theorems 3, 4 and 5 we see that if «y is a proper-biharmonic Legendre
Frenet curve of osculating order r < 4, then 7152 = 0 or 712 = %1 and, obviously,
we only have to prove that when + is a helix then 713 and 793 are constants.

Indeed, by using the Frenet equations of -, we have
1 1
T13 = g(E1, pFE3) = —H—QQ(SDEl,VElEQ +r1E1) = —K—29(¢E1,VE1E2)

1

1
= —g(Ez, VE1<pE1) = —g(EQ,SOVElEl + 5) =0
K92 K2
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since
1 1 1
9(E2,&) = —g(Vg E1,§) = ——g(F1, V) = —g(E1,pE1) = 0.
K1 K1 K1

On the other hand, it is easy to see that for any Frenet curve of osculating order
three we have 793 = %(7{3 + ko112 + n(F3)) and

n(E3) = g(E3.€) = é(g(vElEmf) +r19(E1,§)) = —%QQ(Ez,VEli)

1
= ——T12.
K2
o D Ry _ 1 —
In conclusion 723 = o (7]5 + KaT12 = T12) = const. O

Proposition 3. If v is a proper-biharmonic Legendre Frenet curve in a Sasakian
space form N (c) of osculating order r = 4, then ¢ € (%, 5) and the curvatures of
v are

K1 =

VT3 B 1\/6(0—1)(5—6) B 1\/3(c—1)(3c—7)
2 ™73 ct3 ™73 c+3

Moreover, the p-torsions of vy are given by

2(d —c¢ 3c—17
712233\/%, 713 = 0, e = * P

. 3c—T B _ 26 =0)Bc=7)
w0 ™S i\/ 3(c—1)(c+3)

Proof: Let -y be a proper-biharmonic Legendre Frenet curve in N (c) of osculating
order r = 4. Then ¢ # 1 and 75 is different from 0, 1 or —1. From Theorem 5 we
have o F1 = cos agFs + sin ag Ey. It results that

712 =— — COS &, 713:0, T14:—Sin0¢0 and 724:0.

In order to prove that 723 is constant we differentiate the expression of ¢ /1 along
~ and using the Frenet equations we obtain

Ve wEl =cosagVE Ey+sinagVg By
= —k1 cos agE1 + (k2 cosag — k3 sinag) Es.
On the other hand, Vg, ¢ E1 = k1pFEs + £ and therefore we have
k1pEs + & = —k1 cosagFEy + (k2 cos ag — kg sin ag) Fs. (D
We take the scalar product in (1) with £ and obtain

(ko cos ag — kg sinag)n(FE3) = 1. 2)
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In the same way as in the proof of Proposition 2 we get
1
n(Es) = 9(Bs,§) = —(9(VE F2,€) + rag(En. )

1
= ——g(F2,VE)
K2

1 COoSs Qg
K2 K2
and then, from (2), k2 sin oy = —k3 cos ag. Therefore ag € (5, 7) U (377’, 2m).
Next, from Theorem 5, we have
c+3 3(c—1 3(c—1
m% = Z , K;% = 7( 1 ) cos? g, Iig = 7( ) sin? ag

and so ¢ must be greater than one.

Now, we take the scalar product in (1) with E3, pFs and @ FE}, respectively, and
we get

. K2 COS O
k1To3 = — (Ko cos g — kg sinag) + n(FE3) = — -+ 3)
COS & K2
. 2 . K2
k18in” ag = — (ke cos ag — K3 Sing)Teg = — To3 4)
Cos Qg
0 = K1 cos ag sin ag + (k2 cos g — K3 sin ag) T34
. K2 &)
= K1 COS (g SIn &g + T34
cos Qg
2
and then, equations (3) and (4) lead to /4;% sin? oy = F:fa—g — 1. We come to the
conclusion that sin® ag = 3&—‘5, soc € (%, 5) , and then we obtain the expressions
of the curvatures and the (-torsions. O

Remark 3. The proper-biharmonic Legendre curves given by Theorem 6 (for the
case ¢ = 1) have also constant (-torsions.

4, A Method to Obtain Biharmonic Submanifolds in a Sasakian Space
Form

In [16] we gave a method to obtain proper-biharmonic anti-invariant submanifolds
in a Sasakian space form from proper-biharmonic integral submanifolds.

Theorem 7 ([16]). Let (N*"*t1 ©. & .n,g) be a strictly regular Sasakian space
Sform with constant p-sectional curvature c andleti : M — N be an r-dimensional
integral submanifold of N, 1 < r < n. Consider

F:M=1IxM — N, F(t,p) = ¢(p) = ¢p(t)
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where I = S' or I = R and {¢:}ie;1 is the flow of the vector field £. Then
F: (Mg = de? + i*g) — N is a Riemannian immersion and it is proper-
biharmonic if and only if M is a proper-biharmonic submanifold of N.

The previous Theorem provides a classification result for proper-biharmonic sur-
faces in a Sasakian space form, which are invariant under the flow-action of &.

Theorem 8 ([16]). Let M? be a surface of N*"*'(c) invariant under the flow-
action of the characteristic vector field &. Then M is proper-biharmonic if and
only if, locally, it is given by x(t,s) = ¢4(v(s)), where ~y is a proper-biharmonic
Legendre curve.

Also, using the standard Sasakian 3-structure on S7, by iteration, Theorem 7 leads
to examples of three-dimensional proper-biharmonic submanifolds of S”.

5. Biharmonic Hopf Cylinders in a Sasakian Space Form

Let (N2"F1 ¢, £,m,g) be a strictly regular Sasakian manifold andi : M — N
a submanifold of N. Then M = w~1(M) is the Hopf cylinder over M, where
7w : N — N = N/¢ is the Boothby-Wang fibration.

In [19] the biharmonic Hopf cylinders in a three-dimensional Sasakian space form
are classified.

Theorem 9 ([19]). Let S5 be a Hopf cylinder, where 7 is a curve in the orbit space
of N3(c), parametrized by arc length. We have
1) if ¢ < 1, then S5 is biharmonic if and only if it is minimal;
2) if ¢ > 1, then S5 is proper-biharmonic if and only if the curvature i of 7y
is constant R? = ¢ — 1.

In [17] we obtained a geometric characterization of biharmonic Hopf cylinders of
any codimension in an arbitrary Sasakian space form. A special case of our result
is the case when M is a hypersurface.

Proposition 4 ([17]). If M is a hypersurface of N, then M = =~ '(M) is bihar-
monic if and only if

1 -1
Aﬂar:(_||13||2+c(”+ )+ 3n )H

2
2trace AgL y(+) + ngrad(||H||?) = 0

where B, A and H are the second fundamental form of M in N, the shape operator
and the mean curvature vector field, respectively, and V+ and A+ are the normal
connection and Laplacian on the normal bundle of M in N.
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Proposition 5 ([17]). If M is a hypersurface and |H|| = const # 0, then M =
7~ Y (M) is proper-biharmonic if and only if
cn+1)+3n-5

B|? = :
] :

Remark 4. From the last result we see that there exist no proper-biharmonic hy-

persurfaces of constant mean curvature M = 7~ }(M) in N(c) if ¢ < 57;5’1” , which

implies that such hypersurfaces do not exist if ¢ < —3, whatever the dimension of
N is.

In [26] Takagi classified all homogeneous real hypersurfaces in the complex pro-
jective space CP™, n > 1, and found five types of such hypersurfaces (see also
[23]). The first type (with subtypes Al and A2) are described in the following.

We shall consider u € (0, T) and r a positive constant given by %2 =3

Theorem 10 ([26]). The geodesic spheres (Type Al) in complex projective space
CP"™(c + 3) have two distinct principal curvatures: Ay = %cot u of multiplicity
2 T

2n — 2 and a = % cot 2u of multiplicity one.

Theorem 11 ([26]). The hypersurfaces of Type A2 in complex projective space
CP™(c+3) have three distinct principal curvatures: \1 = —% tan u of multiplicity
2p, Ay = %Cotu of multiplicity 2q, and a = %cot 2u of multiplicity one, where
p>0,¢g>0,andp+qg=n—1.

We note that if ¢ = 1 and M is of type Al or A2 then 7= (M) = S'(cosu) x
S?2"~Nsinu) ¢ S?"*! or 7~ (M) = S?P*1(cosu) x S%*1(sinu), respectively.

By using Takagi’s result we classified in [17] the biharmonic Hopf cylinders M =
7~ L(M) in a Sasakian space form N?"*! over homogeneous real hypersurfaces in
CP™ n > 1.

Theorem 12 ([17]). Let M = 7w~'(M) be the Hopf cylinder over M.

1) If M is of Type Al, then M is proper-biharmonic if and only if either
a) ¢ =1andtan’u = 1, or

— 2 p—
by c € | BRIl L oo)\ {1} and

2 2¢—2 V€2 (n2+2n+5)+2¢(3n2 —2n—1)+9n2 —30n+13
tan®u =n + T = ct3 '

2) If M is of Type A2, then M is proper-biharmonic if and only if either
a) c=1,tan’u = 1andp # q or
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tan2 U=

b) c € [‘3(”“” ‘éﬁ*;;‘jf4nff+l)(2q+l),+oo) \ {1} and

n + 2c—2
2p+1 {(c+3)(2p+1)

| V(=) +4n+4)+2c(3(p—q)? +4n—4)+9(p—q)> —12n+4
(c+3)(2p+1) '

Theorem 13 ([17]). There are no proper-biharmonic hypersurfaces M = 71 (]\7[ )

when M is a hypersurface of Type B, C, D or E in the complex projective space
CP"(c + 3).
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