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SPACES OF C O NSTA N T  S E C T IO N A L  CURVATURE

A LE X E Y V. SHCHEPETILOV

Department o f Physics, Moscow State University 
119899 Moscow, Russia

Abstract. The problem of two classical particles with central interac­
tion on simply connected spaces o f a constant curvature is considered 
from the invariant point o f view. The Hamiltonian reduction method is 
used for exluding a movement o f the system as a whole.

1. Introduction

Everybody knows that the two body problem with central interaction in Eu­
clidean space o f an arbitrary dimension is reduced to the problem o f one body 
in a central potential. On the other hand there exist spaces o f a constant sec­
tional curvature, which possess as wide isometry group as the Euclidean space 
o f the same dimension and are homogeneous and isotropic. In this connection 
the following question arises: What is the most effective way o f using their 
isometry group for the simplifying o f the two-body problem on spaces o f the 
constant sectional curvature?

Detail analysis shows that for the last problem there is no an analog o f the 
Galilei transformation and a naturally defined center o f mass doesn’ t move 
along a geodesic even in the case without interaction. So, for simplifying 
this problem we can use only the isometry group. It had been shown [1] 
that the exluding o f a movement o f the center o f mass for n-particle system 
in Euclidean space can be carried out by the Marsden-Weinstein reduction 
method. Obviously the result is the same as after the using for the same 
purpose the Galilei transformation.

The Hamiltonian reduction had been used for the classical two-body problem 
in the spaces o f a constant sectional curvature [2]. This reduction was based
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there on the explicit direct very cumbersome calculations carried out with the 
help o f a computer analytical calculation system. There was shown that in the 
general case the reduced dynamic system has the two degrees o f freedom and 
there were found the canonically conjugated coordinates and the expressions o f 
the reduced Hamiltonian function in these coordinates.

In this paper more geometric procedure o f this reduction will be presented. 

First o f all we should mention that the classical two-body problem on the sphere 
and the hyperbolic space reaches it’ s maximal generality for 3-dimensional 
spaces. Indeed, for every moment o f time in spaces o f a greater dimension we 
can choose a constant curvature subspace o f the dimension three such that it’ s 
tangent bundle contains both particles with their velocities vectors. Moreover, 
starting from this moment particles will stay in this subspace.

From the other hand it is clear that the two body problem on constant curvature 
surfaces is the special case o f the movement on the three dimensional constant 
curvature space.

Below we will consider the two-body movement on the three dimensional 
constant curvature spaces.

2. Basic Notations

Let § 3 =  R 3 U {o o }  is supplied with the metric:

5s =  4 i?2 dx2i )  /  1 +  L x:
1=1 i= 1

where x i; i =  1,2,3 are cartesian coordinates on M3, R  is the radius o f a 
curvature. The distance between two points we shall denote as ps(-,-). The 
connected component o f a unit o f the isometry group for this space is the 6 
dimensional group SO  (4) with Lie algebra so(4). The following Killing vector 
fields correspond to the left action o f the isometry group:
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For the hyperbolic space H 3 we take the Poincaré model in the unit ball D 3 C 
R 3 with the metric:

Sh =  4R 2^  dx2t 1 -  Y ,
1=1

x n Y . x ï  < 1
i=i i=i

The distance between two points o f HI3 we shall denote as ph( - , •). The con­
nected component o f a unit o f the isometry group for this space is the 6 di­
mensional group S O (  1,3) with Lie algebra so (l, 3). The Killing vector fields 
are:

^ d d d d d d
z i =  x 2 ^ ------ x 3 —— , Z 2 = x 3 -------- x i —  , Z 3 = x 3 -------- x 2 —— ,

UX  3 OX  2 UX\ OX  3 OX  2 OX\

Y4 — — (1 — x\ +  x 22 +
d

x
3 dxi

y , =  \ ( i - 4  +  A  +  ^ ) Y

Xi X2
d

- x 2 \x1

X3 Qd

dx2

d
dxi

d
dx1

+  x 3

+  X3

+  x 2

d
dx3

d
dx3

d
dx2

Below we’ ll identify Killing vector fields and elements o f the corresponding 
Lie algebra.

3. Representation of the Phase Space and Hamiltonian Functions

The configuration spaces o f the two-body problem on the spaces § 3 and H 3 
are Q s =  (§ 3 x § 3)\ {d iag } and Q h =  (H 3 x H 3)\ {d iag } respectively.

The distance between particles ps,h( 1, 2) is the unique invariant o f the isometry 
group. So, the corresponding degree o f freedom is not reducable and we’ ll try 
to “ separate” it as full as possible. Let introduce a foliation o f the configuration 
space Q ŝh by folios p =  const.

The Hamiltonian functions o f our systems H sh =  H $ h +  U(ps,h) are the 
Legendre transformations o f the natural Lagrange functions:

£ s,h
m  i

T "

dsi

d t

ds2 

d t
+  U (ps’h) ,

where dsi/ d t, i =  1, 2 is the velocity o f the z-th particle on the Q ŝh and H $ h 
are the Hamiltonian functions o f the free particles.
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3.1. The Case of the Sphere S3

Let r  =  tan(ps( l , 2)/2R). We denote a folio r (p )  =  r0 =  const as Fro. The 
leaves Fr , 0 <  r  <  oo are homogeneous Riemannian manifolds o f the group 
5 0 (4 ) with the stationary subgroup K  =  5 0 (2 ). Choosing a point x0 G F r we 
can identify F r with the factor space 5 0 (4 )/ 5 0 (2 ) by the formula x =  g K x 0, 
where g K  is a left coset o f the group 5 0 (4 ).  Up to a set o f a vanishing measure 
we have: Q a =  M+ x (5 0 (4 )/ 5 0 (2 )) ,  where M+ =  (0, oo).

For any Lie group T with an algebra 7 there exists a natural diffeomorphism 
between the space T*T  and r  x T*T  =  T x 7*.

The following theorem is valid [3]:

Theorem 1. Let x0 =  (x ^ , 0,0, x*i\ 0,0) G S3 x S3. There exists a function 
H s on the manifold

T * Q s =  T*  (R+ x 5 0 (4 ) )  =  T * R+ x 5 0 (4 ) x so*(4)

such that it’ s natural projection on the space T * Q S equals to //'. This function 
has the form

H« -   ̂gmFP +  a P* +  ^ 8 ^ 2 +  P^ +  ^  +  P^

+  2 B s (PzP5 “  P2P6Ï +  U (r ) >

where pr is an impulse conjugated to the coordinate r, p%, 1 <  i <  6 are 
coordinates on so* (4), corresponding to the dual basis o f the basis X if 1 < i <  
6 and A S, B S, Cs are the following functions:

A ( r )  =  

B a(r )  =  

Cs(r) =

1

2 R 2 

1
Ï R 2

1
252

(1 +  r 2) 2 1 -  r 4 1 +  r 2 .
+  —---- - cos Ç +  ----------- (m i — m 2) sm Ç ,

8 m r 2 8 m r 2 

(m 2 -  m i )

Am1m 2r

mxm2r 

(1 +  r 2) 2 1 — r4

1 — T^
(1 +  r 2) cos (  +  —---- — sin (  ) ,

8 m r 2 8 m r 2
cos (  —

2 m r2 

1 +  r 2

m 1 - m 2
Ç =  2------------arctan r ,

m 1 +  m 2

4m im 2r

m 1m 2

(m i mn2) s in ( ,

m =
mi  +  m 2

3.2. The Case of the Hyperbolic Space H3

The main formulae in this case can be obtained from formulae o f the previouse 
case by the formal transformation: Xj —> i x ^ r  —> i r ,R  —> i R , j  =  1, 2, 3, (z is
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the imaginary unit). Now Fr tanh (ph( l ,  2)/2R) =  r  =  const, 0 <  r <  1, 
Fr ^ S O ( l , 3 )/ S O (2 ) .

Theorem 2. Let x 0 =  (x^\  0,0, x^\  0,0^ G Fr . There exists a function H h 
on the manifold

T * Q h =  T* ( I  x SO{  1 ,3 )) =  T * I  x S O (  1,3) x so *(l, 3)

such that it’ s natural projection on the space T * Q h equals to H h, I  =  (0,1). 
This function has the form:

Hh = (F - Q - pI + - pI + Ah (pi + pI) -  ch (pi + pi)
8 mR?

+  2 B h (PsPs ~  P2P6) +  U ( r ) ,

where pr is the momentum conjugated to the coordinate 1 <  / <  (i arc
coordinates on so*(1,3 ), corresponding to the dual basis o f the basis Z %,Y%, 
1 <  i <  3 and A h, B h, Ch are the following functions:

A h(r )  =  

B h(r )  =

Ch( r ) =

2 R 2 

1

2B?

1
2ß 2

(1 — r 2) 2 1 — r4

8m r2 + 8^ C° S h C _

(ra 2 -  m i )

1 — r

m 1m 2r

(1 — r 2) 2 

8 m r 2

(1 — r 2) cosh^ +  

1 — r 4

(m i — m 2) sinh^ , 
4m im 2r /

sinh^

8 m r2
cosh £ +

2mr2

1 — r 2 \
-----------(m i m 2) sinh C ,
4m im 2r /

C =  2
m i — m 2

m i +  m 2
arctanh r.

4. One Result from the Field of the Hamiltonian Reduction

Let T be a Lie group with an algebra 0, T 0 is a subgroup o f T with an algebra 
0o C 0, acting on T from the right. Let M  =  T *T i be a cotangent bundle o f 
a homogeneous space T 1 =  T / r0 equiped with a standart symplectic structure. 
A  standart left action o f the group T on M  is Poisson. Let $  : M  —» 0* be 
a corresponding momentum map, and be a T-invariant function on M .  Let 
consider the Marsden-Weinstein reduction method in connection with Hamil­
tonian dynamic system with the function H  on M .  It is well known that for 
T 0 =  { e }  a reduced phase space is symplectomorphic to an orbit o f the group 
T in the coadjoint representation equiped with the Kirillov form (up to a sign). 
The following construction generalize this one.
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Let Oß0 be an orbit o f the coadjoint action o f the group T on g*, containing a 
point ß0 G g*, and

o'ßo:= iß  e  °ßo ’i A  so =  0}  •

It is obvious that Ad*o0^o =  0'ßo. Let Oßo =  O'ßo/ Ad*o and tt : O'0li — Oßo 

be a canonical projecture. Let eu be a restriction o f the Kirillov form on O'ßo. 
This means that if  elements X , Y  e TßO'ßo, ß e O'ßo have the form

X  =
d
dt

Ad
t=o

e x p ( t X ' )' ) ß, Y  =
d
dt

Ad
£=0

exp ( tY f) ß, X ' , Y ' e g

then üü( X , Y )  =  ß ( [ X r Because X '  corresponds to a vector tangent to

Qßo > it holds Ad*ïIllt v , ^e x p ( t X ' )  < =  0, so
0o

ß{[x’X ] )  = d_
dt t=o

Ad ;xpitx^ ( Y ' )  =  0

for any Y0' G g(l. It means that a 2-form Co is well-defined on T O ßa by the 
formula:

ù (X ,  Ÿ )  =  uidTT- 'X, d n -1? )  

for X  e T^ßÖßo, Ÿ  e TvßÖß0.

Theorem 3. The reduced phase space M ßo, which corresponds to the value ß0 

o f the momentum map, is symplectomorphic to the symplectic space ^0 ^ ,  1' ].

Proof: Let us consider the point x  which is in a set M ßo :=  Ü>- 1(/30) C M  
being an orbit (),■- o f some point x ’ =  (7 ,p) e I I . 7 e T, p e T*T  under 

the right action o f r 0 on T 'T .  In order to avoid too cumbersome notations we 
preserve for the right (left) action:

(7 ,p ) ^  (7i 7 ,L * - !p ) and (7 ,p ) -► (77i>-R*-ip)

o f an element 71 e  T on T T  the notation L 7l and R.rl, respectively. According 
to the definition o f the momentum map if  X =  -A |t=0L exp(tx')7> X '  e g, 
X G T7r  then p ( X )  =  ßo(X'), i. e. p =  R^ßo.  I f  X '  G Ad7g0 then X G 

d'Kx (Tx,Ox>), where 7Ti : T T  — T is a standard projection, and p(X) =  0. 
So Ad7/30|go =  0. Let denote

o  =  { x '  =  (7 ,p) G T T ;  Ad;/?O|0o = 0, p =  R ^ ß o }  .
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Let t  : O —► 0* =  T*T  be a map, acting according to the formula r ( 7 ,p ) =
L*p. The following diagram is commutative [4]:

L  _ i

Therefore an orbit o f a stationary subgroup T#, on T *T  is mapped by r  into 
one point. According to the definition o f the set O it holds t (O ) =  O^o. The 

element (7 ,_p) is mapped into Ad*/30, so the element R l0(*f,p) is mapped into 

Ad*7o/30 =  Ad*o o Ad*/30. Consequently, orbits o f the right action o f the group 

T 0 on O are transformed into orbits o f the coadjoint action o f T 0 on Oßo. This 

yields a diffeomorphism:

4>: M ß0=  Tß0\Mß0 =  Tß0\ (O / r0) -  0'JP,à*To =  Ößo.

It remains to prove that the symplectic form Cj on M ßo is transformed into the 
form — Co under the action o f the map o. But this statement follows from it’ s 
validity for the case T 0 =  {e } ,  the possibility to represent tangent vectors o f 
M  i via tangent vectors o f O and the commutativity o f the following diagram 
for any y0 G T0:

0  ^ 0
1 r i  T
O'U ßo > O'ß 0

The form Cj  is symplectic, so we get:

Corollary 1. The form Co is symplectic on Oßo, i. e. it is nondegenerate and 
closed.

5. Reduction of the Two-body System on the Sphere §3

Let now M  =  T * Q S equiped with the standart symplectic structure. According 
to the Sect. 3.1 we can represent M  as

M  =  T*M+ x T* (SO {4 )/SO{2))

up to a set o f zero measure, corresponding to the value r =  oo. The symmetry 
group »SO (4) acts only on the second term o f this product and the construction 
o f the Sect. 4 can be generalized easily on this case. After the reduction we 
obtain instead o f M  the space:

M/3o — T*M + x Q ßo
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where Qßo is constructed as in the Sect. 4 for the case I ’ =  SO{4), T 0 =  5 0 (2 ). 

We will introduce another basis in the Lie algebra so(4) :

L 1 = ^ (X 1 + X i ), L2 = ^ (X 2 + X 5), L3 = ^ ( X 3 + X 6),

G1 = ^ (X 1 - X i ), G2 = ^ (X2 — X 5) , G3 =  ^ (X 3 - X 6).

The commutator relations in so(4) for this basis are as follows:

\Li  ̂T j] y  ̂&jjkLk i Gj\ y  ̂&jjkG k i Gj\ 0 5 j  1, 2, 3,
k=1 k=1

where eijk is the completely antisymmetric tensor, £123 =  1. This basis corre­
sponds to the expansion so(4) =  so(3) © so(3). Let 1 =  1, 2, 3 are the
coordinates o f an arbitrary element p in the space so* (4) with respect to the 
dual basis:

3

P =  L  +  ViQi) ■
1=1

After substitutions p̂  =  Ui +  p3+i =  ^  i =  1,2,3 we obtain the 
function Hs in the following form:

H s =   ̂8mB? ^  ~a Ûl ~  Vl  ̂ ( ^ 2 V V s  ̂ )

+  Cs ( {u2 — V2 ) +  {u3 — v3)  ̂ +  B s {u2v3 — v2u3) +  U ( r ) .

Let us now construct the conjugated coordinates on Oß0. The stationary sub­

group 5 0 (2 ) o f the point x 0 =  ( x ^ , 0, 0, , 0, 0) is generated by the element
X 1. It is well-known that a nondegenerated orbit o f the coadjoint action o f the 
group 5 0 (3 ) is a sphere and the Kirillov form on this orbit is it’ s area. The 
same orbit for the group 5 0 (4 ) is therefore a direct product o f its two spheres. 
So the orbit Oß0 can be specified as a set o f elements in the space so* (4) with 
coordinates i =  1, 2, 3, which satisfy the following conditions:

u1 + u 2 +  u3 =  ß  , v1 +  v2 +  v3 =  V  , ( 1 )

where ß, v are arbitrary nonnegative real numbers. The subset O', C Oßo 
consists o f those elements o f Oßo that are anulated by the element X 3. Therefore 
we must add the condition p3 =  u3 +  vi =  0 to the equations ( 1) to describe 
the set 0'ßo.
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Firstly, let consider the case /i, v >  0. Let tx, x  be coordinates on O^o that 

are introduced by following equations:

Ux =  —ui =  u, u2 =  \J fi2 — u2 sin ̂  , u3 =  \J fi2 — u2 cos ̂  ,

^2 =  \/v2 — u2 sin % , u3 =  \Jv2 — u2 cos % ,

— min{/i, is} < u < min{/i, z/}.

The restriction o f the Kirillov form from to O^o is as follows:

ou =  —■ {ux du2 A du3 +  u2 du3 A dux +  u3 dux A du2)
/A

H--- - {vx dv2 A du3 +  v2 dv3 A v x + v 3 dvx A dv2) =  du A d(^ -  x) •
isz

The coadjoint action o f the one-parametric group, corresponding to the element 
X l9 on the orbit O^o is described by the formulae

U -> U ,  +  X ^ X  +  £, 0 < £ < 2vr

Therefore <fi =  ip — x, P<t> =  u are canonically conjugated coordinates on ()>, . 
In fact Oß0 is diffeomorphic to S2. The coordinate system p<t>, 0  is singular at 

the points =  ±  minjp., u}. The reduced Hamiltonian H a has the following 
form:

2 \ 2

H . =
(1 +  r2) 

8 m R 2
pi +  +  A s (p 2 +  V2 -  2pi +  2 J  p? -  p$,Ji/2 -  jfycos

+  Cs ( V  +  v2 -  2p i  -  2 p 2 -  p2X v 2 ~  P i  cos 0 )

+  Bsy/fJ? ~ p I\ I^2 ~  P% sin</> +  U ( r ) .

In the case p =  0, v >  0 (or v =  0, p >  0) we obtain for O^o the conditions 

u-| =  »2 =  «3 =  ?>| =  0, and so O^0 =  S1 and =  pt. Therefore the 

reduced phase space in this case is T*M + with the Hamiltonian:

2 \ 2(1 +  r2)
s 8 m R 2 P r +

In the case p — v — 0 we obtain

Öß0= O 'ß0= p t ,  M  =  T * R + , H  =  ( l ± A l ! p2 
s 8m R 2 Pr
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6. Two-body System on the Hyperbolic Space e 3

The Lie algebra so (l, 3) is a simple one so we can not represent an orbit o f 
the coadjoint action o f 5 0  ( 1,3) as a direct product like in Sect. 5. However 
the dynamic systems on the sphere § 3 and the space H 3 are connected by the 
formal replacement (see above). This motivate the following construction.

Let Z 1, Z 2, Z 3, Y 1, Y 2, Y 3 be the basis in so* (1,3 ) dual to the basis 

Z i, Z 2, Z 3, Yi, Y2, Y -̂ Let

P — P i Z 1 +  P2Z 2 +  P3Z 3 +  P4Y 1 +  p$Y2 +  PqY 3

be an arbitrary element o f so *(l, 3). Then it can be varified by direct calcula­
tions that the following formulae give the invariants o f the coadjoint action o f
5 0 (1 ,3 ):

h = p ï +  pi + pI -  pI -  pi -  pI , h  = pm + P2P5 + pm  •

Let Oß0 be an orbit o f the coadjoint action o f 5 0 (1 ,3 ) given by equa­
tions: Ji =  /i, I 2 =  v, /i, v G M. The stationary subgroup o f the point 

x 0 =  ( x ^ O , 0, x^\  0 ,0) G Fr is generated by the element Z 4. The coadjoint

action o f this subgroup are simultaneous rotations in the planes (^2,^3) and 
(p5,p6)- The submanifold O^o is given by the equations I x =  /i, J2 =  v, 
p1 =  0. The following formulae give the coordinates p4, >̂, x  on it:

p 2 =  u cosh ^  cos x  +  v sinh ^  sin x  , P 3 =  v sinh ^  cos x  ~  u cosh ÿ  sin x  , 

p 5 =  v cosh ^  cos x  — u sinh ^  sin x  , P q — sinh ^  cos x ~  v cosh ÿ  sin x  ,

where p4, ^  G M, x  G M m od  2ir and u, v can be found by the equations

u2 — v 2 =  fi +  p i , uv =  v .

The two solutions o f the last equations differ from each other by a sign so we 
have to choose only one o f them. The action o f the stationary group 5 0 (2 ) 
corresponds to the rotation x  —» X +  £• The reduced phase space Oß0 is 
obtained from O^o by “ forgetting” about the coordinate x- The space Oß0 is 

diffeomorphic to M2.

In order to find the canonically conjugated coordinates on Oß0 we will use 
the degenerated Poisson bracket on so* (1,3 ) that corresponds to the Kirillov 
symplectic form. This bracket was constructed in [5] for any Lie algebra g as 
follows.

Let {e 4 ”=1 be a basis o f the algebra g, [cj, c:i] =  c*)efc, and be co­

ordinates on g*, corresponding to a dual basis {e * }"=1. Let / i,/ 2 be arbitrary
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smooth functions on g*. Then their Poisson bracket have the following form:

i , j ,k=1 U X i  U X i

The restriction o f this bracket to an orbit o f the coadjoint action is nondege- 
narated. Returning to our case and using the following formulae

/ = 1, (  (ï>2 - P ô ) 2 + (PS + P s ) 2

v  4 n \ (P 2 +  Pe)2 +  (P5 - Ps)\

1 (  ,  ( P b ~ P i \  ,  ( P 5 + P 3
y  =  -  I arctan ----------  — arctan ----------

2 V \ P 2 + P e J  \ P 2 -P e
3 3 3

Z j\ 'y  ̂ , \X 'i’) kj] y   ̂ , \ Z i i kj]  ̂  ̂̂ ijk Y k

k= 1 fc = l fc = l

we obtain by direct calculations the following relations:

{p4, = 1, {P4, x} = o, x} = o.
Therefore the symplectic form on is given by the formula: dp4 A d^. 
From the previous formulae we obtain:

p\ + P Ï  =  \ ( p  + p l  +  v A  +  p l f  +  4^2 cosh 2-0 ^ ,

Ps +  Pe =  ^  ( “ P  -  p I  +  \ !{p  +  p l f  +  4z^2 cosh 2 ^ j  ,

PäP5~P2Pe = ^ytkTplX+4Asinh2'0.

Introducing new canonically conjugated coordinates p$ =  p4j 2, and (f) =  2ÿ  
we obtain the final form o f the reduced Hamiltonian function:

H h =
8 m R 2 P r +  +  ha R  +  2p I  +  2\I [ j  + p I )  + - r C o s h ( j )

2

P P  „ \ 2 Z /2
+  Ch -  +  2p0 -  2W -  +  p ;  +  —  cosh0

+  £ , \ / ( 4 + A )  +  ^  s in h 0  +  f / ( r ) .
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7. Conclusion

The so derived forms o f reduced two-body classical systems on § 3 and H 3 can
be used for proving the absence o f particle’ s collision for some potentials [2].
In this work we have cleared up also the geometric meaning o f the reduction
procedure.

A  similar analysis for the quantum two-body problem is also possible [2 ,6].
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