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CHAPTER VI

Structure Theory of Semisimple Groups

Abstract. Every complex semisimple Lie algebra has a compact real form, as a
consequence of a particular normalization of root vectors whose construction uses the
Isomorphism Theorem of Chapter II. Ifg0 is a real semisimple Lie algebra, then the use
of a compact real form of(g0)

C leads to the construction of a “Cartan involution”θ of
g0. This involution has the property that ifg0 = k0 ⊕ p0 is the corresponding eigenspace
decomposition or “Cartan decomposition,” thenk0 ⊕ ip0 is a compact real form of(g0)

C .
Any two Cartan involutions ofg0 are conjugate by an inner automorphism. The Cartan
decomposition generalizes the decomposition of a classical matrix Lie algebra into its
skew-Hermitian and Hermitian parts.

If G is a semisimple Lie group, then a Cartan decompositiong0 = k0 ⊕ p0 of its Lie
algebra leads to a global decompositionG = K expp0, whereK is the analytic subgroup
of G with Lie algebrak0. This global decomposition generalizes the polar decomposition
of matrices. The groupK contains the center ofG and, if the center ofG is finite, is a
maximal compact subgroup ofG.

The Iwasawa decompositionG = K AN exhibits closed subgroupsA andN of G such
that A is simply connected abelian,N is simply connected nilpotent,A normalizesN , and
multiplication fromK × A × N to G is a diffeomorphism onto. This decomposition gen-
eralizes the Gram–Schmidt orthogonalization process. Any two Iwasawa decompositions
of G are conjugate. The Lie algebraa0 of A may be taken to be any maximal abelian
subspace ofp0, and the Lie algebra ofN is defined from a kind of root-space decomposition
of g0 with respect toa0. The simultaneous eigenspaces are called “restricted roots,” and
the restricted roots form an abstract root system. The Weyl group of this system coincides
with the quotient of normalizer by centralizer ofa0 in K .

A Cartan subalgebra ofg0 is a subalgebra whose complexification is a Cartan subalgebra
of (g0)

C . One Cartan subalgebra ofg0 is obtained by adjoining to the abovea0 a maximal
abelian subspace of the centralizer ofa0 in k0. This Cartan subalgebra isθ stable. Any
Cartan subalgebra ofg0 is conjugate by an inner automorphism to aθ stable one, and the
subalgebra built froma0 as above is maximally noncompact among allθ stable Cartan
subalgebras. Any two maximally noncompact Cartan subalgebras are conjugate, and so are
any two maximally compact ones. Cayley transforms allow one to pass between any twoθ

stable Cartan subalgebras, up to conjugacy.
A Vogan diagram ofg0 superimposes certain information about the real formg0 on the

Dynkin diagram of(g0)
C . The extra information involves a maximally compactθ stable

Cartan subalgebra and an allowable choice of a positive system of roots. The effect ofθ on
simple roots is labeled, and imaginary simple roots are painted if they are “noncompact,”
left unpainted if they are “compact.” Such a diagram is not unique forg0, but it determines

347



348 VI. Structure Theory of Semisimple Groups

g0 up to isomorphism. Every diagram that looks formally like a Vogan diagram arises from
someg0.

Vogan diagrams lead quickly to a classification of all simple real Lie algebras, the only
difficulty being eliminating the redundancy in the choice of positive system of roots. This
difficulty is resolved by the Borel and de Siebenthal Theorem. Using a succession of
Cayley transforms to pass from a maximally compact Cartan subalgebra to a maximally
noncompact Cartan subalgebra, one readily identifies the restricted roots for each simple
real Lie algebra.

1. Existence of a Compact Real Form

An important clue to the structure of semisimple Lie groups comes from
the examples of the classical semisimple groups in §§I.8 and I.17. In each
case the Lie algebrag0 is a real Lie algebra of matrices overR, C, or H
closed under conjugate transpose( · )∗. This fact is the key ingredient used
in Proposition 1.59 to detect semisimplicity ofg0.

Using the techniques at the end of §I.8, we can regardg0 as a Lie algebra
of matrices overR closed under transpose( · )∗. Theng0 is the direct sum
of the setk0 of its skew-symmetric members and the setp0 of its symmetric
members. The real vector spaceu0 = k0 ⊕ ip0 of complex matrices is
closed under brackets and is a Lie subalgebra of skew-Hermitian matrices.

Meanwhile we can regard the complexificationg of g0 as the Lie algebra
of complex matricesg = g0 + ig0. Puttingk = (k0)

C andp = (p0)
C, we

write g = k ⊕ p as vector spaces. The complexification ofu0 is the same
set of matrices:(u0)

C = k ⊕ p.
Sinceg0 has been assumed semisimple,g is semisimple by Corollary

1.53, andu0 is semisimple by the same corollary. The claim is thatu0 is
a compact Lie algebra in the sense of §IV.4. In fact, let us introduce the
inner product〈X, Y 〉 = Re Tr(XY ∗) onu0. The proof of Proposition 1.59
shows that

〈(adY )X, Z〉 = 〈X, (ad(Y ∗))Z〉
and hence

(6.1) (adY )∗ = ad(Y ∗).

SinceY ∗ = −Y , adY is skew Hermitian. Thus(adY )2 has eigenvalues
≤ 0, and the Killing formBu0 of u0 satisfies

Bu0(Y, Y ) = Tr((adY )2) ≤ 0.
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Sinceu0 is semisimple,Bu0 is nondegenerate (Theorem 1.45) and must be
negative definite. By Proposition 4.27,u0 is a compact Lie algebra.

In the terminology of real forms as in §I.3, the splitting of any of the
classical semisimple Lie algebrasg0 in §I.8 is equivalent with associating
to g0 the compact Lie algebrau0 that is a real form of the complexification
of g0. Once we have this splitting ofg0, the arguments in §I.17 allowed
us to obtain a polar-like decomposition of the analytic group of matrices
G with Lie algebrag0. This polar-like decomposition was a first structure
theorem for the classical groups, giving insight into the topology ofG and
underlining the importance of a certain compact subgroupK of G.

The idea for beginning an investigation of the structure of a general
semisimple Lie groupG, not necessarily classical, is to look for this same
kind of structure. We start with the Lie algebrag0 and seek a decomposition
into skew-symmetric and symmetric parts. To get this decomposition, we
look for the occurrence of a compact Lie algebrau0 as a real form of the
complexificationg of g0.

Actually not just anyu0 of this kind will do. The real formsu0 andg0

must be aligned so that the skew-symmetric partk0 and the symmetric part
p0 can be recovered ask0 = g0 ∩ u0 andp0 = g0 ∩ iu0. The condition of
proper alignment foru0 is that the conjugations ofg with respect tog0 and
to u0 must commute with each other.

The first step will be to associate to a complex semisimple Lie algebra
g a real formu0 that is compact. This construction will occupy us for the
remainder of this section. In §2 we shall address the alignment question
wheng is the complexification of a real semisimple Lie algebrag0. The
result will yield the desired Lie algebra decompositiong0 = k0⊕p0, known
as the “Cartan decomposition” of the Lie algebra. Then in §3 we shall pass
from the Cartan decomposition of the Lie algebra to a “Cartan decompo-
sition” of the Lie group that generalizes the polar-like decomposition in
Proposition 1.143.

The argument in the present section for constructing a compact real form
from a complex semisimpleg will be somewhat roundabout. We shall use
the Isomorphism Theorem (Theorem 2.108) to show that root vectors can
be selected so that the constants arising in the bracket products of root
vectors are all real. More precisely this result gives us a real form ofg

known as a “split real form.” It is not a compact Lie algebra but in a certain
sense is as noncompact as possible. Wheng is sl(2, C), the real subalgebra
sl(2, R) is a split form, and the desired real form that is compact issu(2).
In general we obtain the real form that is compact by taking suitable linear
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combinations of the root vectors that define the split real form.
For the remainder of this section, letg be a complex semisimple Lie

algebra, leth be a Cartan subalgebra, let� = �(g, h) be the set of roots
of g with respect toh, and letB be the Killing form. (The Killing form has
the property that it is invariant under all automorphisms ofg, according to
Proposition 1.119, and this property is not always shared by other forms.
To take advantage of this property, we shall insist thatB is the Killing form
in §§1–3. After that, we shall allow more general forms in place ofB.)

For each pair{α, −α} in �, we fix Eα ∈ gα and E−α ∈ g−α so that
B(Eα, E−α) = 1. Then [Eα, E−α] = Hα by Lemma 2.18a. Letα andβ be
roots. Ifα + β is in �, defineCα,β by

[Eα, Eβ ] = Cα,β Eα+β.

If α + β is not in�, putCα,β = 0.

Lemma 6.2.Cα,β = −Cβ,α.

PROOF. This follows from the skew symmetry of the bracket.

Lemma 6.3. If α, β, andγ are in� andα + β + γ = 0, then

Cα,β = Cβ,γ = Cγ,α.

PROOF. By the Jacobi identity,

[[ Eα, Eβ ], Eγ ] + [[ Eβ, Eγ ], Eα] + [[ Eγ , Eα], Eβ ] = 0.

Cα,β [E−γ , Eγ ] + Cβ,γ [E−α, Eα] + Cγ,α[E−β, Eβ ] = 0Thus

Cα,β Hγ + Cβ,γ Hα + Cγ,α Hβ = 0.and

Substituting Hγ = −Hα − Hβ and using the linear independence of
{Hα, Hβ}, we obtain the result.

Lemma 6.4. Let α, β, and α + β be in �, and letβ + nα, with
−p ≤ n ≤ q, be theα string containingβ. Then

Cα,β, C−α,−β = − 1
2q(1 + p)|α|2.

PROOF. By Corollary 2.37,

[E−α, [Eα, Eβ ]] = 1
2q(1 + p)|α|2B(Eα, E−α)Eβ.
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The left side isC−α,α+βCα,β Eβ , and B(Eα, E−α) = 1 on the right side.
Therefore

(6.5) C−α,α+βCα,β = 1
2q(1 + p)|α|2.

Since(−α) + (α + β) + (−β) = 0, Lemmas 6.3 and 6.2 give

C−α,α+β = C−β,−α = −C−α,−β,

and the result follows by substituting this formula into (6.5).

Theorem 6.6. Let g be a complex semisimple Lie algebra, leth be a
Cartan subalgebra, and let� be the set of roots. For eachα ∈ �, it is
possible to choose root vectorsXα ∈ gα such that, for allα andβ in �,

[ Xα, X−α] = Hα

[ Xα, Xβ ] = Nα,β Xα+β if α + β ∈ �

[ Xα, Xβ ] = 0 if α + β �= 0 andα + β /∈ �

with constantsNα,β that satisfy

Nα,β = −N−α,−β.

For any such choice of the system{Xα} of root vectors, the constantsNα,β

satisfy
N 2

α,β = 1
2q(1 + p)|α|2,

whereβ + nα, with −p ≤ n ≤ q, is theα string containingβ.

PROOF. The transpose of the linear mapϕ : h → h given byϕ(h) =
−h carries� to �, and thusϕ extends to an automorphism̃ϕ of g, by
the Isomorphism Theorem (Theorem 2.108). (See Example 3 at the end
of §II.10.) Sinceϕ̃(Eα) is in g−α, there exists a constantc−α such that
ϕ̃(Eα) = c−α E−α. By Proposition 1.119,

B(ϕ̃X, ϕ̃Y ) = B(X, Y ) for all X andY in g.

Applying this formula withX = Eα andY = E−α, we obtain

c−αcα = c−αcα B(E−α, Eα) = B(ϕ̃Eα, ϕ̃E−α) = B(Eα, E−α) = 1.
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Thusc−αcα = 1. Because of this relation we can chooseaα for eachα ∈ �

such that

aαa−α = +1(6.7a)

a2
α = −cα.(6.7b)

For example, fix a pair{α, −α}, and writecα = reiθ andc−α = r−1e−iθ ;
then we can takeaα = r1/2ieiθ/2 anda−α = −r−1/2ie−iθ/2.

With the choices of theaα ’s in place so that (6.7) holds, defineXα =
aα Eα. The root vectorsXα satisfy

[ Xα, X−α] = aαa−α[Eα, E−α] = Hα by (6.7a)

and

ϕ̃(Xα) = aαϕ̃(Eα) = aαc−α E−α

= a−1
−αc−α E−α by (6.7a)

= −a−α E−α by (6.7b)

= −X−α.(6.8)

Define constantsNα,β relative to the root vectorsXγ in the same way that
the constantsCα,β are defined relative to the root vectorsEγ . Then (6.8)
gives

−Nα,β X−α−β = ϕ̃(Nα,β Xα+β) = ϕ̃[ Xα, Xβ ]

= [ϕ̃Xα, ϕ̃Xβ ] = [−X−α, −X−β ] = N−α,−β X−α−β,

and we find thatNα,β = −N−α,−β . The formula forN 2
α,β follows by

substituting into Lemma 6.4, and the proof is complete.

Theorem 6.6 has an interpretation in terms of real forms of the complex
Lie algebrag. With notation as in Theorem 6.6, define

h0 = {H ∈ h | α(H) ∈ R for all α ∈ �},(6.9)

g0 = h0 ⊕
⊕
α∈�

RXα.and put

The formulaN 2
α,β = 1

2q(1+ p)|α|2 shows thatNα,β is real. Thereforeg0 is
a subalgebra ofgR. Since it is clear thatgR = g0⊕ ig0 as real vector spaces,
g0 is a real form ofg. A real form ofg that containsh0 as in (6.9) for some
Cartan subalgebrah is called asplit real form of g. We summarize the
above remarks as follows.
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Corollary 6.10. Any complex semisimple Lie algebra contains a split
real form.

EXAMPLES. It is clear from the computations in §II.1 thatsl(n, R) and
sp(n, R) are split real forms ofsl(n, C) andsp(n, C), respectively. We
shall see in §4 thatso(n + 1, n) andso(n, n) are isomorphic to split real
forms ofso(2n + 1, C) andso(2n, C), respectively.

As we indicated at the beginning of this section, we shall study real
semisimple Lie algebras by relating them to other real forms that are
compact Lie algebras. A real form of the complex semisimple Lie algebra
g that is a compact Lie algebra is called acompact real form of g.

Theorem 6.11. If g is a complex semisimple Lie algebra, theng has a
compact real formu0.

REMARKS.
1) The compact real forms of the classical complex semisimple Lie

algebras are already familiar. Forsl(n, C), so(n, C), andsp(n, C), they
aresu(n), so(n), andsp(n), respectively. In the case ofsp(n, C), this fact
uses the isomorphismsp(n) ∼= sp(n, C) ∩ u(2n) proved in §I.8.

2) We denote the compact real forms of the complex Lie algebras of types
E6, E7, E8, F4, andG2 by e6, e7, e8, f4, andg2, respectively. Corollary 6.20
will show that these compact real forms are well defined up to isomorphism.

PROOF. Let h be a Cartan subalgebra, and define root vectorsXα as in
Theorem 6.6. Let

(6.12) u0 =
∑
α∈�

R(i Hα) +
∑
α∈�

R(Xα − X−α) +
∑
α∈�

Ri(Xα + X−α).

It is clear thatgR = u0 ⊕ iu0 as real vector spaces. Let us see thatu0 is
closed under brackets. The term

∑
R(i Hα) on the right side of (6.12) is

abelian, and we have

[i Hα, (Xα − X−α)] = |α|2i(Xα + X−α)

[i Hα, i(Xα + X−α)] = −|α|2(Xα − X−α).

Therefore the term
∑

R(i Hα) bracketsu0 into u0. For the other brackets
of elements ofu0, we recall from Theorem 6.6 thatNα,β = −N−α,−β , and
we compute forβ �= ±α that

[(Xα − X−α),(Xβ − X−β)]

= Nα,β Xα+β + N−α,−β X−α−β − N−α,β X−α+β − Nα,−β Xα−β

= Nα,β(Xα+β − X−(α+β)) − N−α,β(X−α+β − X−(−α+β))
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and similarly that

[(Xα − X−α), i(Xβ + X−β)]

= Nα,βi(Xα+β + X−(α+β)) − N−α,βi(X−α+β + X−(−α+β))

and

[i(Xα + X−α), i(Xβ + X−β)]

= −Nα,β(Xα+β − X−(α+β)) − N−α,β(X−α+β − X−(−α+β)).

Finally
[(Xα − X−α), i(Xα + X−α)] = 2i Hα,

and thereforeu0 is closed under brackets. Consequentlyu0 is a real form.
To show thatu0 is a compact Lie algebra, it is enough, by Proposition

4.27, to show that the Killing form ofu0 is negative definite. The Killing
formsBu0 of u0 andB of g are related byBu0 = B|u0×u0, according to (1.20).
The first term on the right side of (6.12) is orthogonal to the other two terms
by Proposition 2.17a, andB is positive on

∑
RHα by Corollary 2.38. Hence

B is negative on
∑

Ri Hα. Next we use Proposition 2.17a to observe for
β �= ±α that

B((Xα − X−α), (Xβ − X−β)) = 0

B((Xα − X−α), i(Xβ + X−β)) = 0

B(i(Xα + X−α), i(Xβ + X−β)) = 0.

Finally we have

B((Xα − X−α), (Xα − X−α)) = −2B(Xα, X−α) = −2

B(i(Xα + X−α), i(Xα + X−α)) = −2B(Xα, X−α) = −2,

and thereforeB|u0×u0 is negative definite.

2. Cartan Decomposition on the Lie Algebra Level

To detect semisimplicity of some specific Lie algebras of matrices in
§I.8, we made critical use of the conjugate transpose mappingX �→ X ∗.
Slightly better is the mapθ(X) = −X ∗, which is actually aninvolution ,
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i.e., an automorphism of the Lie algebra with square equal to the identity.
To see thatθ respects brackets, we just write

θ [ X, Y ] = −[ X, Y ]∗ = −[Y ∗, X ∗] = [−X ∗, −Y ∗] = [θ(X), θ(Y )].

Let B be the Killing form. The involutionθ has the property that
Bθ (X, Y ) = −B(X, θY ) is symmetric and positive definite because Propo-
sition 1.119 gives

Bθ (X, Y ) = −B(X, θY ) = −B(θ X, θ2Y )

= −B(θ X, Y ) = −B(Y, θ X) = Bθ (Y, X)

and (6.1) gives

Bθ (X, X) = −B(X, θ X) = −Tr((adX)(adθ X))

= Tr((adX)(adX ∗)) = Tr((adX)(adX)∗) ≥ 0.

An involution θ of a real semisimple Lie algebrag0 such that the sym-
metric bilinear form

(6.13) Bθ (X, Y ) = −B(X, θY )

is positive definite is called aCartan involution . We shall see that any
real semisimple Lie algebra has a Cartan involution and that the Cartan
involution is unique up to inner automorphism. As a consequence of the
proof, we shall obtain a converse to the arguments of §I.8: Every real
semisimple Lie algebra can be realized as a Lie algebra of real matrices
closed under transpose.

Theorem 6.11 says that any complex semisimple Lie algebrag has a
compact real form. According to the next proposition, it follows thatgR

has a Cartan involution.

Proposition 6.14.Let g be a complex semisimple Lie algebra, letu0 be
a compact real form ofg, and letτ be the conjugation ofg with respect to
u0. If g is regarded as a real Lie algebragR, thenτ is a Cartan involution
of gR.

REMARK. The real Lie algebragR is semisimple by (1.61).
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PROOF. It is clear thatτ is an involution. The Killing formsBg of g and
BgR of gR are related by

BgR(Z1, Z2) = 2ReBg(Z1, Z2),

according to (1.60). WriteZ ∈ g asZ = X + iY with X andY in u0. Then

Bg(Z , τ Z) = Bg(X + iY, X − iY )

= Bg(X, X) + Bg(Y, Y )

= Bu0(X, X) + Bu0(Y, Y ),

and the right side is< 0 unlessZ = 0. In the notation of (6.13), it follows
that

(BgR)τ (Z1, Z2) = −BgR(Z1, τ Z2) = −2ReBg(Z1, τ Z2)

is positive definite ongR, and thereforeτ is a Cartan involution ofgR.

Now we address the problem of aligning a compact real form properly
when we start with a real semisimple Lie algebrag0 and obtaing by
complexification. Corollaries give the existence and uniqueness (up to
conjugacy) of Cartan involutions.

Lemma 6.15. Let g0 be a real finite-dimensional Lie algebra, and let
ρ be an automorphism ofg0 that is diagonable with positive eigenvalues
d1, ..., dm and corresponding eigenspaces(g0)dj . For−∞ < r < ∞, define
ρr to be the linear transformation ong0 that isdr

j on (g0)dj . Then{ρr} is a
one-parameter group in Autg0. If g0 is semisimple, thenρr lies in Intg0.

PROOF. If X is in (g0)di andY is in (g0)dj , then

ρ[ X, Y ] = [ρX, ρY ] = di dj [ X, Y ]

sinceρ is an automorphism. Hence [X, Y ] is in (g0)di dj , and we obtain

ρr [ X, Y ] = (di dj)
r [ X, Y ] = [dr

i X, dr
j Y ] = [ρr X, ρr Y ].

Consequentlyρr is an automorphism. Therefore{ρr} is a one-parameter
group in Autg0, hence in the identity component(Aut g0)0. If g0 is semi-
simple, then Propositions 1.120 and 1.121 show that(Aut g0)0 = Int g0,
and the lemma follows.
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Theorem 6.16.Letg0 be a real semisimple Lie algebra, letθ be a Cartan
involution, and letσ be any involution. Then there existsϕ ∈ Int g0 such
thatϕθϕ−1 commutes withσ .

PROOF. Sinceθ is given as a Cartan involution,Bθ is an inner product
for g0. Putω = σθ . This is an automorphism ofg0, and Proposition 1.119
shows that it leavesB invariant. Fromσ 2 = θ2 = 1, we therefore have

B(ωX, θY ) = B(X, ω−1θY ) = B(X, θωY )

Bθ (ωX, Y ) = Bθ (X, ωY ).and hence

Thusω is symmetric, and its squareρ = ω2 is positive definite. Write
ρr for the positive-definiter th power ofρ, −∞ < r < ∞. Lemma 6.15
shows thatρr is a one-parameter group in Intg0. Consideration ofω as a
diagonal matrix shows thatρr commutes withω. Now

ρθ = ω2θ = σθσθθ = σθσ = θθσθσ = θω−2 = θρ−1.

In terms of a basis ofg0 that diagonalizesρ, the matrix form of this equation
is

ρi iθi j = θi jρ
−1
j j for all i and j.

Considering separately the casesθi j = 0 andθi j �= 0, we see that

ρr
iiθi j = θi jρ

−r
j j

and therefore that

(6.17) ρrθ = θρ−r .

Putϕ = ρ1/4. Then two applications of (6.17) give

(ϕθϕ−1)σ = ρ1/4θρ−1/4σ = ρ1/2θσ

= ρ1/2ω−1 = ρ−1/2ρω−1

= ρ−1/2ω = ωρ−1/2

= σθρ−1/2 = σρ1/4θρ−1/4 = σ(ϕθϕ−1),

as required.
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Corollary 6.18. If g0 is a real semisimple Lie algebra, theng0 has a
Cartan involution.

PROOF. Let g be the complexification ofg0, and choose by Theorem
6.11 a compact real formu0 of g. Let σ andτ be the conjugations ofg
with respect tog0 andu0. If we regardg as a real Lie algebragR, thenσ

andτ are involutions ofgR, and Proposition 6.14 shows thatτ is a Cartan
involution. By Theorem 6.16 we can findϕ ∈ Int(gR) = Int g such that
ϕτϕ−1 commutes withσ .

Here ϕτϕ−1 is the conjugation ofg with respect toϕ(u0), which is
another compact real form ofg. Thus

(BgR)ϕτϕ−1(Z1, Z2) = −2ReBg(Z1, ϕτϕ−1Z2)

is positive definite ongR.
The Lie algebrag0 is characterized as the fixed set ofσ . If σ X = X ,

then
σ(ϕτϕ−1X) = ϕτϕ−1σ X = ϕτϕ−1X.

Henceϕτϕ−1 restricts to an involutionθ of g0. We have

Bθ (X, Y ) = −Bg0(X, θY ) = −Bg(X, ϕτϕ−1Y ) = 1
2(BgR)ϕτϕ−1(X, Y ).

ThusBθ is positive definite ong0, andθ is a Cartan involution.

Corollary 6.19. If g0 is a real semisimple Lie algebra, then any two
Cartan involutions ofg0 are conjugate via Intg0.

PROOF. Let θ and θ ′ be two Cartan involutions. Takingσ = θ ′ in
Theorem 6.16, we can findϕ ∈ Int g0 such thatϕθϕ−1 commutes withθ ′.
Hereϕθϕ−1 is another Cartan involution ofg0. So we may as well assume
thatθ andθ ′ commute from the outset. We shall prove thatθ = θ ′.

Sinceθ andθ ′ commute, they have compatible eigenspace decomposi-
tions into+1 and−1 eigenspaces. By symmetry it is enough to show that
no nonzeroX ∈ g0 is in the+1 eigenspace forθ and the−1 eigenspace for
θ ′. Assuming the contrary, suppose thatθ X = X andθ ′ X = −X . Then
we have

0 < Bθ (X, X) = −B(X, θ X) = −B(X, X)

0 < Bθ ′(X, X) = −B(X, θ ′ X) = +B(X, X),

contradiction. We conclude thatθ = θ ′, and the proof is complete.
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Corollary 6.20. If g is a complex semisimple Lie algebra, then any two
compact real forms ofg are conjugate via Intg.

PROOF. Each compact real form has an associated conjugation ofg

that determines it, and this conjugation is a Cartan involution ofgR, by
Proposition 6.14. Applying Corollary 6.19 togR, we see that the two
conjugations are conjugate by a member of Int(gR). Since Int(gR) = Int g,
the corollary follows.

Corollary 6.21. If A = (Ai j)
l
i, j=1 is an abstract Cartan matrix, then

there exists, up to isomorphism, one and only one compact semisimple Lie
algebrag0 whose complexificationg has a root system withA as Cartan
matrix.

PROOF. Existence ofg is given in Theorem 2.111, and uniqueness ofg

is given in Example 1 of §II.10. The passage fromg to g0 is accomplished
by Theorem 6.11 and Corollary 6.20.

Corollary 6.22. If g is a complex semisimple Lie algebra, then the only
Cartan involutions ofgR are the conjugations with respect to the compact
real forms ofg.

PROOF. Theorem 6.11 and Proposition 6.14 produce a Cartan involution
of gR that is conjugation with respect to some compact real form ofg. Any
other Cartan involution is conjugate to this one, according to Corollary
6.19, and hence is also the conjugation with respect to a compact real form
of g.

A Cartan involutionθ of g0 yields an eigenspace decomposition

(6.23) g0 = k0 ⊕ p0

of g0 into +1 and−1 eigenspaces, and these must bracket according to the
rules

(6.24) [k0, k0] ⊆ k0, [k0, p0] ⊆ p0, [p0, p0] ⊆ k0

sinceθ is an involution. From (6.23) and (6.24) it follows that

(6.25) k0 andp0 are orthogonal underBg0 and underBθ

In fact, if X is in k0 andY is in p0, then adX adY carriesk0 to p0 andp0 to
k0. Thus it has trace 0, andBg0(X, Y ) = 0; sinceθY = −Y , Bθ (X, Y ) = 0
also.
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SinceBθ is positive definite, the eigenspacesk0 andp0 in (6.23) have the
property that

(6.26) Bg0 is

{
negative definite onk0

positive definite onp0.

A decomposition (6.23) ofg0 that satisfies (6.24) and (6.26) is called a
Cartan decompositionof g0.

Conversely a Cartan decomposition determines a Cartan involutionθ by
the formula

θ =
{ +1 onk0

−1 onp0.

Here (6.24) shows thatθ respects brackets, and (6.25) and (6.26) show that
Bθ is positive definite. (Bθ is symmetric by Proposition 1.119 sinceθ has
order 2.)

If g0 = k0 ⊕ p0 is a Cartan decomposition ofg0, then k0 ⊕ ip0 is a
compact real form ofg = (g0)

C. Conversely ifh0 andq0 are the+1 and
−1 eigenspaces of an involutionσ , thenσ is a Cartan involution only if
the real formh0 ⊕ iq0 of g = (g0)

C is compact.
If g is a complex semisimple Lie algebra, then it follows from Corollary

6.22 that the most general Cartan decomposition ofgR is gR = u0 ⊕ iu0,
whereu0 is a compact real form ofg.

Corollaries 6.18 and 6.19 have shown for an arbitrary real semisimple Lie
algebrag0 that Cartan decompositions exist and are unique up to conjugacy
by Intg0. Let us see as a consequence that every real semisimple Lie algebra
can be realized as a Lie algebra of real matrices closed under transpose.

Lemma 6.27. If g0 is a real semisimple Lie algebra andθ is a Cartan
involution, then

(adX)∗ = −adθ X for all X ∈ g0,

where adjoint( · )∗ is defined relative to the inner productBθ .

PROOF. We have

Bθ ((adθ X)Y, Z) = −B([θ X, Y ], θ Z)

= B(Y, [θ X, θ Z ]) = B(Y, θ [ X, Z ])

= −Bθ (Y, (adX)Z) = −Bθ ((adX)∗Y, Z).

Proposition 6.28. If g0 is a real semisimple Lie algebra, theng0 is
isomorphic to a Lie algebra of real matrices that is closed under transpose.
If a Cartan involutionθ of g0 has been specified, then the isomorphism may
be chosen so thatθ is carried to negative transpose.
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PROOF. Letθ be a Cartan involution ofg0 (existence by Corollary 6.18),
and define the inner productBθ ong0 as in (6.13). Sinceg0 is semisimple,
g0

∼= adg0. The matrices of adg0 in an orthonormal basis relative toBθ

will be the required Lie algebra of matrices. We have only to show that
adg0 is closed under adjoint. But this follows from Lemma 6.27 and the
fact thatg0 is closed underθ .

Corollary 6.29. If g0 is a real semisimple Lie algebra andθ is a Cartan
involution, then anyθ stable subalgebras0 of g0 is reductive.

PROOF. Proposition 6.28 allows us to regardg0 as a real Lie algebra of
real matrices closed under transpose, andθ becomes negative transpose.
Thens0 is a Lie subalgebra of matrices closed under transpose, and the
result follows from Proposition 1.59.

3. Cartan Decomposition on the Lie Group Level

In this section we turn to a consideration of groups. LetG be a semisim-
ple Lie group, and letg0 be its Lie algebra. The results of §2 established
that g0 has a Cartan involution and that any two Cartan involutions are
conjugate by an inner automorphism. The theorem in this section lifts the
corresponding Cartan decompositiong0 = k0 ⊕ p0 given in (6.23) to a
decomposition ofG.

In the course of the proof, we shall consider Ad(G) first, proving the
theorem in this special case. Then we shall use the result for Ad(G) to
obtain the theorem forG. The following proposition clarifies one detail
about this process.

Proposition 6.30. If G is a semisimple Lie group andZ is its center,
thenG/Z has trivial center.

REMARK. The centerZ is discrete, being a closed subgroup ofG whose
Lie algebra is 0.

PROOF. Let g0 be the Lie algebra ofG. For x ∈ G, Ad(x) is the
differential of conjugation byx and is 1 if and only ifx is in Z . ThusG/Z ∼=
Ad(G). If g ∈ Ad(G) is central, we havegAd(x) = Ad(x)g for all x ∈ G.
Differentiation givesg(adX) = (adX)g for X ∈ g0, and application of
both sides of this equation toY ∈ g0 givesg([ X, Y ]) = [ X, gY ]. Replacing
Y by g−1Y , we obtain [gX, Y ] = [ X, Y ]. InterchangingX andY gives
[ X, gY ] = [ X, Y ] and henceg([ X, Y ]) = [ X, Y ]. Since [g0, g0] = g0 by
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Corollary 1.55, the linear transformationg is 1 on all ofg0, i.e., g = 1.
Thus Ad(G) has trivial center.

Theorem 6.31. Let G be a semisimple Lie group, letθ be a Cartan
involution of its Lie algebrag0, let g0 = k0 ⊕ p0 be the corresponding
Cartan decomposition, and letK be the analytic subgroup ofG with Lie
algebrak0. Then

(a) there exists a Lie group automorphism� of G with differentialθ ,
and� has�2 = 1,

(b) the subgroup ofG fixed by� is K ,
(c) the mappingK × p0 → G given by(k, X) �→ k expX is a diffeo-

morphism onto,
(d) K is closed,
(e) K contains the centerZ of G,
(f) K is compact if and only ifZ is finite,
(g) whenZ is finite, K is a maximal compact subgroup ofG.

REMARKS.
1) This theorem generalizes and extends Proposition 1.143, where (c)

reduces to the polar decomposition of matrices. Proposition 1.143 therefore
points to a host of examples of the theorem.

2) The automorphism� of the theorem will be called theglobal Cartan
involution , and (c) is theglobal Cartan decomposition. Many authors
follow the convention of writingθ for �, using the same symbol for the
involution ofG as for the involution ofg0, but we shall use distinct symbols
for the two kinds of involution.

PROOF. Let G = Ad(G). We shall prove the theorem forG and then
deduce as a consequence the theorem forG. For the case ofG, we begin
by constructing� as in (a), calling it�. Then we defineK

#
to be the

subgroup fixed by�, and we prove (c) withK replaced byK
#
. The rest

of the proof of the theorem forG is then fairly easy.
For G, the Lie algebra is adg0, and the Cartan involution̄θ is +1 on

adg0(k0) and−1 on adg0(p0). Let us write members of adg0 with bars over
them. Define the inner productBθ ong0 by (6.13), and let adjoint( · )∗ be
defined for linear maps ofg0 into itself by means ofBθ . Lemma 6.27 says
that

(6.32) (adW )∗ = −adθW for all W ∈ g0,
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and therefore

(6.33) θ̄W = −W
∗

for all W ∈ adg0.

If g is in Autg0, we shall prove thatg∗ is in Autg0. SinceBθ is definite,
we are to prove that

(6.34) Bθ ([g
∗ X, g∗Y ], Z)

?= Bθ (g
∗[ X, Y ], Z)

for all X, Y, Z ∈ g0. Using (6.32) three times, we have

Bθ ([g
∗ X, g∗Y ], Z) = −Bθ (g

∗Y, [θg∗ X, Z ]) = −Bθ (Y, [gθg∗ X, gZ ])

= Bθ ((adgZ)gθg∗ X, Y ) = −Bθ (gθg∗ X, [θgZ , Y ])

= B(gθg∗ X, [gZ , θY ]) = −Bθ (g
∗ X, g−1[gZ , θY ])

= −Bθ (X, [gZ , θY ]) = Bθ (X, (adθY )gZ)

= Bθ ([ X, Y ], gZ) = Bθ (g
∗[ X, Y ], Z),

and (6.34) is established.
We apply this fact wheng = x̄ is in Ad(G) = G. Thenx̄∗ x̄ is a positive

definite element in Autg0. By Lemma 6.15 the positive definiter th power,
which we write as(x̄∗ x̄)r , is in Intg0 = Ad(G) = G for every realr .
Hence

(6.35) (x̄∗ x̄)r = expr X

for someX ∈ adg0. Differentiating with respect tor and puttingr = 0,
we see thatX

∗ = X . By (6.32),X is in adg0(p0).
Specializing to the caser = 1, we see thatG is closed under adjoint.

Hence we may define�(x̄) = (x̄∗)−1, and� is an automorphism ofG
with �

2 = 1. The differential of� is Y �→ −Y
∗
, and (6.33) shows that

this is θ̄ . This proves (a) forG.
The fixed group for� is a closed subgroup ofG that we define to beK

#
.

The members̄k of K
#

have(k̄∗)−1 = k̄ and hence are in the orthogonal
group ong0. SinceG = Int g0 and since Propositions 1.120 and 1.121 show
that Intg0 = (Aut g0)0, K

#
is closed inGL(g0). SinceK

#
is contained

in the orthogonal group,K
#

is compact. The Lie algebra ofK
#

is the
subalgebra of allT ∈ adg0 whereθ̄ (T ) = T , and this is just adg0(k0).

Consider the smooth mappingϕḠ : K
# × adg0(p0) → G given by

ϕḠ(k̄, S) = k̄ expS. Let us prove thatϕḠ maps ontoG. Given x̄ ∈ G,
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defineX ∈ adg0(p0) by (6.35), and putp̄ = exp1
2 X . The elementp̄ is

in Ad(G), and p̄∗ = p̄. Put k̄ = x̄ p̄−1, so thatx̄ = k̄ p̄. Then k̄∗k̄ =
( p̄−1)∗ x̄∗ x̄ p̄−1 = (exp− 1

2 X)(expX)(exp− 1
2 X) = 1, and hencēk∗ = k̄−1.

Consequently�(k̄) = (k̄∗)−1 = k̄, and we conclude thatϕḠ is onto.
Let us see thatϕḠ is one-one. Ifx̄ = k̄ expX̄ , thenx̄∗ = (expX

∗
)k̄∗ =

(expX)k̄∗ = (expX)k̄−1. Hencex̄∗ x̄ = exp 2X . The two sides of this
equation are equal positive-definite linear transformations. Their positive-
definiter th powers must be equal for all realr , necessarily to exp 2r X .
Differentiating(x̄∗ x̄)r = exp 2r X with respect tor and puttingr = 0, we
see that̄x determinesX . Hencex̄ determines alsōk, andϕḠ is one-one.

To complete the proof of (c) (but withK replaced byK
#
), we are to show

that the inverse map is smooth. It is enough to prove that the corresponding
inverse map in the case of alln-by-n real nonsingular matrices is smooth,
wheren = dimg0. In fact, the given inverse map is a restriction of the
inverse map for all matrices, and we recall from §I.10 that ifM is an analytic
subgroup of a Lie groupM ′, then a smooth map intoM ′ with image inM
is smooth intoM .

Thus we are to prove smoothness of the inverse for the case of matrices.
The forward map isO(n) × p(n, R) → GL(n, R) with (k, X) �→ keX ,
wherep(n, R) denotes the vector space ofn-by-n real symmetric matrices.
It is enough to prove local invertibility of this mapping near(1, X0). Thus
we examine the differential atk = 1 andX = X0 of (k, X) �→ keX e−X0,
identifying tangent spaces as follows: Atk = 1, we use the linear Lie
algebra ofO(n), which is the spaceso(n) of skew-symmetric real matrices.
NearX = X0, write X = X0 + S, and use{S} = p(n, R) as tangent space.
In GL(n, R), we use the linear Lie algebra, which consists of all real
matrices.

To compute the differential, we consider restrictions of the forward map
with each coordinate fixed in turn. The differential of(k, X0) �→ k is
(T, 0) �→ T for T ∈ so(n). The map(1, X) �→ eX e−X0 has derivative at
t = 0 along the curveX = X0 + t S equal to

d

dt
eX0+t Se−X0|t=0.

Thus we ask whether it is possible to have

0
?= T + d

dt
eX0+t Se−X0|t=0

(6.36a)
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= T + d

dt

(
1 + (X0 + t S) + 1

2!(X0 + t S)2 + · · · )e−X0|t=0

= T + (
S + 1

2!(SX0 + X0S) + · · · + 1
(n+1)!

n∑
k=0

Xk
0SXn−k

0 + · · · )e−X0.

We left-bracket byX0, noting that

[
X0,

n∑
k=0

Xk
0SXn−k

0

] = Xn+1
0 S − SXn+1

0 .

Then we have

0
?= [ X0, T ] + (

(X0S − SX0) + 1
2!(X2

0S − SX2
0)

(6.36b)

+ · · · + 1
(n+1)! (Xn+1

0 S − SXn+1
0 ) + · · · )e−X0

= [ X0, T ] + (eX0 S − SeX0)e−X0

= [ X0, T ] + (eX0 Se−X0 − S).

Since [p(n, R), so(n)] ⊆ p(n, R), we conclude thateX0 Se−X0 − S is sym-
metric. Letv be an eigenvector, and letλ be the eigenvalue forv. Let
〈 · , · 〉 denote ordinary dot product onRn. SinceeX0 andS are symmetric,
eX0 S − SeX0 is skew symmetric, and we have

0 = 〈(eX0 S − SeX0)e−X0v, e−X0v〉
= 〈(eX0 Se−X0 − S)v, e−X0v〉
= λ〈v, e−X0v〉.

But e−X0 is positive definite, and henceλ = 0. Thus

(6.37) eX0 Se−X0 = S.

This equation forces

(6.38) X0S = SX0.

In fact, there is no loss of generality is assuming thatX0 is diagonal with
diagonal entriesdi . Then (6.37) impliesedi Si j = Si j edj . Considering the
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two casesSi j = 0 andSi j �= 0 separately, we deduce thatdi Si j = Si j dj ,
and (6.38) is the result. Because of (6.37), (6.36a) collapses to

0
?= T + S,

and we conclude thatT = S = 0. Thus the differential is everywhere
an isomorphism, and the proof of local invertibility of the forward map is
complete. This completes the proof of (c) forG, but with K replaced by
K

#
.
The homeomorphismK

# × adg0(p0)
∼→ G of (c) forcesK

#
to be con-

nected. ThusK
#

is the analytic subgroup ofG with Lie algebra adg0(k0),
which we denoteK . This proves (c) forK and also (b).

To complete the proof for the adjoint groupG, we need to verify (d)
through (g) withK in place ofK . SinceK is compact, (d) is immediate.
Proposition 6.30 shows thatG has trivial center, and then (e) and (f) follow.

For (g) suppose on the contrary thatK � K 1 with K 1 compact. Let̄x
be in K 1 but notK , and writex̄ = k̄ expX as in (c). Then expX is in K 1

and is not 1. The powers of expX have unbounded eigenvalues, and this
fact contradicts the compactness ofK 1. Thus (g) follows, and the proof of
the theorem is complete forG.

Now we shall prove the theorem forG. Write e : G → G for the
covering homomorphism Adg0( · ). Let K be the analytic subgroup ofG
with Lie algebra adk0, and letK = e−1(K ). The subgroupK is closed in
G sinceK is closed inG.

From the covering homomorphisme, we obtain a smooth mappingψ of
G/K into G/K by definingψ(gK ) = e(g)K . The definition ofK makes
ψ one-one, ande onto makesψ onto. Let us see thatψ−1 is continuous. Let
lim ḡn = ḡ in G, and choosegn andg in G with e(gn) = ḡn ande(g) = ḡ.
Thene(g−1gn) = ḡ−1ḡn tends to 1. Fix an open neighborhoodN of 1 in G
that is evenly covered bye. Then we can writeg−1gn = vnzn with vn ∈ N
andzn ∈ Z , and we have limvn = 1. SinceZ ⊆ K by definition of K ,
gn K = gvn K tends togK . Thereforeψ−1 is continuous.

HenceG/K is homeomorphic withG/K . Conclusion (c) forG shows
that G/K is simply connected. HenceG/K is simply connected, and it
follows that K is connected. ThusK is the analytic subgroup ofG with
Lie algebrak0. This proves (d) and (e) forG. SinceZ ⊆ K , the map
e|K : K → K has kernelZ , and henceK is compact if and only ifZ is
finite. This proves (f) forG.
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Now let us prove (c) forG. DefineϕG : K × p0 → G by ϕG(k, X) =
k expG X . From (1.82) we have

eϕG(k, X) = e(k)e(expG X) = e(k) expḠ(adg0(X)) = ϕḠ(e(k), adg0(X)),

and therefore the diagram

K × p0
ϕG−−−→ G

e|K ×adg0

� �e

K × adg0(p0)
ϕḠ−−−→ G

commutes. The maps on the sides are covering maps sinceK is connected,
andϕḠ is a diffeomorphism by (c) forG. If we show thatϕG is one-one
onto, then it follows thatϕG is a diffeomorphism, and (c) is proved forG.

First let us check thatϕG is one-one. Supposek expG X = k ′ expG X ′.
Applying e, we havee(k) expḠ(adg0(X)) = e(k ′) expḠ(adg0(X ′)). Then
X = X ′ from (c) for G, and consequentlyk = k ′.

Second let us check thatϕG is onto. Letx ∈ G be given. Write
e(x) = k̄ expḠ(adg0(X)) by (c) for G, and letk be any member ofe−1(k̄).
Thene(x) = e(k expG X), and we see thatx = zk expG X for somez ∈ Z .
Since Z ⊆ K , x = (zk) expG X is the required decomposition. This
completes the proof of (c) forG.

The next step is to construct�. Let G̃ be a simply connected covering
group ofG, let K̃ be the analytic subgroup of̃G with Lie algebrak0, let Z̃
be the center of̃G, and let̃e : G̃ → G be the covering homomorphism.
Since G̃ is simply connected, there exists a unique involution�̃ of G̃
with differential θ . Sinceθ is 1 on k0, �̃ is 1 on K̃ . By (e) for G̃,
Z̃ ⊆ K̃ . Therefore ker̃e ⊆ K̃ , and�̃ descends to an involution� of G
with differentialθ . This proves (a) forG.

Suppose thatx is a member ofG with �(x) = x . Using (c), we can
write x = k expG X and see that

k(expG X)−1 = k expG θ X = k�(expG X) = �(x) = x = k expG X.

Then expG 2X = 1, and it follows from (c) thatX = 0. Thusx is in K ,
and (b) is proved forG.

Finally we are to prove (g) forG. Suppose thatK is compact and that
K ⊆ K1 with K1 compact. Applyinge, we obtain a compact subgroup
e(K1) of G that containsK . By (g) for G, e(K1) = e(K ). Therefore
K1 ⊆ Z K = K , and we must haveK1 = K . This completes the proof of
the theorem.
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The Cartan decomposition on the Lie algebra level led in Proposition
6.28 to the conclusion that any real semisimple Lie algebra can be realized
as a Lie algebra of real matrices closed under transpose. There is no
corresponding proposition about realizing a semisimple Lie group as a
group of real matrices. It is true that a semisimple Lie group of matrices
is necessarily closed, and we shall prove this fact in Chapter VII. But the
following example shows that a semisimple Lie group need not be realizable
as a group of matrices.

EXAMPLE. By Proposition 1.143 the groupSL(2, R) has the same
fundamental group asSO(2), namelyZ, while SL(2, C) has the same
fundamental group asSU (2), namely{1}. ThenSL(2, R) has a two-fold
covering groupG that is unique up to isomorphism. Let us see thatG
is not isomorphic to a group ofn-by-n real matrices. If it were, then its
linear Lie algebrag0 would have the matrix Lie algebrag = g0 + ig0 as
complexification. LetGC be the analytic subgroup ofGL(n, C) with Lie
algebrag. The diagram

(6.39)

G −−−→ GC� �
SL(2, R) −−−→ SL(2, C)

has inclusions at the top and bottom, a two-fold covering map on the
left, and a homomorphism on the right that exists sinceSL(2, C) is simply
connected and has Lie algebra isomorphic tog. The corresponding diagram
of Lie algebras commutes, and hence so does the diagram (6.39) of Lie
groups. However, the top map of (6.39) is one-one, while the composition
of left, bottom, and right maps is not one-one. We have a contradiction,
and we conclude thatG is not isomorphic to a group of real matrices.

4. Iwasawa Decomposition

The Iwasawa decomposition is a second global decomposition of a
semisimple Lie group. Unlike with the Cartan decomposition, the factors
in the Iwasawa decomposition are closed subgroups. The prototype is the
Gram–Schmidt orthogonalization process in linear algebra.
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EXAMPLE. Let G = SL(m, C). The groupK from Proposition 1.143
or the global Cartan decomposition (Theorem 6.31) isSU (m). Let A be
the subgroup ofG of diagonal matrices with positive diagonal entries,
and let N be the upper-triangular group with 1 in each diagonal entry.
The Iwasawa decomposition isG = K AN in the sense that multiplication
K × A× N → G is a diffeomorphism onto. To see that this decomposition
of SL(m, C) amounts to the Gram–Schmidt orthogonalization process, let
{e1, . . . , em} be the standard basis ofCm, let g ∈ G be given, and form the
basis{ge1, . . . , gem}. The Gram–Schmidt process yields an orthonormal
basisv1, . . . , vm such that

span{ge1, . . . , gej} = span{v1, . . . , vj}
vj ∈ R+(gej) + span{v1, . . . , vj−1}

for 1 ≤ j ≤ m. Define a matrixk ∈ U (m) by k−1vj = ej . Thenk−1g is
upper triangular with positive diagonal entries. Sinceg has determinant 1
andk has determinant of modulus 1,k must have determinant 1. Then
k is in K = SU (m), k−1g is in AN , andg = k(k−1g) exhibits g as in
K (AN ). This proves thatK × A × N → G is onto. It is one-one since
K ∩ AN = {1}, and the inverse is smooth because of the explicit formulas
for the Gram–Schmidt process.

The decomposition in the example extends to all semisimple Lie groups.
To prove such a theorem, we first obtain a Lie algebra decomposition, and
then we lift the result to the Lie group.

Throughout this section,G will denote a semisimple Lie group. Chang-
ing notation from earlier sections of this chapter, we writeg for the Lie
algebra ofG. (We shall have relatively little use for the complexification
of the Lie algebra in this section and writeg in place ofg0 to make the
notation less cumbersome.) Letθ be a Cartan involution ofg (Corollary
6.18), letg = k⊕p be the corresponding Cartan decomposition (6.23), and
let K be the analytic subgroup ofG with Lie algebrak.

Insistence on using the Killing form as our nondegenerate symmetric
invariant bilinear form ong will turn out to be inconvenient later when we
want to compare the form ong with a corresponding form on a semisimple
subalgebra ofg. Thus we shall allow some flexibility in choosing a form
B. For now it will be enough to letB be any nondegenerate symmetric
invariant bilinear form ong such thatB(θ X, θY ) = B(X, Y ) for all X and
Y in g and such that the formBθ defined in terms ofB by (6.13) is positive
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definite. Then it follows thatB is negative definite on the compact real form
k ⊕ ip. ThereforeB is negative definite on a maximal abelian subspace of
k⊕ ip, and we conclude as in the remarks with Corollary 2.38 that, for any
Cartan subalgebra ofgC, B is positive definite on the real subspace where
all the roots are real valued.

The Killing form is one possible choice forB, but there are others. In
any event,Bθ is an inner product ong, and we use it to define orthogonality
and adjoints.

Let a be a maximal abelian subspace ofp. This exists becausep is
finite dimensional. Since(adX)∗ = −adθ X by Lemma 6.27, the set
{adH | H ∈ a} is a commuting family of self-adjoint transformations of
g. Theng is the orthogonal direct sum of simultaneous eigenspaces, all
the eigenvalues being real. If we fix such an eigenspace and ifλH is the
eigenvalue of adH , then the equation(adH)X = λH X shows thatλH is
linear in H . Hence the simultaneous eigenvalues are members of the dual
spacea∗. Forλ ∈ a∗, we write

gλ = {X ∈ g | (adH)X = λ(H)X for all H ∈ a}.

If gλ �= 0 andλ �= 0, we callλ arestricted root of g or aroot of (g, a). The
set of restricted roots is denoted�. Any nonzerogλ is called arestricted-
root space, and each member ofgλ is called arestricted-root vector for
the restricted rootλ.

Proposition 6.40. The restricted roots and the restricted-root spaces
have the following properties:

(a) g is the orthogonal direct sumg = g0 ⊕ ⊕
λ∈� gλ,

(b) [gλ, gµ] ⊆ gλ+µ ,
(c) θgλ = g−λ, and henceλ ∈ � implies−λ ∈ �,
(d) g0 = a ⊕ m orthogonally, wherem = Zk(a).

REMARK. The decomposition in (a) is called therestricted-root space
decompositionof g.

PROOF. We saw (a) in the course of the construction of restricted-root
spaces, and (b) follows from the Jacobi identity. For (c) letX be ingλ; then
[H, θ X ] = θ [θ H, X ] = −θ [H, X ] = −λ(H)θ X .

In (d) we haveθg0 = g0 by (c). Henceg0 = (k ∩ g0) ⊕ (p ∩ g0). Since
a ⊆ p∩ g0 anda is maximal abelian inp, a = p∩ g0. Also k∩ g0 = Zk(a).
This proves (d).
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EXAMPLES.

1) Let G = SL(n, K), whereK is R, C, or H. The Lie algebra is
g = sl(n, K) in the sense of §I.8. For a Cartan decomposition we can take
k to consist of the skew-Hermitian members ofg andp to consist of the
Hermitian members. The space of real diagonal matrices of trace 0 is a
maximal abelian subspace ofp, and we use it asa. Note that dima = n−1.
The restricted-root space decomposition ofg is rather similar to Example 1
in §II.1. Let fi be evaluation of thei th diagonal entry of members ofa.
Then the restricted roots are all linear functionalsfi − f j with i �= j , and
g fi − f j consists of all matrices with all entries other than the(i, j)th equal
to 0. The dimension of each restricted-root space is 1, 2, or 4 whenK is
R, C, or H. The subalgebram of Proposition 6.40d consists of all skew-
Hermitian diagonal matrices ing. ForK = R this is 0, and forK = C it
is all purely imaginary matrices of trace 0 and has dimensionn − 1. For
K = H, m consists of all diagonal matrices whose diagonal entriesxj have
x̄ j = −xj and is isomorphic to the direct sum ofn copies ofsu(2); its
dimension is 3n.

2) Let G = SU (p, q) with p ≥ q. We can write the Lie algebra in
block form as

(6.41) g =

p q(
a b
b∗ d

)
p
q

with all entries complex, witha and d skew Hermitian, and with
Tr a + Tr d = 0. We takek to be all matrices ing with b = 0, and
we takep to be all matrices ing with a = 0 andd = 0. One way of
forming a maximal abelian subspacea of p is to allowb to have nonzero
real entries only in the lower-left entry and the entries extending diagonally
up from that one:

(6.42) b =


... · · · ...

0 · · · 0
0 · · · aq

·
·

.

a1 · · · 0

 ,

with p − q rows of 0’s at the top. Letfi be the member ofa∗ whose value
on thea matrix indicated in (6.42) isai . Then the restricted roots include
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all linear functionals± fi ± f j with i �= j and±2 fi for all i . Also the± fi

are restricted roots ifp �= q. The restricted-root spaces are described as
follows: Let i < j , and letJ (z), I+(z), andI−(z) be the 2-by-2 matrices

J (z) =
(

0 z

−z̄ 0

)
, I+(z) =

(
z 0

0 z̄

)
, I−(z) =

(
z 0

0 −z̄

)
.

Herez is any complex number. The restricted-root spaces for± fi ± f j are
2-dimensional and are nonzero only in the 16 entries corresponding to row
and column indicesp − j + 1, p − i + 1, p + i , p + j , where they are

g fi − f j =
{(

J (z) −I+(z)
−I+(z̄) −J (z̄)

)}
, g− fi + f j =

{(
J (z) I+(z)
I+(z̄) −J (z̄)

)}
,

g fi + f j =
{(

J (z) −I−(z)
−I−(z̄) J (z̄)

)}
, g− fi − f j =

{(
J (z) I−(z)
I−(z̄) J (z̄)

)}
.

The restricted-root spaces for±2 fi have dimension 1 and are nonzero only
in the 4 entries corresponding to row and column indicesp − i + 1 and
p + i , where they are

g2 fi = iR
(

1 −1
1 −1

)
and g−2 fi = iR

(
1 1

−1 −1

)
.

The restricted-root spaces for± fi have dimension 2(p−q) and are nonzero
only in the entries corresponding to row and column indices 1 top − q,
p − i + 1, andp + i , where they are

g fi =
{( 0 v −v

−v∗ 0 0
−v∗ 0 0

)}
and g− fi =

{( 0 v v

−v∗ 0 0
v∗ 0 0

)}
.

Herev is any member ofCp−q . The subalgebram of Proposition 6.40d
consists of all skew-Hermitian matrices of trace 0 that are arbitrary in
the upper left block of sizep − q, are otherwise diagonal, and have the
(p−i+1)st diagonal entry equal to the(p+i)th diagonal entry for 1≤ i ≤ q;
thusm ∼= su(p − q) ⊕ Rq . In the next section we shall see that� is an
abstract root system; this example shows that this root system need not be
reduced.

3) Let G = SO(p, q)0 with p ≥ q. We can write the Lie algebra in
block form as in (6.41) but with all entries real and witha andd skew
symmetric. As in Example 2, we takek to be all matrices ing with b = 0,
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and we takep to be all matrices ing with a = 0 andd = 0. We again
choosea as in (6.42). Letfi be the member whose value on the matrix
in (6.42) is ai . Then the restricted roots include all linear functionals
± fi ± f j with i �= j . Also the± fi are restricted roots ifp �= q. The
restricted-root spaces are the intersections withso(p, q) of the restricted-
root spaces in Example 2. Then the restricted-root spaces for± fi ± f j are
1-dimensional, and the restricted-root spaces for± fi have dimensionp−q.
The linear functionals±2 fi are no longer restricted roots. The subalgebra
m of Proposition 6.40d consists of all skew-symmetric matrices that are
nonzero only in the upper left block of sizep − q; thusm ∼= so(p − q).

Choose a notion of positivity fora∗ in the manner of §II.5, as for example
by using a lexicographic ordering. Let�+ be the set of positive roots, and
definen = ⊕

λ∈�+ gλ. By Proposition 6.40b,n is a Lie subalgebra ofg and
is nilpotent.

Proposition 6.43(Iwasawa decomposition of Lie algebra). With nota-
tion as above,g is a vector-space direct sumg = k⊕a⊕n. Herea is abelian,
n is nilpotent,a⊕n is a solvable Lie subalgebra ofg, and [a⊕n, a⊕n] = n.

PROOF. We know thata is abelian and thatn is nilpotent. Since [a, gλ] =
gλ for eachλ �= 0, we see that [a, n] = n and thata ⊕ n is a solvable
subalgebra with [a ⊕ n, a ⊕ n] = n.

To prove thatk + a + n is a direct sum, letX be ink ∩ (a ⊕ n). Then
θ X = X with θ X ∈ a ⊕ θn. Sincea ⊕ n ⊕ θn is a direct sum (by (a) and
(c) in Proposition 6.40),X is in a. But thenX is in k ∩ p = 0.

The sumk ⊕ a ⊕ n is all of g because we can write anyX ∈ g, using
someH ∈ a, someX0 ∈ m, and elementsXλ ∈ gλ, as

X = H + X0 +
∑
λ∈�

Xλ

= (
X0 +

∑
λ∈�+

(X−λ + θ X−λ)
) + H + ( ∑

λ∈�+
(Xλ − θ X−λ)

)
,

and the right side is ink ⊕ a ⊕ n.

To prepare to prove a group decomposition, we prove two lemmas.

Lemma 6.44. Let H be an analytic group with Lie algebrah, and
suppose thath is a vector-space direct sum of Lie subalgebrash = s ⊕ t.
If S andT denote the analytic subgroups ofH corresponding tos andt,
then the multiplication map�(s, t) = st of S × T into H is everywhere
regular.
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PROOF. The tangent space at(s0, t0) in S × T can be identified by left
translation withinS and withinT with s ⊕ t = h, and the tangent space at
s0t0 in H can be identified by left translation withinH with h. With these
identifications we compute the differentiald� at(s0, t0). Let X be ins and
Y be int. Then

�(s0 expr X, t0) = s0 exp(r X)t0 = s0t0 exp(Ad(t−1
0 )r X)

�(s0, t0 exprY ) = s0t0 exprY,and

from which it follows that

d�(X) = Ad(t−1
0 )X

d�(Y ) = Y.and

In matrix form,d� is therefore block triangular, and hence

detd� = det Adh(t
−1
0 )

det Adt(t
−1
0 )

= det Adt(t0)

det Adh(t0)
.

This is nonzero, and hence� is regular.

Lemma 6.45. There exists a basis{Xi} of g such that the matrices
representing adg have the following properties:

(a) the matrices of adk are skew symmetric,
(b) the matrices of ada are diagonal with real entries,
(c) the matrices of adn are upper triangular with 0’s on the diagonal.

PROOF. Let {Xi} be an orthonormal basis ofg compatible with the
orthogonal decomposition ofg in Proposition 6.40a and having the property
that Xi ∈ gλi and X j ∈ gλj with i < j impliesλi ≥ λj . For X ∈ k, we
have(adX)∗ = −adθ X = −adX from Lemma 6.27, and this proves (a).
Since eachXi is a restricted-root vector or is ing0, the matrices of ada
are diagonal, necessarily with real entries. This proves (b). Conclusion (c)
follows from Proposition 6.40b.

Theorem 6.46(Iwasawa decomposition). LetG be a semisimple Lie
group, letg = k⊕a⊕n be an Iwasawa decomposition of the Lie algebrag of
G, and letA andN be the analytic subgroups ofG with Lie algebrasa and
n. Then the multiplication mapK × A×N → G given by(k, a, n) �→ kan
is a diffeomorphism onto. The groupsA andN are simply connected.
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PROOF. Let G = Ad(G), regarded as the closed subgroup(Aut g)0 of
GL(g) (Propositions 1.120 and 1.121). We shall prove the theorem forG
and then lift the result toG.

We impose the inner productBθ on g and write matrices for elements
of G and adg relative to the basis in Lemma 6.45. LetK = Adg(K ),
A = Adg(A), and N = Adg(N ). Lemma 6.45 shows that the matrices
of K are rotation matrices, those forA are diagonal with positive entries
on the diagonal, and those forN are upper triangular with 1’s on the
diagonal. We know thatK is compact (Proposition 6.30 and Theorem
6.31f). The diagonal subgroup ofGL(g) with positive diagonal entries is
simply connected abelian, andA is an analytic subgroup of it. By Corollary
1.134,A is closed inGL(g) and hence closed inG. Similarly the upper-
triangular subgroup ofGL(g) with 1’s on the diagonal is simply connected
nilpotent, andN is an analytic subgroup of it. By Corollary 1.134,N is
closed inGL(g) and hence closed inG.

The mapA × N into GL(g) given by(ā, n̄) �→ ān̄ is one-one since
we can recover̄a from the diagonal entries, and it is onto a subgroupA N
sinceā1n̄1ā2n̄2 = ā1ā2(ā

−1
2 n̄1ā2)n̄2 and(ān̄)−1 = n̄−1ā−1 = ā−1(ān̄ā−1).

This subgroup is closed. In fact, if lim̄amn̄m = x , let ā be the diagonal
matrix with the same diagonal entries asx . Then limām = ā, andā must
be in A sinceA is closed inGL(g). Also n̄m = ā−1

m (āmn̄m) has limitā−1x ,
which has to be inN sinceN is closed inG. Thus limāmn̄m is in A N , and
A N is closed.

Clearly the closed subgroupA N has Lie algebraa ⊕ n. By Lemma
6.44,A × N → A N is a diffeomorphism.

The subgroupK is compact, and thus the image ofK × A × N →
K × A N → G is the product of a compact set and a closed set and is closed.
Also the image is open since the map is everywhere regular (Lemma 6.44)
and since the equalityg = k⊕a⊕n shows that the dimensions add properly.
Since the image ofK × A× N is open and closed and sinceG is connected,
the image is all ofG.

Thus the multiplication map is smooth, regular, and onto. Finally
K ∩ A N = {1} since a rotation matrix with positive eigenvalues is 1.
Since A × N → A N is one-one, it follows thatK × A × N → G is
one-one. This completes the proof for the adjoint groupG.

We now lift the above result toG. Let e : G → G = Ad(G) be the
covering homomorphism. Using a locally defined inverse ofe, we can
write the map(k, a, n) �→ kan locally as

(k, a, n) �→ (e(k), e(a), e(n)) �→ e(k)e(a)e(n) = e(kan) �→ kan,
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and therefore the multiplication map is smooth and everywhere regular.
Since A and N are connected,e|A ande|N are covering maps toA and
N , respectively. SinceA andN are simply connected, it follows thate is
one-one onA and onN and thatA andN are simply connected.

Let us prove that the multiplication map is ontoG. If g ∈ G is given,
write e(g) = k̄ān̄. Puta = (e|A)

−1(ā) ∈ A andn = (e|N )−1(N ) ∈ N .
Let k be ine−1(k̄). Thene(kan) = k̄ān̄, so thate(g(kan)−1) = 1. Thus
g(kan)−1 = z is in the center ofG. By Theorem 6.31e,z is in K . Therefore
g = (zk)an exhibitsg as in the image of the multiplication map.

Finally we show that the multiplication map is one-one. SinceA× N →
A N is one-one, so isA×N → AN . The set of productsAN is a group, just
as in the adjoint case, and therefore it is enough to prove thatK ∩AN = {1}.
If x is in K ∩ AN , thene(x) is in K ∩ A N = {1}. Hencee(x) = 1. Write
x = an ∈ AN . Then 1= e(x) = e(an) = e(a)e(n), and the result for the
adjoint case implies thate(a) = e(n) = 1. Sincee is one-one onA and on
N , a = n = 1. Thusx = 1. This completes the proof.

Recall from §IV.5 that a subalgebrah of g is called aCartan subalgebra
if hC is a Cartan subalgebra ofgC. Therank of g is the dimension of any
Cartan subalgebra; this is well defined since Proposition 2.15 shows that
any two Cartan subalgebras ofgC are conjugate via IntgC.

Proposition 6.47. If t is a maximal abelian subspace ofm = Zk(a),
thenh = a ⊕ t is a Cartan subalgebra ofg.

PROOF. By Proposition 2.13 it is enough to show thathC is maximal
abelian ingC and that adgC hC is simultaneously diagonable.

CertainlyhC is abelian. Let us see that it is maximal abelian. IfZ =
X + iY commutes withhC, then so doX andY . Thus there is no loss
in generality in considering onlyX . The elementX commutes withhC,
hence commutes witha, and hence is ina ⊕ m. The same thing is true of
θ X . ThenX + θ X , being ink, is in m and commutes witht, hence is in
t, while X − θ X is in a. ThusX is in a ⊕ t, and we conclude thathC is
maximal abelian.

In the basis of Lemma 6.45, the matrices representing adt are skew
symmetric and hence are diagonable overC, while the matrices represent-
ing ada are already diagonal. Since all the matrices in question form a
commuting family, the members of adhC are diagonable.

With notation as in Proposition 6.47,h = a⊕ t is a Cartan subalgebra of
g, and it is meaningful to speak of the set� = �(gC, hC) of roots ofgC with
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respect tohC. We can write the corresponding root-space decomposition
as

(6.48a) g
C = h

C ⊕
⊕
α∈�

(gC)α.

Then it is clear that

(6.48b) gλ = g ∩
⊕
α∈�,
α|a=λ

(gC)α

and

(6.48c) m
C = t

C ⊕
⊕
α∈�,
α|a=0

(gC)α.

That is, the restricted roots are the nonzero restrictions toa of the roots,
andm arises fromt and the roots that restrict to 0 ona.

Corollary 6.49. If t is a maximal abelian subspace ofm = Zk(a), then
the Cartan subalgebrah = a ⊕ t of g has the property that all of the roots
are real ona ⊕ it. If m = 0, theng is a split real form ofgC.

PROOF. In view of (6.48) the values of the roots on a memberH of h

are the eigenvalues of adH . For H ∈ a, these are real since adH is self
adjoint. ForH ∈ t, they are purely imaginary since adH is skew adjoint.
The first assertion follows.

If m = 0, thent = 0. So the roots are real onh = a. Thusg contains
the real subspace of a Cartan subalgebrahC of gC where all the roots are
real, andg is a split real form ofgC.

EXAMPLE. Corollary 6.49 shows that the Lie algebrasso(n + 1, n) and
so(n, n) are split real forms of their complexifications, since Example 3
earlier in this section showed thatm = 0 in each case. For anyp and
q, the complexification ofso(p, q) is conjugate toso(p + q, C) by a
diagonal matrix whose diagonal consists ofp entriesi and thenq entries 1.
Consequentlyso(n+1, n) is isomorphic to a split real form ofso(2n+1, C),
andso(n, n) is isomorphic to a split real form ofso(2n, C).

With � as above, we can impose a positive system on� so that�+

extends�+. Namely we just takea beforeit in forming a lexicographic
ordering of(a + it)∗. If α ∈ � is nonzero ona, then the positivity ofα
depends only on thea part, and thus positivity for� has been extended
to �.
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5. Uniqueness Properties of the Iwasawa Decomposition

We continue withG as a semisimple Lie group, withg as the Lie algebra
of G, and with other notation as in §4. In this section we shall show that an
Iwasawa decomposition ofg is unique up to conjugacy by Intg; therefore
an Iwasawa decomposition ofG is unique up to inner automorphism.

We already know from Corollary 6.19 that any two Cartan decomposi-
tions are conjugate via Intg. Hencek is unique up to conjugacy. Next we
show that withk fixed, a is unique up to conjugacy. Finally withk anda

fixed, we show that the various possibilities forn are conjugate.

Lemma 6.50. If H ∈ a hasλ(H) �= 0 for all λ ∈ �, thenZg(H) =
m ⊕ a. HenceZp(H) = a.

PROOF. Let X be in Zg(H), and use Proposition 6.40 to writeX =
H0 + X0 + ∑

λ∈� Xλ with H0 ∈ a, X0 ∈ m, and Xλ ∈ gλ. Then 0=
[H, X ] = ∑

λ(H)Xλ, and henceλ(H)Xλ = 0 for all λ. Sinceλ(H) �= 0
by assumption,Xλ = 0.

Theorem 6.51.If a anda′ are two maximal abelian subspaces ofp, then
there is a memberk of K with Ad(k)a′ = a. Consequently the spacep
satisfiesp = ⋃

k∈K Ad(k)a.

REMARKS.
1) In the case ofSL(m, C), this result amounts to the Spectral Theorem

for Hermitian matrices.
2) The proof should be compared with the proof of Theorem 4.34.

PROOF. There are only finitely many restricted roots relative toa,
and the union of their kernels therefore cannot exhausta. By Lemma
6.50 we can findH ∈ a such thatZp(H) = a. Similarly we can find
H ′ ∈ a′ such thatZp(H ′) = a′. Choose by compactness of Ad(K ) a
memberk = k0 of K that minimizesB(Ad(k)H ′, H). For anyZ ∈ k,
r �→ B(Ad(expr Z)Ad(k0)H ′, H) is then a smooth function ofr that is
minimized forr = 0. Differentiating and settingr = 0, we obtain

0 = B((adZ)Ad(k0)H ′, H) = B(Z , [Ad(k0)H ′, H ]).

Here [Ad(k0)H ′, H ] is in k, and Z is arbitrary ink. SinceB(k, p) = 0
by (6.25) and sinceB is nondegenerate, we obtain [Ad(k0)H ′, H ] = 0.
Thus Ad(k0)H ′ is in Zp(H) = a. Sincea is abelian, this means

a ⊆ Zp(Ad(k0)H ′) = Ad(k0)Zp(H ′) = Ad(k0)a
′.
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Equality must hold sincea is maximal abelian inp. Thusa = Ad(k0)a
′.

If X is any member ofp, then we can extendRX to a maximal abelian
subspacea′ of p. As above, we can writea′ = Ad(k)a, and henceX is in⋃

k∈K Ad(k)a. Thereforep = ⋃
k∈K Ad(k)a.

Now we think ofk anda as fixed and consider the various possibilities
for n. The inner productBθ ong can be restricted toa and transferred toa∗

to give an inner product and norm denoted by〈 · , · 〉 and| · |, respectively.
We write Hλ for the element ofa that corresponds toλ ∈ a∗.

Proposition 6.52. Let λ be a restricted root, and letEλ be a nonzero
restricted-root vector forλ.

(a) [Eλ, θ Eλ] = B(Eλ, θ Eλ)Hλ, andB(Eλ, θ Eλ) < 0.
(b) RHλ ⊕REλ ⊕Rθ Eλ is a Lie subalgebra ofg isomorphic tosl(2, R),

and the isomorphism can be defined so that the vectorH ′
λ = 2|λ|−2Hλ

corresponds toh =
(

1 0

0 −1

)
.

(c) If Eλ is normalized so thatB(Eλ, θ Eλ) = −2/|λ|2, then k =
expπ

2 (Eλ + θ Eλ) is a member of the normalizerNK (a), and Ad(k) acts as
the reflectionsλ ona∗.

PROOF.
(a) By Proposition 6.40 the vector [Eλ, θ Eλ] is in [gλ, g−λ] ⊆ g0 = a⊕m,

andθ [Eλ, θ Eλ] = [θ Eλ, Eλ] = −[Eλ, θ Eλ]. Thus [Eλ, θ Eλ] is in a. Then
H ∈ a gives

B([Eλ, θ Eλ], H) = B(Eλ, [θ Eλ, H ]) = λ(H)B(Eλ, θ Eλ)

= B(Hλ, H)B(Eλ, θ Eλ) = B(B(Eλ, θ Eλ)Hλ, H).

By nondegeneracy ofB on a, [Eλ, θ Eλ] = B(Eλ, θ Eλ)Hλ. Finally
B(Eλ, θ Eλ) = −Bθ (Eλ, Eλ) < 0 sinceBθ is positive definite.

(b) Put

H ′
λ = 2

|λ|2 Hλ, E ′
λ = 2

|λ|2B(Eλ, θ Eλ)
Eλ, E ′

−λ = θ Eλ.

Then (a) shows that

[H ′
λ, E ′

λ] = 2E ′
λ, [H ′

λ, E ′
−λ] = −2E ′

−λ, [E ′
λ, E ′

−λ] = H ′
λ,

and (b) follows.
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(c) Note from (a) that the normalizationB(Eλ, θ Eλ) = −2/|λ|2 is
allowable. Ifλ(H) = 0, then

Ad(k)H = Ad(expπ

2 (Eλ + θ Eλ))H

= (exp adπ

2 (Eλ + θ Eλ))H

=
∞∑

n=0

1
n! (adπ

2 (Eλ + θ Eλ))
n H

= H.

On the other hand, for the elementH ′
λ, we first calculate that

(adπ

2 (Eλ + θ Eλ))H ′
λ = π(θ Eλ − Eλ)

(adπ

2 (Eλ + θ Eλ))
2H ′

λ = −π2H ′
λ.and

Therefore

Ad(k)H ′
λ =

∞∑
n=0

1
n! (adπ

2 (Eλ + θ Eλ))
n H ′

λ

=
∞∑

m=0

1
(2m)! ((adπ

2 (Eλ + θ Eλ))
2)m H ′

λ

+
∞∑

m=0

1
(2m+1)! (adπ

2 (Eλ + θ Eλ))((adπ

2 (Eλ + θ Eλ))
2)m H ′

λ

=
∞∑

m=0

1
(2m)! (−π2)m H ′

λ +
∞∑

m=0

1
(2m+1)! (−π2)mπ(θ Eλ − Eλ)

= (cosπ)H ′
λ + (sinπ)(θ Eλ − Eλ)

= −H ′
λ,

and (c) follows.

Corollary 6.53. � is an abstract root system ina∗.

REMARKS. Examples of� appear in §4 after Proposition 6.40. The
example ofSU (p, q) for p > q shows that the abstract root system�
need not be reduced.

PROOF. We verify that� satisfies the axioms for an abstract root system.
To see that� spansa∗, let λ(H) = 0 for all λ ∈ �. Then [H, gλ] = 0 for
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all λ and hence [H, g] = 0. Butg has 0 center, and thereforeH = 0. Thus
� spansa∗.

Let us show that 2〈µ, λ〉/|λ|2 is an integer wheneverµ andλ are in�.
Consider the subalgebra of Proposition 6.52b, calling itslλ. This acts by
ad ong and hence ongC. Complexifying, we obtain a representation of
(slλ)

C ∼= sl(2, C) on gC. We know from Corollary 1.72 that the element
H ′

λ = 2|λ|−2Hλ, which corresponds toh, has to act diagonably with integer
eigenvalues. The action ofH ′

λ on gµ is by the scalarµ(2|λ|−2Hλ) =
2〈µ, λ〉/|λ|2. Hence 2〈µ, λ〉/|λ|2 is an integer.

Finally we are to show thatsλ(µ) is in � wheneverµ andλ are in�.
Definek as in Proposition 6.52c, letH be ina, and letX be ingµ. Then
we have

(6.54)
[H, Ad(k)X ] = Ad(k)[Ad(k)−1H, X ] = Ad(k)[s−1

λ (H), X ]

= µ(s−1
λ (H))Ad(k)X = (sλµ)(H)Ad(k)X,

and hencegsλµ is not 0. This completes the proof.

The possibilities for the subalgebran are given by all possible�+’s
resulting from different orderings ofa∗, and it follows from Corollary 6.53
that the�+’s correspond to all possible simple systems for�. Any two
such simple systems are conjugate by the Weyl groupW (�) of �, and it
follows from Proposition 6.52c that the conjugation can be achieved by
a member ofNK (a). The same computation as in (6.54) shows that if
k ∈ NK (a) represents the members of W (�), then Ad(k)gλ = gsλ. We
summarize this discussion in the following corollary.

Corollary 6.55. Any two choices ofn are conjugate by Ad of a member
of NK (a).

This completes our discussion of the conjugacy of different Iwasawa
decompositions.

We now examineNK (a) further. Define

W (G, A) = NK (a)/Z K (a).

This is a group of linear transformations ofa, telling all possible ways that
members ofK can act ona by Ad. We have already seen thatW (�) ⊆
W (G, A), and we are going to prove thatW (�) = W (G, A).

We writeM for the groupZ K (a). Modulo the center ofG, M is a compact
group (being a closed subgroup ofK ) with Lie algebraZk(a) = m. After
Proposition 6.40 we saw examples of restricted-root space decompositions
and the associated Lie algebrasm. The following examples continue that
discussion.
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EXAMPLES.

1) LetG = SL(n, K), whereK is R, C, orH. The subgroupM consists
of all diagonal members ofK . WhenK = R, the diagonal entries are
±1, but there are onlyn − 1 independent signs since the determinant is 1.
Thus M is finite abelian and is the product ofn − 1 groups of order 2.
WhenK = C, the diagonal entries are complex numbers of modulus 1,
and again the determinant is 1. ThusM is a torus of dimensionn − 1.
WhenK = H, the diagonal entries are quaternions of absolute value 1,
and there is no restriction on the determinant. ThusM is the product ofn
copies ofSU (2).

2) Let G = SU (p, q) with p ≥ q. The groupM consists of all unitary
matrices of determinant 1 that are arbitrary in the upper left block of size
p − q, are otherwise diagonal, and have the(p − i + 1)st diagonal entry
equal to the(p + i)th diagonal entry for 1≤ i ≤ q. Let us abbreviate such
a matrix as

m = diag(ω, eiθq , . . . , eiθ1, eiθ1, . . . , eiθq ),

whereω is the upper left block of sizep − q. Whenp = q, the condition
that the determinant be 1 says that

∑q
j=1 θj ∈ πZ. Thus we can take

θ1, . . . , θq−1 to be arbitrary and useeiθq = ±e−i(θ1+···+θq−1). Consequently
M is the product of a torus of dimensionq − 1 and a 2-element group.
When p > q, M is connected. In fact, the homomorphism that maps the
above matrixm to the 2q-by-2q diagonal matrix

diag(eiθq , . . . , eiθ1, eiθ1, . . . , eiθq )

has a (connected)q-dimensional torus as image, and the kernel is isomor-
phic to the connected groupSU (p − q); thusM itself is connected.

3) Let G = SO(p, q)0 with p ≥ q. The subgroupM for this example
is the intersection ofSO(p)× SO(q) with theM of the previous example.
Thus M here consists of matrices that are orthogonal matrices of total
determinant 1, are arbitrary in the upper left block of sizep − q, are
otherwise diagonal, haveq diagonal entries±1 after the upper left block,
and then have thoseq diagonal entries±1 repeated in reverse order. For
the lower rightq entries to yield a matrix inSO(q), the product of the
q entries±1 must be 1. For the upper leftp entries to yield a matrix in
SO(p), the orthogonal matrix in the upper left block of sizep−q must have
determinant 1. ThereforeM is isomorphic to the product ofSO(p − q)

and the product ofq − 1 groups of order 2.
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Lemma 6.56.The Lie algebra ofNK (a) is m. ThereforeW (G, A) is a
finite group.

PROOF. The second conclusion follows from the first, since the first
conclusion implies thatW (G, A) is 0-dimensional and compact, hence
finite. For the first conclusion, the Lie algebra in question isNk(a). Let
X = H0 + X0 + ∑

λ∈� Xλ be a member ofNk(a), with H0 ∈ a, X0 ∈ m,
andXλ ∈ gλ. SinceX is to be ink, θ must fix X , and we see thatX may
be rewritten asX = X0 + ∑

λ∈�+(Xλ + θ Xλ). When we apply adH for
H ∈ a, we obtain [H, X ] = ∑

λ∈�+ λ(H)(Xλ − θ Xλ). This element is
supposed to be ina, since we started withX in the normalizer ofa, and
that means [H, X ] is 0. But thenXλ = 0 for all λ, andX reduces to the
memberX0 of m.

Theorem 6.57.The groupW (G, A) coincides withW (�).

REMARK. This theorem should be compared with Theorem 4.54.

PROOF. Let us observe thatW (G, A) permutes the restricted roots. In
fact, letk be in NK (a), let λ be in�, and letEλ be ingλ. Then

[H, Ad(k)Eλ] = Ad(k)[Ad(k)−1H, Eλ] = Ad(k)(λ(Ad(k)−1H)Eλ)

= λ(Ad(k)−1H)Ad(k)Eλ = (kλ)(H)Ad(k)Eλ

shows thatkλ is in � and that Ad(k)Eλ is a restricted-root vector forkλ.
ThusW (G, A) permutes the restricted roots.

We have seen thatW (�) ⊆ W (G, A). Fix a simple system�+ for
�. In view of Theorem 2.63, it suffices to show that ifk ∈ NK (a) has
Ad(k)�+ = �+, thenk is in Z K (a).

The element Ad(k) = w acts as a permutation of�+. Let 2δ denote
the sum of the reduced members of�+, so thatw fixes δ. If λi is a
simple restricted root, then Lemma 2.91 and Proposition 2.69 show that
2〈δ, λi〉/|λi |2 = 1. Therefore〈δ, λ〉 > 0 for all λ ∈ �+.

Let u = k ⊕ ip be the compact real form ofgC associated toθ , and let
U be the adjoint group ofu. Then AdgC(K ) ⊆ U , and in particular Ad(k)

is a member ofU . FormS = {expiradHδ} ⊆ U . HereS is a torus inU ,
and we lets be the Lie algebra ofS. The element Ad(k) is in ZU (S), and
the claim is that every member ofZU (S) centralizesa. If so, then Ad(k)

is 1 ona, andk is in Z K (a), as required.
By Corollary 4.51 we can verify thatZU (S) centralizesa by showing

that Zu(s) centralizesa. Here

Zu(s) = u ∩ ZgC(s) = u ∩ ZgC(Hδ).
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To evaluate the right side, we complexify the statement of Lemma 6.50.
Since〈λ, δ〉 �= 0, the centralizerZgC(Hδ) is justaC ⊕ mC. Therefore

Zu(s) = u ∩ (aC ⊕ m
C) = ia ⊕ m.

Every member of the right side centralizesa, and the proof is complete.

6. Cartan Subalgebras

Proposition 6.47 showed that every real semisimple Lie algebra has a
Cartan subalgebra. But as we shall see shortly, not all Cartan subalgebras
are conjugate. In this section and the next we investigate the conjugacy
classes of Cartan subalgebras and some of their relationships to each other.

We revert to the use of subscripted Gothic letters for real Lie algebras and
to unsubscripted letters for complexifications. Letg0 be a real semisimple
Lie algebra, letθ be a Cartan involution, and letg0 = k0 ⊕ p0 be the
corresponding Cartan decomposition. Letg be the complexification ofg0,
and writeg = k ⊕ p for the complexification of the Cartan decomposition.
Let B be any nondegenerate symmetric invariant bilinear form ong0 such
thatB(θ X, θY ) = B(X, Y ) and such thatBθ , defined by (6.13), is positive
definite.

All Cartan subalgebras ofg0 have the same dimension, since their
complexifications are Cartan subalgebras ofg and are conjugate via Intg,
according to Theorem 2.15.

Let K = Intg0(k0). This subgroup of Intg0 is compact.

EXAMPLE. Let G = SL(2, R) andg0 = sl(2, R). A Cartan subalgebra
h0 complexifies to a Cartan subalgebra ofsl(2, C) and therefore has dimen-
sion 1. Therefore let us consider which 1-dimensional subspacesRX of
sl(2, R) are Cartan subalgebras. The matrixX has trace 0, and we divide
matters into cases according to the sign of detX . If det X < 0, thenX has
real eigenvaluesµ and−µ, andX is conjugate viaSL(2, R) to a diagonal
matrix. Thus, for someg ∈ SL(2, R),

RX = {Ad(g)Rh}.

whereh =
(

1 0

0 −1

)
as usual. The subspaceRh is maximal abelian ing0 and

adh acts diagonably ong with eigenvectorsh, e, f . Since (1.82) gives

ad(Ad(g)h) = Ad(g)(adh)Ad(g)−1,
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ad(Ad(g)h) acts diagonably with eigenvectors Ad(g)h, Ad(g)e, Ad(g) f .
ThereforeRX is a Cartan subalgebra when detX < 0, and it is conjugate
via Intg0 to Rh.

If det X > 0, thenX has purely imaginary eigenvaluesµ and−µ, and
X is conjugate viaSL(2, R) to a real multiple ofihB , where

(6.58a) hB =
(

0 i
−i 0

)
.

Thus, for someg ∈ SL(2, R),

RX = {Ad(g)RihB}.

The subspaceRihB is maximal abelian ing0 and adihB acts diagonably
ong with eigenvectorshB, eB, fB , where

(6.58b) eB = 1

2

(
1 −i

−i −1

)
and fB = 1

2

(
1 i
i −1

)
.

Then ad(Ad(g)ihB) acts diagonably with eigenvectors Ad(g)hB , Ad(g)eB ,
Ad(g) fB . ThereforeRX is a Cartan subalgebra when detX > 0, and it is
conjugate via Intg0 to RihB .

If det X = 0, thenX has both eigenvalues equal to 0, andX is conjugate

via SL(2, R) to a real multiple ofe =
(

0 1

0 0

)
. Thus, for someg ∈ SL(2, R),

RX = {Ad(g)Re}.

The subspaceRe is maximal abelian ing0, but the element ade does not
act diagonably ong. It follows that ad(Ad(g)e) does not act diagonably.
ThereforeRX is not a Cartan subalgebra when detX = 0.

In the above example every Cartan subalgebra is conjugate either toRh
or toRihB , and these two areθ stable. We shall see in Proposition 6.59 that
this kind of conjugacy remains valid for all real semisimple Lie algebras
g0.

Another feature of the above example is that the two Cartan subalgebras
Rh andRihB are not conjugate. In fact,h has nonzero real eigenvalues,
andihB has nonzero purely imaginary eigenvalues, and thus the two cannot
be conjugate.
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Proposition 6.59.Any Cartan subalgebrah0 of g0 is conjugate via Intg0

to aθ stable Cartan subalgebra.

PROOF. Leth be the complexification ofh0, and letσ be the conjugation
of g with respect tog0. Let u0 be the compact real form constructed from
h and other data in Theorem 6.11, and letτ be the conjugation ofg with
respect tou0. The construction ofu0 has the property thatτ(h) = h.

The conjugationsσ and τ are involutions ofgR, and τ is a Cartan
involution by Proposition 6.14. Theorem 6.16 shows that the element
ϕ of Int gR = Int g given by ϕ = ((στ)2)1/4 has the property that the
Cartan involutioñη = ϕτϕ−1 of gR commutes withσ . Sinceσ(h) = h

andτ(h) = h, it follows thatϕ(h) = h. Thereforẽη(h) = h.
Sincẽη andσ commute, it follows that̃η(g0) = g0. Sinceh0 = h ∩ g0,

we obtaiñη(h0) = h0.
Putη = η̃|g0, so thatη(h0) = h0. Sinceη̃ is the conjugation ofg with

respect to the compact real formϕ(u0), the proof of Corollary 6.18 shows
thatη is a Cartan involution ofg0. Corollary 6.19 shows thatη andθ are
conjugate via Intg0, sayθ = ψηψ−1 with ψ ∈ Int g0. Thenψ(h0) is a
Cartan subalgebra ofg0, and

θ(ψ(h0)) = ψηψ−1ψ(h0) = ψ(ηh0) = ψ(h0),

shows that it isθ stable.

Thus it suffices to studyθ stable Cartan subalgebras. Whenh0 isθ stable,
we can writeh0 = t0⊕a0 with t0 ⊆ k0 anda0 ⊆ p0. By the same argument as
for Corollary 6.49, roots of(g, h) are real valued ona0⊕ it0. Consequently
thecompact dimensiondim t0 and thenoncompact dimensiondima0 of
h0 are unchanged whenh0 is conjugated via Intg0 to anotherθ stable Cartan
subalgebra.

We say that aθ stable Cartan subalgebrah0 = t0 ⊕ a0 is maximally
compact if its compact dimension is as large as possible,maximally
noncompact if its noncompact dimension is as large as possible. In
sl(2, R), Rh is maximally noncompact, andRihB is maximally compact.
In any casea0 is an abelian subspace ofp0, and thus Proposition 6.47
implies thath0 is maximally noncompact if and only ifa0 is a maximal
abelian subspace ofp0.

Proposition 6.60. Let t0 be a maximal abelian subspace ofk0. Then
h0 = Zg0(t0) is aθ stable Cartan subalgebra ofg0 of the formh0 = t0 ⊕ a0

with a0 ⊆ p0.
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PROOF. The subalgebrah0 is θ stable and hence is a vector-space direct
sumh0 = t0 ⊕ a0, wherea0 = h0 ∩ p0. Sinceh0 is θ stable, Proposition
6.29 shows that it is reductive. By Corollary 1.56, [h0, h0] is semisimple.

We have [h0, h0] = [a0, a0], and [a0, a0] ⊆ t0 sincea0 ⊆ p0 andh0∩k0 =
t0. Thus the semisimple Lie algebra [h0, h0] is abelian and must be 0.
Consequentlyh0 is abelian.

It is clear thath = (h0)
C is maximal abelian ing, and adh0 is certainly

diagonable ong since the members of adg0(t0) are skew adjoint, the mem-
bers of adg0(a0) are self adjoint, andt0 commutes witha0. By Proposition
2.13,h is a Cartan subalgebra ofg, and henceh0 is a Cartan subalgebra
of g0.

With any θ stable Cartan subalgebrah0 = t0 ⊕ a0, t0 is an abelian
subspace ofk0, and thus Proposition 6.60 implies thath0 is maximally
compact if and only ift0 is a maximal abelian subspace ofk0.

Proposition 6.61. Among θ stable Cartan subalgebrash0 of g0, the
maximally noncompact ones are all conjugate viaK , and the maximally
compact ones are all conjugate viaK .

PROOF. Let h0 andh′
0 be given Cartan subalgebras. In the first case,

as we observed above,h0 ∩ p0 andh′
0 ∩ p0 are maximal abelian inp0, and

Theorem 6.51 shows that there is no loss of generality in assuming that
h0 ∩p0 = h′

0 ∩p0. Thush0 = t0 ⊕a0 andh′
0 = t′0 ⊕a0, wherea0 is maximal

abelian inp0. Definem0 = Zk0(a0). Then t0 and t′0 are inm0 and are
maximal abelian there. LetM = Z K (a0). This is a compact subgroup of
K with Lie algebram0, and we letM0 be its identity component. Theorem
4.34 says thatt0 andt′0 are conjugate viaM0, and this conjugacy clearly
fixesa0. Henceh0 andh′

0 are conjugate viaK .
In the second case, as we observed above,h0∩k0 andh′

0∩k0 are maximal
abelian ink0, and Theorem 4.34 shows that there is no loss of generality in
assuming thath0 ∩ k0 = h′

0 ∩ k0. Then Proposition 6.60 shows thath0 = h′
0,

and the proof is complete.

If we examine the proof of the first part of Proposition 6.61 carefully,
we find that we can adjust it to obtain root data that determine a Cartan
subalgebra up to conjugacy. As a consequence there are only finitely many
conjugacy classes of Cartan subalgebras.

Lemma 6.62. Let h0 andh′
0 beθ stable Cartan subalgebras ofg0 such

thath0 ∩ p0 = h′
0 ∩ p0. Thenh0 andh′

0 are conjugate viaK .
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PROOF. Since thep0 parts of the two Cartan subalgebras are the same
and since Cartan subalgebras are abelian, thek0 partsh0 ∩ k0 andh′

0 ∩ k0 are
both contained iñm0 = Zk0(h0 ∩ p0). The Cartan subalgebras are maximal
abelian ing0, and thereforeh0 ∩ k0 andh′

0 ∩ k0 are both maximal abelian in
m̃0. Let M̃ = Z K (h0 ∩ p0). This is a compact Lie group with Lie algebra
m̃0, and we letM̃0 be its identity component. Theorem 4.34 says thath0∩k0

andh′
0 ∩ k0 are conjugate viãM0, and this conjugacy clearly fixesh0 ∩ p0.

Henceh0 andh′
0 are conjugate viaK .

Lemma 6.63.Let a0 be a maximal abelian subspace ofp0, and let� be
the set of restricted roots of(g0, a0). Suppose thath0 is aθ stable Cartan
subalgebra such thath0 ∩ p0 ⊆ a0. Let �′ = {λ ∈ � | λ(h0 ∩ p0) = 0}.
Thenh0 ∩ p0 is the common kernel of allλ ∈ �′.

PROOF. Let a′
0 be the common kernel of allλ ∈ �′. Thenh0 ∩ p0 ⊆ a′

0,
and we are to prove that equality holds. Sinceh0 is maximal abelian ing0,
it is enough to prove thath0 + a′

0 is abelian.
Letg0 = a0⊕m0⊕

⊕
λ∈�(g0)λ be the restricted-root space decomposition

of g0, and letX = H0 + X0 +∑
λ∈� Xλ be an element ofg0 that centralizes

h0 ∩ p0. Bracketing the formula forX with H ∈ h0 ∩ p0, we obtain
0 = ∑

λ∈�−�′ λ(H)Xλ, from which we conclude thatλ(H)Xλ = 0 for all
H ∈ h0 ∩ p0 and allλ ∈ � − �′. Since theλ’s in � − �′ haveλ(h0 ∩ p0)

not identically 0, we see thatXλ = 0 for all λ ∈ � − �′. Thus anyX that
centralizesh0 ∩ p0 is of the form

X = H0 + X0 +
∑
λ∈�′

Xλ.

Sinceh0 is abelian, the elementsX ∈ h0 are of this form, anda′
0 commutes

with anyX of this form. Henceh0+a′
0 is abelian, and the proof is complete.

Proposition 6.64. Up to conjugacy by Intg0, there are only finitely
many Cartan subalgebras ofg0.

PROOF. Fix a maximal abelian subspacea0 of p0. Let h0 be a Cartan
subalgebra. Proposition 6.59 shows that we may assume thath0 is θ stable,
and Theorem 6.51 shows that we may assume thath0 ∩ p0 is contained in
a0. Lemma 6.63 associates toh0 a subset of the set� of restricted roots that
determinesh0 ∩p0, and Lemma 6.62 shows thath0 ∩p0 determinesh0 up to
conjugacy. Hence the number of conjugacy classes of Cartan subalgebras
is bounded by the number of subsets of�.
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7. Cayley Transforms

The classification of real semisimple Lie algebras later in this chapter
will use maximally compact Cartan subalgebras, but much useful infor-
mation about a semisimple Lie algebrag0 comes about from a maximally
noncompact Cartan subalgebra. To correlate this information, we need to
be able to track down the conjugacy viag = (g0)

C of a maximally compact
Cartan subalgebra and a maximally noncompact one.

Cayley transforms are one-step conjugacies ofθ stable Cartan subalge-
bras whose iterates explicitly relate anyθ stable Cartan subalgebra with
any other. We develop Cayley transforms in this section and show that
in favorable circumstances we can see past the step-by-step process to
understand the composite conjugation all at once.

There are two kinds of Cayley transforms, essentially inverse to each
other. They are modeled on what happens insl(2, R). In the case of
sl(2, R), we start with the standard basish, e, f for sl(2, C) as in (1.5),
as well as the membershB, eB, fB of sl(2, C) defined in (6.58). The latter
elements satisfy the familiar bracket relations

[hB, eB ] = 2eB, [hB, fB ] = −2 fB, [eB, fB ] = hB .

The definitions ofeB and fB makeeB + fB andi(eB − fB) be insl(2, R),
while i(eB+ fB) andeB− fB are insu(2). The first kind of Cayley transform
within sl(2, C) is the mapping

Ad

(√
2

2

(
1 i
i 1

))
= Ad(expπ

4 ( fB − eB)),

which carrieshB, eB, fB to complex multiples ofh, e, f and carries the

Cartan subalgebraR
(

0 1

−1 0

)
to iR

(
1 0

0 −1

)
. When generalized below, this

Cayley transform will be calledcβ .
The second kind of Cayley transform withinsl(2, C) is the mapping

Ad

(√
2

2

(
1 −i

−i 1

))
= Ad(expi π

4 (− f − e)),

which carriesh, e, f to complex multiples ofhB, eB, fB and carries the

Cartan subalgebraR
(

1 0

0 −1

)
to iR

(
0 1

−1 0

)
. In view of the explicit formula

for the matrices of the Cayley transforms, the two transforms are inverse to
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one another. When generalized below, this second Cayley transform will
be calleddα.

The idea is to embed each of these constructions into constructions in the
complexification of our underlying semisimple algebra that depend upon a
single root of a special kind, leaving fixed the part of the Cartan subalgebra
that is orthogonal to the embedded copy ofsl(2, C).

Turning to the case of a general real semisimple Lie algebra, we continue
with the notation of the previous section. We extend the inner productBθ

ong0 to a Hermitian inner product ong by the definition

Bθ (Z1, Z2) = −B(Z1, θ Z2),

where bar denotes the conjugation ofg with respect tog0. In this expression
θ and bar commute.

If h0 = t0 ⊕ a0 is aθ stable Cartan subalgebra ofg0, we have noted that
roots of(g, h) are imaginary ont0 and real ona0. A root is real if it takes
on real values onh0 (i.e., vanishes ont0), imaginary if it takes on purely
imaginary values onh0 (i.e., vanishes ona0), andcomplexotherwise.

For any rootα, θα is the rootθα(H) = α(θ−1H). To see thatθα is a
root, we letEα be a nonzero root vector forα, and we calculate

[H, θ Eα] = θ [θ−1H, Eα] = α(θ−1H)θ Eα = (θα)(H)θ Eα.

If α is imaginary, thenθα = α. Thusgα is θ stable, and we havegα =
(gα ∩ k) ⊕ (gα ∩ p). Sincegα is 1-dimensional,gα ⊆ k or gα ⊆ p. We call
an imaginary rootα compact if gα ⊆ k, noncompactif gα ⊆ p.

We introduce two kinds of Cayley transforms, starting from a givenθ

stable Cartan subalgebra:

(i) Using an imaginary noncompact rootβ, we construct a new Cartan
subalgebra whose intersection withp0 goes up by 1 in dimension.

(ii) Using a real rootα, we construct a new Cartan subalgebra whose
intersection withp0 goes down by 1 in dimension.

First we give the construction that starts from a Cartan subalgebrah0 and
uses an imaginary noncompact rootβ. Let Eβ be a nonzero root vector.
Sinceβ is imaginary,Eβ is in g−β . Sinceβ is noncompact, we have

0 < Bθ (Eβ, Eβ) = −B(Eβ, θ Eβ) = B(Eβ, Eβ).

Thus we are allowed to normalizeEβ to makeB(Eβ, Eβ) be any positive
constant. We choose to makeB(Eβ, Eβ) = 2/|β|2. From Lemma 2.18a
we have

[Eβ, Eβ ] = B(Eβ, Eβ)Hβ = 2|β|−2Hβ.
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Put H ′
β = 2|β|−2Hβ . Then we have the bracket relations

[H ′
β, Eβ ] = 2Eβ, [H ′

β, Eβ ] = −2Eβ, [Eβ, Eβ ] = H ′
β.

Also the elementsEβ + Eβ andi(Eβ − Eβ) are fixed by bar and hence are
in g0. In terms of our discussion above ofsl(2, C), the correspondence is

H ′
β ↔

(
0 i

−i 0

)
Eβ ↔ 1

2

(
1 −i

−i −1

)
Eβ ↔ 1

2

(
1 i

i −1

)
Eβ − Eβ ↔

(
0 i

i 0

)
.

Define

(6.65a) cβ = Ad(expπ

4 (Eβ − Eβ))

and

(6.65b) h
′
0 = g0 ∩ cβ(h) = ker(β|h0) ⊕ R(Eβ + Eβ).

The vectorEβ is not uniquely determined by the conditions on it, and both
formulas (6.65) depend on the particular choice we make forEβ . To see
that (6.65b) is valid, we can use infinite series to calculate that

cβ(H ′
β) = Eβ + Eβ(6.66a)

cβ(Eβ − Eβ) = Eβ − Eβ(6.66b)

cβ(Eβ + Eβ) = −H ′
β.(6.66c)

Then (6.66a) implies (6.65b).
Next we give the construction that starts from a Cartan subalgebrah′

0

and uses a real rootα. Let Eα be a nonzero root vector. Sinceα is real,
Eα is in gα. Adjusting Eα, we may therefore assume thatEα is in g0.
Sinceα is real,θ Eα is in g−α, and we know from Proposition 6.52a that
[Eα, θ Eα] = B(Eα, θ Eα)Hα with B(Eα, θ Eα) < 0. We normalizeEα by
a real constant to makeB(Eα, θ Eα) = −2/|α|2, and putH ′

α = 2|α|−2Hα.
Then we have the bracket relations

[H ′
α, Eα] = 2Eα, [H ′

α, θ Eα] = −2θ Eα, [Eα, θ Eα] = −H ′
α.
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In terms of our discussion above ofsl(2, C), the correspondence is

H ′
α ↔

(
1 0

0 −1

)
Eα ↔

(
0 1

0 0

)
θ Eα ↔

(
0 0

−1 0

)
i(θ Eα − Eα) ↔

(
0 −i

−i 0

)
.

Define

(6.67a) dα = Ad(expi π

4 (θ Eα − Eα))

and

(6.67b) h0 = g0 ∩ dα(h
′) = ker(α|h′

0
) ⊕ R(Eα + θ Eα).

To see that (6.67b) is valid, we can use infinite series to calculate that

dα(H ′
α) = i(Eα + θ Eα)(6.68a)

dα(Eα − θ Eα) = Eα − θ Eα(6.68b)

dα(Eα + θ Eα) = i H ′
α.(6.68c)

Then (6.68a) implies (6.67b).

Proposition 6.69. The two kinds of Cayley transforms are essentially
inverse to each other in the following senses:

(a) If β is a noncompact imaginary root, then in the computation of
dcβ (β) ◦ cβ the root vectorEcβ (β) can be taken to beicβ(Eβ) and this choice
makes the composition the identity.

(b) If α is a real root, then in the the computation ofcdα(α) ◦ dα the
root vectorEdα(α) can be taken to be−idα(Eα) and this choice makes the
composition the identity.

PROOF.
(a) By (6.66),

cβ(Eβ) = 1
2cβ(Eβ + Eβ) + 1

2cβ(Eβ − Eβ) = − 1
2 H ′

β + 1
2(Eβ − Eβ).
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Both terms on the right side are inig0, and henceicβ(Eβ) is in g0. Since
H ′

β is in k while Eβ andEβ are inp,

θcβ(Eβ) = − 1
2 H ′

β − 1
2(Eβ − Eβ).

Put Ecβ (β) = icβ(Eβ). From B(Eβ, Eβ) = 2/|β|2, we obtain

B(Ecβ (β), θ Ecβ (β)) = −2/|β|2 = −2/|cβ(β)|2.
ThusEcβ (β) is properly normalized. Thendcβ (β) becomes

dcβ (β) = Ad(expi π

4 (θ Ecβ (β) − Ecβ (β)))

= Ad(expπ

4 (cβ(Eβ) − θcβ(Eβ)))

= Ad(expπ

4 (Eβ − Eβ)),

and this is the inverse of

cβ = Ad(expπ

4 (Eβ − Eβ)).

(b) By (6.68),

dα(Eα) = 1
2dα(Eα + θ Eα) + 1

2dα(Eα − θ Eα) = 1
2i H ′

α + 1
2(Eα − θ Eα).

SinceH ′
α, Eα, andθ Eα are ing0,

dα(Eα) = − 1
2i H ′

α + 1
2(Eα − θ Eα).

Put Edα(α) = −idα(Eα). From B(Eα, θ Eα) = −2/|α|2, we obtain

B(Edα(α), Edα(α)) = 2/|α|2 = 2/|dα(α)|2.
ThusEdα(α) is properly normalized. Thencdα(α) becomes

cdα(α) = Ad(expπ

4 (Edα(α) − Edα(α)))

= Ad(expi π

4 (dα(Eα) + dα(Eα)))

= Ad(expi π

4 (Eα − θ Eα)),

and this is the inverse of

dα = Ad(expi π

4 (θ Eα − Eα)).

Proposition 6.70. Let h0 be aθ stable Cartan subalgebra ofg0. Then
there are no noncompact imaginary roots if and only ifh0 is maximally
noncompact, and there are no real roots if and only ifh0 is maximally
compact.
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PROOF. The Cayley transform constructioncβ tells us that ifh0 has
a noncompact imaginary rootβ, thenh0 is not maximally noncompact.
Similarly the Cayley transform constructiondα tells us that ifh0 has a real
rootα, thenh0 is not maximally compact.

For the converses writeh0 = t0 ⊕ a0, and let� = �(g, h) be the set of
roots. Form the expansion

(6.71) g = h ⊕
⊕
α∈�

gα.

Suppose there are no noncompact imaginary roots. Then

Zg(a0) = h ⊕
⊕
α∈�,

α imaginary

gα = h ⊕
⊕
α∈�,

α compact
imaginary

gα

and p0 ∩ Zg(a0) = g0 ∩ (p ∩ Zg(a0)) = g0 ∩ (p ∩ h) = a0.

Hencea0 is maximal abelian inp0, andh0 is maximally noncompact.
Suppose there are no real roots. From the expansion (6.71) we obtain

Zg(t0) = h ⊕
⊕
α∈�,
α real

gα = h

andk0 ∩ Zg(t0) = k0 ∩ h = t0. Thereforet0 is maximal abelian ink0, and
h0 is maximally compact.

The Cayley transforms and the above propositions give us a method of
finding all Cartan subalgebras up to conjugacy. In fact, if we start with
a θ stable Cartan subalgebra, we can apply various Cayley transformscβ

as long as there are noncompact imaginary roots, and we know that the
resulting Cartan subalgebra will be maximally noncompact when we are
done. Consequently if we apply various Cayley transformsdα in the reverse
order, starting from a maximally noncompact Cartan subalgebra, we obtain
all Cartan subalgebras up to conjugacy.

Alternatively if we start with aθ stable Cartan subalgebra, we can apply
various Cayley transformsdα as long as there are real roots, and we know
that the resulting Cartan subalgebra will be maximally compact when we
are done. Consequently if we apply various Cayley transformscβ in the
reverse order, starting from a maximally compact Cartan subalgebra, we
obtain all Cartan subalgebras up to conjugacy.
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EXAMPLE. Let g0 = sp(2, R) with θ given by negative transpose. We
can take the Iwasawaa0 to be the diagonal subalgebra

a0 = {diag(s, t, −s, −t)}.
Let f1 and f2 be the linear functionals ona0 that gives andt on the indicated
matrix. For this example,m0 = 0. Thus Proposition 6.47 shows thata0 is
a maximally noncompact Cartan subalgebra. The roots are±2 f1, ±2 f2,
±( f1 + f2), ±( f1 − f2). All of them are real. We begin with adα type
Cayley transform, noting that±α give the same thing. The data for 2f1 and
2 f2 are conjugate withing0, and so are the data forf1 + f2 and f1 − f2. So
there are only two essentially different first steps, sayd2 f2 andd f1− f2. After
d2 f2, the only real roots are±2 f1 (or more preciselyd2 f2(±2 f1)). A second
Cayley transformd2 f1 leads to all roots imaginary, hence to a maximally
compact Cartan subalgebra, and we can go no further. Similarly after
d f1− f2, the only real roots are±( f1 + f2), and the second Cayley transform
d f1+ f2 leads to all roots imaginary. A little computation shows that we have
produced 

s 0 0 0
0 t 0 0
0 0 −s 0
0 0 0 −t

 ,


s 0 0 0
0 0 0 θ

0 0 −s 0
0 −θ 0 0

 ,


t θ 0 0

−θ t 0 0
0 0 −t θ

0 0 −θ −t

 ,


0 0 θ1 0
0 0 0 θ2

−θ1 0 0 0
0 −θ2 0 0

 .

The second Cartan subalgebra results from the first by applyingd2 f2, the
third results from the first by applyingd f1− f2, and the fourth results from
the first by applyingd2 f1d2 f2.

As in the example, when we pass fromh′
0 to h0 by dα, we can anticipate

what roots will be real forh0. What we need in order to do a succession of
such Cayley transforms is a sequence of real roots that become imaginary
one at a time. In other words, we can do a succession of such Cayley
transforms with ease if we have an orthogonal sequence of real roots.

Similarly when we applycα to pass fromh0 toh′
0, we can anticipate what

roots will be imaginary forh′
0. But a further condition on a root beyond

“imaginary” is needed to do a Cayley transformcα; we need the imaginary
root to be noncompact. The following proposition tells how to anticipate
which imaginary roots are noncompact after a Cayley transform.



396 VI. Structure Theory of Semisimple Groups

Proposition 6.72. Let α be a noncompact imaginary root. Letβ be a
root orthogonal toα, so that theα string containingβ is symmetric about
β. Let Eα andEβ be nonzero roots vectors forα andβ, and normalizeEα

as in the definition of the Cayley transformcα.

(a) If β ± α are not roots, thencα(Eβ) = Eβ . Thus if β is imaginary,
thenβ is compact if and only ifcα(β) is compact.

(b) If β ± α are roots, thencα(Eβ) = 1
2([Eα, Eβ ] − [Eα, Eβ ]). Thus if

β is imaginary, thenβ is compact if and only ifcα(β) is noncompact.

PROOF. Recall thatcα = Ad(expπ

4 (Eα − Eα)) with [Eα, Eα] = H ′
α.

(a) In this casecα(Eβ) = Eβ clearly. If β is imaginary, then the equal
vectorscα(Eβ) andEβ are both ink or both inp.

(b) Here we use Corollary 2.37 and Proposition 2.48g to calculate that

adπ

4 (Eα − Eα)Eβ = π

4 ([Eα, Eβ ] − [Eα, Eβ ])

ad2(π

4 (Eα − Eα))Eβ = −(π

4 )2([Eα, [Eα, Eβ ]] + [Eα, [Eα, Eβ ]])

= −(π

4 )2(2Eβ + 2Eβ)

= −(π

2 )2Eβ.

Then we have

cα(Eβ) =
∞∑

n=0

1
(2n)! ad2n(π

4 (Eα − Eα))Eβ

+
∞∑

n=0

1
(2n+1)! ad(π

4 (Eα − Eα))ad2n(π

4 (Eα − Eα))Eβ

=
∞∑

n=0

1
(2n)! (−1)n(π

2 )2n Eβ

+
∞∑

n=0

1
(2n+1)! (−1)n(π

2 )2n(π

4 )([Eα, Eβ ] − [Eα, Eβ ])

= (cosπ

2 )Eβ + 1
2(sin π

2 )([Eα, Eβ ] − [Eα, Eβ ])

= 1
2([Eα, Eβ ] − [Eα, Eβ ]).

If β is imaginary, thencα(Eβ) is in k if and only if Eβ is in p sinceEα and
Eα are inp.

We say that two orthogonal rootsα andβ arestrongly orthogonal if
β±α are not roots. Proposition 6.72 indicates that we can do a succession of
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Cayley transformscβ with ease if we have a strongly orthogonal sequence
of noncompact imaginary roots.

If α andβ are orthogonal but not strongly orthogonal, then

(6.73) |β ± α|2 = |β|2 + |α|2

shows that there are at least two root lengths. Actually we must have
|β|2 = |α|2, since otherwise (6.73) would produce three root lengths, which
is forbidden within a simple component of a reduced root system. Thus
(6.73) becomes|β ± α|2 = 2|α|2, and the simple component of the root
system containingα andβ has a double line in its Dynkin diagram. In other
words, whenever the Dynkin diagram of the root system has no double line,
then orthogonal roots are automatically strongly orthogonal.

8. Vogan Diagrams

To a real semisimple Lie algebrag0, in the presence of some other
data, we shall associate a diagram consisting of the Dynkin diagram of
g = (g0)

C with some additional information superimposed. This diagram
will be called a “Vogan diagram.” We shall see that the same Vogan diagram
cannot come from two nonisomorphicg0’s and that every diagram that looks
formally like a Vogan diagram comes from someg0. Thus Vogan diagrams
give us a handle on the problem of classification, and all we need to do is
to sort out which Vogan diagrams come from the sameg0.

Let g0 be a real semisimple Lie algebra, letg be its complexification,
let θ be a Cartan involution, letg0 = k0 ⊕ p0 be the corresponding Cartan
decomposition, and letB be as in §§6–7. We introduce a maximally com-
pactθ stable Cartan subalgebrah0 = t0 ⊕ a0 of g0, with complexification
h = t⊕a, and we let� = �(g, h) be the set of roots. By Proposition 6.70
there are no real roots, i.e., no roots that vanish ont.

Choose a positive system�+ for � that takesit0 beforea. For example,
�+ can be defined in terms of a lexicographic ordering built from a basis
of it0 followed by a basis ofa0. Sinceθ is +1 on t0 and−1 on a0 and
since there are no real roots,θ(�+) = �+. Thereforeθ permutes the
simple roots. It must fix the simple roots that are imaginary and permute
in 2-cycles the simple roots that are complex.

By theVogan diagram of the triple(g0, h0, �
+), we mean the Dynkin

diagram of�+ with the 2-element orbits underθ so labeled and with the
1-element orbits painted or not, according as the corresponding imaginary
simple root is noncompact or compact.
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For example ifg0 = su(3, 3), let us takeθ to be negative conjugate
transpose,h0 = t0 to be the diagonal subalgebra, and�+ to be determined
by the conditionse1 ≥ e2 ≥ e4 ≥ e5 ≥ e3 ≥ e6. The Dynkin diagram is of
type A5, and all simple roots are imaginary sincea0 = 0. In particular,θ
acts as the identity in the Dynkin diagram. The compact rootsei − ej are
those withi and j in the same set{1, 2, 3} or{4, 5, 6}, while the noncompact
roots are those withi and j in opposite sets. Then among the simple roots,
e1 − e2 is compact,e2 − e4 is noncompact,e4 − e5 is compact,e5 − e3 is
noncompact, ande3 − e6 is noncompact. Hence the Vogan diagram is

Here are two infinite classes of examples.

EXAMPLES.

1) Letg0 = su(p, q) with negative conjugate transpose as Cartan invo-
lution. We takeh0 = t0 to be the diagonal subalgebra. Thenθ is 1 on all
the roots. We use the standard ordering, so that the positive roots areei −ej

with i < j . A positive root is compact ifi and j are both in{1, . . . , p} or
both in {p + 1, . . . , p + q}. It is noncompact ifi is in {1, . . . , p} and j
is in {p + 1, . . . , p + q}. Thus among the simple rootsei − ei+1, the root
ep − ep+1 is noncompact, and the others are compact. The Vogan diagram
is

e1 − e2 ep − ep+1 ep+q−1−ep+q

2) Letg0 = sl(2n, R) with negative transpose as Cartan involution, and
define

h0 =




x1 θ1

−θ1 x1
. . .

xn θn

−θn xn


 .

The matrices here are understood to be built from 2-by-2 blocks and to have∑n
j=1 xj = 0. The subspacet0 corresponds to theθj part, 1≤ j ≤ n, i.e., it

is the subspace where allxj are 0. The subspacea0 similarly corresponds
to thexj part, 1≤ j ≤ n. We define linear functionalsej and f j to depend
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only on thej th block, the dependence being

ej

(
xj −iyj

iyj xj

)
= yj and f j

(
xj −iyj

iyj xj

)
= xj .

Computation shows that

� = {±ej ± ek ± ( f j − fk) | j �= k} ∪ {±2el | 1 ≤ l ≤ n}.
Roots that involve onlyej ’s are imaginary, those that involve onlyf j ’s are
real, and the remainder are complex. It is apparent that there are no real
roots, and thereforeh0 is maximally compact. The involutionθ acts as+1
on theej ’s and−1 on thef j ’s. We define a lexicographic ordering by using
the spanning set

e1, . . . , en, f1, . . . , fn,

and we obtain

�+ =


ej + ek ± ( f j − fk), all j �= k

ej − ek ± ( f j − fk), j < k

2el, 1 ≤ l ≤ n.

The Vogan diagram is

en−1−en+( fn−1− fn) e1−e2+( f1− f2)

2en

en−1−en−( fn−1− fn) e1−e2−( f1− f2)

Theorem 6.74. Let g0 andg′
0 be real semisimple Lie algebras. With

notation as above, if two triples(g0, h0, �
+) and(g′

0, h
′
0, (�

′)+) have the
same Vogan diagram, theng0 andg′

0 are isomorphic.

REMARK. This theorem is an analog for real semisimple Lie algebras of
the Isomorphism Theorem (Theorem 2.108) for complex semisimple Lie
algebras.

PROOF. Since the Dynkin diagrams are the same, the Isomorphism
Theorem (Theorem 2.108) shows that there is no loss of generality in
assuming thatg0 andg′

0 have the same complexificationg. Letu0 = k0⊕ip0
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andu′
0 = k′

0 ⊕ ip′
0 be the associated compact real forms ofg. By Corollary

6.20, there existsx ∈ Int g such thatxu′
0 = u0. The real formxg′

0 of g is
isomorphic tog′

0 and has Cartan decompositionxg′
0 = xk′

0 ⊕ xp′
0. Since

xk′
0 ⊕ i xp′

0 = xu′
0 = u0, there is no loss of generality in assuming that

u′
0 = u0 from the outset. Then

(6.75) θ(u0) = u0 and θ ′(u0) = u0.

Let us write the effect of the Cartan decompositions on the Cartan
subalgebras ash0 = t0⊕a0 andh′

0 = t′0⊕a′
0. Thent0⊕ ia0 andt′0⊕ ia′

0 are
maximal abelian subspaces ofu0. By Theorem 4.34 there existsk ∈ Int u0

with k(t′0 ⊕ ia′
0) = t0 ⊕ ia0. Replacingg′

0 by kg′
0 and arguing as above, we

may assume thatt′0 ⊕ ia′
0 = t0 ⊕ ia0 from the outset. Thereforeh0 andh′

0

have the same complexification, which we denoteh. The space

u0 ∩ h = t0 ⊕ ia0 = t
′
0 ⊕ ia′

0

is a maximal abelian subspace ofu0.
Now that the complexificationsg and h have been aligned, the root

systems are the same. Let the positive systems given in the respective
triples be�+ and�+′. By Theorems 4.54 and 2.63 there existsk ′ ∈ Int u0

normalizingu0 ∩ h with k ′�+′ = �+. Replacingg′
0 by k ′g′

0 and arguing as
above, we may assume that�+′ = �+ from the outset.

The next step is to choose normalizations of root vectors relative toh.
For this proof letB be the Killing form ofg. We start with root vectorsXα

produced fromh as in Theorem 6.6. Using (6.12), we construct a compact
real formũ0 of g. The subalgebrãu0 contains the real subspace ofh where
the roots are imaginary, which is justu0 ∩ h. By Corollary 6.20, there
existsg ∈ Int g such thatgũ0 = u0. Thengũ0 = u0 is built by (6.12) from
g(u0 ∩h) and the root vectorsgXα. Sinceu0 ∩h andg(u0 ∩h) are maximal
abelian inu0, Theorem 4.34 producesu ∈ Int u0 with ug(u0 ∩ h) = u0 ∩ h.
Thenu0 is built by (6.12) fromug(u0 ∩ h) and the root vectorsugXα. For
α ∈ �, putYα = ugXα. Then we have established that

(6.76) u0 =
∑
α∈�

R(i Hα) +
∑
α∈�

R(Yα − Y−α) +
∑
α∈�

Ri(Yα + Y−α).

We have not yet used the information that is superimposed on the Dynkin
diagram of�+. Since the automorphisms of�+ defined byθ andθ ′ are
the same,θ andθ ′ have the same effect onh∗. Thus

(6.77) θ(H) = θ ′(H) for all H ∈ h.
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If α is an imaginary simple root, then

θ(Yα) = Yα = θ ′(Yα) if α is unpainted,(6.78a)

θ(Yα) = −Yα = θ ′(Yα) if α is painted.(6.78b)

We still have to deal with the complex simple roots. Forα ∈ �, write
θYα = aαYθα. From (6.75) we know that

θ(u0 ∩ span{Yα, Y−α}) ⊆ u0 ∩ span{Yθα, Y−θα}.
In view of (6.76) this inclusion means that

θ(R(Yα − Y−α) + Ri(Yα + Y−α)) ⊆ R(Yθα − Y−θα) + Ri(Yθα + Y−θα).

If x andy are real and ifz = x + yi , then we have

x(Yα − Y−α) + yi(Yα + Y−α) = zYα − z̄Y−α.

Thus the expressionθ(zYα − z̄Y−α) = zaαYθα − z̄a−αY−θα must be of the
form wYθα − w̄Y−θα, and we conclude that

(6.79) a−α = aα.

Meanwhile

(6.80) aαa−α = B(aαYθα, a−αY−θα) = B(θYα, θY−α) = B(Yα, Y−α) = 1.

Combining (6.79) and (6.80), we see that

(6.81) |aα| = 1.

Next we observe that

(6.82) aαaθα = 1

sinceYα = θ2Yα = θ(aαYθα) = aαaθαYα.
For each pair of complex simple rootsα andθα, choose square roots

a1/2
α anda1/2

θα so that

(6.83) a1/2
α a1/2

θα = 1.

This is possible by (6.82).
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Similarly write θ ′Yα = bαYθα with

(6.84) |bα| = 1,

and defineb1/2
α andb1/2

θα for α andθα simple so that

(6.85) b1/2
α b1/2

θα = 1.

By (6.81) and (6.84), we can defineH andH ′ in u0 ∩ h by the conditions
thatα(H) = α(H ′) = 0 for α imaginary simple and

exp
(

1
2α(H)

) = a1/2
α , exp

(
1
2θα(H)

) = a1/2
θα ,

exp
(

1
2α(H ′)

) = b1/2
α , exp

(
1
2θα(H ′)

) = b1/2
θα

for α andθα complex simple.
We shall show that

(6.86) θ ′ ◦ Ad(exp1
2(H − H ′)) = Ad(exp1

2(H − H ′)) ◦ θ.

In fact, the two sides of (6.86) are equal onh and also on eachXα for α

imaginary simple, by (6.77) and (6.78), since the Ad factor drops out from
each side. Ifα is complex simple, then

θ ′ ◦ Ad(exp1
2(H − H ′))Yα = θ ′(e

1
2α(H−H ′)Yα)

= bαa1/2
α b−1/2

α Yθα

= b1/2
α a−1/2

α θYα

= b−1/2
θα a1/2

θα θYα by (6.83) and (6.85)

= Ad(exp1
2(H − H ′)) ◦ θYα.

This proves (6.86).
Applying (6.86) tok and then top, we see that

(6.87)
Ad(exp1

2(H − H ′))(k) ⊆ k
′

Ad(exp1
2(H − H ′))(p) ⊆ p

′,

and then equality must hold in each line of (6.87). Since the element
Ad(exp1

2(H−H ′))carriesu0 to itself, it must carryk0 = u0∩k tok′
0 = u0∩k′

andp0 = u0 ∩ p to p′
0 = u0 ∩ p′. Hence it must carryg0 = k0 ⊕ p0 to

g′
0 = k′

0 ⊕ p′
0. This completes the proof.
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Now let us address the question of existence. We define anabstract
Vogan diagram to be an abstract Dynkin diagram with two pieces of
additional structure indicated: One is an automorphism of order 1 or 2
of the diagram, which is to be indicated by labeling the 2-element orbits.
The other is a subset of the 1-element orbits, which is to be indicated by
painting the vertices corresponding to the members of the subset. Every
Vogan diagram is of course an abstract Vogan diagram.

Theorem 6.88.If an abstract Vogan diagram is given, then there exist a
real semisimple Lie algebrag0, a Cartan involutionθ , a maximally compact
θ stable Cartan subalgebrah0 = t0 ⊕ a0, and a positive system�+ for
� = �(g, h) that takesit0 beforea0 such that the given diagram is the
Vogan diagram of(g0, h0, �

+).

REMARK. Briefly the theorem says that any abstract Vogan diagram
comes from someg0. Thus the theorem is an analog for real semisimple
Lie algebras of the Existence Theorem (Theorem 2.111) for complex semi-
simple Lie algebras.

PROOF. By the Existence Theorem (Theorem 2.111) letg be a complex
semisimple Lie algebra with the given abstract Dynkin diagram as its
Dynkin diagram, and leth be a Cartan subalgebra (Theorem 2.9). Put
� = �(g, h), and let�+ be the positive system determined by the given
data. Introduce root vectorsXα normalized as in Theorem 6.6, and define a
compact real formu0 of g in terms ofh and theXα by (6.12). The formula
for u0 is

(6.89) u0 =
∑
α∈�

R(i Hα) +
∑
α∈�

R(Xα − X−α) +
∑
α∈�

Ri(Xα + X−α).

The given data determine an automorphismθ of the Dynkin diagram,
which extends linearly toh∗ and is isometric. Let us see thatθ(�) = �. It
is enough to see thatθ(�+) ⊆ �. We prove thatθ(�+) ⊆ � by induction
on the level

∑
ni of a positive rootα = ∑

niαi . If the level is 1, then the
rootα is simple and we are given thatθα is a simple root. Letn > 1, and
assume inductively thatθα is in � if α ∈ �+ has level< n. Let α have
level n. If we chooseαi simple with〈α, αi〉 > 0, thensαi (α) is a positive
rootβ with smaller level thanα. By inductive hypothesis,θβ andθαi are
in �. Sinceθ is isometric,θα = sθαi (θβ), and thereforeθα is in �. This
completes the induction. Thusθ(�) = �.
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We can then transferθ to h, retaining the same nameθ . Defineθ on the
root vectorsXα for simple roots by

θ Xα =


Xα if α is unpainted and forms a 1-element orbit

−Xα if α is painted and forms a 1-element orbit

Xθα if α is in a 2-element orbit.

By the Isomorphism Theorem (Theorem 2.108),θ extends to an automor-
phism ofg consistently with these definitions onh and on theXα ’s for α

simple. The uniqueness in Theorem 2.108 implies thatθ2 = 1.
The main step is to prove thatθu0 = u0. Let B be the Killing form

of g. For α ∈ �, define a constantaα by θ Xα = aα Xθα. Thenaαa−α =
B(aα Xθα, a−α X−θα) = B(θ Xα, θ X−α) = B(Xα, X−α) = 1 shows that

(6.90) aαa−α = 1.

We shall prove that

(6.91) aα = ±1 for all α ∈ �.

To prove (6.91), it is enough because of (6.90) to prove the result for
α ∈ �+. We do so by induction on the level ofα. If the level is 1, then
aα = ±1 by definition. Thus it is enough to prove that if (6.91) holds for
positive rootsα andβ and ifα + β is a root, then it holds forα + β. In the
notation of Theorem 6.6, we have

θ Xα+β = N −1
α,βθ [ Xα, Xβ ] = N −1

α,β [θ Xα, θ Xβ ]

= N −1
α,βaαaβ [ Xθα, Xθβ ] = N −1

α,β Nθα,θβaαaβ Xθα+θβ .

Therefore
aα+β = N −1

α,β Nθα,θβaαaβ.

Hereaαaβ = ±1 by assumption, while Theorem 6.6 and the fact thatθ is
an automorphism of� say thatNα,β andNθα,θβ are real with

N 2
α,β = 1

2q(1 + p)|α|2 = 1
2q(1 + p)|θα|2 = N 2

θα,θβ .

Henceaα+β = ±1, and (6.91) is proved.
Let us see that

θ(R(Xα−X−α) + Ri(Xα+X−α)) ⊆ R(Xθα−X−θα) + Ri(Xθα+X−θα).

(6.92)
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If x andy are real and ifz = x + yi , then we have

x(Xα − X−α) + yi(Xα + X−α) = zXα − z̄ X−α.

Thus (6.92) amounts to the assertion that the expression

θ(zXα − z̄ X−α) = zaα Xθα − z̄a−α X−θα

is of the formwXθα − w̄X−θα, and this follows from (6.91) and (6.90).
Sinceθ carries roots to roots,

(6.93) θ
( ∑

α∈�

R(i Hα)
) =

∑
α∈�

R(i Hα).

Combining (6.92) and (6.93) with (6.89), we see thatθu0 = u0.
Let k andp be the+1 and−1 eigenspaces forθ in g, so thatg = k ⊕ p.

Sinceθu0 = u0, we have

u0 = (u0 ∩ k) ⊕ (u0 ∩ p).

Definek0 = u0 ∩ k andp0 = i(u0 ∩ p), so that

u0 = k0 ⊕ ip0.

Sinceu0 is a real form ofg as a vector space, so is

g0 = k0 ⊕ p0.

Sinceθu0 = u0 and sinceθ is an involution, we have the bracket relations

[k0, k0] ⊆ k0, [k0, p0] ⊆ p0, [p0, p0] ⊆ k0.

Thereforeg0 is closed under brackets and is a real form ofg as a Lie algebra.
The involutionθ is +1 onk0 and is−1 onp0; it is a Cartan involution of
g0 by the remarks following (6.26), sincek0 ⊕ ip0 = u0 is compact.

Formula (6.93) shows thatθ mapsu0 ∩ h to itself, and therefore

u0 ∩ h = (u0 ∩ k ∩ h) ⊕ (u0 ∩ p ∩ h)

= (k0 ∩ h) ⊕ (ip0 ∩ h)

= (k0 ∩ h) ⊕ i(p0 ∩ h).

The abelian subspaceu0 ∩ h is a real form ofh, and hence so is

h0 = (k0 ∩ h) ⊕ (p0 ∩ h).
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The subspaceh0 is contained ing0, and it is therefore aθ stable Cartan
subalgebra ofg0.

A real rootα relative toh0 has the property thatθα = −α. Sinceθ

preserves positivity relative to�+, there are no real roots. By Proposition
6.70,h0 is maximally compact.

Let us verify that�+ results from a lexicographic ordering that takes
i(k0 ∩ h) beforep0 ∩ h. Let {βi}l

i=1 be the set of simple roots of�+ in
1-element orbits underθ , and let{γi , θγi}m

i=1 be the set of simple roots of
�+ in 2-element orbits. Relative to basis{αi}l+2m

i=1 consisting of all simple
roots, let{ωi} be the dual basis defined by〈ωi , αj〉 = δi j . We shall write
ωβj or ωγj or ωθγj in place ofωi in what follows. We define a lexicographic
ordering by using inner products with the ordered basis

ωβ1, . . . , ωβl , ωγ1 + ωθγ1, . . . , ωγm + ωθγm , ωγ1 − ωθγ1, . . . , ωγm − ωθγm ,

which takesi(k0 ∩ h) beforep0 ∩ h. Let α be in�+, and write

α =
l∑

i=1

niβi +
m∑

j=1

rjγj +
m∑

j=1

sjθγj .

〈α, ωβj 〉 = nj ≥ 0Then

〈α, ωγj + ωθγj 〉 = rj + sj ≥ 0.and

If all these inner products are 0, then all coefficients ofα are 0, contradiction.
Thusα has positive inner product with the first member of our ordered basis
for which the inner product is nonzero, and the lexicographic ordering
yields�+ as positive system. Consequently(g0, h0, �

+) is a triple.
Our definitions ofθ on h∗ and on theXα for α simple make it clear

that the Vogan diagram of(g0, h0, �
+) coincides with the given data. This

completes the proof.

9. Complexification of a Simple Real Lie Algebra

This section deals with some preliminaries for the classification of simple
real Lie algebras. Our procedure in the next section is to start from a
complex semisimple Lie algebra and pass to all possible real forms that
are simple. In order to use this method effectively, we need to know what
complex semisimple Lie algebras can arise in this way.
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Theorem 6.94.Let g0 be a simple Lie algebra overR, and letg be its
complexification. Then there are just two possibilities:

(a) g0 is complex, i.e., is of the formsR for some complexs, and then
g is C isomorphic tos ⊕ s,

(b) g0 is not complex, and theng is simple overC.

PROOF.
(a) Let J be multiplication by

√−1 in g0, and define anR linear map
L : g → s⊕ s by L(X + iY ) = (X + JY, X − JY ) for X andY in g0. We
readily check thatL is one-one and respects brackets. Since the domain
and range have the same real dimension,L is anR isomorphism.

MoreoverL satisfies

L(i(X + iY )) = L(−Y + i X)

= (−Y + J X, −Y − J X)

= (J (X + JY ), −J (X − JY )).

This equation exhibitsL as aC isomorphism ofg with s⊕ s̄, wheres̄ is the
same real Lie algebra asg0 but where the multiplication by

√−1 is defined
as multiplication by−i .

To complete the proof of (a), we show thats̄ is C isomorphic tos. By
Theorem 6.11,s has a compact real formu0. The conjugationτ of s with
respect tou0 is R linear and respects brackets, and the claim is thatτ is a
C isomorphism ofs with s̄. In fact, if U andV are inu0, then

τ(J (U + J V )) = τ(−V + JU ) = −V − JU

= −J (U − J V ) = −Jτ(U + J V ),

and (a) follows.
(b) Let bar denote conjugation ofg with respect tog0. If a is a simple

ideal ing, thena ∩ ā anda + ā are ideals ing invariant under conjugation
and hence are complexifications of ideals ing0. Thus they are 0 org. Since
a �= 0, a + ā = g.

If a ∩ ā = 0, theng = a ⊕ ā. The inclusion ofg0 into g, followed
by projection toa, is anR homomorphismϕ of Lie algebras. If kerϕ is
nonzero, then kerϕ must beg0. In this caseg0 is contained inā. But
conjugation fixesg0, and thusg0 ⊆ a∩ ā = 0, contradiction. We conclude
thatϕ is one-one. A count of dimensions shows thatϕ is anR isomorphism
of g0 ontoa. But theng0 is complex, contradiction.

We conclude thata ∩ ā = g and hencea = g. Thereforeg is simple, as
asserted.
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Proposition 6.95.If g is a complex Lie algebra simple overC, thengR

is simple overR.

PROOF. Suppose thata is an ideal ingR. SincegR is semisimple,
[a, gR] ⊆ a = [a, a] ⊆ [a, gR]. Thereforea = [a, gR]. Let X be ina, and
write X = ∑

j [ X j , Yj ] with X j ∈ a andYj ∈ g. Then

i X =
∑

j

i [ X j , Yj ] =
∑

[ X j , iYj ] ∈ [a, gR] = a.

Soa is a complex ideal ing. Sinceg is complex simple,a = 0 or a = g.
ThusgR is simple overR.

10. Classification of Simple Real Lie Algebras

Before taking up the problem of classification, a word of caution is in
order. The virtue of classification is that it provides a clear indication of
the scope of examples in the subject. It is rarely a sound idea to prove
a theorem by proving it case-by-case for all simple real Lie algebras.
Instead the important thing about classification is the techniques that are
involved. Techniques that are subtle enough to identify all the examples are
probably subtle enough to help in investigating all semisimple Lie algebras
simultaneously.

Theorem 6.94 divided the simple real Lie algebras into two kinds, and
we continue with that distinction in this section.

The first kind is a complex simple Lie algebra that is regarded as a
real Lie algebra and remains simple when regarded that way. Proposition
6.95 shows that every complex simple Lie algebra may be used for this
purpose. In view of the results of Chapter II, the classification of this kind
is complete. We obtain complex Lie algebras of the usual typesAn through
G2. Matrix realizations of the complex Lie algebras of the classical types
An throughDn are listed in (2.43).

The other kind is a noncomplex simple Lie algebrag0, and its complex-
ification is then simple overC. Since the complexification is simple, any
Vogan diagram forg0 will have its underlying Dynkin diagram connected.
Conversely any real semisimple Lie algebrag0 with a Vogan diagram having
connected Dynkin diagram has(g0)

C simple, and thereforeg0 has to be
simple. We know from Theorem 6.74 that the same Vogan diagram cannot
come from nonisomorphicg0’s, and we know from Theorem 6.88 that every
abstract Vogan diagram is a Vogan diagram. Therefore the classification
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of this type of simple real Lie algebra comes down to classifying abstract
Vogan diagrams whose underlying Dynkin diagram is connected.

Thus we want to eliminate the redundancy in connected Vogan diagrams.
There is no redundancy from the automorphism. The only connected
Dynkin diagrams admitting nontrivial automorphisms of order 2 areAn,
Dn, and E6. In these cases a nontrivial automorphism of order 2 of the
Dynkin diagram is unique up to an automorphism of the diagram (and is
absolutely unique except inD4). A Vogan diagram forg0 incorporates a
nontrivial automorphism of order 2 if and only if there exist complex roots,
and this condition depends only ong0.

The redundancy comes about through having many allowable choices
for the positive system�+. The idea, partly but not completely, is that we
can always change�+ so that at most one imaginary simple root is painted.

Theorem 6.96(Borel and de Siebenthal Theorem). Letg0 be a non-
complex simple real Lie algebra, and let the Vogan diagram ofg0 be given
that corresponds to the triple(g0, h0, �

+). Then there exists a simple
system�′ for � = �(g, h), with corresponding positive system�+′,
such that(g0, h0, �

+′) is a triple and there is at most one painted simple
root in its Vogan diagram. Furthermore suppose that the automorphism
associated with the Vogan diagram is the identity, that�′ = {α1, . . . , αl},
and that{ω1, . . . , ωl} is the dual basis given by〈ωj , αk〉 = δjk . Then the
single painted simple rootαi may be chosen so that there is noi ′ with
〈ωi − ωi ′, ωi ′ 〉 > 0.

REMARKS.
1) The proof will be preceded by two lemmas. The main conclusion of

the theorem is that we can arrange that at most one simple root is painted.
The second conclusion (concerningωi and therefore limiting which simple
root can be painted) is helpful only when the Dynkin diagram is exceptional
(E6, E7, E8, F4, or G2).

2) The proof simplifies somewhat when the automorphism marked as
part of the Vogan diagram is the identity. This is the case thath0 is contained
in k0, and most examples will turn out to have this property.

Lemma 6.97.Let � be an irreducible abstract reduced root system in a
real vector spaceV, let � be a simple system, and letω andω′ be nonzero
members ofV that are dominant relative to�. Then〈ω, ω′〉 > 0.

PROOF. The first step is to show that in the expansionω = ∑
α∈� aαα,
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all theaα are≥ 0. Let us enumerate� asα1, . . . , αl so that

ω =
r∑

i=1

aiαi −
s∑

i=r+1

biαi = ω+ − ω−

with all ai ≥ 0 and allbi > 0. We shall show thatω− = 0. Since
ω− = ω+ − ω, we have

0 ≤ |ω−|2 = 〈ω+, ω−〉−〈ω−, ω〉 =
r∑

i=1

s∑
j=r+1

ai bj〈αi , αj〉−
l∑

j=r+1

bj〈ω, αj〉.

The first term on the right side is≤ 0 by Lemma 2.51, and the second term
on the right side (with the minus sign included) is term-by-term≤ 0 by
hypothesis. Therefore the right side is≤ 0, and we conclude thatω− = 0.

Thus we can writeω = ∑l
j=1 ajαj with all aj ≥ 0. The next step is

to show from the irreducibility of� thataj > 0 for all j . Assuming the
contrary, suppose thatai = 0. Then

0 ≤ 〈ω, αi〉 =
∑
j �=i

aj〈αj , αi〉,

and every term on the right side is≤ 0 by Lemma 2.51. Thusaj = 0
for every αj such that〈αj , αi〉 < 0, i.e., for all neighbors ofαi in the
Dynkin diagram. Since the Dynkin diagram is connected (Proposition
2.54), iteration of this argument shows that all coefficients are 0 once one
of them is 0.

Now we can complete the proof. For at least one indexi , 〈αi , ω
′〉 > 0,

sinceω′ �= 0. Then

〈ω, ω′〉 =
∑

j

aj〈αj , ω
′〉 ≥ ai〈αi , ω

′〉,

and the right side is> 0 sinceai > 0. This proves the lemma.

Lemma 6.98. Let g0 be a noncomplex simple real Lie algebra, and let
the Vogan diagram ofg0 be given that corresponds to the triple(g0, h0, �

+).
Write h0 = t0 ⊕ a0 as usual. LetV be the span of the simple roots that are
imaginary, let�0 be the root system�∩ V, letH be the subset ofit0 paired
with V, and let� be the subset ofH where all roots of�0 take integer
values and all noncompact roots of�0 take odd-integer values. Then�
is nonempty. In fact, ifα1, . . . , αm is any simple system for�0 and if
ω1, . . . , ωm in V are defined by〈ωj , αk〉 = δjk , then the element

ω =
∑

i with αi
noncompact

ωi .

is in �.
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PROOF. Fix a simple systemα1, . . . , αm for �0, and let�+
0 be the

set of positive roots of�0. Define ω1, . . . , ωm by 〈ωj , αk〉 = δjk . If
α = ∑m

i=1 niαi is a positive root of�0, then〈ω, α〉 is the sum of theni for
whichαi is noncompact. This is certainly an integer.

We shall prove by induction on the level
∑m

i=1 ni that〈ω, α〉 is even ifα
is compact, odd ifα is noncompact. When the level is 1, this assertion is
true by definition. In the general case, letα andβ be in�+

0 with α + β in
�, and suppose that the assertion is true forα andβ. Since the sum of the
ni for which αi is noncompact is additive, we are to prove that imaginary
roots satisfy

(6.99)

compact+ compact= compact

compact+ noncompact= noncompact

noncompact+ noncompact= compact.

But this is immediate from Corollary 2.35 and the bracket relations (6.24).

PROOF OFTHEOREM 6.96. DefineV, �0, and� as in Lemma 6.98.
Before we use Lemma 6.97, it is necessary to observe that the Dynkin
diagram of�0 is connected, i.e., that the roots in the Dynkin diagram of�

fixed by the given automorphism form a connected set. There is no problem
when the automorphism is the identity, and we observe the connectedness
in the other cases one at a time by inspection.

Let �+
0 = �+ ∩ V . The set� is discrete, being a subset of a lattice, and

Lemma 6.98 has just shown that it is nonempty. LetH0 be a member of�
with norm as small as possible. By Proposition 2.67 we can choose a new
positive system�+

0
′ for �0 that makesH0 dominant. The main step is to

show that

(6.100) at most one simple root of�+
0

′ is painted.

SupposeH0 = 0. If α is in�0, then〈H0, α〉 is 0 and is not an odd integer.
By definition of�, α is compact. Thus all roots of�0 are compact, and
(6.100) is true.

Now supposeH0 �= 0. Letα1, . . . , αm be the simple roots of�0 relative
to �+

0
′, and defineω1, . . . , ωm by 〈ωj , αk〉 = δjk . We can writeH0 =∑m

j=1 njωj with nj = 〈H0, αj〉. The numbernj is an integer sinceH0 is in
�, and it is≥ 0 sinceH0 is dominant relative to�+

0
′.

SinceH0 �= 0, we haveni > 0 for somei . ThenH0 − ωi is dominant
relative to�+

0
′, and Lemma 6.97 shows that〈H0−ωi , ωi〉 ≥ 0 with equality
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only if H0 = ωi . If strict inequality holds, then the elementH0 − 2ωi is in
� and satisfies

|H0 − 2ωi |2 = |H0|2 − 4〈H0 − ωi , ωi〉 < |H0|2,

in contradiction with the minimal-norm condition onH0. Hence equality
holds, andH0 = ωi .

SinceH0 is in�, a simple rootαj in �+
0

′ is noncompact only if〈H0, αj〉 is
an odd integer. Since〈H0, αj〉 = 0 for j �= i , the only possible noncompact
simple root in�+

0
′ is αi . This proves (6.100).

If the automorphism associated with the Vogan diagram is the identity,
then (6.100) proves the first conclusion of the theorem. For the second con-
clusion we are assuming thatH0 = ωi ; then an inequality〈ωi −ωi ′, ωi ′ 〉 > 0
would imply that

|H0 − 2ωi ′ |2 = |H0|2 − 4〈ωi − ωi ′, ωi ′ 〉 < |H0|2,

in contradiction with the minimal-norm condition onH0.
To complete the proof of the theorem, we have to prove the first conclu-

sion when the automorphism associated with the Vogan diagram is not the
identity. Choose by Theorem 2.63 an elements ∈ W (�0)with�+

0
′ = s�+

0 ,
and define�+′ = s�+. With h0 = t0 ⊕ a0 as usual, the elements mapsit0

to itself. Since�+ is defined by an ordering that takesit0 beforea0, so is
�+′. Let the simple roots of�+ beβ1, . . . , βl with β1, . . . , βm in �0. Then
the simple roots of�+′ aresβ1, . . . , sβl . Among these,sβ1, . . . , sβm are
the simple rootsα1, . . . , αm of �+

0
′ considered above, and (6.100) says that

at most one of them is noncompact. The rootssβm+1, . . . , sβl are complex
sinceβm+1, . . . , βl are complex ands carries complex roots to complex
roots. Thus�+′ has at most one simple root that is noncompact imaginary.
This completes the proof.

Now we can mine the consequences of the theorem. To each connected
abstract Vogan diagram that survives the redundancy tests of Theorem
6.96, we associate a noncomplex simple real Lie algebra. If the underlying
Dynkin diagram is classical, we find a known Lie algebra of matrices with
that Vogan diagram, and we identify any isomorphisms among the Lie
algebras obtained. If the underlying Dynkin digram is exceptional, we
give the Lie algebra a name, and we eliminate any remaining redundancy.

As we shall see, the data at hand from a Vogan diagram forg0 readily
determine the Lie subalgebrak0 in the Cartan decompositiong0 = k0 ⊕ p0.
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This fact makes it possible to decide which of the Lie algebras obtained
are isomorphic to one another.

First suppose that the automorphism of the underlying Dynkin diagram
is trivial. When no simple root is painted, theng0 is a compact real form.
For the classical Dynkin diagrams, the compact real forms are as follows:

(6.101)

Diagram Compact Real Form
An su(n + 1)
Bn so(2n + 1)
Cn sp(n)
Dn so(2n)

For the situation in which one simple root is painted, we treat the classical
Dynkin diagrams separately from the exceptional ones. Let us begin with
the classical cases. For each classical Vogan diagram with just one simple
root painted, we attach a known Lie algebra of matrices to that diagram.
The result is that we are associating a Lie algebra of matrices to each simple
root of each classical Dynkin diagram. We can assemble all the information
for one Dynkin diagram in one picture by labeling each root of the Dynkin
diagram with the associated Lie algebra of matrices. Those results are in
Figure 6.1.

Verification of the information in Figure 6.1 is easy for the most part.
For An, Example 1 in §8 gives the outcome, which is thatsu(p, q) results
when p + q = n + 1 and thepth simple root from the left is painted.

For Bn, suppose thatp + q = 2n + 1 and thatp is even. Represent

so(p, q) by real matrices

(
a b
b∗ d

)
with a andd skew symmetric. Forh0,

we use block-diagonal matrices whose firstn blocks areR
(

0 1
−1 0

)
of

size 2-by-2 and whose last block is of size 1-by-1. With linear functionals
on (h0)

C as in Example 2 of §II.1 and with the positive system as in that
example, the Vogan diagram is as indicated by Figure 6.1.

For Cn, the analysis for the firstn − 1 simple roots usessp(p, q) with
p + q = n in the same way that the analysis forAn usessu(p, q) with
p + q = n + 1. The analysis for the last simple root is different. For this
case we take the Lie algebra to besp(n, R). Actually it is more convenient
to use the isomorphic Lie algebrag0 = su(n, n) ∩ sp(n, C), which is

conjugate tosp(n, R) by the matrix given in block form as

√
2

2

(
1 i
i 1

)
.
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An

su(1, n) su(2, n − 1) su(n − 1, 2) su(n, 1)

2 2 2 1

Bn

so(2, 2n − 1) so(4, 2n − 3) so(2n − 2, 3) so(2n, 1)

1 1 1 2

Cn

sp(1, n − 1) sp(2, n − 2) sp(n − 1, 1) sp(n, R)

so
∗(2n)

Dn

so(2, 2n − 2) so(4, 2n − 4) so(2n−4, 4)

so
∗(2n)

FIGURE 6.1. Association of classical matrix algebras
to Vogan diagrams with the trivial automorphism

Within g0, we take

(6.102) h0 = {diag(iy1, . . . , iyn, −iy1, . . . , −iyn)}.
If we defineej of the indicated matrix to beiyj , then the roots are those
of typeCn on (2.43), and we choose as positive system the customary one
given in (2.50). The rootsei − ej are compact, and the roots±(ei + ej) and
±2ej are noncompact. Thus 2en is the unique noncompact simple root.

For Dn, the analysis for the firstn − 2 simple roots usesso(p, q) with p
andq even andp + q = 2n. It proceeds in the same way as withBn. The
analysis for either of the last two simple roots is different. For one of the
two simple roots we takeg0 = so∗(2n). We use the sameh0 andej as in
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(6.102). Then the roots are those of typeDn in (2.43), and we introduce the
customary positive system (2.50). The rootsei − ej are compact, and the
roots±(ei + ej) are noncompact. Thusen−1 + en is the unique noncompact
simple root. The remaining Vogan diagram is isomorphic to the one we
have just considered, and hence it too must correspond toso∗(2n).

For the exceptional Dynkin diagrams we make use of the additional
conclusion in Theorem 6.96; this says that we can disregard the case in
which αi is the unique simple noncompact root if〈ωi − ωi ′, ωi ′ 〉 > 0
for somei ′. First let us see how to apply this test in practice. Write
αi = ∑

k dikωk . Taking the inner product withαj shows thatdi j = 〈αi , αj〉.
If we putωj = ∑

l cl jαl , then

δi j = 〈αi , ωj〉 =
∑

k,l

dikcl j〈ωk, αl〉 =
∑

k

dikck j .

Thus the matrix(ci j) is the inverse of the matrix(di j). Finally the quantity
of interest is just〈ωj , ωj ′ 〉 = cj ′ j .

The Cartan matrix will serve as(di j) if all roots have the same length
because we can assume that|αi |2 = 2 for all i ; then the coefficientsci j are
obtained by inverting the Cartan matrix. When there are two root lengths,
(di j) is a simple modification of the Cartan matrix.

Appendix C gives all the information necessary to make the compu-
tations quickly. Let us indicate details forE6. Let the simple roots be
α1, . . . , α6 as in (2.86c). Then Appendix C gives

ω1 = 1
3(4α1 + 3α2 + 5α3 + 6α4 + 4α5 + 2α6)

ω2 = 1α1 + 2α2 + 2α3 + 3α4 + 2α5 + 1α6

ω3 = 1
3(5α1 + 6α2 + 10α3 + 12α4 + 8α5 + 4α6)

ω4 = 2α1 + 3α2 + 4α3 + 6α4 + 4α5 + 2α6

ω5 = 1
3(4α1 + 6α2 + 8α3 + 12α4 + 10α5 + 5α6)

ω6 = 1
3(2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6).

Let us use Theorem 6.96 to rule outi = 3, 4, and 5. Fori = 3, we take
i ′ = 1; we have〈ω3, ω1〉 = 5

3 and〈ω1, ω1〉 = 4
3, so that〈ω3 − ω1, ω1〉 > 0.

For i = 4, we takei ′ = 1; we have〈ω4, ω1〉 = 2 and〈ω1, ω1〉 = 4
3, so that

〈ω4 − ω1, ω1〉 > 0. Fori = 5, we takei ′ = 6; we have〈ω5, ω6〉 = 5
3 and

〈ω6, ω6〉 = 4
3, so that〈ω5 − ω6, ω6〉 > 0. Although there are six abstract
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E II k0 = su(6) ⊕ su(2)

E III k0 = so(10) ⊕ R

E V k0 = su(8)

E VI k0 = so(12) ⊕ su(2)

E VII k0 = e6 ⊕ R

E VIII k0 = so(16)

E IX k0 = e7 ⊕ su(2)

1 1 2 2
F I k0 = sp(3) ⊕ su(2)

1 1 2 2
F II k0 = so(9)

1 3
G k0 = su(2) ⊕ su(2)

FIGURE 6.2. Noncompact noncomplex exceptional simple real Lie
algebras with the trivial automorphism in the Vogan diagram
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Vogan diagrams ofE6 with trivial automorphism and with one noncom-
pact simple root, Theorem 6.96 says that we need to consider only the
three where the simple root isα1, α2, or α6. Evidentlyα6 yields a result
isomorphic to that forα1 and may be disregarded.

By similar computations for the other exceptional Dynkin diagrams, we
find that we may takeαi to be an endpoint vertex of the Dynkin diagram.
Moreover, inG2, αi may be taken to be the long simple root, while inE8,
we do not have to considerα2 (the endpoint vertex on the short branch).
Thus we obtain the 10 Vogan diagrams in Figure 6.2. We have given
each of them its name from the Cartan listing [1927a]. Computingk0 is
fairly easy. As a Lie algebra,k0 is reductive by Corollary 4.25. The root
system of its semisimple part is the system of compact roots, which we can
compute from the Vogan diagram if we remember (6.99) and use the tables
in Appendix C that tell which combinations of simple roots are roots. Then
we convert the result into a compact Lie algebra using (6.101), and we add
R as center if necessary to make the dimension of the Cartan subalgebra
work out correctly. A glance at Figure 6.2 shows that when the Vogan
diagrams for twog0’s have the same underlying Dynkin diagram, then the
k0’s are different; by Corollary 6.19 theg0’s are nonisomorphic.

Now we suppose that the automorphism of the underlying Dynkin dia-
gram is nontrivial. We already observed that the Dynkin diagram has to be
of type An, Dn, or E6.

For typeAn, we distinguishn even fromn odd. Forn even there is just
one abstract Vogan diagram, namely

It must correspond tosl(n + 1, R) since we have not yet found a Vogan
diagram forsl(n+1, R) and since the equalitysl(n+1, R)C = sl(n+1, C)

determines the underlying Dynkin diagram as beingAn.
For An with n odd, there are two abstract Vogan diagrams, namely
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and

The first of these, according to Example 2 in §8, comes fromsl(n + 1, R).
The second one comes fromsl( 1

2(n + 1), H). In the latter case we take

h0 = {
diag(x1 + iy1, . . . , x 1

2 (n+1) + iy 1
2 (n+1))

∣∣ ∑
xm = 0

}
.

If em and fm on the indicated member ofh0 areiym andxm, respectively,
then� is the same as in Example 2 of §8. The imaginary roots are the
±2em, and they are compact. (The root vectors for±2em generate the
complexification of thesu(2) in the j th diagonal entry formed by the skew-
Hermitian quaternions there.)

For type Dn, the analysis usesso(p, q) with p and q odd and with

p + q = 2n. Representso(p, q) by real matrices

(
a b
b∗ d

)
with a andd

skew symmetric. Forh0, we use block-diagonal matrices with all blocks of

size 2-by-2. The first12(p−1) and the last12(q−1) blocks areR
(

0 1
−1 0

)
,

and the remaining one isR
(

0 1
1 0

)
. The blocksR

(
0 1

−1 0

)
contribute

to t0, while R
(

0 1
1 0

)
contributes toa0. The linear functionalsej for

j �= 1
2(p + 1) are as in Example 4 of §II.1, ande 1

2 (p+1) on the embedded(
0 t
t 0

)
∈ R

(
0 1
1 0

)
is just t . The roots are±ei ± ej with i �= j , and

those involving index1
2(p + 1) are complex.

Supposeq = 1. Then the standard ordering takesit0 beforea0. The
simple roots as usual are

e1 − e2, . . . , en−2 − en−1, en−1 − en, en−1 + en.

The last two are complex, and the others are compact imaginary. Similarly
if p = 1, we can use the reverse of the standard ordering and conclude that
all imaginary roots are compact.
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Now supposep > 1 andq > 1. In this case we cannot use the standard
ordering. To haveit0 beforea0 in defining positivity, we take12(p +1) last,
and the simple roots are

e1 − e2, . . . , e 1
2 (p−1)−1 − e 1

2 (p−1), e 1
2 (p−1) − e 1

2 (p+1)+1,

e 1
2 (p+1)+1 − e 1

2 (p+1)+2, . . . , en−1 − en, en − e 1
2 (p+1), en + e 1

2 (p+1).

The last two are complex, and the others are imaginary. Among the imag-
inary simple roots,e 1

2 (p−1) − e 1
2 (p+1)+1 is the unique noncompact simple

root.
We can assemble our results forDn in a diagram like that in Figure 6.1.

As we observed above, the situation with all imaginary roots unpainted
corresponds toso(1, 2n − 1) ∼= so(2n − 1, 1). If one imaginary root is
painted, the associated matrix algebra may be seen from the diagram

so(3, 2n − 3) so(5, 2n − 5) so(2n−3, 3)

For type E6, Theorem 6.96 gives us three diagrams to consider. As
in (2.86c) letα2 be the simple root corresponding to the endpoint vertex
of the short branch in the Dynkin diagram, and letα4 correspond to the
triple point. The Vogan diagram in whichα4 is painted gives the same
g0 (up to isomorphism) as the Vogan diagram withα2 painted. In fact,
the Weyl group elementsα4sα2 carries the one withα2 painted to the one
with α4 painted. Thus there are only two Vogan diagrams that need to be
considered, and they are in Figure 6.3. The figure also gives the names of
the Lie algebrasg0 in the Cartan listing [1927a] and identifiesk0.

To computek0 for each case of Figure 6.3, we regroup the root-space
decomposition ofg as

g = (
t ⊕

⊕
α imaginary

compact

gα ⊕
⊕

complex pairs
{α,θα}

(Xα + θ Xα)
)

⊕ (
a ⊕

⊕
α imaginary
noncompact

gα ⊕
⊕

complex pairs
{α,θα}

(Xα − θ Xα)
)
,

(6.103)

and it is clear that the result isg = k ⊕ p. Therefore the roots in�(k, t)

are the restrictions tot of the imaginary compact roots in�(g, h), together
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with the restrictions tot of each pair{α, θα} of complex roots in�(g, h).
Also the dimension ofa0 is the number of 2-element orbits in the Vogan
diagram and is therefore 2 in each case.

We can tell which roots are complex, and we need to know how to decide
which imaginary roots are compact. This determination can be carried out
by induction on the level in the expansion in terms of simple roots. Thus
suppose thatα andβ are positive roots withβ simple, and

E I k0 = sp(4)

E IV k0 = f4

FIGURE 6.3. Noncompact noncomplex exceptional simple real Lie
algebras with a nontrivial automorphism in the Vogan diagram

supposeα + β is an imaginary root. Ifβ is imaginary, then (6.99) set-
tles matters. Otherwiseβ is complex simple, and Figure 6.3 shows that
〈β, θβ〉 = 0. Therefore the following proposition settles matters forg0 as
in Figure 6.3 and allows us to complete the induction.

Proposition 6.104. For a connected Vogan diagram involving a non-
trivial automorphism, suppose thatα andβ are positive roots, thatβ is
complex simple, thatβ is orthogonal toθβ, and thatα +β is an imaginary
root. Thenα − θβ is an imaginary root, andα − θβ andα + β have the
same type, compact or noncompact.

PROOF. Taking the common length of all roots to be 2, we have

1 = 2 − 1 = 〈β, β〉 + 〈β, α〉 = 〈β, α + β〉
= 〈θβ, θ(β + α)〉 = 〈θβ, α + β〉 = 〈θβ, α〉 + 〈θβ, β〉 = 〈θβ, α〉.

Thusα − θβ is a root, and we have

α + β = θβ + (α − θβ) + β.

Sinceα + β is imaginary,α − θβ is imaginary. Therefore we can write
θ Xα−θβ = s Xα−θβ with s = ±1. Writeθ Xβ = t Xθβ andθ Xθβ = t Xβ with
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t = ±1. Then we have

θ [[ Xθβ, Xα−θβ ], Xβ ] = [[θ Xθβ, θ Xα−θβ ], θ Xβ ]

= st2[[ Xβ, Xα−θβ ], Xθβ ]

= −s[[ Xα−θβ, Xθβ ], Xβ ] − s[[ Xθβ, Xβ ], Xα−θβ ]

= −s[[ Xα−θβ, Xθβ ], Xβ ]

= s[[ Xθβ, Xα−θβ ], Xβ ],

and the proof is complete.

Let us summarize our results.

Theorem 6.105(classification). Up to isomorphism every simple real
Lie algebra is in the following list, and everything in the list is a simple
real Lie algebra:

(a) the Lie algebragR, whereg is complex simple of typeAn for n ≥ 1,
Bn for n ≥ 2, Cn for n ≥ 3, Dn for n ≥ 4, E6, E7, E8, F4, or G2,

(b) the compact real form of anyg as in (a),
(c) the classical matrix algebras

su(p, q) with p ≥ q > 0, p + q ≥ 2
so(p, q) with p > q > 0, p + q odd, p + q ≥ 5

or with p ≥ q > 0, p + q even, p + q ≥ 8
sp(p, q) with p ≥ q > 0, p + q ≥ 3
sp(n, R) with n ≥ 3
so∗(2n) with n ≥ 4
sl(n, R) with n ≥ 3
sl(n, H) with n ≥ 2,

(d) the 12 exceptional noncomplex noncompact simple Lie algebras
given in Figures 6.2 and 6.3.

The only isomorphism among Lie algebras in the above list isso∗(8) ∼=
so(6, 2).

REMARKS. The restrictions on rank in (a) prevent coincidences in
Dynkin diagrams. These restrictions are maintained in (b) and (c) for
the same reason. In the case ofsl(n, R) andsl(n, H), the restrictions onn
force the automorphism to be nontrivial. In (c) there are no isomorphisms
within a series because thek0’s are different. To have an isomorphism
between members of two series, we need at least two series with the same
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Dynkin diagram and automorphism. Then we examine the possibilities
and are led to compareso∗(8) with so(6, 2). The standard Vogan diagrams
for these two Lie algebras are isomorphic, and hence the Lie algebras are
isomorphic by Theorem 6.74.

11. Restricted Roots in the Classification

Additional information about the simple real Lie algebras of §10 comes
by switching from a maximally compact Cartan subalgebra to a maximally
noncompact Cartan subalgebra. The switch exposes the system of restricted
roots, which governs the Iwasawa decomposition and some further structure
theory that will be developed in Chapter VII.

According to §7 the switch in Cartan subalgebra is best carried out
when we can find a maximal strongly orthogonal sequence of noncompact
imaginary roots such that, after application of the Cayley transforms, no
noncompact imaginary roots remain. Ifg0 is a noncomplex simple real Lie
algebra and if we have a Vogan diagram forg0 as in Theorem 6.96, such a
sequence is readily at hand by an inductive construction. We start with a
noncompact imaginary simple root, form the set of roots orthogonal to it,
label their compactness or noncompactness by means of Proposition 6.72,
and iterate the process.

EXAMPLE. Let g0 = su(p, n − p) with p ≤ n − p. The distinguished
Vogan diagram is of typeAn−1 with ep − ep+1 as the unique noncompact
imaginary simple root. Since the Dynkin diagram does not have a double
line, orthogonality implies strong orthogonality. The above process yields
the sequence of noncompact imaginary roots

(6.106)

2 fp = ep − ep+1

2 fp−1 = ep−1 − ep+2

...

2 f1 = e1 − e2p.

We do a Cayley transform with respect to each of these. The order is
irrelevant; since the roots are strongly orthogonal, the individual Cayley
transforms commute. It is helpful to use the same names for roots before
and after Cayley transform but always to remember what Cartan subalgebra
is being used. After Cayley transform the remaining imaginary roots are
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those roots involving only indices 2p + 1, . . . , n, and such roots are com-
pact. Thus a maximally noncompact Cartan subalgebra has noncompact
dimensionp. The restricted roots are obtained by projecting allek − el on
the linear span of (6.106). If 1≤ k < l ≤ p, we have

ek − el = 1
2(ek − e2p+1−k) − 1

2(el − e2p+1−l) + (orthogonal to (6.106))

= ( fk − fl) + (orthogonal to (6.106)).

Thus fk − fl is a restricted root. For the samek andl, ek − e2p+1−l restricts
to fk + fl . In addition, ifk + l = 2p +1, thenek − el restricts to 2fk , while
if k ≤ p andl > 2p, thenek − el restricts to fk . Consequently the set of
restricted roots is

� =
{ {± fk ± fl} ∪ {±2 fk} ∪ {± fk} if 2 p < n

{± fk ± fl} ∪ {±2 fk} if 2 p = n.

Thus� is of type(BC)p if 2 p < n and of typeCp if 2 p = n.

We attempt to repeat the construction in the above example for all of the
classical matrix algebras and exceptional algebras in Theorem 6.105, parts
(c) and (d). There is no difficulty when the automorphism in the Vogan
diagram is trivial. However, the cases where the automorphism is nontrivial
require special comment. Except forsl(2n + 1, R), which we can handle
manually, each of these Lie algebras hasβ orthogonal toθβ wheneverβ
is a complex simple root. Then it follows from Proposition 6.104 that any
positive imaginary root is the sum of imaginary simple roots and a number
of pairsβ, θβ of complex simple roots and that the complex simple roots can
be disregarded in deciding compactness or noncompactness. In particular,
sl(n, H) and E IV have no noncompact imaginary roots.

EXAMPLE. Let g0 = E I. The Vogan diagram is

α3 α1

α2 α4

α5 α6
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Let α2 be the first member in the orthogonal sequence of imaginary
noncompact roots. From the theory forD4, a nonobvious root orthogonal
to α2 is α0 = α2 + 2α4 + α3 + α5. This root is imaginary, and no smaller
imaginary root is orthogonal toα2. We can disregard the complex pairα3, α5

in deciding compactness or noncompactness (Proposition 6.104), and we
see thatα0 is noncompact. Following our algorithm, we can expand our
list to α2, α0. The Vogan diagram of the system orthogonal toα2 is

α1 α3

α0

α6 α5

This is the Vogan diagram ofsl(6, R), and we therefore know that the
list extends to

α2, α0, α1 + α0 + α6, α3 + (α1 + α0 + α6) + α5.

Thus the Cayley transforms increase the noncompact dimension of the
Cartan subalgebra by 4 from 2 to 6, and it follows that E I is a split real
form.

It is customary to refer to the noncompact dimension of a maximal
noncompact Cartan subalgebra ofg0 as thereal rank of g0. We are led to
the following information about restricted roots. In the case of the classical
matrix algebras, the results are

(6.107)

g0 Condition Real Rank Restricted Roots
su(p, q) p ≥ q q (BC)q if p > q, Cq if p = q
so(p, q) p ≥ q q Bq if p > q, Dq if p = q
sp(p, q) p ≥ q q (BC)q if p > q, Cq if p = q
sp(n, R) n Cn

so∗(2n) [ n
2] C 1

2 n if n even, (BC) 1
2 (n−1) if n odd

sl(n, R) n − 1 An−1

sl(n, H) n − 1 An−1
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For the exceptional Lie algebras the results are

(6.108)

g0 Real Rank Restricted Roots
E I 6 E6

E II 4 F4

E III 2 (BC)2

E IV 2 A2

E V 7 E7

E VI 4 F4

E VII 3 C3

E VIII 8 E8

E IX 4 F4

F I 4 F4

F II 1 (BC)1

G 2 G2

For the Lie algebras in Theorem 6.105a, the above analysis simplifies.
Hereg is complex simple, and we takeg0 = gR. Let J be multiplication
by

√−1 within gR. If θ is a Cartan involution ofgR, then Corollary 6.22
shows thatθ comes from conjugation ofg with respect to a compact real
form u0. In other words,gR = u0 ⊕ Ju0 with θ(X + JY ) = X − JY . Let
h0 = t0 ⊕ a0 be aθ stable Cartan subalgebra ofgR. Sincet0 commutes
with a0, t0 commutes withJa0. Also a0 commutes withJa0. Sinceh0

is maximal abelian,Ja0 ⊆ t0. Similarly J t0 ⊆ a0. ThereforeJ t0 = a0,
andh0 is actually a complex subalgebra ofg. By Proposition 2.7,h0 is a
(complex) Cartan subalgebra ofg. Let

g = h0 ⊕
⊕
α∈�

gα

be the root-space decomposition. Here eachα is complex linear on the
complex vector spaceh0. Thus distinctα’s have distinct restrictions toa0.
Hence

g
R = a0 ⊕ t0 ⊕

⊕
α∈�

gα

is the restricted-root space decomposition, each restricted-root space being
2-dimensional overR. Consequently the real rank ofgR equals the rank
of g, and the system of restricted roots ofgR is canonically identified (by
restriction or complexification) with the system of roots ofg. In particular
the system� of restricted roots is of the same type (An throughG2) as the
system� of roots.
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The simple real Lie algebras of real-rank one will play a special role in
Chapter VII. From Theorem 6.105 and our determination above of the real
rank of each example, the full list of such Lie algebras is

(6.109)

su(p, 1) with p ≥ 1
so(p, 1) with p ≥ 3
sp(p, 1) with p ≥ 2

F II

Low-dimensional isomorphisms show that other candidates are redundant:

(6.110)

sl(2, C) ∼= so(3, 1)

so(2, 1) ∼= su(1, 1)

sp(1, 1) ∼= so(4, 1)

sp(1, R) ∼= su(1, 1)

so
∗(4) ∼= su(2) ⊕ su(1, 1)

so
∗(6) ∼= su(3, 1)

sl(2, R) ∼= su(1, 1)

sl(2, H) ∼= so(5, 1).

12. Problems

1. Prove that ifg is a complex semisimple Lie algebra, then any two split real
forms ofg are conjugate via Autg.

2. Letg0 = k0 ⊕ p0 be a Cartan decomposition of a real semisimple Lie algebra.
Prove thatk0 is compactly embedded ing0 and that it is maximal with respect
to this property.

3. Let G be semisimple, letg0 = k0 ⊕ p0 be a Cartan decomposition of the Lie
algebra, and letX andY be inp0. Prove that expX expY expX is in expp0.

4. Let g ∈ SL(m, C) be positive definite. Prove thatg can be decomposed as
g = lu, wherel is lower triangular andu is upper triangular.

5. In the development of the Iwasawa decomposition forSO(p, 1)0 and
SU (p, 1), make particular choices of a positive system for the restricted roots,
and computeN in each case.

6. (a) Prove thatg0 = so∗(2n) consists in block form of all complex matrices(
a b

−b̄ ā

)
with a skew Hermitian andb skew symmetric.
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(b) In g0, leth0 be the Cartan subalgebra in (6.102). Assuming that the roots
are±ei ± ej , find the root vectors. Show thatei − ej is compact and
ei + ej is noncompact.

(c) Show that a choice of maximal abelian subspace ofp0 is to takea to be
0 and takeb to be block diagonal and real with blocks of sizes 2, . . . , 2
if n is even and 1, 2, . . . , 2 if n is odd.

(d) Find the restricted-root space decomposition ofg0 relative to the maximal
abelian subspace ofp0 given in (c).

7. Let h0 = t0 ⊕ a0 be a maximally noncompactθ stable Cartan subalgebra,
and leth = t ⊕ a be the complexification. Fix a positive system�+ for the
restricted roots, and introduce a positive system�+ for the roots so that a
nonzero restriction toa0 of a member of�+ is always in�+.
(a) Prove that every simple restricted root for�+ is the restriction of a simple

root for�+.
(b) LetV be the span of the imaginary simple roots. Prove for each simpleαi

not in V that−θαi is in αi ′ + V for a unique simpleαi ′ , so thatαi �→ αi ′

defines a permutation of order 2 on the simple roots not inV .
(c) For each orbit{i, i ′} of one or two simple roots not inV, define an element

H = H{i,i ′} ∈ h by αi (H) = αi ′(H) = 1 andαj (H) = 0 for all other j .
Prove thatH is in a.

(d) Using the elements constructed in (c), prove that the linear span of the
restrictions toa0 of the simple roots has dimension equal to the number
of orbits.

(e) Conclude from (d) that the nonzero restriction toa0 of a simple root for
�+ is simple for�+.

8. The groupK for G = SL(3, R) is K = SO(3), which has a double cover̃K .
ThereforeG itself has a double cover̃G. The groupM = Z K (A) is known
from Example 1 of §5 to be the direct sum of two 2-element groups. Prove
that M̃ = Z K̃ (A) is isomorphic to the subgroup{±1, ±i, ± j, ±k} of the unit
quaternions.

9. Suppose thatD and D′ are Vogan diagrams corresponding tog0 and g′
0,

respectively. Prove that an inclusionD ⊆ D′ induces a one-one Lie algebra
homomorphismg0 → g′

0.

10. LetG be a semisimple Lie group with Lie algebrag0. Fix a Cartan involution
θ and Cartan decompositiong0 = k0 ⊕ p0, and letK be the analytic subgroup
of G with Lie algebrak0. Suppose thatg0 has a Cartan subalgebra contained
in k0.
(a) Prove that there existsk ∈ K such thatθ = Ad(k).
(b) Prove that if� is the system of restricted roots ofg0, then−1 is in the

Weyl group of�.



428 VI. Structure Theory of Semisimple Groups

11. LetG be a semisimple Lie group with Lie algebrag0. Fix a Cartan involution
θ and Cartan decompositiong0 = k0 ⊕ p0, and letK be the analytic subgroup
of G with Lie algebrak0. Prove that ifg0 does not have a Cartan subalgebra
contained ink0, then there does not existk ∈ K such thatθ = Ad(k).

12. Let t0 ⊕ a0 be a maximally noncompactθ stable Cartan subalgebra. Prove
that if α is a root, thenα + θα is not a root.

13. Forg0 = sl(2n, R), let h(i)
0 consist of all block-diagonal matrices whose first

i blocks are of size 2 of the form

{(
tj θj

−θj tj

)}
, for 1 ≤ j ≤ i , and whose

remaining blocks are 2(n − i) blocks of size 1.

(a) Prove that theh(i)
0 , 0 ≤ i ≤ n, form a complete set of nonconjugate

Cartan subalgebras ofg0.

(b) Relateh
(i)
0 to the maximally compactθ stable Cartan subalgebra of

Example 2 in §8, using Cayley transforms.

(c) Relateh(i)
0 to the maximally noncompactθ stable Cartan subalgebra of

diagonal matrices, using Cayley transforms.

14. The example in §7 constructs four Cartan subalgebras forsp(2, R). The
first one h0 is maximally noncompact, and the last oneh′

0 is maximally
compact. The second one has noncompact part contained inh0 and compact
part contained inh′

0, but the third one does not. Show that the third one is not
even conjugate to a Cartan subalgebra whose noncompact part is contained in
h0 and whose compact part is contained inh′

0.

15. Let a(2n)-by-(2n) matrix be given in block form by

√
2

2

(
1 i
i 1

)
. Define

a mappingX �→ Y of the set of(2n)-by-(2n) complex matrices to itself by

Y =
(

1 i
i 1

)
X

(
1 i
i 1

)−1

.

(a) Prove that the map carriessu(n, n) to an image whose membersY are
characterized by TrY = 0 andJY +Y ∗ J = 0, whereJ is as in Example 2
of §I.8.

(b) Prove that the mapping exhibitssu(n, n) ∩ sp(n, C) as isomorphic with
sp(n, R).

(c) Within g0 = su(n, n) ∩ sp(n, C), let θ be negative conjugate transpose.
Defineh0 to be the Cartan subalgebra in (6.102). Referring to Example 3
in §II.1, find all root vectors and identify which are compact and which
are noncompact. Interpret the above mapping on(g0)

C as a product of
Cayley transformscβ . Which rootsβ are involved?

16. (a) Prove that every element ofSL(2, R) is conjugate to at least one matrix
of the form



12. Problems 429

(
a 0
0 a−1

)
,

(
1 t
0 1

)
,

( −1 t
0 −1

)
, or

(
cosθ sinθ

− sinθ cosθ

)
.

Herea is nonzero, andt andθ are arbitrary inR.
(b) Prove that the exponential map fromsl(2, R) into SL(2, R) has image

{X | Tr X > −2} ∪ {−1}.
17. Letg be a simple complex Lie algebra. Describe the Vogan diagram ofgR.

18. This problem examines the effect on the painting in a Vogan diagram when
the positive system is changed from�+ to sα�+, whereα is an imaginary
simple root.
(a) Show that the new diagram is a Vogan diagram with the same Dynkin di-

agram and automorphism and with the painting unchanged at the position
of α and at all positions not adjacent toα.

(b) If α is compact, show that there is no change in the painting of imaginary
roots in positions adjacent toα.

(c) If α is noncompact, show that the painting of an imaginary root at a
position adjacent toα is reversed unless the root is connected by a double
line toα and is long, in which case it is unchanged.

(d) Devise an algorithm for a Vogan diagram of typeAn for a step-by-step
change of positive system so that ultimately at most one simple root is
painted (as is asserted to be possible by Theorem 6.96).

19. In the Vogan diagram from Theorem 6.96 for the Lie algebra F II of §10, the
simple root12(e1 − e2 − e3 − e4) is noncompact, and the simple rootse2 − e3,
e3 − e4, ande4 are compact.
(a) Verify that 1

2(e1 − e2 + e3 + e4) is noncompact.
(b) The roots1

2(e1 − e2 − e3 − e4) and 1
2(e1 − e2 + e3 + e4) are orthogonal

and noncompact, yet (6.108) says that F II has real rank one. Explain.

20. The Vogan diagram of F I, as given by Theorem 6.96, hase2−e3 as its one and
only noncompact simple root. What strongly orthogonal set of noncompact
roots is produced by the algorithm of §11?

21. Verify the assertion in (6.108) that E VII has real rank 3 and restricted roots
of typeC3.

Problems 22–24 give further information about the Cartan decompositiong0 =
k0 ⊕ p0 of a real semisimple Lie algebra. LetB be the Killing form ofg0.

22. Letp′
0 be an adk0 invariant subspace ofp0, and definep′

0
⊥ to be the set of

all X ∈ p0 such thatB(X, p′
0) = 0. Prove thatB([p′

0, p
′
0
⊥], k0) = 0, and

conclude that [p′
0, p

′
0
⊥] = 0.
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23. If p′
0 is an adk0 invariant subspace ofp0, prove that [p′

0, p0] ⊕ p′
0 is an ideal

in g0.

24. Under the additional assumption thatg0 is simple but not compact, prove that

(a) [p0, p0] = k0

(b) k0 is a maximal proper Lie subalgebra ofg0.

Problems 25–27 deal with low-dimensional isomorphisms.

25. Establish the following isomorphisms by using Vogan diagrams:
(a) the isomorphisms in (6.110)
(b) sl(4, R) ∼= so(3, 3), su(2, 2) ∼= so(4, 2), sp(2, R) ∼= so(3, 2)

(c) sp(2) ∼= so(5), su(4) ∼= so(6), su(2) ⊕ su(2) ∼= so(4).

26. (a) Prove that the mapping of Problem 36 of Chapter II gives an isomorphism
of sl(4, R) ontoso(3, 3).

(b) Prove that the mapping of Problem 38 of Chapter II gives an isomorphism
of sp(2, R) ontoso(3, 2).

27. Prove that the Lie algebra isomorphisms of Problem 25b induce Lie group
homomorphismsSL(4, R) → SO(3, 3)0, SU (2, 2) → SO(4, 2)0, and
Sp(2, R) → SO(3, 2)0. What is the kernel in each case?

Problems 28–35 concern quasisplit Lie algebras and inner forms. They use facts
about Borel subalgebras, which are defined in Chapter V. Letg0 be a real semi-
simple Lie algebra with complexificationg, and letσ be the conjugation ofg with
respect tog0: σ(X + iY ) = X − iY for X andY in g0. The Lie algebrag0 is said to
bequasisplit if g has a Borel subalgebrab such thatσ(b) = b. Any split real form
of g is quasisplit. Two real formsg0 andg′

0 of g, with respective conjugationsσ
andσ ′, are said to beinner forms of one another if there existsg ∈ Int g such that
σ ′ = Ad(g) ◦σ ; this is an equivalence relation. This sequence of problems shows
that any real form ofg is an inner form of a quasisplit form, the quasisplit form
being unique up to the action of Intg. The problems also give a useful criterion
for deciding which real forms are quasisplit.

28. Show that the conjugationσm,n of sl(m + n, C) with respect tosu(m, n)

is σm,n(X) = −Im,n X∗ Im,n. Deduce thatsu(m, n) andsu(m ′, n′) are inner
forms of one another ifm + n = m ′ + n′.

29. Letg0 be a real form ofg, and letσ be the corresponding conjugation ofg.
Prove that there exists an automorphism� of Int(gR) whose differential isσ .

30. Problem 35 of Chapter V dealt with a triple(b, h, {Xα}) consisting of a Borel
subalgebrab of g, a Cartan subalgebrah of g that lies inb, and a system
of nonzero root vectors for the simple roots in the positive system of roots
definingb. Let (b′, h′, {Xα′ }) be another such triple. Under the assumption
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that there is a compact Lie algebrau0 that is a real form ofgand has the property
thath0 = h ∩ u0 is a maximal abelian subalgebra ofu0, that problem showed
that there exists an elementg ∈ Int g such that Ad(g)b = b′, Ad(g)h = h′,
and Ad(g){Xα} = {Xα′ }. Prove that the assumption about the existence ofu0

is automatically satisfied and that the elementg is unique.

31. Let g0 be a real form ofg, let σ be the corresponding conjugation ofg,
and let(b, h, {Xα}) be a triple as in Problem 30. Chooseg ∈ Int g as in
that problem carrying the triple(b, h, {Xα}) to the tripleσ(b, h, {Xα}) =
(σ (b), σ (h), σ {Xα}), and letσ ′ = Ad(g)−1 ◦ σ . Prove that(σ ′)2 is in Intg,
deduce that(σ ′)2 = 1, and conclude thatσ ′ is the conjugation ofg with
respect to a quasisplit real formg′

0 of g such thatg0 andg′
0 are inner forms of

one another.

32. Letg0 be a quasisplit real form ofg, let σ be the corresponding conjugation
of g, and letb be a Borel subalgebra ofg such thatσ(b) = b. Writeb = h⊕n

for a Cartan subalgebrah of g, wheren = [b, b]. Let Hδ be the member ofh
corresponding to half the sum of the positive roots, and leth′ be the centralizer
Zb(Hδ + σ(Hδ)). Using Problem 34 of Chapter V, prove thath′ is a Cartan
subalgebra ofg such thatb = h′ ⊕ n andσ(h′) = h′.

33. Letg0 be a real form ofg, and letθ be a Cartan involution ofg0. Prove that
the following are equivalent:
(a) The real formg0 is quasisplit.
(b) If h0 = a0 ⊕ t0 is a maximally noncompactθ stable Cartan subalgebra

of g0 and ifh = hC
0 , then�(g, h) has no imaginary roots.

(c) If g0 = k0 ⊕ p0 is the Cartan decomposition ofg0 with respect toθ and
if a0 is maximal abelian inp0, thenm0 = Zk0(a0) is abelian.

34. Letg0 be a quasisplit real form ofg, letσ be the corresponding conjugation of
g, and letb be a Borel subalgebra ofg such thatσ(b) = b. Using Problem 32,
write b = h ⊕ n for a Cartan subalgebrah of g with σ(h) = h, where
n = [b, b]. Prove that the set{Xα} of root vectors for simple roots can be
chosen so thatσ {Xα} = {Xα}.

35. Let g0 and g′
0 be quasisplit real forms ofg, let σ and σ ′ be their corre-

sponding conjugations ofg, and suppose that(b, h, {Xα}) and(b′, h′, {Xα′ })
are triples as in Problem 30 such thatσ(b, h, {Xα}) = (b, h, {Xα}) and
σ ′(b′, h′, {Xα′ }) = (b′, h′, {Xα′ }). Chooseg ∈ Int g by that problem such
that Ad(g)(b, h, {Xα}) = (b′, h′, {Xα′ }). Prove that ifg0 andg′

0 are inner
forms of one another, then the automorphism Ad(g) ◦ σ ◦ Ad(g)−1 ◦ σ ′ of
g sends(b′, h′, {Xα′ }) to itself and is inner, and conclude thatg0 andg′

0 are
conjugate via Intg.






