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ON KAHLERIAN COHERENT STATES*
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Abstract. A reformulation of Rawnsley’s Kählerian coherent states (in 
the framework of geometric quantization) is used in order to investi­
gate the interplay between their local and global properties (projective 
embeddings) and the relationship with Klauder quantization (via path 
integrals and the introduction of a metric on the classical phase space). 
A Klauder type formula is established for the projection operator onto 
the quantum Hilbert space (the kernel of a Bochner Laplacian) in terms 
of a phase space path integral. As a further application, a Riemann sur­
face diastatic identity is derived, yielding, via Green function theory, a 
short proof of the Abel-Jacobi theorem (and conversely), together with 
some coherent state induced theta function identities.

1. Introduction

Coherent states, originally introduced by Schrödinger [20], and generalized in 
various directions (see e. g. the recent surveys [2] for a thorough introduction to 
the subject), provide an extremely useful tool for dealing with many aspects of 
quantum mechanics and play a relevant role in most quantization prescriptions. 
In this note we further elaborate the notion of coherent state in the Kählerian 
setting in geometric quantization, due to J. Rawnsley (see e. g. [19,7,22]), in 
view of establishing a relationship with Klauder’s quantization. Specifically, 
Klauder’s approach to quantization (via heat equation regularized path integrals 
over phase space, after introducing a metric thereon, [10, 11] yields the quan­
tum Hilbert space as the (degenerate, in general) Landau ground state space 
of a “quantum” Hamiltonian (a generalized Laplacian) (cf. also [9,13] and 
references therein, see [23] as well) and this is, in turn, close in spirit to the
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index theoretic approach of [26] in the complex and almost complex case (see 
[21,4] and, as a general reference, [3]).

Our results can be summarized as follows: we give several equivalent local con­
ditions ensuring projective embeddability or, what is the same, the constancy of 
Rawnsley’s function (see [19] and [7]) providing corresponding physical inter­
pretations, slightly improving [7]. In particular, we show that positive powers 
of a regular line bundle are again regular. Furthermore, we establish a Klauder 
type formula for the projection operator onto the quantum Hilbert space (the 
kernel of a Bochner type Laplace operator) in terms of path integrals com­
plementing Odzijewicz’s treatment [16], the basic technical inspiration coming 
from explicit computations in Woodhouse’s book [27] (in particular Sect. 9.8). 
Next we apply the above scheme to the Riemann surface case, which is also 
physically interesting in view of applications to vortices and anyons [18]. Upon 
relying on Green function theory, as in [18], we prove a geometrically trans­
parent diastatic identity leading to a reformulation of the Abel-Jacobi theorem. 
Finally, additional coherent state and diastatic identities are interpreted in terms 
of theta functions, via the Riemann Factorization Theorem.

2. Coherent States

For the basic notions and notations of geometric quantization we refer to [27] 
(setting Planck’s constant h =  1) .

Let (M, bo) be a compact prequantizable Kähler manifold. Let (L, V, (,))  
be a hermitian holomorphic prequantum bundle (unique up to equivalence if 
M  is simply connected), with V the unique connection compatible with the 
hermitian metric ( , ) ,  with curvature —27rio;, and the holomorphic structure, 
namely V 0,1 =  d. Denote simply by L 2 the space of L 2-sections of L  —» 
M  (with respect to ( , ), the integration being carried out with respect to the 
Liouville measure dm). The Quantum Hilbert Space, will be H  =  H °  (L), i. e. 
the (finite dimensional) subspace of L 2 consisting of all holomorphic sections 
of L  —> M . If we set A := V 0,1*V0,1, (with V 0,1* denoting the formal adjoint 
of V 0,1), then it is clear that H  =  ker A.

H  might well be {0} a priori, but this will not be the case if L  —» M  is suffi­
ciently positive; moreover, be the Riemann-Roch theorem, sufficient positivity 
entails that dim H  := h°(L) is indeed a topological invariant, and the Kodaira 
Embedding theorem allows one to see M  as an analytic (indeed algebraic, by 
Chow’s theorem) subvariety of the projective space P {H ). In view of ensuring 
a proper semiclassical interpretation, we shall normalize the volume of M  in
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such a way that

vol(M ) := J d m  = h ° (L ) . (2.1)
M

This will yield the value À =  1 for the Rawnsley constant (see below). The 
above equality tells us that the volume of the classical phase space equals the 
dimension of the quantum Hilbert space and this is one of the forms of Bohr’s 
Correspondence Principle (BCP).
The above set-up can be easily described via Rawnsley’s coherent states, which 
we now recall.
Denote by 7r the natural projection onto the base M , and by L m the fibre 
7r-1 (m) over m . Continuity of the evaluation map evm : H  —> L m given by 
evm(s) =  s(m )  yields, by Riesz’s theorem s(m ) = (eq,s )  • q, with eq G H , 
and 7r(q) = m . Clearly ecq = c~ 1eq, for c G C*.
We now introduce an a priori different notion of coherent state, which will be 
soon shown to agree with the one above (cf. [27]).

Definition 2.1. The coherent state vectors sm G H, m  G M , are defined so 
that they maximize (s, s)(m ) over all vectors s G H  such that (s, s) =  1. They 
are o f course determined up to a phase factor.

A coherent state vector sm is thus an eigenvector of the positive operator
A m : H  —> H  defined by ( s i , s 2)(m) =  (s1,A ms2). Set A(m) =  Xm := 
(sm, sm)(m ), the largest eigenvalue of A m.

Lemma 2.1. The coherent states sm essentially coincide with Rawnsley ’s co­
herent states.

Proof: Let 7r(q) =  m . From (eq, s) • q =  s(m ), and ||s ||2 =  1 we get

( s ,s ) ( m ) < \q \2\\eq\\2

with equality if and only if s is proportional to eq, namely sm =  ceq. If 
\\eq\\2 = 1, then A(m) =  (sm, s m)(m ) = \q\2.
Let P (H )  denote the projective space pertaining to H  and let [ ] : H \ { 0} ■
P (H )  is the canonical map. We wish to define a coherent state map e : M  —
P {H )  by

e(m ) =  [sm] . (2.2)

In case it is well defined, the point [sm] G P (H )  is called a coherent state. 
Henceforth we shall often drop the distinction between coherent state vectors 
and coherent states, in case no confusion arises. We now require fulfillment of 
the following conditions:
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AO: Kodaira vanishing theorem, implying, via Riemann-Roch theorem,
dim H  =  h°(L) =  f M A (m ) d m  (see [7]).
A l: e is well defined (absence of base points).
A2: e is injective.
An important case in which the A l is fulfilled whereas A2 is not is given by the 
canonical bundle K  on a hyperelliptic Riemann surface, i. e. a 2-1 branched 
covering of the Riemann sphere, see e. g. [8].
Conditions A l and A2 entail that the eigenspace pertaining to Xm is one­
dimensional and that the real valued function A : m  i—> A(m) is strictly positive. 
We introduce a further condition:
A3: The function A is constant (A(m) =  À =  1).
The last equality comes from AO and BCR This is indeed equivalent to the 
regularity condition of the line bundle L  —» M  stated in [7]. One of our main 
tasks will be the formulation of A3 in several different guises, leading to a slight 
improvement of some results in [7]. Kodaira’s embedding theorem states that 
if L  —» M  is positive, then a suitable power thereof indeed fulfills conditions 
AO-3, since they will be equivalent to projective embeddability (this is referred 
to as ampleness of L  —> M ). Observe that A3 is a sort of “weak homogeneity” 
condition which is of course satisfied by coadjoint orbits and more generally 
by G-hamiltonian symplectic manifolds).
Moreover, the above mentioned BCP in conjunction with Kodaira vanishing 
theorem lends further motivation for the A-constancy requirement. Notice, as 
a consistency check, that AO-3 and Riemann-Roch theorem entail

1 =  {sm, s m) <  vol(M ) =  h°(L)

as it should be, in order to have a non trivial projective space.
Now, let s0 be a local unitary frame ( (s0, s0) =  1), defined in an open neigh­
bourhood U of a fixed point m G M  and set for (the restriction of) a section 
in H , s = s.S'o, with s a (local) smooth function. Also set V s0 =  d°s().
We also observe that, given AO-3, in local calculations one may adjust the 
phase in sm so as to have sm(m ) =  1. We shall tacitly assume this in the 
sequel.
We gather various properties fulfilled by coherent states in the following the­
orem, resorting to the previously established notation.

Theorem 2.1. Under assumptions AO-3 the coherent states possess the follow ­
ing properties.

i) The following (strict) inequality holds

( v , v ) H  < (sm,sm){m). (2.3)
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ii) The function ml i—» (sm, has a (strict) maximum at m:

(<sm, sm) (m  ) (sm, sm)(rn) 1 .

iii) (reproducing property)

(Smi s)

iv) (generalized resolution o f the identity)

{.Si,s2) = J { s 1, s m)(sm, s 2) d m .
M

v) (overcompleteness) (sm, s) =  0 fo r  all m  implies s =  0.
vi) In a local unitary frame, formula (2.5) reads

s(m ) = sm(m ){sm, s) = (sm, s ) .

vii) The following formula holds, fo r  all m, m ' in M :

( s m / , Sm f )  ( m d j Sm ) { j n  )  I ( ^ m i  S m ' )  I •

viii) For fixed  m  G M , and Vm' G U \  {m } one has:

\sm(m ')\ < |sm(m)| .

ix) Let v  ^  Am he an eigenvalue o f A m. Then a =  0.

(2.4)

(2.5)

(2.6)

(2.7)

(2.8) 

(2.9)

Proof:
i) The very definition of coherent state yields <  in (2.3). Uniqueness gives < .
ii) follows from i) after exchanging the roles of m  and m l, and by the homo­
geneity assumption A3.
iii) One has

(Smi s') s) (sm, s ) (m ) .

iv) The r.h.s. of (2.6) equals f M(si, sm)(m )(sm, s2)(m ) dm . But the integrand 
equals ( s i , s 2)(m )  (this is easily verified by using a local unitary frame), so 
we get, after integration, the l.h.s..
v) follows directly from iv), setting s =  Si =  s 2.
vi) and viii) are immediate.
vii) follows at once from vi). This formula gives the transition probability 
between two coherent states in terms of local data (i. e. the shape of the 
coherent state wave function).
ix) Let s G H  be an eigenvector pertaining to u. Then (s, s m) =  0 so, by (2.7), 
s(m ) = 0 which, in turn, implies (s, s )(m )  =  0 =  (A ms , s), whence v  =  0.
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The following lemma is crucial.

Lemma 2.2.
i) With the above notations, we have

(V sm)(m) =  0 Vm G M . (2.10)

ii) In a local unitary frame the previous formula reads

dsm(m) = = —d °(m ). (2.11)

Proof:
i) In view of the hermiticity of V, one has, for any s G H ,

d(s, s ) =  (V s, s) +  (s, V s).

Applying the above formula to sm and evaluating at m  we have

0 (V sm, sm) (771) (sm, V sm)(?77/),

i. e. upon using sm as a local holomorphic frame, setting V sm := $(m)sm, 
with a type (1,0) form (since V 0,1sm =  0):

0 =  (m) +  (m ),

whence (m) =  0.
ii) One has, from i), 0 =  (V sm)(ra) =  (dsm(m) +  /d°(m )sm(m ))s0, whence

(2.11). □
Let 0 (1 )  denote the hyperplane section bundle over P ( H ), dual to the tau­
tological line bundle (we regard it as a smooth line bundle and consider its 
canonical Fubini-Study connection Vcan with connection form a  given by

Oiy
(v, dv)

IM|2 '
(2.12)

where H  3 v /  0. The curvature of Vr,,„ equals — 27rif2.

Proposition 2.1. (cf. [19]). Let conditions AO-3 be fulfilled. Then: 
i) The mapping e : M  P (H ) given by

m  i-> e(m ) := [sm] (2.13)

yields a symplectic embedding, i. e. e and e* are injective and

e*(fl) = lo. (2.14)

ii) One has e * (0 ( l ) ,V can) =  (L, V).
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Proof: We already know that the coherent state map e is injective. If we prove 
(2.14), then e* will be automatically injective (since uj is non degenerate).
We shall now prove that, locally around m,

e * ( a ) = d ° ,  (2.15)

which, in turn, implies (2.14).
Choose a point m  G M . Consider an orthonormal basis (s1 =  sm, s2, . . . ,  sN) 
of (N  =  dim H ). Express any coherent state sm/, m' 7̂  m as

N

Sm'  ̂(Sj ; Sm')Si •
2=1

Then, working in a unitary frame as above, we find
N

e*(a)(m!) = d sm/} =  -  ^  s^m ')  d s j (m ') .
2=1

Now, if we let m' —*• m , we have, by observing that s, (rn) = 0 for i ^  1 (by 
Theorem 2.1.).

e*(a)(m ) = —(sm(rn))~1(d s m)(m ) = i9°(m)

by Lemma 2.2. □
Let := D { m ,m f) denote the Calabi diastasis function (see e. g. [6],
[7], [24]). Recall that it can be manifactured from any Kähler potential / ,  via 
the (local) formula

D (m , m r) =  /(m , rn) +  f ( m f  m r) — f ( m f  m ) — f ( m , m!)

(a sesquiholomorphic extension of /  being understood), and that, fixing, say, 
m, it gives a canonical Kähler potential D m as a function of m', which we 
henceforth call diastatic. The following property of the diastasis function is 
important.

Lemma 2.3. (Calabi, Bochner, see [6]) Locally around m, there exists a holo- 
morphic coordinate system centred at m  such that the diastasis takes the form  
(obvious notation):

n

D (m ,m r) =  ^  IZi(m ')\2 +  higher order terms in z,~z
2=1

We are in a position to state one of the main results of this paper:

Theorem 2.2. Under conditions AO-2, the following are equivalent: 
i) A3 holds, L e. the function A is constant (= X = 1).
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ii) The coherent state map is an embedding.
iii)

d ( S m  5 ^m) \ m '= m  0 -> V?77/ G A I  . (2.16)

iv)

log(sm, s m) ( r n  ) D m ( m  ) (2.17)

fo r  all m ' in a suitable m-neighbourhood U C M . 
v) A  Reciprocity Law holds in the form:

(Sm,sm)(m j  =  (sm:, smf)(m ) (2.18)

fo r  all m ' in a suitable m-neighbourhood U C M .

Proof: Our goal will be accomplished once we prove the following:
1. i) =* ii)
2. i) ^  iii)
3. ii) iv).
4. iv) =>• v) => i).
1. The implication ■■ follows from Proposition 2.1.
2. One direction comes from Theorem 2.1, the other follows from the very 

definition of coherent states and elementary differential calculus.
3. Straightforward computation in projective space.
4. Symmetry of the diastasis function gives the first assertion, whereas the 

second one is immediate. □
Remark: The reciprocity law has a natural physical meaning: it states the the 
probability density of finding the system described by the coherent state sm at 
any point m! is equal the the one obtained by exchanging the roles of m  and m '. 
In particular, we observe that two coherent states sm and .sm< are orthogonal if 
and only if, say, (sm, sm)(m r) = 0. Also, observe that the coherent state wave 
function sm has a Gaussian-like shape (modelled by the diastasis function, in 
view of the Bochner-Calabi lemma) peaked around m, in accordance with 
physical intuition:

(sm, s m)(rn') =  e“£,(m’m') =  (sm,, sm,)(rn ) . (2.19)

Notice that the implication iv) =4> iii) is also a direct consequence of Lemma 2.3. 
We draw some consequences of the above theorem.

Corollary 2.1. The function exp(—D (m , m ')) is globally defined and 
D (m ,m r) =  0 i f  and only if  m  = m l. (Propositions 2 and 3 in [7])
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Corollary 2.2. I f  L  —> M  is a regular line bundle (i. e. A is constant), then 
L k —» M  is also regular; k >  1.

Proof: One has L = e * ö (l) ,  so L k =  e*ö(k). From this it easily follows that 
the coherent state sffl pertaining to L k equals whence

d(s (k)
m

o(*95 öm ) Im '= m  d ( s m  ? s )k ’=m ^m) d(«Sm , «S /=m 0
for any m G M . So Theorem 2.2 yields the desired result. □

Let us also notice the following consequence of the above formalism in the 
framework of the Borel-Weil theory in its reformulation given in [17]). We 
consider a highest weight (projective) unitary representation g —> U(g)  of a 
compact simple Lie group G.

Corollary 2.3. The OnofrVs [17] potential — 21og |(0|£/(g)0}| (abuse o f nota­
tion) is diastatic.

We also recall, for the sake of completeness and illustration of the above for­
malism, that under assumptions AO-3, the semiclassical evolution property and 
the minimal uncertainty properties of Rawnsley’s coherent states can be estab­
lished (see e. g. [21]). We recover the former for the sake of completeness and 
as an easy application of the above formalism. Given an observable (Hamil­
tonian) /  with (complete) vector field p  and consider its prequantum operator 
F  given by

F s  — —iVjtt s -\- f  s . (2.20)

The quantum operator associated to /  is, by definition Q ( f )  := P F P : H  —> 
H.  The observable /  is said to be quantizable if Q ( f )  = F P . Then we have

Proposition 2.2. Let f  be quantizable. The following semiclassical evolution 
property holds

(sm, Q ( f ) s m) = f ( r n ) . (2.21)

Proof: We have: (sm, ( 5 ( / ) s m) =  (sm, F s m) (this is always true) =
(sm, F s m)(rn) (since F s m G H , being /  quantizable) =  f ( m )  (in view of 
(2.20) and Lemma 2.2). n
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3. A Path Integral Formula

In this section we wish to give a Klauder type formula for the projection 
operator / ’ : L 1 ■ II in terms of a path integral over M ,  or rather, for the 
matrix elements of P  over coherent states (reproducing kernel) (cf. [10] and 
[11]). The computation below mimicks the one in [27],
Starting from the resolution of the identity (2.6), with s* =  smi, i =  1,2 one 
easily finds, upon iteration, for n  >  1

{ s i , s 2) =  J ( s i , sßl ) {sßl , sß2) . . .  {sßn, s2) d^i! . . .  dp,n . (3.1)
M n

Working in a unitary frame, we have, in view of (2.5),

(S/M 5 StM+i } 'S/ii (Mi+1) • (3.2)

Let V ( m i, m 2) denote the space of (continuous) paths 7 in M connecting m x 
with m 2. From now on (up to the end of this section) we work heuristically, 
though our reasoning could be made rigorous, by resorting to the Feynman-Kac 
formula for the heat kernel of the Laplace operator A. If we let n  —> 00 taking 
formula (2.12) into due account, and introducing the path integral “measure” 
22(7 ), we are led to the following result:

Theorem 3.1. Under the above assumptions, the orthoprojector P  : L2 —» 
H  has a ureproducing kernel’y H ( m 1}m 2) defined via the phase space path 
integral

n ( m i , m 2) :=  (sm i , sm2) =  J Tv (7 ) ^ ( 7 ) 0-3)
V ( m i  ,7712)

where Tv (7 ) is the parallel transport (holonomy) operator attached to V: in a 
local unitary frame it reads

Tv ( 7 ) =  e-f-/°. (3.4)

Remarks: (i) This construction also matches with the coherent state approach 
developed by Odzijewicz [16], and further confirms that it is mandatory to 
act in the projective embedding case (as was postulated from the beginning 
in [16]). It also yields an example of topological dynamics (the Hamiltonian 
being set equal to zero), with the integrand appearing as the holonomy of the 
prequantum connection (cf. [1]).
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(ii) We also notice that in the path integrand only the topological information 
(encoded in the connection, via the Weil-Kostant theorem) survives, as it should 
be, in the Kähler case, under Kodaira vanishing assumptions.

4. Applications to Riemann Surfaces

In this section we wish to establish a link with the theory of Green functions 
on a Riemann surface (E, h) of genus g9 where h is a Kähler metric with (see 
e. g. [12] and [18] as well) Kähler form k =  \h ^ z d z  A dz. In this section, the 
diastasis will be denoted by V . The following proposition is easily established,

Proposition 4.1. On the Riemann surface E the Green function G P associated 
to a divisor P  (a point in E) and to a normalized volume form, e. g. the Kahler 
structure n, reads:

G P(Q) =  log | / ( Q ) |2 — T^p(Q) (4.1)

fo r  all Q in a suitable open dense neighbourhood U  C E (with f ( Q )  being a 
local meromorphic function having a (simple) zero at P  (it plays the role o f a 
Bochner coordinate around P).

Proof: The proof follows from the very definition of Green and Calabi func­
tions, using the fact that the diastasis is, fixing an argument, a Kähler potential 
(see [12,18]).
Warning: We are requiring that the smooth part of the Green function vanishes 
at P , and moreover a priori, depending on conventions, there is just propor­
tionality between V  and the Green function; the latter can be redefined so as 
to get the above formula ). □
Let us prove the following:

Theorem 4.1. Let D  =  sf f i k iPi be a degree zero divisor on E. Then D  is 
the divisor o f a (global) meromorphic function f  i f  and only if  the following 
diastatic identity holds:

kiV (P il Q ) =  const \/Q  G E . (4.2)
i

Proof: Recall that a Green function exists for any divisor (cf. e. g. the proof 
by Coleman given in [12], which is independent of Abel-Jacobi, see below). 
Another way of formulating the above statement is the following: the degree 
zero divisor D  pertains to a meromorphic function if and only if the smooth 
parts of the Green functions associated with the points in the divisor add up to 
a global harmonic function (hence a constant).
From the above result we get
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Theorem 4.2. (Abel-Jacobi) There exists a meromorphic function associated 
to D  if  and only if  A (D )  =  0, with A  the Abel-Jacobi map.

Proof: We essentially employ notations of [8]. In view of the above theorem 
and of the naturality of Calabi’s function one can compute on the Jacobian 
J ( £ )  =  C^/A where the diastasis is, locally, the one on C9. Given a basis for 
the abelian differentials uj =  (c^), i =  1 , . . . g, the Abel-Jacobi map A :  £  —» 
J ( £ )  reads (after choosing a reference point P0 on £):

p
A(P) = z = J lo. (4.3)

Po

Now, if D  = P \ — Qx (for simplicity, as in [8]) we also set z x =  A {P X), 
z x = A ( Q X), z A =  A{PX) — A ( Q X) =  z x — z x . Then the image of D  through 
the Abel-Jacobi map reads:

A(D) = £zj -'L l = ̂ z A (4.4)
A A

Eventually, we write

5 > (P a,P) -  5 > (Q a,P) = £  IN -  z+||2 -  -  zÄll2
A A A A

which is locally constant if and only if z \  = 0- Globalizing yields

5 > a =  0 mod (A ) . (4.5)
A

which is a form of the Abel-Jacobi theorem (cf. [8]). The constant has clearly 
the value

□
E ^ I N I I 2- (4.6)

We notice that, conversely, one can directly prove the diastatic identity on the 
Jacobian through the Abel-Jacobi theorem, then pulling back to £  via the 
Abel-Jacobi map yields the diastatic identity thereon.
We recall the Riemann factorization theorem , which gives an explicit formula 
for a meromorphic function on a Riemann surface pertaining to a degree zero 
divisor fulfilling A(D)  =  0 (see [15] and [18]):

n x

f { x )  = c e 'p*>“ Y[
k=1

d j A j x )  -  A ( P k) -  C) 
d{A{x)  -  A ( Q k) -  C)

(4.7)

(valid for a generic (  in the theta divisor of J (£ ) )  and with x  G E and c G C).
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Here A(x) ,  etc. is defined as above via integration from a fixed point P0 on 
the surface, or, equivalenty, on takes, e. g. {A{x) — A ( P k) =  A{x  — Pk), etc.
The role of (  is the following: the function x  i—» ^&{A{x) — A { P ) — ()  has a 
zero in P  and in other g — 1 points depending only on (  but not on P.  In the 
final formula these additional points drop out. Finally, uj is a suitable abelian 
differential (holomorphic 1-form).
Let us now assume that L  —> E is such that deg L  > 2g so that it is very ample, 
and moreover, that it corresponds to the (effective) divisor D 0. In view of the 
classical theory, holomorphic sections of L  —» E correspond to meromorphic 
functions having ( / )  =  D — Z20, the correspondence being induced by

s  — f s  ' s 0

with s0 a reference holomorphic section with divisor D 0. Setting D  =  ^  
with K =  0 (we take D  =  D' — D 0, with deg D' = deg D 0)
Denoting by f m  the meromorphic function pertaining to sm etc., applying (4.2) 
together with the Riemann factorization theorem we get

Y[ ( sm , sm)ki (rrii) = Y[ ( smi, s mi)ki(m) =  const (4.8)
i i

entailing (recall that ki = 0)

n  I fm, \2ki (m ) =  COnst (4-9)
i

and, discarding the modulus (squared), by holomorphy

n  /mi M = COnst (4 -!0)
i

which is easily seen to be a (non trivial) theta identity by virtue of the Riemann 
factorization theorem.
We also notice that the above also holds for L = K  (deg K  = 2g — 2 <  2g) 
provided E is non-hyperelliptic, which is certainly true, generically, for g >  3.
We give an application of the above formalism in the framework of elliptic 
function theory on the appropriate line bundle pertaining to the divisor 3p 0, 
with po denoting the flex (0 : 0 : 1) of the Weierstrass cubic (see [8] for 
details).

Theorem 4.3. The Theta function identity above takes the following form

I J t f n (z -  a ))k'h> = const (4.11)
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where, fo r  fixed i, (a*-) denotes the collection o f zeros and poles o f f mi, with 
multiplicity hj (negative fo r  poles) and $ n  is an appropriate theta function 
with characteristics, (see /"747J.

Notice that this entails that the zeros and poles o f the coherent state vector 
pertaining to any point building up the divisor appear among the zeros and 
poles (o f some) o f the others.
This fact could have interesting physical consequences in vortex and anyon 
theory (see [9], [13] and [18]). Furthermore, it would be interesting to investi­
gate in depth the possible relationship between “classical” theta identities and 
these “coherent state” induced ones. This problem will be possibly tackled 
elsewhere.
We finally notice, in the Riemann surface context, and for regular L, the fol­
lowing

Proposition 4.2. The number o f coherent states orthogonal to a given one, say 
sm, is n  =  vol(E) +  g — 1

Proof: By virtue of Theorem 2.1 this number is given by the zeros of the 
holomorphic section sm, namely ci(L), which, in turn, can be obtained from 
the Riemann-Roch formula, n
Remark: In conclusion, we wish to point out that D. Borthwick and A. Uribe 
recently succeded in extending the Kodaira Embedding Theorem to almost 
complex manifolds via Rawnsley’s coherent states, which retain their meaning 
in this more general context, (essentially by elliptic regularity, [5], [4], see also
[25]).
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