Tenth International Conference on Geometry, Integrability and Quantization June 6–11, 2008, Varna, Bulgaria Ivaïlo M. Mladenov, Gaetano Vilasi and Akira Yoshioka, Editors **Avangard Prima**, Sofia 2009, pp 171–182



## ON THE GEOMETRY OF BIHARMONIC SUBMANIFOLDS IN SASAKIAN SPACE FORMS\*

#### DOREL FETCU and CEZAR ONICIUC<sup>†</sup>

Department of Mathematics, "Gh. Asachi" Technical University of Iasi Bd. Carol I no. 11, 700506 Iasi, Romania

†Faculty of Mathematics, "Al.I. Cuza" University of Iasi Bd. Carol I no. 11, 700506 Iasi, Romania

**Abstract.** We classify all proper-biharmonic Legendre curves in a Sasakian space form and point out some of their geometric properties. Then we provide a method for constructing anti-invariant proper-biharmonic submanifolds in Sasakian space forms. Finally, using the Boothby-Wang fibration, we determine all proper-biharmonic Hopf cylinders over homogeneous real hypersurfaces in complex projective spaces.

#### 1. Introduction

As defined by Eells and Sampson in [14], harmonic maps  $f:(M,g)\to (N,h)$  are the critical points of the energy functional

$$E(f) = \frac{1}{2} \int_{M} ||\mathrm{d}f||^2 v_g$$

and they are solutions of the associated Euler-Lagrange equation

$$\tau(f) = \operatorname{trace}_g \nabla \mathrm{d} f = 0$$

where  $\tau(f)$  is called the **tension field** of f. When f is an isometric immersion with mean curvature vector field H, then  $\tau(f)=mH$  and f is harmonic if and only if it is minimal.

The **bienergy functional** (proposed also by Eells and Sampson in 1964, [14]) is defined by

$$E_2(f) = \frac{1}{2} \int_M ||\tau(f)||^2 v_g.$$

<sup>\*</sup>Reprinted from JGSP 14 (2009) 21–34.

The critical points of  $E_2$  are called **biharmonic maps** and they are solutions of the Euler-Lagrange equation (derived by Jiang in 1986, [20]):

$$\tau_2(f) = -\Delta^f \tau(f) - \operatorname{trace}_g R^N(\mathrm{d}f, \tau(f)) \mathrm{d}f = 0$$

where  $\Delta^f$  is the Laplacian on sections of  $f^{-1}TN$  and  $R^N(X,Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}$  is the curvature operator on N;  $\tau_2(f)$  is called the **bitension field** of f. Since all harmonic maps are biharmonic, we are interested in studying those which are biharmonic but non-harmonic, called *proper-biharmonic* maps.

Now, if  $f:M\to N_c$  is an isometric immersion into a space form of constant sectional curvature c, then

$$\tau(f) = mH$$
 and  $\tau_2(f) = -m\Delta^f H + cm^2 H$ .

Thus f is biharmonic if and only if

$$\Delta^f H = mcH.$$

In a different way, Chen defined the biharmonic submanifolds in an Euclidean space as those with harmonic mean curvature vector field ([10]). Replacing c=0 in the above equation we just reobtain Chen's definition. Moreover, let  $f:M\to\mathbb{R}^n$  be an isometric immersion. Set  $f=(f^1,\ldots,f^n)$  and  $H=(H^1,\ldots,H^n)$ . Then  $\Delta^f H=(\Delta H^1,\ldots,\Delta H^n)$ , where  $\Delta$  is the Beltrami-Laplace operator on M, and f is biharmonic if and only if

$$\Delta^f H = \Delta(\frac{-\Delta f}{m}) = -\frac{1}{m}\Delta^2 f = 0.$$

There are several classification results for the proper-biharmonic submanifolds in Euclidean spheres and non-existence results for such submanifolds in the space forms manifolds  $N_c$ ,  $c \le 0$  ([4, 5, 7–10, 13]), while in spaces of non-constant sectional curvature only a few results were obtained ([1, 12, 18, 19, 25, 29]).

We recall that the proper-biharmonic curves of the unit Euclidean two-dimensional sphere  $\mathbb{S}^2$  are the circles of radius  $\frac{1}{\sqrt{2}}$ , and the proper-biharmonic curves of  $\mathbb{S}^3$  are the geodesics of the minimal Clifford torus  $\mathbb{S}^1\left(\frac{1}{\sqrt{2}}\right)\times\mathbb{S}^1\left(\frac{1}{\sqrt{2}}\right)$  with the slope different from  $\pm 1$ . The proper-biharmonic curves of  $\mathbb{S}^3$  are helices. Further, the proper-biharmonic curves of  $\mathbb{S}^n$ , n>3, are those of  $\mathbb{S}^3$  (up to a totally geodesic embedding). Concerning the hypersurfaces of  $\mathbb{S}^n$ , it was conjectured in [4] that the only proper-biharmonic hypersurfaces are the open parts of  $\mathbb{S}^{n-1}\left(\frac{1}{\sqrt{2}}\right)$  or  $\mathbb{S}^{m_1}\left(\frac{1}{\sqrt{2}}\right)\times\mathbb{S}^{m_2}\left(\frac{1}{\sqrt{2}}\right)$  with  $m_1+m_2=n-1$  and  $m_1\neq m_2$ .

Since odd dimensional unit Euclidean spheres  $\mathbb{S}^{2n+1}$  are Sasakian space forms with constant  $\varphi$ -sectional curvature one, the next step is to study the biharmonic submanifolds of Sasakian space forms. In this paper we mainly gather the results obtained in [15–17].

We note that the proper-biharmonic submanifolds in pseudo-Riemannian manifolds are also intensively-studied (for example, see [2, 3, 11]).

For a general account of biharmonic maps see [22] and *The Bibliography of Biharmonic Maps* [28].

**Conventions.** We work in the  $C^{\infty}$  category, that means manifolds, metrics, connections and maps are smooth. The Lie algebra of the vector fields on N is denoted by C(TN).

### 2. Sasakian Space Forms

In this section we briefly recall some basic facts from the theory of Sasakian manifolds. For more details see [6].

A **contact metric structure** on a manifold  $N^{2n+1}$  is given by  $(\varphi, \xi, \eta, g)$ , where  $\varphi$  is a tensor field of type (1,1) on N,  $\xi$  is a vector field on N,  $\eta$  is an one-form on N and g is a Riemannian metric, such that

$$\varphi^2 = -I + \eta \otimes \xi, \qquad \eta(\xi) = 1$$
 
$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y), \qquad g(X, \varphi Y) = d\eta(X, Y)$$

for any  $X, Y \in C(TN)$ .

A contact metric structure  $(\varphi, \xi, \eta, g)$  is **Sasakian** if it is *normal*, i.e.,

$$N_{\varphi} + 2\mathrm{d}\eta \otimes \xi = 0$$

where for all  $X, Y \in C(TN)$ 

$$N_{\varphi}(X,Y) = [\varphi X, \varphi Y] - \varphi[\varphi X, Y] - \varphi[X, \varphi Y] + \varphi^{2}[X, Y]$$

is the Nijenhuis tensor field of  $\varphi$ .

The contact distribution of a Sasakian manifold  $(N, \varphi, \xi, \eta, g)$  is defined by  $\{X \in TN ; \eta(X) = 0\}$ , and any integral curve of the contact distribution is called **Legendrian curve**.

A submanifold M of N which is tangent to  $\xi$  is said to be *anti-invariant* if  $\varphi$  maps any vector tangent to M and normal to  $\xi$  to a vector normal to M.

Let  $(N, \varphi, \xi, \eta, g)$  be a Sasakian manifold. The sectional curvature of a two-plane generated by X and  $\varphi X$ , where X is an unit vector orthogonal to  $\xi$ , is called  $\varphi$ -sectional curvature determined by X. A Sasakian manifold with constant  $\varphi$ -sectional curvature c is called a Sasakian space form and it is denoted by N(c).

A contact metric manifold  $(N, \varphi, \xi, \eta, g)$  is called *regular* if for any point  $p \in N$  there exists a cubic neighborhood of p such that any integral curve of  $\xi$  passes through the neighborhood at most once, and *strictly regular* if all integral curves are homeomorphic to each other.

Let  $(N, \varphi, \xi, \eta, g)$  be a regular contact metric manifold. Then the orbit space  $\bar{N} = N/\xi$  has a natural manifold structure and, moreover, if N is compact then N is a principal circle bundle over  $\bar{N}$  (the Boothby-Wang Theorem). In this case the fibration  $\pi: N \to \bar{N}$  is called **Boothby-Wang fibration**. The Hopf fibration  $\pi: \mathbb{S}^{2n+1} \to \mathbb{CP}^n$  is a well-known example of a Boothby-Wang fibration.

**Theorem 1** ([24]). Let  $(N, \varphi, \xi, \eta, g)$  be a strictly regular Sasakian manifold. Then on  $\bar{N}$  can be given the structure of a Kähler manifold. Moreover, if  $(N, \varphi, \xi, \eta, g)$  is a Sasakian space form N(c), then  $\bar{N}$  has constant sectional holomorphic curvature c+3.

Even if N is non-compact, we still call the fibration  $\pi: N \to \bar{N}$  of a strictly regular Sasakian manifold, the Boothby-Wang fibration.

## 3. Biharmonic Legendre Curves in Sasakian Space Forms

Let  $(N^n,g)$  be a Riemannian manifold and  $\gamma:I\to N$  a curve parametrized by arc length. Then  $\gamma$  is called a *Frenet curve of osculating order*  $r,1\leq r\leq n$ , if there exists orthonormal vector fields  $E_1,E_2,\ldots,E_r$  along  $\gamma$  such that  $E_1=\gamma'=T$ ,  $\nabla_T E_1=\kappa_1 E_2, \nabla_T E_2=-\kappa_1 E_1+\kappa_2 E_3,\ldots,\nabla_T E_r=-\kappa_{r-1} E_{r-1}$ , where  $\kappa_1,\ldots,\kappa_{r-1}$  are positive functions on I.

A geodesic is a Frenet curve of osculating order one, a *circle* is a Frenet curve of osculating order two with  $\kappa_1 = \text{const}$ , a *helix of order*  $r, r \geq 3$ , is a Frenet curve of osculating order r with  $\kappa_1, \ldots, \kappa_{r-1}$  constants and a helix of order three is called, simply, helix.

In [16] we studied the biharmonicity of Legendre Frenet curves and we obtained the following results.

Let  $(N^{2n+1}, \varphi, \xi, \eta, g)$  be a Sasakian space form with constant  $\varphi$ -sectional curvature c and  $\gamma: I \to N$  a Legendre Frenet curve of osculating order r. Then  $\gamma$  is biharmonic if and only if

$$\tau_{2}(\gamma) = \nabla_{T}^{3}T - R(T, \nabla_{T}T)T$$

$$= (-3\kappa_{1}\kappa'_{1})E_{1} + \left(\kappa''_{1} - \kappa_{1}^{3} - \kappa_{1}\kappa_{2}^{2} + \frac{(c+3)\kappa_{1}}{4}\right)E_{2}$$

$$+ (2\kappa'_{1}\kappa_{2} + \kappa_{1}\kappa'_{2})E_{3} + \kappa_{1}\kappa_{2}\kappa_{3}E_{4} + \frac{3(c-1)\kappa_{1}}{4}g(E_{2}, \varphi T)\varphi T$$

$$= 0.$$

The expression of the bitension field  $\tau_2(\gamma)$  imposed a case-by-case analysis as follows.

Case I (c = 1)

**Theorem 2** ([16]). If c = 1 then  $\gamma$  is proper-biharmonic if and only if  $n \geq 2$  and either  $\gamma$  is a circle with  $\kappa_1 = 1$  or  $\gamma$  is a helix with  $\kappa_1^2 + \kappa_2^2 = 1$ .

Case II  $(c \neq 1 \text{ and } E_2 \perp \varphi T)$ 

**Theorem 3** ([16]). Assume that  $c \neq 1$  and  $E_2 \perp \varphi T$ . We have

- 1) if  $c \leq -3$  then  $\gamma$  is biharmonic if and only if it is a geodesic;
- 2) if c > -3 then  $\gamma$  is proper-biharmonic if and only if either

  - a)  $n \ge 2$  and  $\gamma$  is a circle with  $\kappa_1^2 = \frac{c+3}{4}$ , or b)  $n \ge 3$  and  $\gamma$  is a helix with  $\kappa_1^2 + \kappa_2^2 = \frac{c+3}{4}$ .

Case III  $(c \neq 1 \text{ and } E_2 \parallel \varphi T)$ 

**Theorem 4** ([16]). If  $c \neq 1$  and  $E_2 \parallel \varphi T$ , then  $\{T, \varphi T, \xi\}$  is the Frenet frame field of  $\gamma$  and we have

- 1) if c < 1 then  $\gamma$  is biharmonic if and only if it is a geodesic
- 2) if c > 1 then  $\gamma$  is proper-biharmonic if and only if it is a helix with  $\kappa_1^2 = c - 1$  and  $\kappa_2 = 1$ .

Remark 1. In dimension 3 the result was obtained by Inoguchi in [19] and explicit examples are given in [15].

Case IV  $(c \neq 1 \text{ and } q(E_2, \varphi T) \text{ is not constant } 0, 1 \text{ or } -1)$ 

**Theorem 5** ([16]). Let  $c \neq 1$  and  $\gamma$  a Legendre Frenet curve of osculating order rsuch that  $g(E_2, \varphi T)$  is not constant 0, 1 or -1. We have

- 1) if  $c \leq -3$  then  $\gamma$  is biharmonic if and only if it is a geodesic;
- 2) if c > -3 then  $\gamma$  is proper-biharmonic if and only if  $r \geq 4$ ,  $\varphi T = \cos \alpha_0 E_2 + \sin \alpha_0 E_4$  and

$$\kappa_1, \kappa_2, \kappa_3 = \text{const} > 0$$

$$\kappa_1^2 + \kappa_2^2 = \frac{c+3}{4} + \frac{3(c-1)}{4} \cos^2 \alpha_0$$

$$\kappa_2 \kappa_3 = -\frac{3(c-1)}{8} \sin(2\alpha_0)$$

where  $\alpha_0 \in (0,2\pi) \setminus \{\frac{\pi}{2},\pi,\frac{3\pi}{2}\}$  is a constant such that

$$c+3+3(c-1)\cos^2\alpha_0 > 0, \qquad 3(c-1)\sin(2\alpha_0) < 0.$$

In order to obtain explicit examples of proper-biharmonic Legendre curves given by Theorem 2 we used the unit Euclidean sphere  $\mathbb{S}^{2n+1}$  as a model of a Sasakian space form with c = 1 and we proved the following

**Theorem 6** ([16]). Let  $\gamma: I \to \mathbb{S}^{2n+1}(1)$ ,  $n \geq 2$ , be a proper-biharmonic Legendre curve parametrized by arc length. Then the parametric equation of  $\gamma$  in the Euclidean space  $\mathbb{E}^{2n+2} = (\mathbb{R}^{2n+2}, \langle , \rangle)$  is either

$$\gamma(s) = \frac{1}{\sqrt{2}}\cos\left(\sqrt{2}s\right)e_1 + \frac{1}{\sqrt{2}}\sin\left(\sqrt{2}s\right)e_2 + \frac{1}{\sqrt{2}}e_3$$

where  $\{e_i, \mathcal{I}e_j\}$  are constant unit vectors orthogonal to each other, or

$$\gamma(s) = \frac{1}{\sqrt{2}}\cos(As)e_1 + \frac{1}{\sqrt{2}}\sin(As)e_2 + \frac{1}{\sqrt{2}}\cos(Bs)e_3 + \frac{1}{\sqrt{2}}\sin(Bs)e_4$$

where  $A = \sqrt{1 + \kappa_1}$ ,  $B = \sqrt{1 - \kappa_1}$ ,  $\kappa_1 \in (0, 1)$ ,  $\{e_i\}$  are constant unit vectors orthogonal to each other such that

$$\langle e_1, \mathcal{I}e_3 \rangle = \langle e_1, \mathcal{I}e_4 \rangle = \langle e_2, \mathcal{I}e_3 \rangle = \langle e_2, \mathcal{I}e_4 \rangle = 0$$
  
$$A\langle e_1, \mathcal{I}e_2 \rangle + B\langle e_3, \mathcal{I}e_4 \rangle = 0$$

and  $\mathcal{I}$  is the usual complex structure on  $\mathbb{R}^{2n+2}$ .

**Remark 2.** For the Cases II and III we also obtained the explicit equations of proper-biharmonic Legendre curves in odd dimensional spheres endowed with the deformed Sasakian structure introduced in [27].

In [21] are introduced the complex torsions for a Frenet curve in a complex manifold. In the same way, for  $\gamma: I \to N$  a Legendre Frenet curve of osculating order r in a Sasakian manifold  $(N^{2n+1}, \varphi, \xi, \eta, g)$ , we define the  $\varphi$ -torsions  $\tau_{ij} = g(E_i, \varphi E_j) = -g(\varphi E_i, E_j), i, j = 1, \ldots, r, i < j$ .

It is easy to see that we can formulate

**Proposition 1.** Let  $\gamma: I \to N(c)$  be a proper-biharmonic Legendre Frenet curve in a Sasakian space form N(c),  $c \neq 1$ . Then c > -3 and  $\tau_{12}$  is a constant.

Moreover

**Proposition 2.** If  $\gamma$  is a proper-biharmonic Legendre Frenet curve in a Sasakian space form N(c), c > -3,  $c \neq 1$ , of osculating order r < 4, then it is a circle or a helix with constant  $\varphi$ -torsions.

**Proof:** From Theorems 3, 4 and 5 we see that if  $\gamma$  is a proper-biharmonic Legendre Frenet curve of osculating order r < 4, then  $\tau_{12} = 0$  or  $\tau_{12} = \pm 1$  and, obviously, we only have to prove that when  $\gamma$  is a helix then  $\tau_{13}$  and  $\tau_{23}$  are constants.

Indeed, by using the Frenet equations of  $\gamma$ , we have

$$\tau_{13} = g(E_1, \varphi E_3) = -\frac{1}{\kappa_2} g(\varphi E_1, \nabla_{E_1} E_2 + \kappa_1 E_1) = -\frac{1}{\kappa_2} g(\varphi E_1, \nabla_{E_1} E_2)$$
$$= \frac{1}{\kappa_2} g(E_2, \nabla_{E_1} \varphi E_1) = \frac{1}{\kappa_2} g(E_2, \varphi \nabla_{E_1} E_1 + \xi) = 0$$

since

$$g(E_2,\xi) = \frac{1}{\kappa_1}g(\nabla_{E_1}E_1,\xi) = -\frac{1}{\kappa_1}g(E_1,\nabla_{E_1}\xi) = \frac{1}{\kappa_1}g(E_1,\varphi E_1) = 0.$$

On the other hand, it is easy to see that for any Frenet curve of osculating order three we have  $\tau_{23} = \frac{1}{\kappa_1} (\tau'_{13} + \kappa_2 \tau_{12} + \eta(E_3))$  and

$$\eta(E_3) = g(E_3, \xi) = \frac{1}{\kappa_2} (g(\nabla_{E_1} E_2, \xi) + \kappa_1 g(E_1, \xi)) = -\frac{1}{\kappa_2} g(E_2, \nabla_{E_1} \xi) \\
= -\frac{1}{\kappa_2} \tau_{12}.$$

In conclusion  $\tau_{23} = \frac{1}{\kappa_1} (\tau'_{13} + \kappa_2 \tau_{12} - \frac{1}{\kappa_2} \tau_{12}) = \text{const.}$ 

**Proposition 3.** If  $\gamma$  is a proper-biharmonic Legendre Frenet curve in a Sasakian space form N(c) of osculating order r=4, then  $c\in (\frac{7}{3},5)$  and the curvatures of  $\gamma$  are

$$\kappa_1 = \frac{\sqrt{c+3}}{2}, \qquad \kappa_2 = \frac{1}{2} \sqrt{\frac{6(c-1)(5-c)}{c+3}}, \qquad \kappa_3 = \frac{1}{2} \sqrt{\frac{3(c-1)(3c-7)}{c+3}}.$$

Moreover, the  $\varphi$ -torsions of  $\gamma$  are given by

$$\tau_{12} = \mp \sqrt{\frac{2(5-c)}{c+3}}, \qquad \tau_{13} = 0, \qquad \tau_{14} = \pm \sqrt{\frac{3c-7}{c+3}}$$

$$\tau_{23} = \mp \frac{3c-7}{\sqrt{3(c-1)(c+3)}}, \qquad \tau_{24} = 0, \qquad \tau_{34} = \pm \sqrt{\frac{2(5-c)(3c-7)}{3(c-1)(c+3)}}.$$

**Proof:** Let  $\gamma$  be a proper-biharmonic Legendre Frenet curve in N(c) of osculating order r=4. Then  $c\neq 1$  and  $\tau_{12}$  is different from 0, 1 or -1. From Theorem 5 we have  $\varphi E_1=\cos\alpha_0 E_2+\sin\alpha_0 E_4$ . It results that

$$\tau_{12} = -\cos \alpha_0, \qquad \tau_{13} = 0, \qquad \tau_{14} = -\sin \alpha_0 \quad \text{and} \quad \tau_{24} = 0.$$

In order to prove that  $\tau_{23}$  is constant we differentiate the expression of  $\varphi E_1$  along  $\gamma$  and using the Frenet equations we obtain

$$\nabla_{E_1} \varphi E_1 = \cos \alpha_0 \nabla_{E_1} E_2 + \sin \alpha_0 \nabla_{E_1} E_4$$
$$= -\kappa_1 \cos \alpha_0 E_1 + (\kappa_2 \cos \alpha_0 - \kappa_3 \sin \alpha_0) E_3.$$

On the other hand,  $\nabla_{E_1}\varphi E_1 = \kappa_1\varphi E_2 + \xi$  and therefore we have

$$\kappa_1 \varphi E_2 + \xi = -\kappa_1 \cos \alpha_0 E_1 + (\kappa_2 \cos \alpha_0 - \kappa_3 \sin \alpha_0) E_3. \tag{1}$$

We take the scalar product in (1) with  $\xi$  and obtain

$$(\kappa_2 \cos \alpha_0 - \kappa_3 \sin \alpha_0) \eta(E_3) = 1. \tag{2}$$

In the same way as in the proof of Proposition 2 we get

$$\eta(E_3) = g(E_3, \xi) = \frac{1}{\kappa_2} (g(\nabla_{E_1} E_2, \xi) + \kappa_1 g(E_1, \xi))$$

$$= -\frac{1}{\kappa_2} g(E_2, \nabla_{E_1} \xi)$$

$$= -\frac{1}{\kappa_2} \tau_{12} = \frac{\cos \alpha_0}{\kappa_2}$$

and then, from (2),  $\kappa_2 \sin \alpha_0 = -\kappa_3 \cos \alpha_0$ . Therefore  $\alpha_0 \in (\frac{\pi}{2}, \pi) \cup (\frac{3\pi}{2}, 2\pi)$ . Next, from Theorem 5, we have

$$\kappa_1^2 = \frac{c+3}{4}, \qquad \kappa_2^2 = \frac{3(c-1)}{4}\cos^2\alpha_0, \qquad \kappa_3^2 = \frac{3(c-1)}{4}\sin^2\alpha_0$$

and so c must be greater than one.

Now, we take the scalar product in (1) with  $E_3$ ,  $\varphi E_2$  and  $\varphi E_4$ , respectively, and we get

$$\kappa_1 \tau_{23} = -(\kappa_2 \cos \alpha_0 - \kappa_3 \sin \alpha_0) + \eta(E_3) = -\frac{\kappa_2}{\cos \alpha_0} + \frac{\cos \alpha_0}{\kappa_2}$$
 (3)

$$\kappa_1 \sin^2 \alpha_0 = -(\kappa_2 \cos \alpha_0 - \kappa_3 \sin \alpha_0) \tau_{23} = -\frac{\kappa_2}{\cos \alpha_0} \tau_{23} \tag{4}$$

$$0 = \kappa_1 \cos \alpha_0 \sin \alpha_0 + (\kappa_2 \cos \alpha_0 - \kappa_3 \sin \alpha_0) \tau_{34}$$
  
=  $\kappa_1 \cos \alpha_0 \sin \alpha_0 + \frac{\kappa_2}{\cos \alpha_0} \tau_{34}$  (5)

and then, equations (3) and (4) lead to  $\kappa_1^2 \sin^2 \alpha_0 = \frac{\kappa_2^2}{\cos^2 \alpha_0} - 1$ . We come to the conclusion that  $\sin^2 \alpha_0 = \frac{3c-7}{c+3}$ , so  $c \in \left(\frac{7}{3}, 5\right)$ , and then we obtain the expressions of the curvatures and the  $\varphi$ -torsions.

**Remark 3.** The proper-biharmonic Legendre curves given by Theorem 6 (for the case c=1) have also constant  $\varphi$ -torsions.

# 4. A Method to Obtain Biharmonic Submanifolds in a Sasakian Space Form

In [16] we gave a method to obtain proper-biharmonic anti-invariant submanifolds in a Sasakian space form from proper-biharmonic integral submanifolds.

**Theorem 7** ([16]). Let  $(N^{2n+1}, \varphi, \xi, \eta, g)$  be a strictly regular Sasakian space form with constant  $\varphi$ -sectional curvature c and let  $i : M \to N$  be an r-dimensional integral submanifold of N,  $1 \le r \le n$ . Consider

$$F: \widetilde{M} = I \times M \to N, \qquad F(t,p) = \phi_t(p) = \phi_p(t)$$

where  $I = \mathbb{S}^1$  or  $I = \mathbb{R}$  and  $\{\phi_t\}_{t \in I}$  is the flow of the vector field  $\xi$ . Then  $F: (\widetilde{M}, \widetilde{g} = dt^2 + \mathbf{i}^*g) \to N$  is a Riemannian immersion and it is proper-biharmonic if and only if M is a proper-biharmonic submanifold of N.

The previous Theorem provides a classification result for proper-biharmonic surfaces in a Sasakian space form, which are invariant under the flow-action of  $\xi$ .

**Theorem 8** ([16]). Let  $M^2$  be a surface of  $N^{2n+1}(c)$  invariant under the flow-action of the characteristic vector field  $\xi$ . Then M is proper-biharmonic if and only if, locally, it is given by  $x(t,s) = \phi_t(\gamma(s))$ , where  $\gamma$  is a proper-biharmonic Legendre curve.

Also, using the standard Sasakian 3-structure on  $\mathbb{S}^7$ , by iteration, Theorem 7 leads to examples of three-dimensional proper-biharmonic submanifolds of  $\mathbb{S}^7$ .

## 5. Biharmonic Hopf Cylinders in a Sasakian Space Form

Let  $(N^{2n+1}, \varphi, \xi, \eta, g)$  be a strictly regular Sasakian manifold and  $\bar{\bf i}: \bar{M} \to \bar{N}$  a submanifold of  $\bar{N}$ . Then  $M = \pi^{-1}(\bar{M})$  is the Hopf cylinder over  $\bar{M}$ , where  $\pi: N \to \bar{N} = N/\xi$  is the Boothby-Wang fibration.

In [19] the biharmonic Hopf cylinders in a three-dimensional Sasakian space form are classified.

**Theorem 9** ([19]). Let  $S_{\bar{\gamma}}$  be a Hopf cylinder, where  $\bar{\gamma}$  is a curve in the orbit space of  $N^3(c)$ , parametrized by arc length. We have

- 1) if  $c \leq 1$ , then  $S_{\bar{\gamma}}$  is biharmonic if and only if it is minimal;
- 2) if c > 1, then  $S_{\bar{\gamma}}$  is proper-biharmonic if and only if the curvature  $\bar{\kappa}$  of  $\bar{\gamma}$  is constant  $\bar{\kappa}^2 = c 1$ .

In [17] we obtained a geometric characterization of biharmonic Hopf cylinders of any codimension in an arbitrary Sasakian space form. A special case of our result is the case when  $\bar{M}$  is a hypersurface.

**Proposition 4** ([17]). If  $\bar{M}$  is a hypersurface of  $\bar{N}$ , then  $M = \pi^{-1}(\bar{M})$  is biharmonic if and only if

$$\Delta^{\perp} H = \left(-\|B\|^2 + \frac{c(n+1) + 3n - 1}{2}\right) H$$

$$2\operatorname{trace} A_{\nabla_{\cdot}^{\perp}H}(\cdot) + n\operatorname{grad}(\|H\|^2) = 0$$

where B, A and H are the second fundamental form of M in N, the shape operator and the mean curvature vector field, respectively, and  $\nabla^{\perp}$  and  $\Delta^{\perp}$  are the normal connection and Laplacian on the normal bundle of M in N.

**Proposition 5** ([17]). If  $\bar{M}$  is a hypersurface and  $||\bar{H}|| = \text{const} \neq 0$ , then  $M = \pi^{-1}(\bar{M})$  is proper-biharmonic if and only if

$$\|\bar{B}\|^2 = \frac{c(n+1) + 3n - 5}{2}.$$

**Remark 4.** From the last result we see that there exist no proper-biharmonic hypersurfaces of constant mean curvature  $M=\pi^{-1}(\bar{M})$  in N(c) if  $c\leq \frac{5-3n}{n+1}$ , which implies that such hypersurfaces do not exist if  $c\leq -3$ , whatever the dimension of N is.

In [26] Takagi classified all homogeneous real hypersurfaces in the complex projective space  $\mathbb{C}P^n$ , n>1, and found five types of such hypersurfaces (see also [23]). The first type (with subtypes A1 and A2) are described in the following.

We shall consider  $u \in (0, \frac{\pi}{2})$  and r a positive constant given by  $\frac{1}{r^2} = \frac{c+3}{4}$ .

**Theorem 10** ([26]). The geodesic spheres (Type A1) in complex projective space  $\mathbb{C}P^n(c+3)$  have two distinct principal curvatures:  $\lambda_2 = \frac{1}{r}\cot u$  of multiplicity 2n-2 and  $a=\frac{2}{r}\cot 2u$  of multiplicity one.

**Theorem 11** ([26]). The hypersurfaces of Type A2 in complex projective space  $\mathbb{C}P^n(c+3)$  have three distinct principal curvatures:  $\lambda_1 = -\frac{1}{r}\tan u$  of multiplicity 2p,  $\lambda_2 = \frac{1}{r}\cot u$  of multiplicity 2q, and  $a = \frac{2}{r}\cot 2u$  of multiplicity one, where p > 0, q > 0, and p + q = n - 1.

We note that if c=1 and  $\bar{M}$  is of type A1 or A2 then  $\pi^{-1}(\bar{M})=\mathbb{S}^1(\cos u)\times\mathbb{S}^{2n-1}(\sin u)\subset\mathbb{S}^{2n+1}$  or  $\pi^{-1}(\bar{M})=\mathbb{S}^{2p+1}(\cos u)\times\mathbb{S}^{2q+1}(\sin u)$ , respectively.

By using Takagi's result we classified in [17] the biharmonic Hopf cylinders  $M=\pi^{-1}(\bar{M})$  in a Sasakian space form  $N^{2n+1}$  over homogeneous real hypersurfaces in  $\mathbb{C}P^n$ , n>1.

**Theorem 12** ([17]). Let  $M = \pi^{-1}(\bar{M})$  be the Hopf cylinder over  $\bar{M}$ .

1) If  $\overline{M}$  is of Type A1, then M is proper-biharmonic if and only if either a) c = 1 and  $\tan^2 u = 1$ , or

b) 
$$c \in \left[\frac{-3n^2+2n+1+8\sqrt{2n-1}}{n^2+2n+5}, +\infty\right) \setminus \{1\} \text{ and }$$

$$\tan^2 u = n + \frac{2c-2}{c+3} \pm \frac{\sqrt{c^2(n^2+2n+5)+2c(3n^2-2n-1)+9n^2-30n+13}}{c+3}$$

2) If  $\bar{M}$  is of Type A2, then M is proper-biharmonic if and only if either a) c=1,  $\tan^2 u=1$  and  $p\neq q$ , or

$$b) \ c \in \left[\frac{-3(p-q)^2 - 4n + 4 + 8\sqrt{(2p+1)(2q+1)}}{(p-q)^2 + 4n + 4}, +\infty\right) \setminus \{1\} \ and$$
 
$$\tan^2 u = \frac{n}{2p+1} + \frac{2c-2}{(c+3)(2p+1)} \\ \pm \frac{\sqrt{c^2((p-q)^2 + 4n + 4) + 2c(3(p-q)^2 + 4n - 4) + 9(p-q)^2 - 12n + 4}}{(c+3)(2p+1)}.$$

**Theorem 13** ([17]). There are no proper-biharmonic hypersurfaces  $M = \pi^{-1}(\bar{M})$  when  $\bar{M}$  is a hypersurface of Type B, C, D or E in the complex projective space  $\mathbb{CP}^n(c+3)$ .

#### Acknowledgements

The authors were partially supported by the Grant CEEX, ET, 5871/2006 and by the Grant CEEX, ET, 5883/2006, Romania. The first author would like to thank to the organizers, especially to Professor I. Mladenov, for the Conference Grant.

#### References

- [1] Arslan K., Ezentas R., Murathan C. and Sasahara T., *Biharmonic Anti-Invariant Sub-manifolds in Sasakian Space Forms*, Beiträge Algebra Geom. **48** (2007) 191–207.
- [2] Arvanitoyeorgos A., Defever F., Kaimakamis G. and Papantoniou V., *Biharmonic Lorentz Hypersurfaces in*  $E_1^4$ , Pacific J. Math. **229** (2007) 293–305.
- [3] Arvanitoyeorgos A., Defever F. and Kaimakamis G., Hypersurfaces of  $E_s^4$  with Proper Mean Curvature Vector, J. Math. Soc. Japan **59** (2007) 797–809.
- [4] Balmuş A., Montaldo S. and Oniciuc C., Classification Results for Biharmonic Submanifolds in Spheres, Israel J. Math., to appear.
- [5] Balmuş A., Montaldo S. and Oniciuc C., Biharmonic Hypersurfaces in 4-Dimensional Space Forms, Math. Nachr., to appear.
- [6] Blair D., Riemannian Geometry of Contact and Symplectic Manifolds, Birkhäuser, Boston, 2002.
- [7] Caddeo R., Montaldo S. and Oniciuc C., *Biharmonic Submanifolds of*  $\mathbb{S}^3$ , Int. J. Math. **12** (2001) 867–876.
- [8] Caddeo R., Montaldo S. and Oniciuc C., *Biharmonic Submanifolds in Spheres*, Israel J. Math. **130** (2002) 109–123.
- [9] Caddeo R., Montaldo S. and Piu P., *Biharmonic Curves on a Surface*, Rend. Mat. Appl. **21** (2001) 143–157.
- [10] Chen B.Y., A Report on Submanifolds of Finite Type, Soochow J. Math. 22 (1996) 117–337.
- [11] Chen B.-Y., Classification of Marginally Trapped Lorentzian Flat Surfaces in  $\mathbb{E}_2^4$  and Its Application to Biharmonic Surfaces, J. Math. Anal. Appl. **340** (2008) 861–875.
- [12] Cho J.-T., Inoguchi J. and Lee J.-E., *Biharmonic Curves in 3-Dimensional Sasakian Space Form*, Ann. Math. Pura Appl. **186** (2007) 685–701.

- [13] Dimitric I., Submanifolds of  $\mathbb{E}^m$  with Harmonic Mean Curvature Vector, Bull. Inst. Math. Acad. Sinica **20** (1992) 53–65.
- [14] Eells J. and Sampson J., *Harmonic Mappings of Riemannian Manifolds*, Amer. J. Math. **86** (1964) 109–160.
- [15] Fetcu D. and Oniciuc C., Explicit Formulas for Biharmonic Submanifolds in Non-Euclidean 3-Spheres, Abh. Math. Sem. Univ. Hamburg 77 (2007) 179–190.
- [16] Fetcu D. and Oniciuc C., Explicit Formulas for Biharmonic Submanifolds in Sasakian Space Forms, arXiv:math.DG/0706.4160v1.
- [17] Fetcu D. and Oniciuc C., Biharmonic Hypersurfaces in Sasakian Space Forms, Preprint.
- [18] Ichiyama T., Inoguchi J. and Urakawa H., *Bi-harmonic Maps and Bi-Yang-Mills Fields*, Note Mat., to appear.
- [19] Inoguchi J., Submanifolds with Harmonic Mean Curvature in Contact 3-Manifolds, Colloq. Math. **100** (2004) 163–179.
- [20] Jiang G.-Y., 2-Harmonic Maps and Their First and Second Variational Formulas, Chinese Ann. Math. Ser. A 7 (1986) 389–402.
- [21] Maeda S. and Ohnita Y., *Helical Geodesic Immersions into Complex Space Forms*, Geom. Dedicata **30** (1989) 93–114.
- [22] Montaldo S. and Oniciuc C., A Short Survey on Biharmonic Maps Between Riemannian Manifolds, Rev. Un. Mat. Argentina 47 (2006) 1–22.
- [23] Niebergall R. and Ryan P., *Real Hypersurfaces in Complex Space Forms*, Tight and Taut Submanifolds, MSRI Publications **32** (1997) 233–305.
- [24] Ogiue K., On Fiberings of Almost Contact Manifolds, Kodai Math. Sem. Rep. 17 (1965) 53-62.
- [25] Sasahara T., Legendre Surfaces in Sasakian Space Forms Whose Mean Curvature Vectors Are Eigenvectors, Publ. Math. Debrecen 67 (2005) 285–303.
- [26] Takagi R., On Homogeneous Real Hypersurfaces in a Complex Projective Space, Osaka J. Math. 10 (1973) 495–506.
- [27] Tanno S., The Topology of Contact Riemannian Manifolds, Ill. J. Math. 12 (1968) 700–717.
- [28] The Bibliography of Biharmonic Maps. http://beltrami.sc.unica.it/biharmonic/.
- [29] Zhang W., New Examples of Biharmonic Submanifolds in  $\mathbb{CP}^n$  and  $\mathbb{S}^{2n+1}$ , arXiv: math.DG/07053961v1.