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CHAPTER IX

Induced Representations and Branching Theorems

Abstract. The definition of unitary representation of a compact group extends to the
case that the vector space is replaced by an infinite-dimensional Hilbert space, provided
care is taken to incorporate a suitable notion of continuity. The theorem is that each unitary
representation of a compact groupG splits as the orthogonal sum of finite-dimensional
irreducible invariant subspaces. These invariant subspaces may be grouped according to
the equivalence class of the irreducible representation, and there is an explicit formula for
the orthogonal projection on the closure of the sum of all the spaces of a given type. As a
result of this formula, one can speak of the multiplicity of each irreducible representation
in the given representation.

The left-regular and right-regular representations ofG onL2(G) are examples of unitary
representations. So is the left-regular representation ofG on L2(G/H) for any closed
subgroupH. More generally, ifH is a closed subgroup andσ is a unitary representation
of H, the induced representation ofσ from H to G is an example. Ifσ is irreducible,
Frobenius reciprocity says that the multiplicity of any irreducible representationτ of G in
the induced representation equals the multiplicity ofσ in the restriction ofτ to H .

Branching theorems give multiplicities of irreducible representations ofH in the re-
striction of irreducible representations ofG. Three classical branching theorems deal with
passing fromU (n) to U (n − 1), from SO(n) to SO(n − 1), and fromSp(n) to Sp(n − 1).
These may all be derived from Kostant’s Branching Theorem, which gives a formula for
multiplicities when passing from a compact connected Lie group to a closed connected
subgroup. Under a favorable hypothesis the Kostant formula expresses each multiplicity as
an alternating sum of values of a certain partition function.

Some further branching theorems of interest are those for whichG/H is a compact
symmetric space in the sense thatH is the identity component of the group of fixed elements
under an involution ofG. Helgason’s Theorem translates into a theorem in this setting for
the case of the trivial representation ofH by means of Riemannian duality. An important
example of a compact symmetric space is(G × G)/diagG; a branching theorem for this
situation tells how the tensor product of two irreducible representations ofG decomposes.

A cancellation-free combinatorial algorithm for decomposing tensor products for the uni-
tary groupU (n) is of great utility. It leads to branching theorems for the compact symmetric
spacesU (n)/SO(n) andU (2n)/Sp(n). In turn the first of these branching theorems helps in
understanding branching for the compact symmetric spaceSO(n +m)/(SO(n)× SO(m)).

Iteration of branching theorems for compact symmetric spaces permits analysis of some
complicated induced representations. Of special note isL2(K/(K ∩ M0)) when G is a
reductive Lie group,K is the fixed group under the global Cartan involution, andM AN is
the Langlands decomposition of any maximal parabolic subgroup.
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556 IX. Induced Representations and Branching Theorems

1. Infinite-dimensional Representations of Compact Groups

In the discussion of the representation theory of compact groups in
Chapter IV, all the representations were finite dimensional. A number of
applications of compact groups, however, involve naturally arising infinite-
dimensional representations, and a theory of such representations is needed.
We address this problem in the first two sections of this chapter.

Throughout this chapter,G will denote a compact group, anddx will
denote a two-sided Haar measure onG of total mass 1. To avoid having to
discuss some small measure-theoretic complications, we shall state results
for general compact groups but assume in proofs thatG is separable as
a topological group. This matter will not be an issue after §2, whenG
will always be a Lie group. For commentary about the measure-theoretic
complications, see the Historical Notes.

If V is a complex Hilbert space with inner product( · , · ) and norm‖ · ‖,
then aunitary operator U on V is a linear transformation fromV onto
itself that preserves the norm in the sense that‖U (v)‖ = ‖v‖ for all v in
V . EquivalentlyV is to be a linear operator ofV onto itself that preserves
the inner product in the sense that(U (v), U (v′)) = (v, v′) for all v andv′

in V . The unitary operators onV form a group. They are characterized by
havingU−1 = U ∗, whereU ∗ is the adjoint ofU .

A unitary representation of G on the complex Hilbert spaceV is a
homomorphism ofG into the group of unitary operators onV such that a
certain continuity property holds. Continuity is a more subtle matter in the
present context than it was in §IV.2 because not all possible definitions of
continuity are equivalent here. The continuity property we choose is that
the group actionG × V → V , given byg × v �→ �(g)v, is continuous.
When� is unitary, this property is equivalent withstrong continuity, that
g �→ �(g)v is continuous for everyv in V .

Let us see this equivalence. Strong continuity results from fixing theV
variable in the definition of continuity of the group action, and therefore
continuity of the group action implies strong continuity. In the reverse
direction the triangle inequality and the equality‖�(g)‖ = 1 give

‖�(g)v − �(g0)v0‖ ≤ ‖�(g)(v − v0)‖ + ‖�(g)v0 − �(g0)v0‖
= ‖v − v0‖ + ‖�(g)v0 − �(g0)v0‖,

and it follows that strong continuity implies continuity of the group action.
With this definition of continuity in place, an example of a unitary

representation is theleft-regular representation of G on the complex
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Hilbert spaceL2(G), given by(l(g) f )(x) = f (g−1x). Strong continuity
is satisfied according to Lemma 4.17. Theright-regular representation
of G on L2(G), given by(r(g) f )(x) = f (xg) also satisfies this continuity
property.

In working with a unitary representation� of G on V , it is helpful
to define�( f ) for f in L1(G) as a smeared-out version of the various
�(x) for x in G. Formally�( f ) is to be

∫
G f (x)�(x) dx . But to avoid

integrating functions whose values are in an infinite-dimensional space,
we define�( f ) as follows: The function

∫
G f (x)(�(x)v, v′) dx of v and

v′ is linear in v, conjugate linear inv′, and bounded in the sense that∣∣ ∫
G f (x)(�(x)v, v′) dx

∣∣ ≤ ‖ f ‖1‖v‖‖v′‖. It follows from the elementary
theory of Hilbert spaces that there exists a unique linear operator�( f )

such that

(9.1a) (�( f )v, v′) =
∫

G

f (x)(�(x)v, v′) dx

for all v andv′ in V . This operator satisfies

(9.1b) ‖�( f )‖ ≤ ‖ f ‖1

and

(9.1c) �( f )∗ = �( f ∗),

where f ∗(x) = f (x−1). From the existence and uniqueness of�( f ), it
follows that�( f ) depends linearly onf .

Another property of the application of� to functions is that convolution
goes into product. Theconvolution f ∗ h of two L1 functions f andh
is given by( f ∗ h)(x) = ∫

G f (xy−1)h(y) dy = ∫
G f (y)h(y−1x) dy. The

result is anL1 function by Fubini’s Theorem. Then we have

(9.1d) �( f ∗ h) = �( f )�(h).

The formal computation to prove (9.1d) is

�( f ∗ h) =
∫

G

∫
G

f (xy−1)h(y)�(x) dy dx

=
∫

G

∫
G

f (xy−1)h(y)�(x) dx dy

=
∫

G

∫
G

f (x)h(y)�(xy) dx dy
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=
∫

G

∫
G

f (x)h(y)�(x)�(y) dx dy

= �( f )�(h).

To make this computation rigorous, we put the appropriate inner products
in place and use Fubini’s Theorem to justify the interchange of order of
integration:

(�( f ∗ h)v, v′) = ∫
G

∫
G f (xy−1)h(y)(�(x)v, v′) dy dx

= ∫
G

∫
G f (xy−1)h(y)(�(x)v, v′) dx dy

= ∫
G

∫
G f (x)h(y)(�(xy)v, v′) dx dy

= ∫
G

∫
G f (x)h(y)(�(x)�(y)v, v′) dx dy

= ∫
G

∫
G f (x)h(y)(�(y)v, �(x)∗v′) dx dy

= ∫
G

∫
G f (x)h(y)(�(y)v, �(x)∗v′) dy dx

= ∫
G f (x)(�(h)v, �(x)∗v′) dx

= ∫
G f (x)(�(x)�(h)v, v′) dx

= (�( f )�(h)v, v′).

This kind of computation translating a formal argument about�( f ) into a
rigorous argument is one that we shall normally omit from now on.

An important instance of the convolutionf ∗h is the case thatf andh are
characters of irreducible finite-dimensional representations. The formula
in this case is

(9.2) χτ ∗ χτ ′ =
{

d−1
τ χτ if τ ∼= τ ′ anddτ is the degree ofτ

0 if τ andτ ′ are inequivalent.

To prove (9.2), one expands the characters in terms of matrix coefficients
and computes the integrals using Schur orthogonality (Corollary 4.10).

If f ≥ 0 vanishes outside an open neighborhoodN of 1 in G and has∫
G f (x) dx = 1, then(�( f )v−v, v′) = ∫

G f (x)(�(x)v−v, v′) dx . When
‖v′‖ ≤ 1, the Schwarz inequality therefore gives

|(�( f )v−v, v′)| ≤
∫

N

f (x)‖�(x)v − v‖‖v′‖ dx ≤ sup
x∈N

‖�(x)v − v‖.

Taking the supremum overv′ with ‖v′‖ ≤ 1 allows us to conclude that

(9.3) ‖�( f )v − v‖ ≤ sup
x∈N

‖�(x)v − v‖.
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We shall make use of this inequality shortly.
An invariant subspacefor a unitary representation� on V is a vector

subspaceU such that�(g)U ⊆ U for all g ∈ G. This notion is useful
mainly whenU is a closed subspace. In any event ifU is invariant, so is
the closed orthogonal complementU⊥ sinceu⊥ ∈ U⊥ andu ∈ U imply
that

(�(g)u⊥, u) = (u⊥, �(g)∗u) = (u⊥, �(g)−1u) = (u⊥, �(g−1)u)

is in (u⊥, U ) = 0. If V = 0, the representation isirreducible if its only
closed invariant subspaces are 0 andV .

Two unitary representations ofG, � on V and�′ on V ′, are said to be
unitarily equivalent if there is a norm-preserving linearE : V → V ′ with
a norm-preserving inverse such that�′(g)E = E�(g) for all g ∈ G.

Theorem 9.4. If � is a unitary representation of the compact group
G on a complex Hilbert spaceV , thenV is the orthogonal sum of finite-
dimensional irreducible invariant subspaces.

PROOF. By Zorn’s Lemma, choose a maximal orthogonal set of finite-
dimensional irreducible invariant subspaces. LetU be the closure of the
sum. Arguing by contradiction, suppose thatU is not all of V . Then
U⊥ is a nonzero closed invariant subspace. Fixv = 0 in U⊥. For each
open neighborhoodN of 1 in G, let fN be the characteristic function ofN
divided by the measure ofN . Then fN is an integrable function≥ 0 with
integral 1. It is immediate from (9.1a) that�( fN )v is in U⊥ for everyN .
Inequality (9.3) and strong continuity show that�( fN )v tends tov as N
shrinks to{1}. Hence some�( fN )v is not 0. Fix such anN .

Choose by the Peter–Weyl Theorem (Theorem 4.20) a functionh in the
linear span of all matrix coefficients for all finite-dimensional irreducible
unitary representations so that‖ fN − h‖2 ≤ 1

2‖�( fN )v‖/‖v‖. Then

‖�( fN )v − �(h)v‖ = ‖�( fN − h)v‖ ≤ ‖ fN − h‖1‖v‖
≤ ‖ fN − h‖2‖v‖ ≤ 1

2‖�( fN )v‖

by (9.1b) and the inequality‖F‖1 ≤ ‖F‖2. Hence

‖�(h)v‖ ≥ ‖�( fN )v‖ − ‖�( fN )v − �(h)v‖ ≥ 1
2‖�( fN )v‖ > 0,

and�(h)v is not 0.



560 IX. Induced Representations and Branching Theorems

The functionh lies in some finite-dimensional subspaceS of L2(G) that
is invariant under left translation. Leth1, . . . , hn be a basis ofS, and write
hj(g−1x) = ∑

i ci j(g)hi(x). The formal computation

�(g)�(hj)v = �(g)

∫
G

hj(x)�(x)v dx =
∫

G

hj(x)�(gx)v dx

=
∫

G

hj(g
−1x)�(x)v dx =

n∑
i=1

ci j(g)

∫
G

hi(x)�(x)v dx

=
n∑

i=1

ci j(g)�(hi)v

suggests that the subspace
∑

j C�(hj)v, which is finite dimensional and
lies in U⊥, is an invariant subspace for� containing the nonzero vector
�(h)v. To justify the formal computation, we argue as in the proof
of (9.1d), redoing the calculation with an inner product withv′ in place
throughout. The existence of this subspace ofU⊥ contradicts the maxi-
mality of U and proves the theorem.

Corollary 9.5. Every irreducible unitary representation of a compact
group is finite dimensional.

PROOF. This is immediate from Theorem 9.4.

Corollary 9.6. Let� be a unitary representation of the compact groupG
on a complex Hilbert spaceV . For each irreducible unitary representation
τ of G, let Eτ be the orthogonal projection on the sum of all irreducible
invariant subspaces ofV that are equivalent withτ . ThenEτ is given by
dτ�(χτ ), wheredτ is the degree ofτ andχτ is the character ofτ , and
the image ofEτ is the orthogonal sum of irreducible invariant subspaces
that are equivalent withτ . Moreover, ifτ andτ ′ are inequivalent, then
Eτ Eτ ′ = Eτ ′ Eτ = 0. Finally everyv in V satisfies

v =
∑

τ

Eτ v,

with the sum taken over a set of representativesτ of all equivalence classes
of irreducible unitary representations ofG.

PROOF. Let τ be irreducible with degreedτ , and putE ′
τ = dτ�(χτ ).
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Formulas (9.1c), (4.14), (9.1d), and (9.2) give

E ′
τ
∗ = dτ�(χτ

∗) = dτ�(χτ c) = dτ�(χτ ) = E ′
τ ,

E ′
τ E ′

τ ′ = dτ dτ ′�(χτ )�(χτ ′) = dτ dτ ′�(χτ ∗ χτ ′) = 0 if τ � τ ′,

E ′
τ

2 = d2
τ �(χτ ∗ χτ ) = dτ�(χτ ) = E ′

τ .

The first and third of these formulas say thatE ′
τ is an orthogonal projection,

and the second formula says thatE ′
τ E ′

τ ′ = E ′
τ ′ E ′

τ = 0 if τ and τ ′ are
inequivalent.

Let U be an irreducible finite-dimensional subspace ofV on which�|U
is equivalent withτ , and letu1, . . . , un be an orthonormal basis ofU . If we
write �(x)uj = ∑n

i=1 �i j(x)ui , then�i j(x) = (�(x)uj , ui) andχτ (x) =∑n
i=1 �i i(x). Thus a formal computation with Schur orthogonality gives

E ′
τ uj = dτ

∫
G

χτ (x)�(x)uj dx = dτ

∫
G

∑
i,k

�kk(x)�i j(x)ui dx = uj ,

and we can justify this computation by using inner products withv′ through-
out. As a result, we see thatE ′

τ is the identity on every irreducible subspace
of typeτ .

Now let us applyE ′
τ to a Hilbert space orthogonal sumV = ∑

Vα

of the kind in Theorem 9.4. We have just seen thatE ′
τ is the identity

on Vα if Vα is of typeτ . If Vα is of typeτ ′ with τ ′ inequivalent withτ ,
then E ′

τ ′ is the identity onVα, and we haveE ′
τ u = E ′

τ E ′
τ ′u = 0 for all

u ∈ Vα. ConsequentlyE ′
τ is 0 onVα, and we conclude thatE ′

τ = Eτ . This
completes the proof.

It follows from Corollary 9.6 that the number of occurrences of irre-
ducible subspaces of typeτ in a decomposition of the kind in Theorem
9.4 is independent of the decomposition. As a result of the corollary, this
number may be obtained as the quotient(dim imageEτ )/dτ . We write
[� : τ ] for this quantity and call it themultiplicity of τ in �. Each
multiplicity is a cardinal number, but it may be treated simply as a member
of the set{0, 1, 2, . . . , ∞} when the underlying Hilbert space is separable.
When� is finite dimensional, §IV.2 provides us with a way of computing
multiplicities in terms of characters, and the present notion may be regarded
as a generalization to the infinite-dimensional case.

For an example, consider the right-regular representationr of G on
L2(G). Let τ be an irreducible unitary representation, letu1, . . . , un be an
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orthonormal basis of the space on whichτ acts, and form matrices relative
to this basis that realize eachτ(x). The formula isτi j(x) = (τ (x)uj , ui).
The matrix coefficients corresponding to a fixed row, those withi fixed
and j varying, form an irreducible invariant subspace forr of typeτ , and
these spaces are orthogonal to one another by Schur orthogonality. Thus
[r : τ ] is at leastdτ . On the other hand, Corollary 4.21 says that such
matrix coefficients, asτ varies through representatives of all equivalence
classes of irreducible representations, form a complete orthogonal system
in L2(G). The coefficients corresponding to anyτ ′ inequivalent withτ are
in the image ofEτ ′ and are not of typeτ . It follows that [r : τ ] equalsdτ

and that the spaces of typeτ can be taken to be the span of each row of
matrix coefficients forτ .

For the left-regular representationl of G on L2(G), one can reason
similarly. The results are that [l : τ ] equalsdτ and that the spaces of type
τ can be taken to be the span of the columns of matrix coefficients for the
contragredientτ c.

Let Ĝ be the set of equivalence classes of irreducible representations of
G. The multiplicities of each member of̂G within a unitary representation
of G determine the representation up to unitary equivalence. In fact, the
various multiplicities are certainly not changed under a unitary equivalence,
and if a set of multiplicities is given, any unitary representation ofG
with those multiplicities is unitarily equivalent to the orthogonal sum of
irreducible representations with each irreducible taken as many times as the
multiplicity indicates. We shall be interested in techniques for computing
these multiplicities.

Proposition 9.7.Let � andτ be unitary representations of the compact
groupG on spacesV � andV τ , respectively, and supposeτ is irreducible.
Then

[� : τ ] = dimC HomG(V �, V τ ) = dimC HomG(V τ , V �),

where the subscriptsG refer to linear maps respecting the indicated actions
by G.

PROOF. By Schur’s Lemma (Proposition 4.8) and Corollary 9.6, any
member of HomG(V �, V τ ) annihilates(Eτ V �)⊥. Write, by a second
application of Corollary 9.6,Eτ V � as the orthogonal sum of irreducible
subspacesVα with eachVα equivalent toV τ . For eachVα, the space of linear
maps fromVα to V τ respecting the action byG is at least 1-dimensional. It
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is at most 1-dimensional by Schur’s Lemma in the form of Corollary 4.9.
Then it follows that

[� : τ ] = dimC HomG(V �, V τ ).

Taking adjoints, we obtain

dimC HomG(V �, V τ ) = dimC HomG(V τ , V �).

2. Induced Representations and Frobenius Reciprocity

In this section we continue to assume thatG is a compact group, and
we continue to write out proofs only under the additional assumption that
G is separable.

A wider class of examples of infinite-dimensional unitary representa-
tions than the regular representations onL2(G) is obtained as follows: Let
H be a closed subgroup ofG, and letl be theleft-regular representation
of G on L2(G/H), given by(l(g) f )(x H) = f (g−1x H).

This is a unitary representation, and it can be realized also as taking
place in a certain closed subspace ofL2(G). Namely the identification
f �→ F given byF(x) = f (x H) carriesL2(G/H) onto the subspace of
members ofL2(G) that are right-invariant underH , a closed subspace that
we shall denote byL2(G, C, 1H ). The result is a unitary equivalence of
representations ofG.

The realization ofL2(G/H) asL2(G, C, 1H ) suggests a generalization
in which C and 1H are replaced by a Hilbert spaceV and a unitary rep-
resentationσ of H on V . The case of most interest is thatσ is finite
dimensional, but the theory is no more complicated ifV is allowed to be
infinite dimensional but separable. We shall not have occasion to apply the
theory to nonseparable Hilbert spaces, and we defer to the Historical Notes
any discussion of the complications in that case.

Let the inner product and norm forV be denoted( · , · )V and | · |V .
A function F from G to V is (weakly) measurable ifx �→ (F(x), v)V is
Borel measurable for allv ∈ V . In this case let{vn} be an orthonormal
basis ofV . Then the function|F(x)|2V = ∑

n |(F(x), vn)V |2 is measurable
and is independent of the choice of orthonormal basis. We say thatF is
in L2(G, V ) if it is measurable and if‖F‖2 = (

∫
G |F(x)|2V dx)1/2 is finite.

Technically the spaceL2(G, V ) is the Hilbert space of such functions with
two such functions identified if they differ on a set of measure 0, but
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one usually speaks of functions, rather than their equivalence classes, as
members ofL2.

We define theleft-regular representation l of G on L2(G, V ) by
(l(g)F)(x) = F(g−1x). To verify the strong continuity, we use the same
argument as for Lemma 4.17 once we know that the continuous functions
from G to V are dense inL2(G, V ). This density is a consequence of
the density in the scalar case, which was proved in §IV.3: if{vn} is an
orthonormal basis ofV , then the finite linear combinations of functions
f vn with f scalar-valued and continuous are continuous intoV and form
a dense subset ofL2(G, V ).

Let us interject some remarks about Fubini’s Theorem. Fubini’s Theo-
rem is usually regarded as a statement about the interchange of integrals
of nonnegative measurable functions on a product measure space that is
totally finite or totallyσ -finite, but it says more. For one thing, it says
that the result of performing the inner integration is a measurable function
of the other variable. For another thing, through its statement in the case
of a characteristic function, it gives insight into sets of measure 0; if a
measurable set in the product space has the property that almost every slice
in one direction has measure 0, then almost every slice in the other direction
has measure 0.

Let H be a closed subgroup ofG, and letσ be a unitary representation
of H on V . Define

(9.8)

L2(G, V, σ ) =
{

F ∈ L2(G, V )

∣∣∣∣∣ F(xh) = σ(h)−1F(x)

for almost every pair
(x, h) ∈ G × H

}

=
{

F ∈ L2(G, V )

∣∣∣∣∣ For everyh ∈ H ,
F(xh) = σ(h)−1F(x)

for a.e.x ∈ G

}
.

The equality of the two expressions in braces requires some comment. The
equality is meant to convey that an equivalence class of functions inL2

containing a function having one of the defining properties in (9.8) contains
a member that has the other of the defining properties, and vice versa. With
this interpretation the second expression is contained in the first by Fubini’s
Theorem. IfF is in the first space, we can adjustF on a subset ofG of
measure 0 to make it be in the second space. This adjustment is done by
integration as follows. Formally we considerF1(x) = ∫

H σ(h)F(xh) dh.
By Fubini’s Theorem, for almost allx ∈ G, we haveF(xh) = σ(h)−1F(x)

for almost allh ∈ H , and thesex ’s haveF1(x) = F(x). For the remaining
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x ’s, we setF1(x) = 0. ThenF1 is in the second space, andF1 and F
yield the same member ofL2(G, V ). This argument is formal in that it
used integrals of vector-valued functions. To make it precise, we work
throughout with inner products with an arbitraryv ∈ V ; we omit these
details.

In practice it is a little easier to use the second expression in (9.8), and
we shall tend to ignore the first expression. Some authors work instead
with the subspace of continuous members ofL2(G, V, σ ), for which there
are no exceptionalx ’s andh’s; this approach succeeds because it can be
shown that the subspace of continuous members is dense inL2(G, V, σ ).

For F in L2(G, V, σ ) and g in G, define(�(g)F)(x) = F(g−1x).
The system of operators�(g) is nothing more than the restriction to an
invariant subspace of the left-regular representation ofG on L2(G, V ).
Thus� is a unitary representation ofG on L2(G, V, σ ). It is theinduced
representationof σ from H to G and is denoted indGH σ .

From the definitions it follows immediately that ifσ is the finite or
countably infinite orthogonal sum of unitary representationsσn on separable
Hilbert spaces, then indG

H σ is unitarily equivalent with the orthogonal sum
of the indG

H σn.

Theorem 9.9(Frobenius reciprocity). LetH be a closed subgroup of
the compact groupG, let σ be an irreducible unitary representation ofH
on V σ , let τ be an irreducible unitary representation ofG on V τ , and let
� = indG

H σ act onV �. Then there is a canonical vector-space isomorphism

HomG(V τ , V �) ∼= HomH (V τ , V σ ),

and consequently
[indG

H σ : τ ] = [τ |H : σ ].

REMARKS. Restriction to a subgroup is a way of passing from represen-
tations ofG to representations ofH , and induction is a way of passing in
the opposite direction. Frobenius reciprocity gives a sense in which these
constructions are adjoint to each other.

PROOF. We shall prove the isomorphism. The equality of multiplicities
is then immediate from Proposition 9.7.

The spaceV � is contained inL2(G, V σ ), and L2(G, V σ ) is simply
the direct sum ofdσ copies ofL2(G), dσ being the degree. Thereforeτ
occurs exactlydσ dτ times in L2(G, V σ ) and at most that many times in
V �. By Schur’s Lemma we then know that the image of any member



566 IX. Induced Representations and Branching Theorems

of HomG(V τ , V �) lies in the subspace of continuous members ofV �.
If e denotes evaluation at 1 inG, it therefore makes sense to form the
compositioneA wheneverA is in HomG(V τ , V �). Forv in V τ , we have

σ(h)(eAv) = σ(h)[(Av)(1)] = (Av)(h−1)

= (�(h)(Av))(1) = (Aτ(h)v)(1) = eAτ(h)v.

ThuseA is in HomH (V τ , V σ ), and the linear mape carries HomG(V τ , V �)

into HomH (V τ , V σ ). To complete the proof, we show thate is an isomor-
phism.

To see thate is one-one, suppose thateAv = 0 for all v in V τ . Then
(Av)(1) = 0 for all v. Applying this conclusion tov = τ(g)−1v′ gives

0 = (Av)(1) = (Aτ(g)−1v′)(1) = (�(g)−1 Av′)(1) = (Av′)(g),

and soAv′ = 0. Sincev′ is arbitrary,A = 0. Thuse is one-one.
To see thate is onto, leta be in HomH (V τ , V σ ). Define Av(g) =

a(τ (g)−1v) for v ∈ V τ andg ∈ G. Then

Av(gh) = a(τ (h)−1τ(g)−1v) = σ(h)−1(a(τ (g)−1v)) = σ(h)−1(Av(g))

shows thatAv is in V �. In fact,A is in HomG(V τ , V �) because the equality

(�(g0)Av)(g) = Av(g−1
0 g) = a(τ (g)−1(τ (g0)v)) = A(τ (g0)v)(g)

implies�(g0)A = Aτ(g0). Finally e carriesA to a because the equality

eAv = Av(1) = a(τ (1)v) = av

implieseA = a. Thuse is onto, and the proof is complete.

The final topic of this section is “induction in stages,” which refers to
the legitimacy of forming an induced representation by first inducing to
an intermediate group and then inducing from there to the whole group.
Induction in stages may be regarded as adjoint to the obvious notion of
restriction in stages—that ifH and H1 are closed subgroups ofG and
H ⊆ H1 ⊆ G, then the effect of restricting fromG to H1 and afterward
restricting toH is the same as the effect of restricting fromG to H directly.
We can quantify this relationship by means of multiplicities as follows. Let
τ andσ be irreducible unitary representations ofG andH . Decomposing
τ underH1 and the result underH , we see that

(9.10) [τ : σ ] =
∑
σ1∈Ĥ1

[τ : σ1][σ1 : σ ].
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Induction in stages is more subtle than restriction in stages and requires
some justification. When inducing representations in stages, even if we
start with an irreducible representation, the intermediate representation is
likely to occur in a subspace of someL2(G, V ) with V infinite dimensional.
Before stating the result about induction in stages, let us therefore check
in the case of interest that all the Hilbert spaces that arise are separable.

Proposition 9.11.Let G be a separable compact group. ThenL2(G) is
a separable Hilbert space. In fact,L2(G, V ) is a separable Hilbert space
wheneverV is a separable Hilbert space.

PROOF. Fix a countable base for the topology ofG. For each pairU and
V in the countable base such thatU ⊆ V , choose, by Urysohn’s Lemma,
a continuous real-valued function that is 1 onU and 0 offV . The resulting
subset of the spaceC(G) of continuous complex-valued functions onG is
countable and separates points onG. The associative algebra overQ + iQ
generated by these functions and the constant 1 is countable, is closed
under conjugation, and is uniformly dense in the associative algebra over
C generated by these functions and 1. The latter algebra is uniformly dense
in C(G) by the Stone–Weierstrass Theorem. SinceC(G) is known from
§IV.3 to be dense inL2(G), we conclude thatL2(G) is separable. This
proves the first statement.

If V is a separable Hilbert space, let{vn} be a countable orthonormal
basis. Choose a countable dense set{ fk} in L2(G). Then the set of finite
rational linear combinations of functionsfkvn is a countable dense set in
L2(G, V ).

Proposition 9.12(induction in stages). LetG be a separable compact
group, and letH andH1 be closed subgroups withH ⊆ H1 ⊆ G. If σ is
an irreducible unitary representation ofH , then

indG
H σ is unitarily equivalent with indGH1

indH1
H σ.

REMARKS. In fact, the unitary equivalence is canonical, but we shall
not need this sharper statement. The functions in the Hilbert space of
the doubly induced representation are functions onG whose values are
functions onH1, thus are functions of pairs(g, h1). Their values are in
the spaceV σ on whichσ acts. The functions in the space of indG

H σ are
functions fromG to V σ . The unitary equivalence is given in effect by
evaluating the functions of pairs(g, h1) at h1 = 1. Since the functions
in question are unaffected by changes on sets of measure 0, some work is
needed to make sense of this argument.
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PROOF. Let τ andσ be irreducible unitary representations ofG andH .
Decomposingτ underH1 and the result underH leads to the multiplicity
formula (9.10). Frobenius reciprocity (Theorem 9.9) then gives

(9.13) [indG
H σ : τ ] =

∑
σ1∈Ĥ1

[indG
H1

σ1 : τ ][indH1
H σ : σ1].

The representation indH1
H σ is the orthogonal sum over allσ1 of [indH1

H σ : σ1]
copies ofσ1, and hence the induced representation indG

H1
indH1

H σ is unitarily
equivalent with the orthogonal sum over allσ1 of [indH1

H σ : σ1] copies of
indG

H1
σ1. Thus the right side of (9.13) is

= [indG
H1

indH1
H σ : τ ].

Therefore the two representations in question have the same respective
multiplicities, and they must be unitarily equivalent.

3. Classical Branching Theorems

Let H be a closed subgroup of the compact groupG. Frobenius reci-
procity deals with the multiplicities of irreducible representations ofG in
induced representations fromH toG, reducing their computation to finding
multiplicities of irreducible representations ofG when restricted toH . In
particular, this approach applies to finding the multiplicities forL2(G/H).
A theorem about computing multiplicities for an irreducible representation
upon restriction to a closed subgroup is called abranching theorem or
branching rule. The rest of this chapter will be concerned with results of
this type.

We shall concentrate on the case thatG is a connected Lie group and that
the closed subgroupH is connected. In the next section we shall see that
there is a direct formula that handles all examples. However, this formula
involves an alternating sum of a great many terms, and it gives a useful
answer only in a limited number of situations. It is natural therefore to try
to form an arsenal of situations that can be handled recursively, preferably
in a small number of steps.

For this purpose a natural first step is to look at the various series of
classical compact connected groups and to isolate the effect of restricting
an irreducible representation to the next smaller group in the same series.
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In this section we list three theorems of this kind, postponing their proofs
to §5.

Our groups are as follows. We work with the unitary groupsU (n), the
rotation groupsSO(N ) with N = 2n + 1 or N = 2n, and the quaternion
unitary groupsSp(n). The rotation groups are not simply connected, but
we omit discussion of their simply connected covers. In each case we use
the standard embedding of the subgroupH of next smaller size in the upper
left block of the given groupG, with the members ofH filled out with 1’s
on the diagonal. A different choice for an embedding ofH will yield the
same branching if the two subgroups are conjugate viaG, as is the case if
H is embedded in the lower right block ofG, for example.

We parametrize irreducible representations ofG and H as usual by
highest weights. The maximal toriT are as in §IV.5 for the most part. In the
case ofU (n), the maximal torus is the diagonal subgroup. ForSO(2n +1)

it consists of block diagonal matrices withn blocks consisting of 2-by-2
rotation matrices and with 1 block consisting of the entry 1, and forSO(2n)

it consists of block diagonal matrices withn blocks consisting of 2-by-2
rotation matrices. To have highest-weight theory apply conveniently to
Sp(n), we realizeSp(n) as Sp(n, C) ∩ U (2n); then the maximal torus
consists of diagonal matrices whose(n + j)th entry is the reciprocal of the
j th entry for 1≤ j ≤ n.

In each case the notation for members of the complexified dual of the Lie
algebra ofT is to be as in the corresponding example of §II.1. We writet for
the Lie algebra ofT . The positive roots are as in (2.50). The analytically
integral members of(tC)∗ in each case are of the forma1e1 + · · · + anen

with all aj equal to integers.
We begin with the branching theorem forU (n). ForU (n), the condition

of dominance is thata1 ≥ · · · ≥ an.

Theorem 9.14(Weyl). ForU (n), the irreducible representation with
highest weighta1e1 + · · · + anen decomposes with multiplicity 1 under
U (n −1), and the representations ofU (n −1) that appear are exactly those
with highest weightsc1e1 + · · · + cn−1en−1 such that

(9.15) a1 ≥ c1 ≥ a2 ≥ · · · ≥ an−1 ≥ cn−1 ≥ an.

EXAMPLE. L2(U (n)/U (n − 1)). The spaceU (n)/U (n − 1) may be
regarded as the unit sphere inCn. Frobenius reciprocity says that the mul-
tiplicity of an irreducible representationτ of U (n) in L2(U (n)/U (n − 1))

equals the multiplicity of the trivial representation ofU (n − 1) in τ |U (n−1).
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Let τ have highest weighta1e1 + · · · + anen. A brief calculation using
Theorem 9.14 shows that

[τ |U (n−1) : 1] =
{

1 if (a1, . . . , an) = (q, 0, . . . , 0, −p)

0 otherwise.

The representation with highest weightqe1− pen can be seen to be realized
concretely in the subspaceHp,q of homogeneous harmonic polynomials
in (z1, . . . , zn, z̄1, . . . , z̄n) in which p factors ofz’s andq factors of z̄’s
are involved; here “harmonic” means that the polynomial is annihilated
by the usual Laplacian

∑n
j=1

(
∂2

∂x2
j

+ ∂2

∂y2
j

)
. Thus L2(U (n)/U (n − 1)) is

unitarily equivalent with the sum of all the spacesHp,q , each occurring
with multiplicity 1. This conclusion, obtained from Theorem 9.14 with
just a brief calculation, begs for an analytic interpretation. Here is such an
interpretation: Any homogeneous polynomial involvingp of thez’s andq
of thez̄’s is uniquely a sumhp,q +|z|2hp−1,q−1+|z|4hp−2,q−2+· · · with each
of theh’s in the indicated space of homogeneous harmonic polynomials.
On the unit sphere each of the powers of|z| restricts to the constant 1, and
hence every polynomial on the sphere is the sum of harmonic polynomials
of the required kind. Compare with Problems 9–17 in Chapter IV.

Now we state the branching theorem for the rotation groups. The con-
dition of dominance for the integral forma1e1 +· · ·+anen for SO(2n +1)

andSO(2n) is that

a1 ≥ · · · ≥ an ≥ 0 for the case ofN = 2n + 1,

a1 ≥ · · · ≥ an−1 ≥ |an| for the case ofN = 2n.

Theorem 9.16(Murnaghan).

(a) ForSO(2n + 1), the irreducible representation with highest weight
a1e1 + · · · + anen decomposes with multiplicity 1 underSO(2n), and
the representations ofSO(2n) that appear are exactly those with highest
weights(c1, . . . , cn) such that

(9.17a) a1 ≥ c1 ≥ a2 ≥ c2 ≥ · · · ≥ an−1 ≥ cn−1 ≥ an ≥ |cn|.
(b) For SO(2n), the irreducible representation with highest weight

a1e1 + · · · + anen decomposes with multiplicity 1 underSO(2n − 1),
and the representations ofSO(2n − 1) that appear are exactly those with
highest weights(c1, . . . , cn−1) such that

(9.17b) a1 ≥ c1 ≥ a2 ≥ c2 ≥ · · · ≥ an−1 ≥ cn−1 ≥ |an|.
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Finally we state the branching theorem forSp(n). The condition
of dominance for the integral forma1e1 + · · · + anen for Sp(n) is that
a1 ≥ · · · ≥ an ≥ 0.

Theorem 9.18(Zhelobenko). ForSp(n), the irreducible representation
with highest weighta1e1 + · · · + anen decomposes underSp(n − 1) as
follows: the number of times the representation ofSp(n − 1) with highest
weight (c1, . . . , cn−1) occurs in the given representation ofSp(n) equals
the number of integern-tuples(b1, . . . , bn) such that

(9.19)
a1 ≥ b1 ≥ a2 ≥ · · · ≥ an−1 ≥ bn−1 ≥ an ≥ bn ≥ 0,

b1 ≥ c1 ≥ b2 ≥ · · · ≥ bn−1 ≥ cn−1 ≥ bn.

If there are no suchn-tuples(b1, . . . , bn), then it is understood that the
multiplicity is 0.

Any of the above three theorems can be iterated. For example, the
irreducible representation ofU (n) with highest weighta1e1 + · · · + anen

decomposes underU (n−2) as follows: the number of times the irreducible
representation ofU (n−2) with highest weightc1e1+· · ·+cn−2en−2 occurs
in the given representation ofU (n) equals the number of(n − 1)-tuples
(b1, . . . , bn−1) such that

a1 ≥ b1 ≥ a2 ≥ · · · ≥ an−1 ≥ bn−1 ≥ an

and
b1 ≥ c1 ≥ b2 ≥ · · · ≥ bn−2 ≥ cn−2 ≥ bn−1.

An iterated answer of this kind, however, may be unsatisfactory for some
purposes. As the number of iterations increases, this kind of answer be-
comes more like an algorithm than a theorem. If the result of the algorithm
is to be applied by substituting it into some other formula, the answer from
the formula may be completely opaque.

4. Overview of Branching

The previous section mentioned that there is a general formula that
handles all examples of branching for compact connected Lie groups. This
is due to Kostant. The full branching formula of Kostant’s involves the
same kind of passage to the limit that is involved in §V.6 in deriving the
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Weyl Dimension Formula from the Weyl Character Formula. But in this
book we shall restrict the treatment of Kostant’s formula to the situation
where no passage to the limit is needed.

Although the formula can always be used to calculate particular exam-
ples, it finds rather few theoretical applications. We shall use it in the next
section to derive results implying the classical branching theorems of the
previous section, and those will be our only applications of it.

Despite the paucity of theoretical applications, the special hypothesis
in the theorem that eliminates any passage to the limit has philosophical
implications for us. It will enable us to focus attention on an approach to
getting concrete branching formulas in a great many practical situations.
We return to this point after stating and proving the theorem.

Let G be a connected compact Lie group, and letH be a connected
closed subgroup. The special assumption is that the centralizer inG of a
maximal torusS of H is abelian and is therefore a maximal torusT of G.
Equivalently the assumption is that some regular element ofH is regular
in G. We examine the assumption more closely later in this section.

Let us establish some notation for the theorem. Let�G be the set of
roots of(gC, tC), let �H be the set of roots of(hC, sC), and letWG be the
Weyl group of�G . Introduce compatible positive systems�+

G and�+
H by

defining positivity relative to anH regular element ofis, let bar denote
restriction from the dual(tC)∗ to the dual(sC)∗, and letδG be half the sum of
the members of�+

G . The restrictions tosC of the members of�+
G , repeated

according to their multiplicities, are the nonzero positive weights ofsC in
gC. Deleting from this set the members of�+

H , each with multiplicity 1,
we obtain the set	 of positive weights ofsC in gC/hC, repeated according
to multiplicities. The associatedKostant partition function is defined as
follows: P(ν) is the number of ways that a member of(sC)∗ can be written
as a sum of members of	, with the multiple versions of a member of	

being regarded as distinct.

Theorem 9.20(Kostant’s Branching Theorem). LetG be a compact
connected Lie group, letH be a closed connected subgroup, suppose that
the centralizer inG of a maximal torusS of H is abelian and is therefore a
maximal torusT of G, and let other notation be as above. Letλ ∈ (tC)∗ be
the highest weight of an irreducible representationτ of G, and letµ ∈ (sC)∗

be the highest weight of an irreducible representationσ of H . Then the
multiplicity of σ in the restriction ofτ to H is given by

mλ(µ) =
∑

w∈WG

ε(w)P(w(λ + δG) − δG − µ).
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PROOF. The theorem generalizes the Kostant Multiplicity Formula for
the weights of a representation (Corollary 5.83), and the proof is a variant
of the proof of that special case. As in the special case, one needs to
make rigorous an argument involving multiplication of formal series; here
we defineQ+ to be the set of all nonnegative integer combinations of
members of	, and matters here are justified by working in a ringZ〈(sC)∗〉
defined relative to thisQ+. NamelyZ〈(sC)∗〉 is the set of allf ∈ Z(sC)∗

whose support is contained in the union of a finite number of setsνi − Q+

with eachνi in (sC)∗.
The special assumption about regularity insC enters as follows. Pos-

itivity for both H and G is defined relative to someH regular element
X ∈ is; specifically a memberα of �G is positive ifα(X) > 0. Hence the
restrictions tois of all members of	 lie in an open half space ofis∗, and
it follows thatP(ν) is finite for allν ∈ (sC)∗. With this finiteness in hand,
it follows that

(9.21)
( ∑

β∈	

(
1 − e−β

)mβ

)( ∑
ν∈Q+

P(ν)e−ν
)

= 1,

wheremβ is the multiplicity of β in gC/hC. This formula generalizes
Lemma 5.72.

Let χλ andχµ be characters forG and H , respectively. Using bar to
indicate restriction, not complex conjugation, we have

(9.22) χλ =
∑
µ∈F

mλ(µ)χµ

as an identity inZ[(sC)∗]; here F is a finite set ofH dominant weights.
The construction of	 makes

(9.23)
∏

α∈�+
G

(
1 − e−ᾱ

) =
( ∑

β∈	

(
1 − e−β

)mβ

)( ∏
γ∈�+

H

(
1 − e−γ

))
.

In (9.22) we substitute forχµ from the Weyl character forH and obtain

(9.24) χλ

∏
γ∈�+

H

(
1 − e−γ

) =
∑

p∈WH ,
µ∈F

mλ(µ)ε(p)ep(µ+δH )−δH ,

whereWH is the Weyl group ofH andδH is half the sum of the members of
�+

H . Substitution from (9.21) and (9.23) into the left side of (9.24) yields

χλ

( ∏
α∈�+

G

(
1 − e−ᾱ

))( ∑
ν∈Q+

P(ν)e−ν
)

=
∑

p∈WH ,
µ∈F

mλ(µ)ε(p)ep(µ+δH )−δH .
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The Weyl character formula forG implies that

χλ

∏
α∈�+

G

(
1 − e−ᾱ

) =
∑

w∈WG

ε(w)ew(λ+δG )−δG

in Z[(sC)∗], and we can substitute and obtain

(9.25)
∑

w∈WG ,
ν∈Q+

ε(w)P(ν)ew(λ+δG )−δG−ν =
∑

p∈WH ,
µ∈F

mλ(µ)ε(p)ep(µ+δH )−δH .

The theorem will follow by equating the coefficients ofeµ on the two sides
of (9.25). On the right side the equationp(µ + δH ) − δH = µ forces
p = 1 by Chevalley’s Lemma in the form of Corollary 2.73 becauseµ

is H dominant. Thus the coefficient ofeµ on the right side of (9.25) is
mλ(µ). On the left side the coefficient ofeµ is the sum ofε(w)P(ν) over
all w ∈ WG andν ∈ Q+ such thatw(λ + δG) − δG − ν = µ. This sum is
just

∑
w∈WG

ε(w)P(w(λ + δG) − δG − µ), and the proof is complete.

Let us study in more detail the special assumption in the theorem—that
the centralizer ofs in g is abelian. There are two standard situations where
this assumption is satisfied. The obvious one of these is whens is already
maximal abelian ing. We refer to this as the situation ofequal rank. This
is the case, for example, whenH = T and the theorem reduces to the
formula for the multiplicity of a weight. The less obvious one is when
the subgroupH is the identity component of the set of fixed points of an
involution ofG. We refer to this situation as that of acompact symmetric
space.

Let us accept for the moment that the special assumption in Theorem
9.20 is satisfied in the situation of a compact symmetric space, and let
us examine the circumstances in the classical branching theorems in the
previous section. In the case of branching fromG = SO(n) to H =
SO(n − 1), the subgroupH is the identity component of the set of fixed
points of the involution ofG given by conjugation by the diagonal matrix
diag(1, . . . , 1, −1). Thus this is the situation of a compact symmetric
space. The case withG = U (n) and H = U (n − 1) is not that of a
compact symmetric space, nor is it an equal-rank case. Yet this situation
does satisfy the special assumption in the theorem, essentially because
every root forU (n) is determined by its restriction toU (n − 1).

The case withG = Sp(n) andH = Sp(n − 1) is more decisive. It does
not satisfy the special assumption, and we are led to look for a remedy.
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If we think of G = Sp(n) as the unitary group over the quaternions, then
the case ofSO(n) suggests considering conjugation by diag(1, . . . , 1, −1).
The identity component of the set of fixed points isH1 = Sp(n−1)×Sp(1),
and thus we have a relevant compact symmetric space. Theorem 9.20 will
be applicable withH1 as subgroup. We can thus handle the branching in
two stages, passing fromG to H1 and then fromH1 to H .

For uniformity we can use the same technique withG = U (n), passing
from G to H1 = U (n − 1) × U (1) and then fromH1 to H = U (n − 1).
In this way all of the classical branching reduces to instances of branching
associated with compact symmetric spaces.

What is the scope of compact symmetric spaces? LetU be a compact
semisimple Lie group, let� be an involution ofU , letu0 be the Lie algebra
of U , and letθ be the corresponding involution ofu0. Let B be the Killing
form foru0; this is negative definite by Corollary 4.26 and Cartan’s Criterion
for Semisimplicity (Theorem 1.45). IfK is the identity component of the
fixed set of� andk0 is its Lie algebra, then we can writeu0 = k0 ⊕ q0,
whereq0 is the−1 eigenspace ofθ . Corollary 4.22 allows us to regard
U as a closed linear group, and then Proposition 7.12 says thatU has a
complexificationU C. We use the Lie algebra ofU C as the complexification
u of u0. Putp0 = iq0 andg0 = k0 ⊕ p0. From the definition ofk0 and
q0 as eigenspaces forθ , it follows that [k0, k0] ⊆ k0, [k0, p0] ⊆ p0, and
[p0, p0] ⊆ k0. In particular,g0 is a real form ofu and is semisimple. Also
the complex extension ofB is negative definite onk0 and positive definite
onp0. By the definition in §VI.2,g0 = k0⊕p0 is a Cartan decomposition of
g0. If G is the analytic subgroup ofU C with Lie algebrag0, G/K is called
thenoncompact Riemannian dualof the compact symmetric spaceU/K .

The proof that the special assumption in Theorem 9.20 is satisfied for the
passage fromU to K is easy. Proposition 6.60 shows that the centralizer
of a maximal abelian subspaces0 of k0 in g0 is abelian, equaling the sum of
s0 and an abelian subspacea0 of p0. Then the centralizer ofs0 in u0 is the
sum ofs0 andia0 and is abelian. Thus the special assumption is satisfied.

G K U/K
U (n, m) U (n) × U (m) U (n + m)/(U (n) × U (m))

SO(n, m)0 SO(n) × SO(m) SO(n + m)/(SO(n) × SO(m))
Sp(n, m) Sp(n) × Sp(m) Sp(n + m)/(Sp(n) × Sp(m))

GL(n, R)0 SO(n) U (n)/SO(n)
GL(n, H) Sp(n) U (2n)/Sp(n)
SO∗(2n) U (n) SO(2n)/U (n)
Sp(n, R) U (n) Sp(n)/U (n)
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In Chapter VI we took advantage of Cartan decompositions to classify
real semisimple Lie algebras. We can refer to that classification now to find,
up to isomorphisms and coverings, all the compact semisimple groups and
involutions. The ones associated to the classical noncomplex Lie groups
are as in the accompanying table, except that special unitary groups have
been replaced by unitary groups throughout.

The first three, withm = 1, are what govern the classical branching the-
orems. Later in this chapter we shall observe some things about branching
in the context of the other compact symmetric spaces.

One more kind ofG of interest along with those in the above table is a
group whose Lie algebrag0 is complex simple. In this case,k0 is a compact
form of g0. Using Theorem 6.94 to unwind matters, we are led to the
compact symmetric space(K × K )/diagK . The involution in question
interchanges the two coordinates.

We can easily make sense of branching fromK × K to diagK . If τ1

andτ2 are irreducible representations ofK , then theouter tensor product
τ1⊗̂τ2 given by(k1, k2) �→ τ1(k1)⊗τ2(k2) is an irreducible representation of
K ×K . Application of Corollary 4.21 shows that all irreducible representa-
tions ofK × K are of this form. Restricting such a representation to diagK
yields the representationk �→ τ1(k) ⊗ τ2(k), which is the ordinary tensor
productτ1 ⊗ τ2 for K . In other words, branching fromK × K to diagK is
understood as soon as one understands how to decompose representations
of K under tensor product.

In practice the list of branching theorems produced from an understand-
ing of branching for compact symmetric spaces is much longer than the
above table might suggest. The reason is that many pairs(G, H) arising in
practice can be analyzed as a succession of compact symmetric spaces. We
give just one example, together with an indication how it can be generalized.
The groupSp(n, 1) has real rank one, and it is of interest to know what
irreducible representations occur inL2(K/M), M having been defined in
§VI.5. For this example,K = Sp(n) × Sp(1), and M is isomorphic to
Sp(n − 1) × Sp(1). However, the embedding ofM in K is subtle. Let
K1 = (Sp(n − 1) × Sp(1)) × Sp(1) be embedded inK in the expected
way. If we regroupK1 asSp(n − 1) × (Sp(1) × Sp(1)), thenM embeds
in K1 asSp(n − 1) × diagSp(1). ThusK/M is built from two compact
symmetric spaces, one that amounts toSp(n)/(Sp(n − 1) × Sp(1)) and
another that amounts to(Sp(1) × Sp(1))/diagSp(1).

What is happening in this example is a fairly general phenomenon. Let
the restricted-root space decomposition of the Lie algebra be written

g = g−2α ⊕ g−α ⊕ a ⊕ m ⊕ gα ⊕ g2α,
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with a ⊕ m forming the 0 restricted-root space. The linear transformation
ϕ fromgC to itself given as the scalari k ongkα is an automorphism ofgC of
order 4. SinceSp(n, 1)C is simply connected,ϕ lifts to an automorphism
� of Sp(n, 1)C with �4 = 1. Sinceϕ2 has real eigenvalues,�2 carries
G to itself. Alsoϕ2 commutes with the Cartan involution, and thus�2

carriesK to itself. The map�2 is an involution ofK , andK1 is the identity
component of the fixed group under�2. In turn,� is an involution ofK1,
andM is the identity component of the fixed group under�.

5. Proofs of Classical Branching Theorems

In this section we prove Theorems 9.14, 9.16, and 9.18 using Kostant’s
Branching Theorem (Theorem 9.20). The different cases have a certain
similarity to them. Consequently we shall give the proof in full forU (n),
but we shall omit parts of the later proofs that consist of easy calculations
or repetitive arguments.

1) Branching from U (n) to U (n − 1). We use (9.13) withG = U (n),
H1 = U (n − 1) × U (1), andH = U (n − 1). The given highest weights
areλ = ∑n

j=1 aj ej with a1 ≥ · · · ≥ an andµ = ∑n−1
j=1 cj ej with c1 ≥ · · · ≥

cn−1. The only termsσ1 that can make a contribution to (9.13) are those
with highest weight of the formµ1 = ∑n

j=1 cj ej for somecn. However,τ
is scalar on scalar matrices, and it follows for every weightν of τ thatλ
andν have the same inner product withe1 +· · ·+ en. Sinceν = ∑n

j=1 cj ej

is such a weight, we must have
∑n

j=1 aj = ∑n
j=1 cj . In other words,cn is

completely determined.
We may as well therefore assume from the outset that the branching is

fromU (n) toU (n−1)×U (1)and thatµ = ∑n
j=1 cj ej with c1 ≥ · · · ≥ cn−1.

For the passage fromU (n) to U (n − 1) × U (1), we use Theorem 9.20.
The multiplicity being computed is

(9.26) mλ(µ) =
∑

w∈WG

ε(w)P(w(λ + δ) − (µ + δ)).

HereWG is the symmetric group on{1, . . . , n}, the roots in	 are theei −en

with 1 ≤ i ≤ n − 1, andP andδ are given by

P(ν) =
{

1 if 〈ν, ej〉 ≥ 0 for all j < n and〈ν, e1 + · · · + en〉 = 0

0 otherwise

δ = 1
2(n − 1)e1 + 1

2(n − 3)e2 + · · · − 1
2(n − 1)en.
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We are to prove thatmλ(µ) is 1 if (9.15) holds and is 0 otherwise.
We begin with two lemmas. The first one gives a necessary condition

for mλ(µ) to be nonzero, and the second one concentrates on the value of
thewth term of (9.26). After the two lemmas, we prove two propositions
that together prove Theorem 9.14.

Lemma 9.27.Every term of (9.26) is 0 unless
∑n

j=1 aj = ∑n
j=1 cj .

PROOF. The formula forP shows that thewth term of (9.26) is 0 unless

0 = 〈w(λ + δ) − (µ + δ), e1 + · · · + en〉
= 〈λ + δ, w−1(e1 + · · · + en)〉 − 〈µ + δ, e1 + · · · + en〉
= 〈λ − µ, e1 + · · · + en〉

=
n∑

j=1

aj −
n∑

j=1

cj .

Lemma 9.28. Fix i with i < n, and suppose thatcj ≥ aj+1 for j ≤ i .
ThenP(w(λ + δ) − (µ + δ)) = 0 unlesswej = ej for j ≤ i .

PROOF. Fix l with l ≤ i . Chooser = r(l) with wer = el . Then

〈w(λ + δ) − (µ + δ), el〉 = 〈λ + δ, er〉 − 〈µ + δ, el〉 = (ar − cl) − (r − l).

For thewth term to be nonzero, this has to be≥ 0, and thus we must have
ar ≥ cl + (r − l) ≥ al+1 + (r − l). The casel = 1 hasar ≥ a2 + (r − 1).
If r ≥ 2, thena2 ≥ ar ≥ a2 + (r − 1), contradiction. Sol = 1 implies
r = 1, andwe1 = e1. Inductively suppose thatwej = ej for j < l. We
havewer(l) = el . From above,

ar(l) ≥ al+1 + (r(l) − l).

We know thatr(l) ≥ l. If r(l) > l, then

al+1 ≥ ar(l) ≥ al+1 + (r(l) − l) > al+1,

contradiction. Thusr(l) = l, and the induction is complete.

Proposition 9.29.If c1 ≥ a2, c2 ≥ a3, . . . , cn−1 ≥ an hold, then

mλ(µ) =
{

1 if ai ≥ ci for 1 ≤ i ≤ n − 1 andcn = ∑n
i=1 ai − ∑n−1

i=1 ci

0 otherwise.
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PROOF. Lemma 9.28 shows that thewth term can contribute tomλ(µ)

only if wej = ej for j ≤ n − 1. Thus we need consider onlyw = 1. We
have

P(1(λ + δ) − (µ + δ)) = P(λ − µ) = P
(∑n

j=1(aj − cj)
)
.

The formula forP shows thatP is 1 if

aj − cj ≥ 0 for j < n and an − cn = −
∑
i<n

(ai − ci),

and it is 0 otherwise. The proposition follows.

Proposition 9.30. If one or more of the inequalitiesc1 ≥ a2, c2 ≥ a3,
. . . , cn−1 ≥ an fails, thenmλ(µ) = 0.

PROOF. In view of Lemma 9.27, we may assume that
∑n

i=1 ci = ∑n
i=1 ai .

Choosei as small as possible so thatci < ai+1. Here 1≤ i ≤ n−1. Lemma
9.28 shows that thewth term of (9.26) gives 0 unlesswej = ej for j < i . So
we may limit consideration to terms in whichw has this property. We shall
show that thew term cancels with thewp term, wherep is the reflection in
the rootei − ei+1. Definek andl by wei = ek andwei+1 = el . Herek ≥ i
andl ≥ i sincewej = ej for j < i . We have

wp(λ+ δ)− (µ+ δ) = w(λ+ δ)− (µ+ δ)− (ai − ai+1 + 1)w(ei − ei+1),

and the arguments ofP for w andwp have the samej th component except
possibly for j = k and j = l. For thek th component,

(9.31)

〈wp(λ + δ) − (µ + δ), ek〉 = 〈wp(λ + δ), wei〉 − 〈µ + δ, ek〉
= 〈λ + δ, ei+1〉 − 〈µ + δ, ek〉
= (ai+1 − ck) + (k − i − 1)

and

(9.32)
〈w(λ + δ) − (µ + δ), ek〉 = 〈λ + δ, ei〉 − 〈µ + δ, ek〉

= (ai − ck) + (k − i).

Assumek < n for the moment. We have

ck − k ≤ ci − i < ai+1 − i
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and hence
ck − k ≤ ai+1 − (i + 1).

So (9.31) is≥ 0. Since (9.31) is< (9.32), we see that (9.32) is> 0.
Similarly for thel th component,

(9.33)
〈wp(λ + δ) − (µ + δ), el〉 = 〈λ + δ, ei〉 − 〈µ + δ, el〉

= (ai − cl) + (l − i)

and

(9.34) 〈w(λ + δ) − (µ + δ), el〉 = (ai+1 − cl) + (l − i − 1).

Under the assumptionl < n, (9.34) is≥ 0 and (9.33) is> 0.
Now we want to see thatP has the same value onw(λ + δ) − (µ + δ)

andwp(λ + δ) − (µ + δ). Since we are assuming
∑n

i=1 ci = ∑n
i=1 ai , the

formula forP gives

(9.35a)

P(w(λ + δ) − (µ + δ)) = 1 if and only if

〈w(λ + δ) − (µ + δ), ej〉 ≥ 0 for 1 ≤ j ≤ n − 1

(9.35b)

P(wp(λ + δ) − (µ + δ)) = 1 if and only if

〈wp(λ + δ) − (µ + δ), ej〉 ≥ 0 for 1 ≤ j ≤ n − 1.

First suppose thatk < n andl < n. We have seen thatw(λ+δ)−(µ+δ)

andwp(λ + δ) − (µ + δ) match in all components but thek th andl th and
that thek th andl th components are≥ 0 for each. Hence (9.35) gives

(9.36) P(w(λ + δ) − (µ + δ)) = P(wp(λ + δ) − (µ + δ))

whenk < n andl < n.
Next suppose thatk = n. We have seen thatw(λ + δ) − (µ + δ) and

wp(λ + δ) − (µ + δ) match in all components but thenth andl th, hence in
all of the firstn − 1 components but thel th. In thel th component, they are
≥ 0. Hence (9.35) gives (9.36) whenk = n.

Finally if l = n, then we argue similarly, and (9.35) gives (9.36) when
l = n.
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2a) Branching from SO(2n+1) to SO(2n). The given highest weights
areλ = ∑n

j=1 aj ej with a1 ≥ · · · ≥ an ≥ 0 andµ = ∑n
j=1 cj ej with

c1 ≥ · · · ≥ cn−1 ≥ |cn|.
The multiplicity being computed is again as in (9.26). The membersw

of the Weyl groupWG are of the formw = sp with s a sign change andp a
permutation, the roots in	 are theei with 1 ≤ i ≤ n, and the expressions
for P andδ are

P(ν) =
{

1 if 〈ν, ej〉 ≥ 0 for all j ≤ n

0 otherwise

δ = (n + 1
2)e1 + (n − 1

2)e2 + · · · + 1
2en.

We are to prove thatmλ(µ) is 1 if (9.17a) holds and is 0 otherwise.
The argument proceeds in the same style as for the unitary groups. There

are two lemmas and two propositions.

Lemma 9.37.Write w = sp with s a sign change andp a permutation.
Then thewth term can contribute to (9.26) only ifs equals 1 ors equals the
root reflectionsen .

PROOF. Consider the expression〈w(λ + δ) − (µ + δ), ej〉 for j < n.
Since〈µ + δ, ej〉 > 0, we must have〈w(λ + δ), ej〉 > 0 for thewth term
of (9.26) to be nonzero. Thereforew−1ej > 0 for j < n, and hence
p−1s−1ej > 0 for j < n. This means thats−1ej > 0 for j < n, and hence
s = 1 or s = sen .

Lemma 9.38. Fix i with i < n, and suppose thatcj ≥ aj+1 for j ≤ i .
ThenP(w(λ + δ) − (µ + δ)) = 0 unlesswej = ej for j ≤ i .

PROOF. The proof is the same as for Lemma 9.28. Lemma 9.37 shows
that we need not considerwer = −el sincew−1ej > 0 for j < n.

Proposition 9.39.If c1 ≥ a2, c2 ≥ a3, . . . , cn−1 ≥ an hold, then

mλ(µ) =
{

1 if ai ≥ ci for 1 ≤ i ≤ n − 1 andan ≥ |cn|
0 otherwise.

PROOF. The proof is similar to that for Proposition 9.29. Thewth term
can contribute tomλ(µ) only if wej = ej for j ≤ n − 1. Thus the only
possible contributions tomλ(µ) are fromw = 1 andw = sen .
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Proposition 9.40. If one or more of the inequalitiesc1 ≥ a2, c2 ≥ a3,
. . . , cn−1 ≥ an fails, thenmλ(µ) = 0.

PROOF. The proof is along the same lines as the one for Proposition
9.30, and we retain that notation. Again thewp term will cancel with the
w term. This timewei = ±ek andwei+1 = ±el with k ≥ i andl ≥ i , and
the minus signs must be carried along as possibilities ifk = n or l = n.
For thek th component, we readily check that

(9.41) 〈wp(λ + δ) − (µ + δ), ek〉 and 〈w(λ + δ) − (µ + δ), ek〉

are both≥ 0 if wei = +ek . For k = n, if wei = −en, then the members
of (9.41) are both< 0. Thus the arguments ofP in thewp andw terms
have the same sign in thek th component. For thel th component,

(9.42) 〈wp(λ + δ) − (µ + δ), el〉 and 〈w(λ + δ) − (µ + δ), el〉

are both≥ 0 if wei+1 = +el . Forl = n, if wei+1 = −el , then the members
of (9.42) are both< 0. Thus the arguments ofP in thewp andw terms
have the same sign in thel th component. The proposition follows.

2b) Branching from SO(2n) to SO(2n−1). The given highest weights
areλ = ∑n

j=1 aj ej with a1 ≥ · · · ≥ an−1 ≥ |an| andµ = ∑n−1
j=1 cj ej with

c1 ≥ · · · ≥ cn−1 ≥ 0.
The multiplicity being computed is

(9.43) mλ(µ) =
∑

w∈WG

ε(w)P(w(λ + δ) − δ − µ),

where the bar indicates restriction to the firstn − 1 components. The
membersw of the Weyl groupWG are of the formw = sp with s an even
sign change andp a permutation, andδ is given by

δ = (n − 1)e1 + (n − 2)e2 + · · · + en−1.

Let us compute the set of weights	. The restrictions of the positive roots
of SO(2n) are theei ± ej with i < j < n and thee1, . . . , en−1. The
ei ± ej have multiplicity 1 as weights inSO(2n) and correspond to roots in
SO(2n−1); thus they do not contribute to	. The weightse1, . . . , en−1 have
multiplicity 2 in SO(2n) from restriction ofej ± en; one instance of each
corresponds to a root ofSO(2n − 1), and the other instance contributes to
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	. TheP function is therefore defined relative to the weightse1, . . . , en−1,
each with multiplicity 1. Thus

P(ν) =
{

1 if 〈ν, ej〉 ≥ 0 for all j ≤ n − 1

0 otherwise.

We are to prove thatmλ(µ) is 1 if (9.17b) holds and is 0 otherwise.
This time we begin with three lemmas, the second and third of which are

similar to the lemmas for branching fromSO(2n + 1) to SO(2n). After
the three lemmas, we prove two propositions that together prove Theorem
9.16b.

Lemma 9.44. It is enough to prove the branching formula under the
assumptionan ≥ 0.

PROOF. The matrix diag(1, . . . , 1, −1) normalizesSO(2n), and conju-
gation ofSO(2n) by it leavesSO(2n −1) fixed, negates the last variable in
the Lie algebra of the maximal torus ofSO(2n), and leaves stable the set of
positive roots ofSO(2n). Thus it carries an irreducible representation of
SO(2n) with highest weighta1e1 + · · ·+ an−1en−1 + anen to an irreducible
representation with highest weighta1e1 +· · ·+an−1en−1 −anen. Therefore
the restrictions toSO(2n − 1) of these two irreducible representations of
SO(2n) are equivalent.

In both cases restriction toSO(2n − 1) is asserted to yield all irre-
ducible representations with highest weightsc1e1+· · ·+cn−1en−1 such that
a1 ≥ c1 ≥ a2 ≥ c2 ≥ · · · ≥ an−1 ≥ cn−1 ≥ |an|, and the lemma follows.

From now on, we accordingly assume thatan ≥ 0.

Lemma 9.45.Forw in WG , thewth term can contribute tomλ(µ) only
if w is a permutation.

PROOF. Consider〈w(λ+δ)−(µ+δ), ej〉 for j < n. Since〈µ+δ, ej〉 >

0, we must have〈w(λ+δ), ej〉 > 0 for thewth term ofmλ(µ) to be nonzero.
Therefore〈λ + δ, w−1ej〉 > 0 for j < n. Since〈λ + δ, ej ′ 〉 > 0 if j ′ < n,
the only two situations in which we can havew−1ej = −ej ′ are j = n and
j ′ = n. The number of signs changed byw−1 has to be even, and hence
this number must be 0 or 2. If it is 0, thenw is a permutation. If it is 2,
then j and j ′ cannot both ben. So there is somej < n with w−1ej = −en,
and we find that〈λ + δ, −en〉 > 0. The left side of this inequality is−an,
and we obtain a contradiction since Lemma 9.44 has allowed us to assume
thatan ≥ 0.
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Lemma 9.46. Fix i with i < n, and suppose thatcj ≥ aj+1 for j ≤ i .
ThenP(w(λ + δ) − (µ + δ)) = 0 unlesswej = ej for j ≤ i .

PROOF. The proof is the same as for Lemma 9.28. Lemma 9.45 shows
thatw may be assumed to be a permutation.

Proposition 9.47.If c1 ≥ a2, c2 ≥ a3, . . . , cn−1 ≥ an hold, then

mλ(µ) =
{

1 if ai ≥ ci for 1 ≤ i ≤ n − 1

0 otherwise.

PROOF. The proof is similar to that for Proposition 9.29. Thewth term
can contribute tomλ(µ) only if w is a permutation andwej = ej for
j ≤ n − 1. Thus the only possible contribution tomλ(µ) is fromw = 1.

Proposition 9.48. If one or more of the inequalitiesc1 ≥ a2, c2 ≥ a3,
. . . , cn−1 ≥ an fails, thenmλ(µ) = 0.

PROOF. The proof proceeds along the same lines as the ones for Propo-
sitions 9.30 and 9.40, and we retain that earlier notation. Again thewp
term will cancel with thew term. This timewei = ek andwei+1 = el , and
minus signs do not enter. We readily find that

〈wp(λ + δ) − (µ + δ), ek〉 and 〈w(λ + δ) − (µ + δ), ek〉

are both≥ 0 and that

〈wp(λ + δ) − (µ + δ), el〉 and 〈w(λ + δ) − (µ + δ), el〉

are both≥ 0. Thus the arguments ofP in thewp andw terms have the
same sign in thek th component and the same sign in thel th component.
The proposition follows.

3) Branching from Sp(n) to Sp(n − 1). This case is considerably
more complicated than the previous ones and is an indicator of the depth of
branching theorems with multiplicities≥ 1. We use restriction in stages.
In (9.13) we takeG = Sp(n), H1 = Sp(n − 1) × Sp(1), and H =
Sp(n − 1). The given highest weights forG and H areλ = ∑n

j=1 aj ej

with a1 ≥ · · · ≥ an ≥ 0 andµ = ∑n−1
j=1 cj ej with c1 ≥ · · · ≥ cn−1 ≥ 0.

Any irreducible representation ofH1 is the outer tensor product of an
irreducible representation ofSp(n − 1) and an irreducible representation
of Sp(1) ∼= SU (2). The only termsσ1 for H1 that can make a contribution
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to (9.13) are those for which the representation on theSp(n − 1) factor
matches the givenσ . Initially we take the representation on theSp(1)

factor to be arbitrary, say with highest weightc0en for an integerc0 ≥ 0.
Since restriction fromSp(1) to {1} yields the trivial representation with
multiplicity equal to the dimension, we see that

(9.49) m H
λ

( ∑n−1
j=1 cj ej

) =
∞∑

c0=0

(c0 + 1)m H1
λ

( ∑n−1
j=1 cj ej + c0en

)
,

wherem H
λ andm H1

λ are the multiplicities of the respective representations
of Sp(n − 1) andSp(n − 1) × Sp(1) in the given representation ofSp(n).
Thus in principle Theorem 9.18 will follow from an explicit branching
theorem for passing fromSp(n) to Sp(n − 1) × Sp(1). We shall state
such an explicit branching theorem and sketch its proof, leaving for the
Historical Notes a derivation of Theorem 9.18 from it.

Theorem 9.50(Lepowsky). ForSp(n), the irreducible representation
with highest weightλ = a1e1 +· · ·+anen decomposes under the subgroup
Sp(n − 1) × Sp(1) into the sum of representations with highest weights
µ = c1e1 + · · ·+ cn−1en−1 + c0en and multiplicitiesmλ(µ) as follows. The
multiplicity is 0 unless the integers

A1 = a1 − max(a2, c1)

A2 = min(a2, c1) − max(a3, c2)

...

An−1 = min(an−1, cn−2) − max(an, cn−1)

An = min(an, cn−1)

are all≥ 0 and alsoc0 has the same parity as
∑n

j=1 aj − ∑n−1
j=1 cj . In this

case the multiplicity is

mλ(µ) = P(A1e1+· · ·+ Anen −c0en)−P(A1e1+· · ·+ Anen +(c0+2)en),

whereP is the Kostant partition function defined relative to the set	 ={
ei ± en

∣∣ 1 ≤ i ≤ n − 1
}
.

REMARK. The conditionAi ≥ 0 for i ≤ n is equivalent with the
existence of integersbi as in (9.19) and is equivalent also with the 2n − 3
inequalitiesai ≥ ci for i ≤ n − 1 andci ≥ ai+2 for i ≤ n − 2.
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The multiplicity being computed is again as in (9.26). The membersw

of the Weyl groupWG are of the formw = sp with s a sign change andp
a permutation, the roots in	 are theei ± en with 1 ≤ i ≤ n − 1, andδ is
ne1 + (n − 1)e2 + · · · + 1en. The partition functionP satisfies

(9.51) P(ν) = 0 unless

{ 〈ν, e1 + · · · + en〉 is even and
〈ν, ei〉 ≥ 0 for 1 ≤ i ≤ n − 1

because every member of	 satisfies these properties.
The argument proceeds in the same style as for the unitary and rotation

groups except that there are more steps, specifically three lemmas and three
propositions. After the first proposition we pause to develop some needed
properties of general partition functions. The three propositions, together
with the first lemma below, prove Theorem 9.50.

Lemma 9.52.Every term of (9.26) is 0 unlessc0 has the same parity as∑n
j=1 aj − ∑n−1

j=1 cj .

PROOF. For anyw ∈ WG , we have the following congruence modulo 2:

〈w(λ+δ) − (µ+δ), e1 + · · · + en〉 ≡ 〈(λ+δ) − (µ+δ), e1 + · · · + en〉
≡ ∑n

j=1 aj − ∑n−1
j=1 cj − c0.

According to the first condition in (9.51), the left side must be even forP
to be nonzero, and hence the right side must be even.

Lemma 9.53.Write w = sp with s a sign change andp a permutation.
Then thewth term can contribute to (9.26) only ifs equals 1 ors equals the
root reflections2en .

PROOF. The proof is the same as for Lemma 9.37.

Lemma 9.53 divides the relevant elements of the Weyl group into two
kinds, p ands2en p for permutationsp. SinceP(s2enν) = P(ν), we have

P(s2en p(λ + δ) − (µ + δ)) = P(p(λ + δ) − s2en(µ + δ))

= P(p(λ + δ) − (µ + δ) + (2c0 + 2)en).

In other words the term fors2en p behaves like the term forp except that
c0 gets replaced by−(c0 + 2). This observation enables us to treat the
two kinds of elements separately. In fact, even in the final answer for the
multiplicity, the contributions from the two kinds of Weyl groups elements
remain separate: the permutationsp contributeP(A1e1+· · ·+Anen−c0en),
and the elementss2en p contributeP(A1e1 + · · · + Anen + (c0 + 2)en) with
a minus sign. Thus from now on, we work only with elementsw of WG

that are permutations.
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Lemma 9.54.Fix a permutationw. If c1 ≥ a3, c2 ≥ a4, . . . , cn−2 ≥ an

hold, thenP(w(λ + δ) − (µ + δ)) = 0 unless every equalitywei = ej

implies j ≥ i − 1.

PROOF. Suppose that thew term is not 0. Fixi , and definej bywei = ej .
We may assume thatj < n andi ≥ 3 since otherwise there is nothing to
prove. We have

〈w(λ + δ) − (µ + δ), ej〉 = 〈λ + δ, ei〉 − 〈µ + δ, ej〉 = (ai − cj) + ( j − i).

By (9.51) the left side is≥ 0. On the other hand, ifj < i − 1, then the
inequalitiesai ≤ ci−2 and−cj ≤ −ci−2 imply

(ai − cj) + ( j − i) < (ci−2 − ci−2) − 1 < 0,

and we have a contradiction.

Proposition 9.55.If c1 ≥ a3, c2 ≥ a4, . . . , cn−2 ≥ an hold and ifai < ci

for somei < n, thenP(w(λ+ δ)− (µ+ δ)) = 0 for every permutationw.

PROOF. Suppose that thew term is nonzero. Definej andk by ej = wei

andek = w−1ei . Lemma 9.54 givesi ≤ j + 1 andk ≤ i + 1. The claim is
thati ≤ j − 1 andk ≤ i − 1. For this purpose we may assume thatj < n.
To see thati ≤ j − 1, we write

〈w(λ + δ) − (µ + δ), ej〉 = (ai − cj) + ( j − i) < (ci − cj) + ( j − i).

By (9.51) the left side is≥ 0. If i > j − 1, then both terms on the right
side are≤ 0, and we have a contradiction. Similarly to see thatk ≤ i − 1,
we write

〈w(λ + δ) − (µ + δ), ei〉 = (ak − ci) + (i − k) < (ak − ai) + (i − k).

If k > i − 1, then both terms on the right side are≤ 0, and we have a
contradiction to the fact that the left side is≥ 0.

Therefore we havewei = ej andwek = ei with k < i < j . Since
j > i , w{ei+1, . . . , en} does not containej , and thusw{ei+1, . . . , en}
meets{e1, . . . , ei}. Sincek < i , ei is not in w{ei+1, . . . , en}. Hence
w{ei+1, . . . , en} meets{e1, . . . , ei−1}. Consequently there exist indicesr
ands with wes = er , s ≥ i + 1, andr ≤ i − 1. But thenr < s − 1, in
contradiction to Lemma 9.54. This completes the proof.
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For the proofs of the last two propositions, we shall need three identities
concerning partition functions. It will be helpful to derive these in some
generality. Let� be a finite set lying in an open half space of a Euclidean
space. For our purposes each member of� will have multiplicity 1, but
higher multiplicity can be handled by giving different names to the different
versions of the same element. We writeP� for the associated partition
function:P�(ν) is the number of nonnegative-integer tuples{nω | ω ∈ �}
such thatν = ∑

ω∈� nωω. If α1, . . . , αk are members of�, we writeP�
α1,...,αk

for P�′
when�′ is the set� with α1, . . . , αk removed.

Let us derive the identities. Ifα is in �, then

P�(ν) = P�(ν − α) + P�
α (ν)

for all ν. In fact, the left side counts the number of expansions ofν in terms
of �, and the right side breaks this count disjointly into two parts—the first
part for all expansions containingα at least once and the second part for all
expansions not containingα. Iterating this identityn ≥ 0 times, we obtain

(9.56) P�(ν) − P�(ν − nα) =
n−1∑
j=0

P�
α (ν − jα)

for all ν. If α andβ are both in� and if γ = α − β, then we can write a
version of (9.56) forβ, namely

P�(ν − nγ ) − P�(ν − nα) =
n−1∑
j=0

P�
β (ν − nγ − jβ),

and the result upon subtraction is

(9.57) P�(ν) −P�(ν − nγ ) =
n−1∑
j=0

[
P�

α (ν − jα) −P�
β (ν − nγ − jβ)

]
.

Now suppose thatω = 0 is in the Euclidean space and thatζ is the
only member of� for which 〈ζ, ω〉 = 0. Let us normalizeω so that
〈ζ, ω〉 = 1. If an expansion ofν in terms of� involvesnζ , then〈ν, ω〉 = n.
Applying (9.56) forn and thenn + 1, we obtain

(9.58) P�(ν) = P�(ν − 〈ν, ω〉ζ ) = P�
ζ (ν − 〈ν, ω〉ζ )

provided〈ν, ω〉 is an integer≥ 0.
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Proposition 9.59. If c1 ≥ a3, c2 ≥ a4, . . . , cn−2 ≥ an hold and if
aj ≥ cj for all j < n, then the sum ofε(w)P(w(λ + δ) − (µ + δ)) over all
permutationsw is P(A1e1 + · · · + Anen − c0en).

REMARK. By the same proof, an analogous summation formula ap-
plies for the elementss2en p of the Weyl group and yields the other term
−P(A1e1 + · · · + Anen + (c0 + 2)en) for the multiplicity in Theorem 9.50.

PROOF. The idea is to reduce matters to the case that

(9.60) c1 ≥ a2, c2 ≥ a3, . . . , cn−1 ≥ an.

If these inequalities are satisfied, then the proof of Lemma 9.28 shows that
P(w(λ+δ)−(µ+δ)) = 0 except forw = 1. Forw = 1, these inequalities
make Aj = aj − cj for j < n, and consequently(λ + δ) − (µ + δ) =
A1e1 + · · · + Anen − c0en. Thus the proposition is immediate under the
assumption that (9.60) holds.

In the general case suppose thatλ′ = ∑n
j=1 a′

j ej andµ′ = ∑n−1
j=1 c′

j ej +
c0en are given withc′

1 ≥ a′
3, c′

2 ≥ a′
4, . . . , c′

n−2 ≥ a′
n, with a′

j ≥ c′
j for

all j < n, and withc′
i < a′

i+1 for somei < n. We may assume thati
is as small as possible with this property. Defineci = a′

i+1, ai+1 = c′
i ,

cj = c′
j for j = i , andaj = a′

j for j = i + 1. Then letλ = ∑n
j=1 aj ej

andµ = ∑n−1
j=1 cj ej + c0en. A quick check shows thatλ andµ satisfy the

hypotheses of the proposition, that theAj ’s are unchanged, and that the
first index j , if any, with cj < aj+1 has j > i . Writing (i i +1) for the
transposition ofi andi + 1, we shall show that

(9.61) P(w(λ + δ) − (µ + δ)) − P(w(i i +1)(λ + δ) − (µ + δ))

?= P(w(λ′ + δ) − (µ′ + δ)) − P(w(i i +1)(λ′ + δ) − (µ′ + δ))

for all permutationsw. When this identity is multiplied byε(w) and
summed onw, it shows that twice the sum ofε(w)P(w(λ + δ) − (µ + δ))

equals twice the sum ofε(w)P(w(λ′ + δ) − (µ′ + δ)). Consequently an
induction on the indexi reduces the proposition to the case where (9.60)
holds, and we have seen that it holds there.

Thus the proposition will follow once (9.61) is proved. Possibly replac-
ing w by w(i i+1) in this identity, we may assume thatw(ei − ei+1) > 0.
Definer ands by er = wei andes = wei+1. Our normalization ofw makes
r < s. The argument of Lemma 9.28, applied withi − 1 in place ofi ,
shows that all four terms in (9.61) are 0 unlesswej = ej for j ≤ i − 1.
Thus we may assume thatr ≥ i . Let us prove that we may taker = i .
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If r > i , then thej with wej = ei cannot bei or i + 1 and thus has to
satisfy j ≥ i + 2. Consequently Lemma 9.54 shows that the first term on
each side of (9.61) is 0. Similarly thej ′ with w(i i +1)ej ′ = ei cannot be
i or i + 1 and thus has to satisfyj ′ ≥ i + 2. Hence Lemma 9.54 shows
that the second term on each side of (9.61) is 0. Therefore we may assume
thatr = i .

We now compute the respective sides of (9.61) using (9.56), (9.57),
and (9.58). There will be two cases,s < n ands = n. The first case will
be the harder, and we handle that first. At the end we indicate what happens
whens = n. To simplify some of the notation, we abbreviateea − eb as
eab.

We begin with the left side of (9.61). The difference of the arguments
of P in the two terms on the left side is〈λ + δ, ei,i+1〉eis . We are going to
apply (9.57) withγ = eis . Hereγ = α − β with α = ein andβ = esn.
Application of (9.57) shows that the left side of (9.61) is

(9.62) =
ai −ai+1∑

j=0

[
Pein(w(λ + δ) − (µ + δ) − jein)

− Pesn(w(λ + δ) − (µ + δ) − 〈λ + δ, ei,i+1〉eis − jesn)
]
.

In the first term of (9.62), thei th component of the argument ofP is

〈w(λ + δ) − (µ + δ) − jein, ei〉 = ai − ci − j.

For j > ai − ci , the term drops out by (9.51). Thus we need not sum the
first term beyondj = ai − ci . Since we have arranged thatci ≥ ai+1, we
can change the upper limit of the sum for the first term fromai − ai+1 to
ai − ci . In the second term of (9.62), thei th component of the argument of
P is ai+1 − ci − 1, and this is< 0 for every j . Thus every member of the
second sum in (9.62) is 0.

We apply (9.58) to the first term of (9.62), taking� = 	−{ein}, ζ =
ei + en, andω = ei . In the second term of (9.62), we subtract from the
argument a multiple ofes + en to make thes th component 0; this does
not affect anything since every member of the sum remains equal to 0.
After these steps we interchange thei th ands th arguments in the second
term, taking advantage of symmetry. The resulting expression for (9.62)
simplifies to
ai −ci∑
j=0

[
P(w(λ + δ) − (µ + δ) + (ci − ai)ei + (ci − ai + 2 j)en)

− P(w(λ + δ) − (µ + δ) + (ci − ai)ei − ((ci − cs) + (s − i))es

+ ((cs − ai) + (i − s) + 2 j)en)
]
.
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The difference in the arguments of the two terms works out to be
((ci − cs) + (s − i))(es + en). Thus (9.56) withα = es + en shows
that the above expression is

=
ai −ci∑
j=0

(ci −cs )+(s−i−1)∑
k=0

Pes+en(w(λ+δ) − (µ+δ) + (ci −ai)ei + (ci −ai +2 j)en − k(es +en)).

The coefficient ofes in the argument is

〈λ + δ, ei+1〉 − 〈µ + δ, es〉 − k = (ai+1 − cs) + (s − i − 1) − k,

and so the term drops out ifk > (ai+1 − cs) + (s − i − 1). Sinceci ≥ ai+1,
we can replace the upper limit in the sum by(ai+1 − cs) + (s − i − 1). For
the terms that have not dropped out, we apply (9.58) withζ = esn, and the
result is that the left side of (9.61) is

(9.63) =
ai −ci∑
j=0

(ai+1−cs )+(s−i−1)∑
k=0

P(w(λ + δ) − (µ + δ) − ((ai+1 − cs) + (s − i − 1))es

+ (ci − ai)ei + (ai+1 − ai + ci − cs + (s − i − 1) + 2 j − 2k)en).

Now we compute the right side of (9.61). The formulas that relateλ′ to
λ andµ′ to µ are

(9.64) λ′ = λ + (ci − ai+1)ei+1 and µ′ = µ − (ci − ai+1)ei .

The difference of the arguments ofP in the two terms on the right side of
(9.61) is(ai − ci + 1)eis . Thus (9.57) shows that the right side of (9.61) is

(9.65) =
ai −ci∑
j=0

[
Pein(w(λ′ + δ) − (µ′ + δ) − jein)

− Pesn(w(λ′ + δ) − (µ′ + δ) − 〈λ′ + δ, ei,i+1〉eis − jesn)
]
.

In the first term of (9.65), thei th component of the argument ofP is
ai − ai+1 − j ≥ ci − ai+1 ≥ 0. In the second term thes th component
of the argument is(ai − cs) + (s − i) − j ≥ (ci − cs) + (s − i) ≥ 0. We
apply (9.58) to both terms, usingζ = ei + en in the first andζ = es + en
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in the second, and then we interchange thei th ands th components in the
second term. The result is that (9.65) simplifies to

ai −ci∑
j=0

[
P(w(λ′ + δ) − (µ′ + δ) − (ai − ai+1)ei − (ai − ai+1 − 2 j)en)

− P(w(λ′ + δ) − (µ′ + δ) − (ai − ai+1)ei − (ai+1 − cs + s − i)es

− (ai − cs + s − i − 2 j)en)
]
.

The difference in the arguments for the two terms is now equal to
(ai+1 −cs + s − i)(es +en). Thus (9.56) withα = es +en shows that (9.65)
simplifies further to

=
ai −ci∑
j=0

(ai+1−cs )+(s−i−1)∑
k=0

Pes+en(w(λ′+δ) − (µ′+δ) + (ai+1−ai)ei − kes + (ai+1−ai +2 j − k)en).

The coefficient ofes in the argument is

〈λ′ + δ, ei+1〉 − 〈µ′ + δ, es〉 − k,

and the smallest that this gets to be isci−ai+1 ≥ 0. Thus we can apply (9.58)
with ζ = esn, and we find that (9.65) simplifies finally to (9.63). Thus the
left side in (9.61) agrees with the right side, and (9.61) is proved in the case
thats < n.

When s = n, we proceed similarly with each side of (9.61), but the
simpler formula (9.56) may be used in place of (9.57). Once (9.58) has
been used once with each side, no further steps are necessary, and we find
that the left and right sides of (9.61) have been simplified to the same
expression.

Proposition 9.66. If one or more of the inequalitiesc1 ≥ a3, c2 ≥ a4,
. . . , cn−2 ≥ an fails, thenmλ(µ) = 0.

PROOF. Fix an i ≤ n − 2 with ci < ai+2. The idea is to show that the
sum ofε(w)P(w(λ+ δ)− (µ+ δ)) over all permutationsw cancels in sets
of six. To describe the sets of six, we need some facts about the symmetric
groupSu,v on the integers{u, u + 1, . . . , v}. Let us writeckl for the cyclic
permutation withk ≤ l that sendsk into k + 1, k + 1 into k + 2, . . . ,
l − 1 into l, andl into k. If k = k ′ are integers≥ u, thenc−1

kv ck ′v cannot
be inSu,v−1, and it follows thatSu,v = ⋃v

k=u ckvSu,v−1. Similarly we have



5. Proofs of Classical Branching Theorems 593

Su,v = Su+1,v

⋃v

l=u cul . Iterating the first kind of decomposition and then
the second, we find that each memberw ofS1,n has a unique decomposition
asw = pzq with

p = ckn ,nckn−1,n−1 · · · cki+3,i+3 and q = ci−1,li−1ci−2,li−2 · · · c1,l1

and with allkj ≥ i , all lj ≤ n, andz ∈ Si,i+2. A set of six consists of all
w with a commonp and a commonq. The properties ofp andq that we
need are

(9.67)
i ≤ p(i) < p(i + 1) < p(i + 2),

q−1(i) < q−1(i + 1) < q−1(i + 2) ≤ i + 2.

Definei ′ = i + 1 andi ′′ = i + 2, and abbreviateea − eb aseab during
the remainder of the proof. Fixp andq as above, and definer = p(i),
s = p(i ′), andt = p(i ′′), so thati ≤ r < s < t by (9.67). The proof
divides into two cases,t < n andt = n. The case thatt = n is the simpler,
and its proof can be obtained from the proof whent < n by replacingt by
n and by dropping some of the terms. Thus we shall assume thatt < n
from now on.

For z equal to 1 orcii ′ or cii ′′ , an application of (9.57) withα = esn,
β = etn, andγ = est gives

P(pzq(λ + δ) − (µ + δ)) − P(pci ′i ′′ zq(λ + δ) − (µ + δ))

=
〈λ+δ,q−1z−1ei ′ i ′′ 〉−1∑

j=0

[
Pesn(pzq(λ + δ) − (µ + δ) − jesn))

− Petn(pzq(λ+δ) − (µ+δ) − 〈λ+δ, q−1z−1ei ′i ′′ 〉est − jetn))
]
.

We multiply this equation byε(z) and add for the three values ofz. On
the left side we have our desired sum of six terms of (9.26), apart from a
factor of ε(pq), and on the right side we have six sums, three involving
Pesn and three involvingPetn . The limits of summation for the two sets of
three sums are the same; with their coefficient signs in place, they are

(9.68)
〈λ+δ,q−1ei ′ i ′′ 〉−1∑

j=0

, −
〈λ+δ,q−1eii ′′ 〉−1∑

j=0

,

〈λ+δ,q−1eii ′ 〉−1∑
j=0

.

The middle one we break into two parts as
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(9.69) −
〈λ+δ,q−1eii ′′ 〉−1∑

j=0

= −
〈λ+δ,q−1eii ′′ 〉−1∑
j=〈λ+δ,q−1eii ′ 〉

−
〈λ+δ,q−1eii ′ 〉−1∑

j=0

.

With the first sum on the right side of (9.69), we change variables using
j ′ = j − 〈λ + δ, q−1eii ′ 〉, and then we changej ′ back to j . The new limits
of summation are from 0 to〈λ + δ, q−1ei ′i ′′ 〉 − 1. This adjusted sum gets
lumped with the first sum in (9.68), and the second sum on the right side
of (9.69) gets lumped with the third sum in (9.68). The expression we get
is

=
〈λ+δ,q−1ei ′ i ′′ 〉−1∑

j=0

[
Pesn(pq(λ + δ) − (µ + δ) − jesn))

− Pesn(pcii ′q(λ + δ) − (µ + δ) − ( j + 〈λ + δ, q−1eii ′ 〉)esn)
]

−
〈λ+δ,q−1ei ′ i ′′ 〉−1∑

j=0

[
Petn(pq(λ + δ) − (µ + δ) − 〈λ + δ, q−1ei ′i ′′ 〉est − jetn)

− Petn(pcii ′q(λ + δ) − (µ + δ) − 〈λ + δ, q−1eii ′′ 〉est

− ( j + 〈λ + δ, q−1eii ′ 〉)etn)
]

−
〈λ+δ,q−1eii ′ 〉−1∑

k=0

[
Pesn(pcii ′q(λ + δ) − (µ + δ) − kesn))

− Pesn(pcii ′′q(λ + δ) − (µ + δ) − kesn)
]

+
〈λ+δ,q−1eii ′ 〉−1∑

k=0

[
Petn(pcii ′q(λ + δ) − (µ + δ) − 〈λ + δ, q−1eii ′′ 〉est − ketn)

− Petn(pcii ′′q(λ + δ) − (µ + δ) − 〈λ + δ, q−1eii ′ 〉est − ketn)
]
.

In this expression we have four sums of differences, and we find that the
respective differences of the arguments ofP are

〈λ + δ, q−1eii ′ 〉ern, 〈λ + δ, q−1eii ′ 〉ern,

〈λ + δ, q−1ei ′i ′′ 〉ert , and 〈λ + δ, q−1ei ′i ′′ 〉ers .

To handle the first and second sums of differences, we use (9.56) with
α = ern. For the third sum of differences, we use (9.57) withα = ern and
β = etn. For the fourth sum of differences, we use (9.57) withα = ern and
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β = esn. The expression is then

=
〈λ+δ,q−1ei ′ i ′′ 〉−1∑

j=0

〈λ+δ,q−1eii ′ 〉−1∑
k=0[

Pesn ,ern(pq(λ + δ) − (µ + δ) − jesn − kern)

− Petn ,ern(pq(λ + δ) − (µ + δ) − 〈λ + δ, q−1ei ′i ′′ 〉est − jetn − kern)

− Pesn ,ern(pcii ′q(λ + δ) − (µ + δ) − kesn − jern)

+ Pesn ,etn(pcii ′q(λ + δ) − (µ + δ) − kesn − jetn − 〈λ + δ, q−1ei ′i ′′ 〉ert)

+ Petn ,ern(pcii ′q(λ + δ) − (µ + δ) − 〈λ + δ, q−1eii ′′ 〉est − ketn − jern)

− Petn ,esn(pcii ′q(λ + δ) − (µ + δ) − 〈λ + δ, q−1eii ′′ 〉est − ketn − jesn

− 〈λ + δ, q−1ei ′i ′′ 〉ers)
]
.

Let us call the terms within bracketsA, B, C, D, E, F . The proof is
completed by showing for eachj andk that A cancels withC , B cancels
with E , andD cancels withF . We compute the differences of the arguments
of P for the three pairs, seeing that they are(〈λ+ δ, q−1eii ′ 〉− k + j) times
ers , ert , andest in the three cases. The proofs of cancellation are similar in
the three cases, and we give only the one for cancelingA andC .

The idea is to apply (9.58) twice to each ofA andC , once withζ = er +en

and once withζ = es + en. The arguments ofA andC differ only in ther th

ands th components, and the inner products of the arguments wither + es

are equal. Hence simplification ofA andC by means of (9.58) will make
the arguments equal, and the terms will cancel.

To be able to apply (9.58) in this way, we have to know that ther th

ands th components of the arguments ofA andC are≥ 0 for every j and
k. This verification will be the only place where we use the hypothesis
ci < ai+2. To begin with, we know thatk ≤ 〈λ + δ, q−1eii ′ 〉, and thus
(〈λ + δ, q−1eii ′ 〉 − k + j) is ≥ 0. Then for each( j, k), we have

〈argument(A), er〉 − 〈argument(C), er〉 = 〈(≥ 0)er , er〉 ≥ 0,

from which it follows that both arguments haver th component≥ 0 if C
does. Similarly both arguments haves th component≥ 0 if A does. We
have

〈argument(C), er〉 = 〈pcii ′q(λ + δ), er〉 − 〈µ + δ, er〉 − j

= 〈λ + δ, q−1ei ′ 〉 − 〈µ + δ, er〉 − j
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≥ 〈λ + δ, q−1ei ′′ 〉 − 〈µ + δ, er〉 + 1

≥ 〈λ + δ, ei ′′ 〉 − 〈µ + δ, ei〉 + 1

= ai ′′ − ci + 〈δ, ei ′′ − ei〉 + 1

= ai+2 − ci − 1

≥ 0.

The three inequalities above respectively use the upper bound onj , the
inequalities (9.67), and the hypothesisci < ai+2. Also

〈argument(A), es〉 = 〈pq(λ + δ), es〉 − 〈µ + δ, es〉 − j

= 〈λ + δ, q−1ei ′ 〉 − 〈µ + δ, es〉 − j

≥ 〈λ + δ, q−1ei ′ 〉 − 〈µ + δ, er〉 − j sincer < s

≥ 0,

the last step following from the preceding computation. This completes
the proof.

6. Tensor Products and Littlewood–Richardson Coefficients

Let us return to the framework of §4 of finding the multiplicities of the
irreducible representations ofG in L2(G/H)whenG/H can be constructed
from a succession of compact symmetric spaces. The starting point is
branching theorems in the context of compact symmetric spacesU/K .
In this section we begin a discussion of some further results of this kind
beyond those proved in §5. Some of them have the property of handling
only some representations ofU or K , but they are still applicable to the
problem of analyzingL2(G/H).

The first such result, given below as Theorem 9.70, handles the trivial
representation ofK . WhenU is semisimple, Theorem 9.70 is a direct
translation, via Riemannian duality, of part of Helgason’s Theorem (The-
orem 8.49) because Lemma 8.48 shows thatM fixes a nonzero highest
weight vector if and only ifM acts by the trivial representation in the
highest restricted-weight space. For generalU , Theorem 9.70 follows
from the result in the semisimple case because Theorem 4.29 shows that
the semisimple part ofU is closed and because the additional contribution
to M comes from the identity component of the subgroup of the center
fixed by�.
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Theorem 9.70. Let U be a compact connected Lie group with Lie
algebrau, let K be the identity component of the set of fixed elements
under an involution�, let ϕ be the differential of�, and letu = k ⊕ q

be the eigenspace decomposition ofu underϕ. Choose a maximal abelian
subspaceb of q, let s be a maximal abelian subspace of the centralizer of
b in k, and putt = b ⊕ s. Let M be the centralizer ofb in K . Impose
an ordering on(it)∗ that takesib beforeis. Then an irreducible finite-
dimensional representationπ of U has a nonzeroK fixed vector if and
only if M fixes a nonzero highest-weight vector ofπ .

A particularly simple yet illuminating example is the case of tensor
products for a compact connected Lie groupG. As we saw in §4, this
case arises from the compact symmetric spaceU/K with U = G × G and
K = diagG. Let us examine this case in detail.

First let us consider the example directly, writingτλ for an irreducible
representation ofG with highest weightλ and writingχλ for its character.
By (4.13), (4.15), and Corollary 4.16, the multiplicity ofτµ in τλ1 ⊗ τλ2 is
just

(9.71) [τλ1 ⊗ τλ2 : τµ] =
∫

G

χλ1χλ2χµ dx .

If µ = 1, then the integral is nonzero if and only ifχλ2 = χλ1, thus if and
only if τλ2 is equivalent withτ c

λ1
. In this case the multiplicity is 1.

Now let us consider this example from the point of view of Theo-
rem 9.70. Ifc is a Cartan subalgebra of the Lie algebra ofG, then we
can takeb = {

(X, −X)
∣∣ X ∈ c

}
. We are forced to lets = diagc,

and we havet = c ⊕ c. A member(λ1, λ2) of (it)∗ decomposes as
1
2(λ1 − λ2, λ2 − λ1) + 1

2(λ1 + λ2, λ1 + λ2) with the first term carried
on ib and the second term carried onis. Roots are of the form(α, 0)

and (0, α) with α ∈ �G , and their corresponding decompositions are
1
2(α, −α) + 1

2(α, α) and 1
2(−α, α) + 1

2(α, α). Sinceib comes beforeis,
according to the hypotheses of Theorem 9.70, the sign of(α, 0) is deter-
mined by1

2(α, −α). Thus(α, 0) > 0 implies(0, −α) > 0. Consequently
�+

U is determined by a choice of�+
G and is given by

�+
U = {

(α, 0)
∣∣ α ∈ �+

G

} ∪ {
(0, −α)

∣∣ α ∈ �+
G

}
.

Dominance for(λ1, λ2) therefore means that〈λ1, α〉 ≥ 0 and〈λ2, α〉 ≤ 0
for all α ∈ �+

G . That is,λ1 and−λ2 are to be dominant for�+
G . We know

from §4 that every irreducible representation ofG × G is an outer tensor
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product; suppose that the irreducible representation ofU with highest
weight (λ1, λ2) is the outer tensor productτ⊗̂τ ′. Thenτ is just τλ1 up
to equivalence, butτ ′ haslowest weightλ2. Soτ ′ is an irreducible repre-
sentation whose contragredient has highest weight−λ2. In other words,
τ ′c = τ−λ2 andτ ′ = τ c

−λ2
, up to equivalence. Thus the irreducible repre-

sentation ofU with highest weight(λ1, λ2) is equivalent withτλ1⊗̂τ c
−λ2

.
To understand the content of Theorem 9.70 for this example, we need to
identify M . The groupM is the subgroup of elements(x, x) in G × G
with Ad(x, x)(X, −X) = (X, −X) for all X in c. By Corollary 4.52 an
elementx of G with Ad(x)X = X for all X in c must itself be in expc, and
henceM = exps. The condition of Theorem 9.70 is that(λ1, λ2) vanish
on s, hence thatλ1 + λ2 = 0. Then−λ2 = λ1 andτλ1⊗̂τ c

−λ2
is equivalent

with τλ1⊗̂τ c
λ1

.
Theorem 9.70 detects only what tensor products contain the trivial

representation. With any of our tools so far—namely the multiplicity
formula (9.71), Kostant’s Branching Theorem (Theorem 9.20), or even
Problem 17 at the end of this chapter—we are left with a great deal of
computation to decompose any particular tensor product. For example,
if N is the order of the Weyl group ofG, then the Kostant formula for
checking a multiplicity within a tensor product hasN 2 terms.

For particular groupsG, there are better methods for decomposing tensor
products. Of particular interest is the unitary groupG = U (n). Before
giving results in that case, we need one general fact.

Proposition 9.72. In a compact connected Lie groupG, let λ′′ be any
highest weight inτλ ⊗ τλ′ , i.e., the highest weight of some irreducible
constituent. Thenλ′′ is of the formλ′′ = λ + µ′ for some weightµ′ of τλ′ .

PROOF. Write aλ′′ highest weight vector in terms of weight vectors of
τλ andτλ′ asv = ∑

µ+µ′=λ′′(vµ ⊗ vµ′), allowing more than one term per
choice ofµ, if necessary, and taking thevµ′ ’s to be linearly independent.
Chooseµ = µ0 as large as possible so that there is a nonzero termvµ ⊗vµ′ .
If Eα is a root vector for a positive rootα, then

0 = Eαv =
∑

µ+µ′=λ′′
(Eαvµ ⊗ vµ′) +

∑
µ+µ′=λ′′

(vµ ⊗ Eαvµ′).

The only way a vector of weightµ0+α can occur in the first member of the
tensor products on the right side is from termsEαvµ0⊗vµ′ withµ′ = λ′′−µ0.
Since the corresponding vectorsvµ′ are linearly independent,Eαvµ0 is 0
for eachvµ0 that occurs. Therefore any suchvµ0 is a highest weight vector
for τλ. We conclude thatµ0 = λ and thatλ′′ is of the required form.
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Now we examine tensor products whenG is the unitary groupU (n). It
is traditional to study representations ofU (n) in a normalized form that
can be obtained by multiplying by a suitable power of the 1-dimensional
determinant representation: A representationτ of U (n) is a polynomial
representation if all of its matrix coefficientsx �→ (τ (x)ψ ′, ψ) are
polynomial functions of the entriesxi j . Equivalently all of the matrix
coefficients of the holomorphic extension ofτ to GL(n, C) are to be
holomorphic polynomials of the entries of the matrix inGL(n, C). This
notion is preserved under passage from a representation to an equivalent
representation and under direct sums, tensor products, and subrepresenta-
tions. Consequently any irreducible constituent of the tensor product of
two polynomial representations is again a polynomial representation.

An integral formν = ∑n
j=1 νj ej for U (n) is nonnegativeif νj ≥ 0 for

all j . Restricting a polynomial representation to the diagonal matrices,
we see that every weight of a polynomial representation is nonnegative.
Conversely we can see that any irreducible representation whose highest
weight is nonnegative is a polynomial representation. In fact, the standard
representation, with highest weighte1, is a polynomial representation. The
usual representation in alternating tensors of rankk lies in thek-fold tensor
product of the standard representation with itself and is therefore polyno-
mial; its highest weight is

∑k
j=1 ej . Finally, if we adopt the convention

thatλn+1 = 0, a general highest weightλ = ∑n
j=1 λj ej can be rewritten as

the sumλ = ∑n
k=1(λk − λk+1)

∑k
i=1 ei . An irreducible representation with

highest weightλ thus lies in a suitable tensor product of alternating-tensor
representations and is polynomial.

The classical representation theory for the unitary group deals with irre-
ducible polynomial representations, which we now know are the irreducible
representations with nonnegative highest weight or, equivalently, with all
weights nonnegative. The restriction that an irreducible representation
have nonnegative highest weight is not a serious one, since any irreducible
τ is of the formτ ′ ⊗ (det)−N with τ ′ polynomial if the integerN is large
enough.

Let τλ be an irreducible polynomial representation with highest weight
λ = ∑n

j=1 λj ej . We define thedepth of τλ or λ to be the largestj ≥ 0 such
thatλj = 0. If λ has depthd, theparts of λ are thed positive integersλj .
To τλ or λ, we associate adiagram, sometimes called a “Ferrers diagram.”
This consists of a collection of left-justified rows of boxes:λ1 in the first
row,λ2 in the second row,. . . ,λd in thed th row. The integern is suppressed.
For example, the highest weight 4e1 + 2e2 + e3 + e4 is associated to the
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diagram

We shall allow ourselves to replace the boxes in a diagram by various
integers, retaining the pattern. Thus if we use 0’s in place of boxes above,
we obtain

0 0 0 0
0 0
0
0

as the diagram.
If ν is a nonnegative integral form, we write‖ν‖ for 〈ν, e1 + · · · + en〉.

This number is the same for all weights of an irreducible representation.
In the example above of a diagram with boxes, the depth is the number of
rows, namely 4, and the common value of‖ν‖ is the total number of boxes,
namely 8.

Let us suppose that the tensor product of two irreducible polynomial rep-
resentationsτµ andτν of U (n) decomposes into irreducible representations
as

(9.73) τµ ⊗ τν
∼=

∑
depth(λ)≤n

cλ
µντλ.

The integerscλ
µν , which are≥ 0, are calledLittlewood-Richardson

coefficients. We shall give without proof a recipe for computing these
coefficients that is rapid and involves no cancellation of terms.

Fix µ andν and suppose thatτλ actually occurs inτµ ⊗ τν in the sense
thatcλ

µν = 0. Thenλ is nonnegative and‖λ‖ = ‖µ‖ + ‖ν‖ because every
weight of the tensor product has these properties. A more subtle property
of λ is thatλ is the sum ofµ and a nonnegative integral form (and also
the sum ofν and a nonnegative integral form); this follows immediately
from Proposition 9.72. In terms of diagrams, this relationship means that
the diagram ofµ is a subset of the diagram ofλ, and we consequently
write µ ⊆ λ for this relationship. To find all possibleλ’s, we may think of
enlarging the diagram ofµ with ‖ν‖ additional boxes or 0’s and hoping to
determine which enlarged diagrams correspond toλ’s that actually occur.
Of course, the enlarged diagram needs to correspond to a dominant form,
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and thus the lengths of its rows are decreasing. But that condition is not
enough. The additional data that are needed to describe whichλ’s actually
occur are what we shall call the “symbols” ofν: if ν = ∑

νj ej has depth
d, thesymbolsof ν areν1 occurrences of the integer 1,ν2 occurrences of
the integer 2,. . . , andνd occurrences of the integerd. The diagram ofµ
is written with 0’s in place, and the enlargement is formed by putting the
symbols ofν into place in such a way that the diagram of a dominant form
results. For example, letµ = 4e1+2e2+e3+e4 andν = 3e1+e2+e3+e4.
The symbols ofν are{1, 1, 1, 2, 3, 4}. One conceivable enlargement of the
diagram ofµ is

0 0 0 0 1 1
0 0 1 2
0 3 4
0

In fact, this particular enlargement will not be an allowable one in the
theorem below because it does not satisfy condition (c).

Theorem 9.74(Littlewood–Richardson). Letτµ andτν be irreducible
polynomial representations ofU (n), and letτλ be a polynomial representa-
tion ofU (n) with ‖λ‖ = ‖µ‖+‖ν‖ andµ ⊆ λ. Representµ by a diagram
of 0’s, and consider enlargements of that diagram, using the symbols ofν,
to diagrams ofλ. Then the numbercλ

µν of times thatτλ occurs inτµ ⊗ τν

equals the number of enlarged diagrams such that

(a) the integers along each row of the enlarged diagram are increasing
but not necessarily strictly increasing,

(b) the nonzero integers down each column are strictly increasing, and
(c) the nonzero integers in the enlarged diagram, when read from right

to left and row by row starting from the top row, are such that each
initial segment never has more of an integeri than an integerj with
1 ≤ j < i .

In the enlarged diagram before the statement of the theorem, the se-
quence of integers addressed by (c) is 112143. This does not satisfy (c)
because the initial segment 11214 has more 4’s than 3’s.

In the theorem ifcλ
µν = 0, thenν ⊆ λ is forced.

EXAMPLE. Tensor productτµ ⊗ τν in U (3), whereµ = ν = 2e1 + e2.

The diagram forµ is

[
0 0
0

]
, and the symbols ofν are{1, 1, 2}. The first
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symbol ofν that we encounter in (c) has to be a 1, and then no symbol
2 can be placed in the first row, by (a). An enlarged diagram can have at
most 3 rows, in order to correspond to a highest weight forU (3). We find
6 enlarged diagrams as follows:

0 0 1 1
0 2

0 0 1 1
0
2

0 0 1
0 1 2

0 0 1
0 2
1

0 0 1
0 1
2

0 0
0 1
1 2

The highest weights of the corresponding irreducible constituents of the
tensor product are the dominant forms corresponding to the above 6 dia-
grams: 4e1 + 2e2, 4e1 + e2 + e3, 3e1 + 3e2, 3e1 + 2e2 + e3, 3e1 + 2e2 + e3,
and 2e1 + 2e2 + 2e3. The respective multiplicities equal the number of
times that the forms appear in this list. Thus the constituent with highest
weight 3e1 + 2e2 + e3 appears with multiplicity 2, and the four others
appear with multiplicity 1. It would be easy to err by omitting one of
the diagrams in the above computation, but a check of dimensions will
detect an error of this kind if there are no other errors. The givenτµ has
dimension 8, and thus the tensor product has dimension 64. The dimension
of each constituent is 27, 10, 10, and 1 in the case of the representations of
multiplicity 1, and 8 in the case of the representation of multiplicity 2. We
have 27+ 10+ 10+ 1 + 2(8) = 64, and thus the dimensions check. One
final remark is in order. Our computation retained enlarged diagrams only
when they had at most 3 rows. ForU (n) with n ≥ 4, we would encounter
two additional diagrams, namely

0 0
0 1
1
2

and

0 0 1
0
1
2

These correspond to 2e1 + 2e2 + e3 + e4 and 3e1 + e2 + e3 + e4.

7. Littlewood’s Theorems and an Application

We continue our discussion of branching theorems in the context of
compact symmetric spacesU/K . The first two theorems are due to D. E.
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Littlewood and handle branching for the compact symmetric spaces
U (n)/SO(n) andU (2n)/Sp(n), but only under a hypothesis limiting the
depth of the given representation of the unitary group. We state these
theorems without proof, giving examples for each.

The statements of the theorems involve the Littlewood–Richardson coef-
ficientscλ

µν defined in (9.73). In computing these coefficients, we are given
λ, µ, and several possibilities forν; we seek theν’s and the coefficients.
These may be computed by changing the emphasis in the method of the
previous section. Here is an example: Letλ = 3e1+3e2 andµ = 2e1+e2.
The formula forµ tells us the diagram of 0’s in the earlier method of
computation, and the formula forλ tells us the total shape of the diagram.
Let us insert the symbol x for the unknown values in the diagram ofλ.
Then we are to start from

0 0 x
0 x x

Each possibility forν gives us a set of symbols. For example,ν = 2e1 + e2

gives us the set{1, 1, 2}, and we can complete the diagram in just one way
that is allowed by Theorem 9.74, namely to

0 0 1
0 1 2

Thuscλ
µν = 1 for thisν.

The hypothesis on the depth can be dropped at the expense of introducing
something called “Newell’s Modification Rules,” but we shall not pursue
this topic.

Theorem 9.75(Littlewood). Letτλ be an irreducible polynomial rep-
resentation ofU (n) with highest weightλ, and suppose thatλ has depth
≤ [n/2]. Let σν be an irreducible representation ofSO(n) with highest
weightν.

(a) If n is odd,

τλ

∣∣
SO(n)

∼=
∑

µ nonnegative,
µ⊆λ,

µ has even parts

∑
ν nonnegative,

ν⊆λ,
‖µ‖+‖ν‖=‖λ‖

cλ
µνσν.

(b) If n is even ands denotes the Weyl-group element that changes the
last sign, then

τλ

∣∣
SO(n)

∼=
∑

µ nonnegative,
µ⊆λ,

µ has even parts

( ∑
ν nonnegative,

sν=ν
ν⊆λ,

‖µ‖+‖ν‖=‖λ‖

cλ
µνσν +

∑
ν nonnegative,

sν =ν
ν⊆λ,

‖µ‖+‖ν‖=‖λ‖

cλ
µν(σν + σsν)

)
.
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EXAMPLES.
1) With n = 4, let λ = 5e1 + 2e2. We seek the restriction ofτλ from

U (4) to SO(4). We form a list of the nonnegativeµ’s with even parts such
thatµ ⊆ λ, namely

0, 2e1, 4e1, 2e1 + 2e2, 4e1 + 2e2.

Each of these tells us a value for‖ν‖, and we list theν’s that must be
examined for eachµ:

µ = 0, ‖ν‖ = 7, ν = 5e1 + 2e2

µ = 2e1, ‖ν‖ = 5, ν = 5e1 or 4e1 + e2 or 3e1 + 2e2

µ = 4e1, ‖ν‖ = 3, ν = 3e1 or 2e1 + e2

µ = 2e1 + 2e2, ‖ν‖ = 3, ν = 3e1 or 2e1 + e2

µ = 4e1 + 2e2, ‖ν‖ = 1, ν = e1.

Then we do the computation with the 0’s and x’s, seeing how many ways
Theorem 9.74 allows for placing the symbols ofν. For a sample let us do
µ = 4e1 and thenµ = 2e1 + 2e2. First considerµ = 4e1. Theν’s to
examine are 3e1 and 2e1 + e2, and the diagram to complete is

0 0 0 0 x
x x

The respective sets of symbols are{1, 1, 1} and{1, 1, 2}. With the first set
we can complete the diagram with each x= 1, and with the second set we
can put the 2 in the second position on the second line. Thusµ = 4e1 gives
us a contribution of one occurrence of eachσν . Next considerµ = 2e1+2e2.
We are interested in the sameν’s, and the diagram to complete is

0 0 x x x
0 0

We can complete the diagram with the symbols{1, 1, 1} but not with
{1, 1, 2}. Thus this time we get a contribution fromν = 3e1 but not
from 2e1 + 2e2. A similar computation shows for each of the other three
µ’s that the diagram can be completed in one allowable way for eachν.
We now add the contributions from eachν. The theorem tells us also to
includesν when the coefficient ofe2 in ν is not 0. Abbreviatingae1 + be2

as(a, b), we find that the restriction ofτλ from U (4) to SO(4) is

σ5,0 + 2σ3,0 +σ1,0 +σ5,2 +σ5,−2 +σ4,1 +σ4,−1 +σ3,2 +σ3,−2 +σ2,1 +σ2,−1.

For a check we can compute the dimension in two ways, verifying that it
comes to 224 both times.
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2) With n = 3, letλ = ae1 for somea ≥ 0. We seek to restrictτλ from
U (3) to SO(3). The values ofµ to consider are 0, 2e1, 4e1, . . . , 2[a/2]e1.
For eachµ, we are to consider just oneν, namelyλ − µ. The symbols for
ν are{1, . . . , 1}, and the relevant diagram of 0’s and x’s can be completed
in exactly one allowable way. Thus the restriction ofτλ to SO(3) is

σae1 + σ(a−2)e1 + · · · + (σe1 or σ0).

This decomposition has the following interpretation: One realization of
τλ for U (3) is in the space of homogeneous polynomials of degreea
in variablesz̄1, z̄2, z̄3. The restriction toSO(3) breaks into irreducible
representations in a manner described by Problems 9–14 of Chapter IV
and Problem 2 of Chapter V.

Theorem 9.76(Littlewood). Letτλ be an irreducible polynomial rep-
resentation ofU (2n) with highest weightλ, and suppose thatλ has depth
≤ n. Let σν be an irreducible representation ofSp(n) with highest weight
ν. Then

τλ

∣∣
Sp(n)

∼=
∑

µ nonnegative,
µ⊆λ,

µ has an even number of
parts of each magnitude

∑
ν nonnegative,

ν⊆λ,
‖µ‖+‖ν‖=‖λ‖

cλ
µνσν.

EXAMPLE. Forλ = 5e1 + 2e2, we seek the restriction ofτλ from U (4)

to Sp(2). The list ofµ’s in question is

0, e1 + e2, 2e1 + 2e2;

the list includese1 + e2, for instance, becausee1 + e2 has 2 parts of
magnitude 1 and 0 parts of all other magnitudes. Forµ = 0, we are led to
ν = 5e1 + 2e2 and one way of completing the diagram. Forµ = e1 + e2,
we have‖ν‖ = 5, and theν’s to consider are 5e1, 4e1 + e2, and 3e1 + 2e2.
These have the respective sets of symbols{1, 1, 1, 1, 1}, {1, 1, 1, 1, 2}, and
{1, 1, 1, 2, 2}, and the diagram to complete is

0 x x x x
0 x

The diagram can be completed in one allowable way in the second case
and in no allowable way in the other two cases. Thus we get a contribution
to the restriction from 4e1 + e2. Forµ = 2e1 + 2e2, we have‖ν‖ = 3, and
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theν’s to consider are 3e1 and 2e1 + e2. These have the respective sets of
symbols{1, 1, 1} and{1, 1, 2}, and the diagram to complete is

0 0 x x x
0 0

The diagram can be completed in one allowable way in the first case and
in no allowable way in the second case. Thus we get a contribution to the
restriction from 3e1. The conclusion is that the restriction ofτλ to Sp(2) is

σ5e1+2e2 + σ4e1+e2 + σ3e1.

The dimensions of these constituents are 140, 64, and 20, and they add to
224, as they must.

Now let us pull together some of the threads of this chapter. We have
concentrated on branching theorems for compact symmetric spaces because
so many compact homogeneous spaces can be built from symmetric spaces.
The example suggested at the end of §4 isL2(K/(K ∩ M0)) wheneverG
is semisimple,K is the fixed group of a Cartan involution, andM AN
is the Langlands decomposition of a maximal parabolic subgroup. For
example, considerG = SO(p, q)0 with p ≥ q, K beingSO(p)× SO(q).
One parabolic subgroup hasK ∩ M0 = SO(p − q) × diagSO(q). If we
introduceK1 = SO(p−q)×SO(q)×SO(q), thenK/K1 andK1/(K ∩M0)

are compact symmetric spaces. To analyzeL2(K/(K ∩ M0)), we can use
induction in stages, starting from the trivial representation ofK ∩ M0.
We pass toK1, and the result is the sum of 1̂⊗σ ⊗̂σ c over all irreducible
representationsσ of SO(q). The passage fromK1 to K requires under-
standing those representations ofSO(p) that contain 1̂⊗σ when restricted
to SO(p − q) × SO(q). These are addressed in the following theorem,
which reduces matters to the situation studied in Theorem 9.75 ifp ≥ 2q.
Certain maximal parabolic subgroups in other semisimple groups lead to a
similar analysis with groupsU (n) andSp(n), and the theorem below has
analogs for these groups reducing matters to the situation in Theorem 9.74
or 9.76.

Theorem 9.77. Let 1 ≤ n ≤ m, and regardSO(n) and SO(m) as
embedded as block diagonal subgroups ofSO(n + m) in the standard way
with SO(n) in the upper left diagonal block and withSO(m) in the lower
right diagonal block.
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(a) If a1e1+· · ·+a[ 1
2 (n+m)]e[ 1

2 (n+m)] is the highest weight of an irreducible
representation(σ, V ) of SO(n + m), then a necessary and sufficient con-
dition for the subspaceV SO(m) of vectors fixed bySO(m) to be nonzero is
thatan+1 = · · · = a[ 1

2 (n+m)] = 0.
(b) Let λ = a1e1 + · · · + anen be the highest weight of an irreducible

representation(σλ, V ) of SO(n + m) with a nonzero subspaceV SO(m) of
vectors fixed bySO(m), and let(τλ′, V ′) be an irreducible representation
of U (n) with highest weightλ′ = a1e1 + · · ·+ an−1en−1 + |an|en. Then the
representation(σλ

∣∣
SO(n)

, V SO(m)) is equivalent with the restriction toSO(n)

of the representation(τλ′, V ′) of U (n).

EXAMPLE. Consider branching fromSO(10) to SO(4) × SO(6). If σ

is an irreducible representation ofSO(10) with highest weight written as
a1e1 + · · · + a5e5, then (a) says that the restriction ofσ to SO(4) × SO(6)

contains someσ ′⊗̂1 if and only ifa5 = 0. In this case, (b) says that the rep-
resentationsσ ′, with their multiplicities, are determined by restricting from
U (4) to SO(4) the irreducible representation ofU (4) with highest weight
a1e1 + · · · + a4e4. Theorem 9.75 identifies this restriction ifa3 = a4 = 0.
For example, ifλ = 5e1 + 2e2 is the given highest weight forSO(10),
then Example 1 following that theorem identifies the representationsσ ′ of
SO(4), together with their multiplicities, that occur in the restriction ofτλ

from U (4) to SO(4). Then the representationsσ ′⊗̂1 of SO(4) × SO(6),
with the same multiplicities, are the ones in the restriction ofσ from SO(10)
to SO(4) × SO(6) for which the representation on theSO(6) factor is
trivial.

SKETCH OF PROOF OF THEOREM. Conclusion (a) is an easy exercise
starting from Theorem 9.16. Let us consider (b) under the assumptionan ≥
0. WriteK1 = SO(n), K2 = SO(m), andK = K1×K2. We introduce the
noncompact Riemannian dual ofSO(n + m)/K , which is isomorphic to
SO(n, m)0/K . The isomorphismπ1(SO(n+m), 1) ∼= π1(SO(n+m)C, 1)

and the unitary trick allow us to extendσλ holomorphically toSO(n +m)C

and then to restrict to a representation, which we still callσλ, of SO(n, m)0.
Form the usual maximally noncompact Cartan subalgebra of the Lie algebra
so(n, m) of SO(n, m)0 and the usual positive system of roots relative to it
that takes the noncompact parta before the compact part. The restricted-
root system is of type(BC)n or Bn or Dn, depending on the size ofm − n.

In all cases the restricted roots of the formei − ej form a subsystem of
type An−1 in which each restricted root has multiplicity 1. The associated
Lie subalgebra ofso(n, m), with all ofa included, is isomorphic togl(n, R).
Let L ∼= GL(n, R)0 be the corresponding analytic subgroup ofSO(n, m)0.
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Let KL = K ∩ L be the standard copy ofSO(n) insideL. The subgroup
KL is embedded block diagonally asKL = {diag(k, 1, π(k) | k ∈ K1},
whereπ is some mapping. Projection ofKL to the first factor gives an
isomorphismι : KL → K1.

Letv0 be a nonzero highest weight vector ofσλ in the new ordering. The
cyclic span ofv0 underL is denotedV ′, and the restriction ofσλ

∣∣
L

to the
subspaceV ′ is denotedτλ. The representation(τλ, V ′) of L is irreducible.
Let E be the projection ofV ontoV K2 given byE(v) = ∫

K2
σλ(k)v dk. If

we take the isomorphismι : KL → K1 into account, then the linear map
E is equivariant with respect toK1. An argument that uses the formula
K = K2KL and the Iwasawa decomposition inGd shows thatE carries
the subspaceV ′ onto V K2.

The group L and the representation(τλ, V ′) are transferred from
SO(n, m)0 back toSO(n + m), and the result is a strangely embedded
subgroupG ′ of SO(n+m) isomorphic toU (n), together with an irreducible
representation ofG ′ that we still write as(τλ, V ′). The groupKL , being
contained inK , does not move in the passage fromSO(n, m)0 back to
SO(n + m) and may be regarded as a subgroup ofG ′, embedded in the
standard way thatSO(n) is embedded inU (n).

Unwinding the highest weights in question and taking care of any
possible ambiguities in the above construction that might lead to outer
automorphisms ofG ′ ∼= U (n), we find that the highest weights match
those in the statement of the theorem.

To complete the proof, it suffices to show that the mapE of V ′ onto
V K2 is one-one. This is done by proving that dimV ′ = dim V K2. We
limit ourselves to proving this equality for one example that will illustrate
how the proof goes in general. We taken = 2 andm = 4, and we
write highest weights as tuples. Say the given highest weight ofSO(6) is
(2, 1, 0). We don = 2 steps of branching via Theorem 9.16 to determine
the irreducible constituents underSO(m) = SO(4), and we are interested
only in the constituents whereSO(4) acts trivially. Branching fromSO(6)

to SO(5) leads from(2, 1, 0) for SO(6) to (2, 1)+ (2, 0)+ (1, 1)+ (1, 0)

for SO(5). The pieces(2, 1) and(1, 1), not ending in 0, do not contain the
trivial representation ofSO(4), according to conclusion (a) above. For the
other two, branching fromSO(5) to SO(4) gives

(2, 0) �→ (2, 0) + (1, 0) + (0, 0)

(1, 0) �→ (1, 0) + (0, 0).

Thus we obtain one constituent each time as much as possible of the highest
weight becomes 0 at each step, namely twice. So dimV K2 = 2. To compute
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dim V ′, we start with(2, 1, 0) truncated so as to be a highest weight for
U (n) = U (2). That is, we start with(2, 1). We do branching via Theorem
9.14 a step at a time toU (1) and then one more time to arrive at empty
tuples. Specifically we pass from(2, 1) to (2) + (1) and then to( ) + ( ).
TheU (1) representations are all 1-dimensional, and hence the number of
empty tuples equals the dimension of the representation with highest weight
(2, 1). That is, it equals dimV ′. The point is that there is a correspondence
between the steps withSO leading to(0, 0) and the steps withU leading
to ( ). It is given by padding out the tuples forU with a suitable number of
0’s. Thus dimV ′ = dim V K2.

8. Problems

1. ForU (n), let λ = ∑
aj ej be a dominant integral form, defineδ′ = ne1 +

(n − 1)e2 + · · · + 1en, and lett = diag(eiθ1, . . . , eiθn ). Write ξν for the
multiplicative character corresponding to an integral linear formν.
(a) Show from the Weyl character formula that the characterχλ of an irre-

ducible representation with highest weightλ is given by

χλ(t) = ξ−δ′(t)
∑
w∈W

ε(w)ξw(λ+δ′)(t)
/ ∏

k<l

(
1 − e−iθk+iθl

)
.

at every pointt whereξα(t) = 1 for no rootα.
(b) Show that the formula in (a) can be rewritten as

χλ(t) = ξ−δ′(t) det
{
ei(ak+n+1−k)θl

}/ ∏
k<l

(
1 − e−iθk+iθl

)
.

(c) Derive Theorem 9.14 by carrying out the following manipulations with
the determinant in (b): Putθn = 0. Replace the first row by the difference
of the first and second rows, the second row by the difference of the second
and third rows, and so on until the last column is 1 in thenth entry and 0
elsewhere. Reduce the size of the determinant ton −1. Divide the factor(
1 − e−iθl

)
of the product in the denominator into thel th column of the

determinant, 1≤ l ≤ n − 1. Recognize the first row of the determinant
as the sum ofa1 − a2 + 1 natural row vectors of exponentials and expand
the determinant by linearity. Repeat for the second row of each resulting
determinant, using a sum ofa2 − a3 + 1 row vectors. Continue through
the(n − 1)st row, and match the answer with the sum of the characters of
U (n − 1) indicated by Theorem 9.14.

2. In Theorem 9.18, the branching theorem for passing fromSp(n) to Sp(n −1),
prove that the number of integern-tuples(b1, . . . , bn) satisfying (9.19) is equal
to

∏n
i=1(Ai + 1), whereAi is as in the statement of Theorem 9.50 andAi is

assumed to be≥ 0 for all i .
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3. In §4 identify the set	 that arises in Kostant’s Branching Theorem when
passing fromU (2n) to SO(2n).

4. Suppose that a permutationw satisfies the condition of Lemma 9.54 that
every equalitywei = ej implies j ≥ i − 1. Prove thatw is a product
of certain transpositions of consecutive integers, with the pairs decreasing
from left to right. For example, withn = 3, show thatw is of the form(
(1) or (2 3)

) × (
(1) or (1 2)

)
.

5. Theorem 9.75 shows how certain irreducible representations ofU (n) reduce
when restricted toSO(n). Starting from the irreducibility of the action ofU (n)

on each
∧lCn, use Theorem 9.75 to derive the conclusions of Problems 8–10

of Chapter V concerning irreducibility and reducibility of the alternating-
tensor representations ofSO(n).

6. View Sp(n) embedded inU (2n) in the standard way so that its Lie algebra is
sp(n, C) ∩ u(2n). Root vectors are given in Example 3 of §II.1.
(a) Theorem 9.76 shows that the irreducible alternating-tensor representation

of U (6) on
∧3C6 decomposes underSp(3) into exactly two irreducible

pieces, with highest weightse1 + e2 + e3 ande1. Show thate1 ∧ e2 ∧ e3

ande1 ∧ (e2 ∧ e5 + e3 ∧ e6) are respective highest weight vectors.
(b) Fork ≤ n, use Theorem 9.76 to find the highest weights of the irreducible

constituents of
∧kC2n under the action ofSp(n). Find a nonzero highest

weight vector for each constituent.

Problems 7–10 deal with the construction of many elements in the space of an
induced representation. LetH be a closed subgroup of a compact groupG, and
let σ be a unitary representation ofH on a separable Hilbert spaceV .

7. For each continuousf : G → C andv in V , defineI f,v : G → V by

(I f,v(x), v′)V =
∫

H
f (xh)(σ (h)v, v′)V dh for v′ ∈ V .

Prove thatI f,v is continuous and is a member of the space for indG
H σ .

8. Prove that the linear span of all the functionsI f,v in Problem 7 is dense in the
space for indGH σ by showing that the 0 function is the only member of the
space for indGH σ that is orthogonal to all theI f,v.

9. Assuming that the given Hilbert spaceV is not 0, prove that the Hilbert space
for indG

H σ is not 0.

10. Prove that ifσ is irreducible, thenσ lies in the restriction fromG to H of
some irreducible representation ofG.

Problems 11–14 address in two ways the analysis ofL2 of the sphereS4n−1 under
the action ofSp(n). In the first way,Sp(n) acts transitively on the unit sphere
in the spaceHn of n-dimensional column vectors of quaternions, with isotropy
subgroupSp(n −1) at(0, . . . , 0, 1). In the second way, the unit sphere is realized
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asK/M for Sp(n, 1). The connection between the two ways results from an action
of the groupSp(1) on column vectors byright multiplication entry-by-entry by
the group of unit quaternions.

11. Using Frobenius reciprocity and Theorem 9.18, prove thatL2(S4n−1) decom-
poses underSp(n) as a Hilbert-space sum

∑
a≥0,b≥0(b+1)τ(a+b)e1+ae2, where

τλ is an irreducible representation ofSp(n) with highest weightλ.

12. Introduce notation forSp(n, 1) as in the next-to-last paragraph of §4, so that
K ⊃ K1 ⊃ M . The proof of Theorem 7.66 shows thatK/M is the sphere
S4n−1. Using Frobenius reciprocity, induction in stages, and Theorem 9.50,
prove thatL2(S4n−1) decomposes underK = Sp(n) × Sp(1) as a Hilbert-
space sum

∑
a≥0,b≥0 τ(a+b)e1+ae2⊗̂σben+1, whereτλ is an irreducible represen-

tation ofSp(n) with highest weightλ andσµ is an irreducible representation
of Sp(1) with highest weightµ.

13. The subspace ofL2(S4n−1) in Problem 12 of functions invariant under the
unit-quaternion subgroupSp(1) of K may be regarded as theL2 functions
on quaternionic projective space. What is the decomposition of this subspace
under the action ofSp(n)?

14. Similarly regardS2n−1 both asU (n)/U (n − 1) and asK/M for a group
we could callU (n, 1). What are the decompositions ofL2(S2n−1) that are
analogous to those in Problems 11 and 12? In analogy with Problem 13, what
is the decomposition ofL2 of complex projective space under the action of
U (n)?

Problems 15–18 deal with decomposing tensor products into irreducible represen-
tations. LetG be a compact connected Lie group, fix a maximal abelian subspace
of its Lie algebra, and letW be the Weyl group. Ifλ is a dominant integral form
relative to some system of positive roots, letτλ be an irreducible representation of
G with highest weightλ and letχλ be the character of this representation. Denote
the multiplicative character corresponding to a linear formν by ξν .

15. Prove that if all weights ofτλ have multiplicity one, then each irreducible
constituent ofτλ ⊗ τλ′ has multiplicity one.

16. If λ is an integral form and if there existsw0 = 1 in W fixing λ, prove that∑
w∈W ε(w)ξwλ = 0.

17. (Steinberg’s Formula) Let mλ(µ) be the multiplicity of the weightµ in τλ,
and define sgnµ by

sgnµ =


0 if somew = 1 in W fixesµ

ε(w) otherwise, wherew is chosen inW to make
wµ dominant.
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Write the character ofτλ asχλ = ∑
mλ(λ

′′)ξλ′′ , write χλ′ as in the Weyl
Character Formula, and multiply. Withµ∨ denoting the result of applying an
element ofW to µ to obtain something dominant, obtain the formula

χλχλ′ =
∑

λ′′=weight ofτλ

mλ(λ
′′)sgn(λ′′ + λ′ + δ)χ(λ′′+λ′+δ)∨−δ.

18. Let−µ be the lowest weight ofτλ. Deduce from Problem 17 that ifλ′ − µ is
dominant, thenτλ′−µ occurs inτλ ⊗ τλ′ with multiplicity one.

Problems 19–21 use Problem 17 to identify a particular constituent of a tensor
product of irreducible representations, beyond the one in Problem 18. Letλ and
λ′ be dominant integral. Letw be in W , and suppose thatλ′ + wλ is dominant.
The goal is to prove thatτλ′+wλ occurs inτλ ⊗ τλ′ with multiplicity one.

19. Prove thatλ′′ = wλ contributesχλ′+wλ to the right side of the formula in
Problem 17.

20. To see that there is no other contribution ofχλ′+wλ, suppose thatλ′′ contributes.
Then(λ′ + δ +λ′′)∨ − δ = λ′ +wλ. Solve forλ′′, compute its length squared,
and use the assumed dominance to obtain|λ′′|2 ≥ |wλ|2. Show how to
conclude thatλ′′ = wλ.

21. Complete the proof thatτλ′+wλ occurs inτλ ⊗ τλ′ with multiplicity one.

Problems 22–24 deal with the reduction of tensor products into irreducible rep-
resentations, comparing Steinberg’s Formula in Problem 17 with the appropriate
special case of Kostant’s Branching Theorem (Theorem 9.20). LetG be a compact
connected Lie group, fix a maximal abelian subspace of its Lie algebra, letWG be
the Weyl group ofG, fix a positive system�+

G for the roots, letδ be half the sum
of the positive roots, and letτν be an irreducible representation ofG with highest
weightν. LetPwt be the Kostant partition function defined relative to	 = �+

G .

22. Combining Steinberg’s Formula with the formula in Corollary 5.83 for the
multiplicity of a weight, show that the multiplicity ofτµ in τλ ⊗ τλ′ is∑

w∈WG

∑
w′∈WG

ε(w)ε(w′)Pwt(w(λ + δ) − w′(µ + δ) + λ′).

23. Using Kostant’s Branching Theorem for restriction fromG × G to G, show
that the multiplicity ofτµ in τλ ⊗ τλ′ is∑

w∈WG

∑
w′∈WG

ε(w)ε(w′)Pwt(w(λ + δ) + w′(λ′ + δ) − 2δ − µ).

24. Reconcile the formulas obtained in the previous two problems by using the
fact that multiplicities of weights are invariant under the Weyl group.

Problems 25–30 give a combinatorial description, involving no cancellation, for
the multiplicity of a weight in an irreducible representation ofU (n). For this set
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of problems, the diagram of a nonnegative dominant integral form will consist
of boxes, and each such box will get an integer from 1 ton put into it. The
result is aYoung tableau if (a) the integers in each row are increasing but not
necessarily strictly increasing and (b) the integers in each column are strictly
increasing. Ifmj denotes the number of integersj in a Young tableau, the tuple
(m1, . . . , mn) will be called thepattern of the tableau. Letµ = ∑n

j=1 aj ej and

µ′ = ∑n−1
j=1 cj ej be dominant integral forms. We sayµ′ interleavesµ if (9.15)

holds. For 0≤ r ≤ n − 1, abranching systemfor U (n) of level r coming from
a dominant integralλ is a set{λ(k) | 0 ≤ k ≤ r} such thatλ(0) = λ, λ(k) is a
dominant integral form forU (n − k), andλ(k) interleavesλ(k−1) for all k ≥ 1; the
endof the system isλ(r).

25. Letτλ andτλ(r) be irreducible representations ofU (n) andU (n − r), respec-
tively, with highest weightsλ andλ(r). For 0 ≤ r ≤ n − 1, prove that the
number of branching systems forU (n) of level r coming fromλ and having
endλ(r) equals the multiplicity ofτλ(r) in τλ|U (n−r). Conclude that the number
of branching systems of leveln − 1 coming fromλ equals the degree ofτλ.

26. Let(τλ, V ) be an irreducible representation ofU (n) whose highest weightλ
is nonnegative, and let{λ(k)} be a branching system of levelr coming from
λ and ending withλ(r). For 0≤ r ≤ n − 1, prove that there exists a unique
decreasing chain of subspacesVj of V , 0 ≤ j ≤ r , such thatVj is invariant
and irreducible under the rankn subgroupU (n − j) × U (1) × · · · × U (1)

with highest weightλ( j) + ∑n
l=n− j+1

(‖λ(n−l)‖ − ‖λ(n−l+1)‖)el .

27. In Problem 26, prove for 0≤ r ≤ n − 1 that distinct branching systems{λ(k)}
of levelr coming fromλ and ending withλ(r) yield orthogonal subspacesVr .

28. Takingr = n −1 in Problem 27, show that the result is a spanning orthogonal
system of 1-dimensional invariant subspaces under the diagonal subgroup.

29. Letλ be nonnegative dominant integral, let{λ(k)} be a branching system of
level n − 1 for it, and defineλ(n) = ∅. Associate to the system a placement
of integers in the diagram ofλ as follows: put the integerl in a box if that
box is part of the diagram ofλ(n−l) but not part of the diagram ofλ(n−l+1),
1 ≤ l ≤ n. Prove that the result is a Young tableau and that the pattern of the
tableau is(‖λ(n−1)‖ − ‖λ(n)‖, ‖λ(n−2)‖ − ‖λ(n−1)‖, . . . , ‖λ(0)‖ − ‖λ(1)‖).

30. Letλ be nonnegative integral dominant forU (n), and letτλ be an irreducible
representation with highest weightλ. Prove that ifµ = ∑n

j=1 mj ej is an
integral form, then the multiplicity of the weightµ in τλ equals the number
of Young tableaux for the diagram ofλ whose pattern is(m1, . . . , mn).






