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Abstract. Thurston [16] proved that the group Diff°°(M) of a smooth 
manifold M  is perfect, which implies the first homology group is triv­
ial. If M  has a geometric structure, then the first homology of the 
group of automorphisms of M  preserving the geometric structure is not 
necessarily trivial. There are many results concerning this field. In this 
paper, we shall summarize the results of the first homology groups of 
automorphisms of manifolds with geometric structure.

Introduction

In this paper we shall report on the first homology group of the group of 
automorphisms of a manifold with geometric structure. Here the first homology 
group of a group is the quotient group of the group by its commutator subgroup.
Let M  be a connected closed smooth manifold. Let Diff00 (M) denote the group 
of C°°-diffeomorphisms of M  which are isotopic to the identity. Thurston [16] 
proved that Diff°°(M) is perfect which implies the first homology group is 
trivial. The result is related to the topology of the classifying space of foliations.
There are many analogous results on the group of automorphisms of a manifold 
M  which preserve a geometric structure on M  such as volume structure, sym- 
plectic structure, submanifold structure, foliated structure, G-manifold struc­
ture. In those cases the first homology groups are not necessarily trivial. Then 
the calculation of the first homology is the next problem. The first homology

* Dedicated to Professor Fuichi Uchida on his 60-th birthday.
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groups are interesting for us because they are expected relating mostly to the 
fundamental geometric structures on the manifolds.
The first homology group of the group of automorphisms has been studied when 
M  is a topological manifold or Lipschitz manifold with geometric structure. 
In each category we need alternative methods to analyze the first homology, 
which reflects the topological properties of the geometric structure of M.
The purpose of this paper is to try to summarize the results of the first homology 
groups of the automorphisms stated above. We shall mainly state the results 
relating to our work. Many interesting results concerning those fields are found 
in Banyaga [6].
In Sect. I we review the results by Thurston [17] and Banyaga [5], [6] study­
ing volume form or symplectic form preserving diffeomorphisms of manifolds. 
Section 4 is devoted to studying the commutators of homeomorphisms or Lip­
schitz homeomorphisms of manifolds with geometric structures. First we treat 
the case of the group of homeomorphisms preserving a submanifold. Secondly 
we discuss the case of the group of foliation preserving homeomorphisms.
In Sect. 3 we consider the equivariant diffeomorphisms of smooth G-manifolds. 
In this case the first homology is depend on the orbit structure of the G-manifold 
and the smooth structure of the orbit space. We also study the commutators of 
the equivariant Lipschitz homeomorphisms of Lipschitz principal bundles.

1. Commutators of Volume (or Symplectic) Preserving 
Diffeomorphisms

In this section we review the results on commutators of diffeomorphisms pre­
serving a volume form or a symplectic form of manifolds which have been 
investigated by Thurston [17] and Banyaga [5], [6].
Let M  be a compact m-dimensional C°° -manifold without boundary and let 
ou be a closed p-form on M.  Let Diff°°(M) denote the group of all C°°- 
diffeomorphisms of M  with the compact open C°°-topology. We denote by 
Diff^ (M) the subgroup of Diff°° (M) consisting of uj preserving diffeomor­
phisms. For an isotopy ipt G Diff^(M ) with p 0 =  1 m , put

o

where t denotes the inner product. Then a closed (p — l)-form.

Theorem 1.1. (cf. [6]) Let ou be a closed p-form an a compact m-dimensional 
C°°-manifold M  and p t G Diff^(M ) be an isotopy with p 0 =  1 m - Then the
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cohomology class [1^ (cj)] G H p X(M, R) depends only on the homotopy class 
relatively to fixed ends of the isotopy ipt G Diff^(M ).

Let GUJ(M) be the group consisting the homotopy classes [(pt\ of isotopies 
p t G D iff^(M ) relatively to fixed ends. The mapping [ipt\ i—» [/^t (cj)] is a 
group homomorphism:

Su : G J M )  -► .

If a; is a volume form or a symplectic form, then the group G^(M)  is the 
universal covering of the identity component GU(M)  in D iff^(M ). Put 
IA =  S0J(tti(G0J(M))). Then we have a homomorphism ,SL : G0J(M)  —> 
H P~1( M ,R ) /T 0J induced from Su. Thurston proved the following.

Theorem 1.2. ([17]) Let M  be a compact m-dimensional C°° -manifold without 
boundary with a volume form u  (m  > 3). Then ker is a simple group equal 
to the commutator subgroup of G^(M). In particular

H ^ G X M ) )  ^  H m~ \ M , R ) / T u .

Banyaga proved the following theorem applying the Thurston’s idea to the 
symplectic case.

Theorem 1.3. ([6]) Let M  be a compact m-dimensional C°° -manifold without 
boundary with a symplectic form to. Then ker Sw is a simple group equal to 
the commutator subgroup of GU(M). In particular

H i (Gu(M)) = H 1(M,M.)/TU .

2. Commutators of Homeomorphisms Preserving Geometric 
Structurs

In this section we discuss the commutators of homeomorphisms or Lipschitz 
homeomorphisms of manifolds with geometric structures.
Let M  be a compact m-dimensional CAT-manifold (CAT =  TOP, LIP,  C°°). 
Let GCAJ(M)  denote the identity component of the space of all CAT- 
homeomorphisms of M  with the suitable topology, that is , the topology is the 
compact open topology, the compact open Lipschitz topology, and the compact 
open C00 topology respectively in the case of CAT =  TOP, LIP,  C00.
In this section we consider the subgroups of GCAT(M)  in the following.

i) Case of homeomorphisms preserving a submanifold

Let A’ be a compact »-dimensional CAT-submanifold of M.  We denote by 
G(j f r(M)  the identity component of the subgroup of GCAJ(M)  consisting of all 
CAT-homeomorphisms which map N  to itself.
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A locally flat proper manifold pair (M, N)  is by definition a pair of topological 
manifolds such that N  is a locally flat submanifold of M, properly imbedded 
as a closed subset. Then we have the fragmentation lemma from the relative 
version of Corollary 1.3 of Edwards and Kirby [8]. Thus we have the following.

Theorem 2.1. ([10]) G^OP(M) is perfect.

Let (M, N ) be a Lipschitz manifold pair. Then we have the following frag­
mentation lemma from the relative version of Corollary 4.3 of [3].

Lemma 2.2. ([10] fragmentation lemma) For any f  G G%IP( M )), there are 
fi G G^IP(M) (i =  1, 2 , . . . ,  k) such that (1) the support of each f  is con­
tained either in a small ball U with U H N  =  0 or in a small ball U with 
U H N  /  0 and (2) /  =  f k o f k_, o • • • o / ,.

Let GL/p(Rm) be the identity component of the group of all Lipschitz homeo- 
morphisms of Rm with compact support and Gĵ £p (Rm) the identity component 
of the subgroup of GLIP(Mm) consisting of Lipschitz homeomorphisms which 
map Rn to itself. Then we have the following theorem following Mather [13].

Theorem 2.3. ([3] Corollary 2.4) GL/p(Rm) and G ^ p (Rm) are perfect groups 
for n > 0.

Theorem 2.4. ([3] Theorem 3.1) G%IP(M) is perfect for dim TV > 0.

Proof: This follows from Lemma 2.2 and Theorem 2.3.

For the case of dim M  =  1, Tsuboi proved the following.

Theorem 2.5. ([18]) Gp̂ p^{[0,1]) is uniformly perfect.

On the other hand, it seems not to be known the corresponding result in the 
C°°-case except for the following.

Theorem 2.6. ([9] Theorem 2.6) H ^ G f ^ M ) )  9* R. 

ii) Case of foliation preserving homeomorphisms

Let M  be a compact topological manifold and T  a codimension p topological 
foliation of M. A  homeomorphism / :  AI M  is called a foliation preserving 
homeomorphism (resp. a leaf preserving homeomorphism) if for each point x 
of M, the leaf through x  is mapped into the leaf through f{x)  (resp. x), that 
is, f ( L x) =  Lf  (x) (resp. f ( L x) =  Lx), where Lx is the leaf of T  which con­
tains x. Let GTOP(M, T)  (resp. Gtlop{M^T))  denote the identity component 
of the subgroup of GTOP( M ) consisting of foliation (resp. leaf) preserving 
homeomorphisms of (M, T).
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Then we can prove the following fragmentation lemma applying the deep ar­
gument of Edwards and Kirby [8] to the foliated case.

Lemma 2.7. ([11] Theorem 3.1) Let (M, J7) be a foliated manifold. Any f  G 
GPOP(M, J7) can be expressed as f  = f k o f k_1 o • • • o f 1} where each fi is a 
leaf preserving homeomorphism with support in a small ball.

Let JF0 be the p-dimensional foliation of Rm whose leaves are defined by 
xp+i =  c o n s t , . . . ,x m =  const (1 < p < m). Let GPOP(Mm,jF0) denote 
the identity component of the group of leaf preserving homeomorphisms of 
(Rm,jF0) with compact support. Then we have the following.

Theorem 2.8. ([11] Corollary 2.3) GPOP(Rm, ^ 0) is perfect.

Theorem 2.9. ([11] Theorem 3.2) (M, P) be a foliated manifold. Then 
GPOP( M , P ) is perfect.

Proof: This follows from Lemma 2.7 and Theorem 2.8.

We consider the case of codimension one foliations. Let T  be a codimen­
sion one foliation of a compact topological manifold M . By Theorem 6.26 of 
Siebenmann [15], there exists a one dimensional foliation T  of M  transverse 
to T . We define the subset S0 of M  by

So = {x  G M; there exists an element /  of GTOP(M, P)
such that f { L x) ^  L x}.

Then we see that So is an open jT-saturated set and all leaves in So have trivial 
holonomy.

Theorem 2.10. ([11] Theorem 4.3) Let S  be a connected component of R0- 
Then clearly S  is invariant under the action of GTOP(M,J7) and S  is one of 
the following three types.
Type P : S  is homeomorphic to L x (0,1) and the foliations P \s and T \s 
correspond to the product structure of L x (0,1).
Type R: There exists a closed transverse curve C in S  such that C meets each 
leaf of T \s at exactly one point and the natural map

p : S  —> C, p{x) =  Lx fl C

is a fibration and T \s is a connection of the fibration p.
Type D : All leaves of T  in S  are dense in S  and there exists a one parameter 
subgroup {<Pt} of GTOP(M, P\s) whose orbits are leaves of T \ S-

Then we have the following.
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Theorem 2.11. ([11] Theorem 4.6) Let F  be a codimension one foliation of a 
compact manifold M. Suppose that F  has no components of type D and has 
only a finite number of components of type R. Then GTOP(M,F)  is perfect.

Remark 2.12. From Theorem2.11, we see that GTOP(S3, F R) is perfect for 
the Reeb foliation F R of S 3. In contrast with topological case, differentiable 
case is as follows. Let G°°(S3, F R) be the group of foliation preserving C°°- 
diffeomorphisms of (S3, F R) isotopic to the identity by a foliation preserving 
isotopy. Then Lemma 1 of [12] implies that G°°(S3, F R) is not perfect.
For a type D-component S , we define a submodule Per(S) of R by 

Per (S) =  { t G K; T t ( L )  = L for one and all leaves L in S} .

Per(S) depends on the parametrization of {<pt} but the quotient group 
R /Per(S ) is determined by F\s  and, as a set, this is the space of leaves
o f F \ s.

Theorem 2.13. ([11] Theorem 4.8) Let S  be a type D-component. Then there 
exists a homomorphism n of GTOP(M,F )  onto R /P e r (S') and we have

ker 7T =  { /  G GTOP( M , F f  f (L)  = L for any leaf L in S}  .

Let 7r: F(R)  —> n R /P e r (S i) denote the homomorphism defined by 7r(/)  =  
n  tt̂ ( /)  for /  G GTOP(M, JF), where 7r* is a homomorphism in the above 
Theorem for a type D -component Si and the product is taken for all 
type D-components Si of T.  Then ir induces a homomorphism 7r* of 
H x{GTOP {M, T f )  to ü r1(n M /P er(S z)) =  r W p er(Sz). Then we have the 
following which is is an easy consequence of Theorem 2.13 and a non-zero 
element of ker 7r* is represented by a leaf preserving homeomorphism which is 
not isotopic to the identity via leaf preserving homeomorphisms.

Theorem 2.14. ([11] Theorem 4.9) The homomorphism

7T* of H 1(Gtop(M, T))  to J JR /P e r(5 i)

is surjective.

For a very simple case, we have the following.

Theorem 2.15. ([11] Theorem 4.10) Let T  be a foliation of a torus T n defined 
by a 1-form u  = ctidxi. I f  one of cti/dj is irrational, then

H 1(Gt op(M, IF)) is isomorphic to R /a iZ  +  • • • +  anZ .
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3. Automorphism Groups of G-manifolds

In this section we shall consider the case when a compact Lie group G acts on 
a manifold M.
First we treat the case when a compact Lie group G acts smoothly and freely on 
a closed connected smooth manifold M . Let Diff^(M) denote the equivariant 
Cr-diffeomorphism group of a G-manifold M  whose elements are G-isotopic 
to the identity. Banyaga proved the following.

Theorem 3.1. ([5]) Let M  be a smooth closed and connected manifold of di­
mension m  on which the torus T q acts smoothly and freely. For m  > q +  1, 
1 < r < oo, r m n —  q +  1, Diff^g (M) is a perfect group.

We have proved the result when the group is any compact Lie group.

Theorem 3.2. ([2]) Let M  be a closed manifold on which a compact Lie group 
G acts smoothly and freely. I f  l < r < oo, r  /  m — q + 1, and m  — q > 1, 
then Diff^(M) is perfect, where m  =  dim M  and q =  dimG.

From Theorem 3.2 we have the following.

Corollary 3.3. ([2]) Let M  be a closed manifold on which a compact Lie group 
G acts smoothly with one orbit type. I f  1 < r < o o , r  dim M /G  +  1, and 
dim M /G  > 1, then Diff^(M) is perfect.

We remark that in those cases each group Diff^(M) is perfect but is not simple. 
The following lemmas play key roles in the proof of Theorem 3.2.

Lemma 3.4. (fragmentation lemma, cf. [2] Lemma 1) Let {Vp 1 < i < n} be 
a G-invariant finite open covering of M  and J\f be an open neighborhood of 
the identity in Diff^(M). Then there exists an open neighborhood J\f0 C J\f 
of the identity with the following properties: For any f  G Ao, there exist 
fi G A/", 1 < i < n ,  such that
1) fi is G-isotopic to the identity through equivariant Cr diffeomorphisms 
whose support are contained in Viy and
2) f  =  fn° fn—1 O * * * O /i.

Lemma 3.5. ([2] Lemma 2) For 5 > 0, let u : R —» R be a Cr function 
supported in (—5, 5) which is C 1 -close to the zero map. Then there exist a Cr 
function v : R —» R and a Cr diffeomorphism <p : R —» R such that

1) supp{v) C (—2\/35, 2\/35), \ v ( x ) \  < 36,
2) supp{(j)) C ( —5, 5) and <p is isotopic to the identity through Cr diffeomor- 

phisms supported in (—5, 5),
3) u =  v o <fi — v.
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If a G'-manifold M  has more than two orbit types, then DiffrG(M) is not perfect 
and therefore the first homology Hi(DiSrG(M))  is not necessarily trivial. In 
this case it is difficult to calculate the first homology in general.
We consider the case when M  is a smooth connected closed G-manifold with 
codimension one orbit. Then the orbit space M / G  of M  is homeomorphic 
to the circle S'1 or the unit interval [0,1]. If M / G  is homeomorphic to S 1, 
then M  has one orbit type and it follows from Corollary 3.3 that D iff^(M ) 
is perfect. If M / G  is homeomorphic to [0,1], then M  has two or three orbit 
types. In this case DiS q (M)  is not perfect.
From the differentiable slice theorem, M  is equivariantly diffeomorphic to the 
union of two disc bundles G x Ki D(Vt) (i = 0,1) with the boudaries identified 
under an equivariant diffeomorphism. Here K, is an singular isotropy subgroup 
and D(V]) is a unit disc of a linear slice Vt at a point of the singular orbit. 
Let H  be a principal isotropy subgroup of M.  We can assume that H  is a 
subgroup of Ki  D K 2. Let N ( H ) denote the normalizer of H  in G. Put 
W (M )  =  ( ( N ( H ) n N ( K 0) ) /H  x  ( N ( H ) n N ( K 1) ) /H )0. Then our result is

Theorem 3.6. ([3] Theorem 4.2)

^ (D iffo  (M)) =  M2 x  H 1( W ( M ) ) .

The proof of Theorem 3.6 is based on a differentiable structure of the orbit 
space M / G  of the G'-manifold M  such that the functional structure of M / G  
is induced from that of M  [1], Then we have a natural homeomorphisms 
P  : Dill)): IM )d — Diff°°[0,1]0 which is defined by the orbit map. With this 
functional structure and Baker-Campbell-Hausdorff formula, we can analyze 
the G-diffeomorphisms around singular orbits and determine the group of the 
orbit preserving G-diffeomorphisms of M.  Let G ~([0 ,1], N ( H ) / H ) 0 de­
note the subgoup of G°°([0,1], ( N ( H ) / H ) 0) which are infinitely tangent to 
N ( K 0) fl N ( H ) / H  at 0 and infinitely tangent to N ( K i) fl N ( H ) / H  at 1. 
The following theorem determines the group structure of the orbit preserving 
G-diffeomorphisms of M,  and plays an important role of the proof of Theo­
rem 3.6.

Theorem 3.7. ([3] Corollary 3.3)

kerP  ^  C£([0 ,1] ,N(H)/H)0 .

Next we consider the group of equivariant Lipschitz homeomorphisms of a 
principal G-bundle over a Lipschitz manifold.
Let G be a compact Lie group of dimension q and M  the total space of a 
principal G-bundle over a closed (m — q)-dimensional Lipschitz manifold B  
such that each transition function is Lipschitz. Let 'Hlip,g{M) denote the
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identity component of the group of equivariant Lipschitz homeomorphisms of
M.

Theorem3.8. ([4] Theorem5.1) 'Hlip,g (M) is perfect for  dim D > 0. For
5 >  0, put B$ =  {x (z MTO; ||a:|| < 5}.

Similarly as in Cr case, in order to prove Theorem 3.8 we need the following 
key lemmas.

Lemma 3.9. (fragmentation lemma, [4] Corollary 5.5) For any f  G
7fLip,G(M), there are f  G 'H-Lip&iM) (i = 1, 2 , . . . ,  k) such that
1) f  = f k °  fk- i  o • • • o / i  and
2) the image of the support of each f { by n is contained in a small ball in B.

Lemma 3.10. ([4] Lemma 5.7) For any u G Cz,jp(Rm,R) with supp{u) C B s 
and lip{u) =  k < 1, there exist v G Cz,jp(Rm,R) with supp{v) C B b5 and 
<p G 7Yp/p(Mm) such that u =  v o <p — v.

Remark 3.11. In the topological case, we can prove fragmentation lemma but 
we can not prove the lemma corresponding to Lemma 3.10. If it is valid in the 
topological case, we can prove the analogous result to Theorem 3.8 such that 
M  is a total space of a principal G-bundle over a closed (m — q)-dimensional 
topological manifold B.
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