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APPENDIX 

Abstract. This appendix treats some topics that are likely to be well known by some readers and less
known by others. Most of it already comes into play by Chapter II. Section A1 deals with set theory
and with functions: it discusses the role of formal set theory, it works in a simplified framework that
avoids too much formalism and the standard pitfalls, it establishes notation, and it mentions some
formulas. Some emphasis is put on distinguishing the image and the range of a function, since this
distinction is important in algebra and algebraic topology.
Section A2 defines equivalence relations and establishes the basic fact that they lead to a parti-

tioning of the underlying set into equivalence classes.
Section A3 reviews the construction of rational numbers from the integers, and real numbers

from the rational numbers. From there it concentrates on the solvability within the real numbers of
certain polynomial equations.
Section A4 is a quick review of complex numbers, real and imaginary parts, complex conjugation,

and absolute value. 
Sections A5 and A6 return to set theory. Section A5 defines partial orderings and includes Zorn’s

Lemma, which is a powerful version of the Axiom of Choice, while Section A6 concerns cardinality. 

A1. Sets and Functions 

Algebra typically makes use of an informal notion of set theory and notation for
it in which sets are described by properties of their elements and by operations
on sets. This informal set theory, if allowed to be too informal, runs into certain
paradoxes, such as Russell’s paradox: “If S is the set of all sets that do not 
contain themselves as elements, is S a member of S or is it not?” The conclusion 
of Russell’s paradox is that the “set” of all sets that do not contain themselves as
elements is not in fact a set. 
Mathematicians’ experience is that such pitfalls can be avoided completely by

working within some formal axiom system for sets, of which there are several
that are well established. A basic one is “Zermelo–Fraenkel set theory,” and the
remarks in this section refer specifically to it but refer to the others at least to
some extent.1 

The standard logical paradoxes are avoided by having sets, elements (or “en-
tities”), and a membership relation ∈ such that a ∈ S is a meaningful statement, 

1Mathematicians have no proof that this technique avoids problems completely. Such a proof
would be a proof of the consistency of a version of mathematics in which one can construct the
integers, and it is known that this much of mathematics cannot be proved to be consistent unless it
is in fact inconsistent. 
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true or false, if and only if a is an element and S is a set. The terms set, element,
and ∈ are taken to be primitive terms of the theory that are in effect defined by
a system of axioms. The axioms ensure the existence of many sets, including
infinite sets, and operations on sets that lead to other sets. To make full use of this
axiom system, one has to regard it as occurring in the framework of certain rules
of logic that tell the forms of basic statements (namely, a = b, a ∈ S, and “S 
is a set”), the connectives for creating complicated statements from simple ones
(“or,” “and,” “not,” and “if . . . then”), and the way that quantifiers work (“there 
exists” and “for all”).
Working rigorously with such a system would likely make the development

of mathematics unwieldy, and it might well obscure important patterns and di-
rections. In practice, therefore, one compromises between using a formal axiom
system and working totally informally; let us say that one works “informally but
carefully.” The logical problems are avoided not by rigid use of an axiom system,
but by taking care that sets do not become too “large”: one limits the sets that one
uses to those obtained from other sets by set-theoretic operations and by passage
to subsets.2 

A feature of the axiom system lying behind working informally but carefully
is that it does not preclude the existence of additional sets beyond those forced to
exist by the axioms. Thus, for example, in the subject of coin-tossing within prob-
ability, it is normal to work with the set of possible outcomes as S = {heads, tails}
even though it is not immediately apparent that requiring this S to be a set does 
not introduce some contradiction. 
It is worth emphasizing that the points of the theory at which one takes particu-

lar care vary somewhat from subject to subject within mathematics. For example
it is sometimes of interest in calculus of several variables to distinguish between
the range of a function and its image in a way that will be mentioned below, but it
is usually not too important. In homological algebra, however, the distinction is
extremely important, and the subject loses a great deal of its impact if one blurs
the notions of range and image.
Some references for set theory that are appropriate for reading once are 

Halmos’s Naive Set Theory, Hayden–Kennison’s Zermelo–Fraenkel Set Theory,
and Chapter 0 and the appendix of Kelley’s General Topology. The Kelley book
is one that uses the word “class” as a primitive term more general than “set”; it
develops von Neumann set theory. 

All that being said, let us now introduce the familiar terms, constructions,
and notation that one associates with set theory. To cut down on repetition, one 

2Not every set so obtained is to be regarded as “constructed.” The Axiom of Choice, which we
come to shortly, is an existence statement for elements in products of sets, and the result of applying
the axiom is a set that can hardly be viewed as “constructed.” 
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allows some alternative words for “set,” such as family and collection. The word 
“class” is used by some authors as a synonym for “set,” but the word class is used 
in some set-theory axiom systems to refer to a more general notion than “set,”
and it will be useful to preserve this possibility. Thus a class can be a set, but we
allow ourselves to speak, for example, of the class of all groups even though this
class is too large to be a set. Alternative terms for “element” are member and 
point; we shall not use the term “entity.” Instead of writing ∈ systematically, we 
allow ourselves to write “in.” Generally, we do not use ∈ in sentences of text as 
an abbreviation for an expression like “is in” that contains a verb.
If A and B are two sets, some familiar operations on them are the union A ∪ B,

the intersection A ∩ B, and the difference A − B, all defined in the usual way in
terms of the elements they contain. Notation for the difference of sets varies from
author to author; some other authors write A \ B or A ∼ B for difference, but this 
book uses A − B. If one is thinking of A as a universe, one may abbreviate A − B 
as Bc, the complement of B in A. The empty set ∅ is a set, and so is the set of 
all subsets of a set A, which is sometimes denoted by 2A. Inclusion of a subset A 
in a set B is written A ⊆ B or B ⊇ A; then B is a superset of A. Inclusion that 
does not permit equality is denoted by A $ B or B % A; in this case one says 
that A is a proper subset of B or that A is properly contained in B. 
If A is a set, the singleton {A} is a set with just the one member A. Another 

operation is unordered pair, whose formal definition is {A, B} = {A}∪ {B} and 
whose informal meaning is a set of two elements in which we cannot distinguish
either element over the other. Still another operation is ordered pair, whose 
formal definition is (A, B) = {{A}, {A, B}}. It is customary to think of an
ordered pair as a set with two elements in which one of the elements can be
distinguished as coming first.3 

Let A and B be two sets. The set of all ordered pairs of an element of A and 
an element of B is a set denoted by A × B; it is called the product of A and B 
or the Cartesian product. A relation between a set A and a set B is a subset of 
A × B. Functions, which are to be defined in a moment, provide examples. Two
examples of relations that are usually not functions are “equivalence relations,”
which are discussed in Section A2, and “partial orderings,” which are discussed
in Section A5. 
If A and B are sets, a relation f between A and B is said to be a function,

written f : A → B, if for each x ∈ A, there is exactly one y ∈ B such that 
(x, y) is in f . If (x, y) is in f , we write f (x) = y. In this informal but careful 
definition of function, the function consists of more than just a set of ordered 

3Unfortunately a “sequence” gets denoted by {x1, x2, . . . } or {xn}∞ 
n=1. If its notation were really

consistent with the above definitions, we might infer, inaccurately, that the order of the terms of
the sequence does not matter. The notation for unordered pairs, ordered pairs, and sequences is,
however, traditional, and it will not be changed here. 
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pairs; it consists of the set of ordered pairs regarded as a subset of A × B. This 
careful definition makes it meaningful to say that the set A is the domain, the set 
B is the range,4 and the subset of y ∈ B such that y = f (x) for some x ∈ A is 
the image of f . The image is also denoted by f (A). Sometimes a function f 
is described in terms of what happens to typical elements, and then the notation
is x 7→ f (x) or x 7→ y, possibly with y given by some formula or by some
description in words about how it is obtained from x . Sometimes a function f is 
written as f ( · ), with a dot indicating the placement of the variable; this notation
is especially helpful in working with restrictions, which we come to in a moment,
and with functions of two variables when one of the variables is held fixed. This 
notation is useful also for functions that involve unusual symbols, such as the
absolute value function x 7→ |x |, which in this notation becomes | · |. The 
word map or mapping is used for “function” and for the operation of a function,
especially when a geometric setting for the function is of importance.
Often mathematicians are not so careful with the definition of function. De-

pending on the degree of informality that is allowed, one may occasionally refer
to a function as f (x) when it should be called f or x 7→ f (x). If any confusion is
possible, it is wise to use the more rigorous notation. Another habit of informality
is to regard a function f : A → B as simply a set of ordered pairs. Thus two 
functions f1 : A → B and f2 : A → C become the same if f1(a) = f2(a) for 
all a in A. With the less-careful definition, the notion of the range of a function is
not really well defined. The less-careful definition can lead to trouble in algebra
and topology, but it does not often lead to trouble in analysis until one gets to
a level where algebra and analysis merge somewhat. One place where it comes
into play in algebra is in the notion of an exact sequence of three abelian groups 

ϕ √
A −→ B −→ C , which is defined as a system of three abelian groups and
homomorphisms as indicated such that the kernel of √ equals the image of ϕ. In 
this definition one is not free to adjust B to be the image of ϕ since that adjustment 
will affect the kernel of √ as well. 
The set of all functions from a set A to a set B is a set. It is sometimes denoted 

by BA. The special case 2A that arises with subsets comes by regarding 2 as a 
set {1, 2} and identifying a function f from A into {1, 2} with the subset of all 
elements x of A for which f (x) = 1. 
If a subset B of a set A may be described by some distinguishing property 

P of its elements, we may write this relationship as B = {x ∈ A | P}. For 
example the function f in the previous paragraph is identified with the subset 
{x ∈ A | f (x) = 1}. Another example is the image of a general function 
f : A → B, namely f (A) = {y ∈ B | y = f (x) for some x ∈ A}. Still more 
generally along these lines, if E is any subset of A, then f (E) denotes the set 

4Some authors refer to B as the codomain. 
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{y ∈ B | y = f (x) for some x ∈ E}. Some authors use a colon or semicolon or 
comma instead of a vertical line in this notation. 
This book frequently uses sets denoted by expressions like 

S
x∈S Ax , an in-

dexed union, where S is a set that is usually nonempty. If S is the set {1, 2}, this 
reduces to A1 ∪ A2. In the general case it is understood that we have an unnamed 
function, say f , given by x 7→ Ax , having domain S and range the set of all 
subsets of an unnamed set T , and 

S
x∈S Ax is the set of all y ∈ T such that y is 

in Ax for some x ∈ S. When S is understood, we may write 
S

Ax instead of xS
x∈S Ax . Indexed intersections 

T
x∈S Ax are defined similarly, and this time it is 

essential to disallow S empty because otherwise the intersection cannot be a set
in any useful set theory.
There is also an indexed Cartesian product ×x∈S Ax that specializes in the 

case that S = {1, 2} to A1 × A2. Usually S is assumed nonempty. This Cartesian 
product is the set of all functions f from S into 

S
x∈S Ax such that f (x) is in 

Ax for all x ∈ S. In the special case that S is {1, . . . , n}, the Cartesian product 
is the set of ordered n-tuples from n sets A1, . . . , An and may be denoted by 
A1 × · · · × An; its members may be denoted by (a1, . . . , an) with aj ∈ Aj for 
1 ≤ j ≤ n. When the factors of a Cartesian product have some additional
algebraic structure, the notation for the Cartesian product is often altered; for
example the Cartesian product of groups Ax is denoted by 

Q
x∈S Ax . 

It is completely normal in algebra, and it is the practice in this book, to take
the following axiom as part of one’s set theory; the axiom is customarily used
without specific mention. 

Axiom of Choice. The Cartesian product of nonempty sets is nonempty. 

If the index set is finite, then the Axiom of Choice reduces to a theorem of set
theory. The axiom is often used quite innocently with a countably infinite index
set. For example a theorem of analysis asserts that any bounded sequence {an} of 
real numbers has a subsequence converging to lim sup an , and the proof constructs
one member of the sequence at a time. When the proof is written in such a way that
these members have some flexibility in their definitions, the Axiom of Choice
is usually being invoked. The proof can be rewritten so that the members of
the subsequence have specific definitions, such as “the term an such that n is the 
smallest integer satisfying such-and-such properties.” In this case the axiom is not
being invoked. In fact, one can often rewrite proofs involving a countably infinite
choice so that they involve specific definitions and therefore avoid invoking the
axiom, but there is no point in undertaking this rewriting. In algebra the axiom
is often invoked in situations in which the index set is uncountable; selection of
a representative from each of uncountably many equivalence classes is such a
choice if all equivalence classes have more than one element. 
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From the Axiom of Choice, one can deduce a powerful tool known as Zorn’s
Lemma, whose use it is customary to acknowledge. Zorn’s Lemma appears in
Section A5. 
If f : A → B is a function and B is a subset of B 0, then f can be regarded 

as a function with range B 0 in a natural way. Namely, the set of ordered pairs is
unchanged but is to be regarded as a subset of A × B 0 rather than A × B. 
Let f : A → B and g : B → C be two functions such that the range of f 

equals the domain of g. The composition g ◦ f : A → C , written sometimes as 
g f : A → C , is the function with (g ◦ f )(x) = g( f (x)) for all x . Because of the 
construction in the previous paragraph, it is meaningful to define the composition
more generally when the range of f is merely a subset of the domain of g. 
A function f : A → B is said to be one-one if f (x1) 6 f (x2) whenever x1= 

and x2 are distinct members of A. The function is said to be onto, or often “onto 
B,” if its image equals its range. The terminology “onto B” avoids confusion: it 
specifies the image and thereby guards against the use of the less careful definition
of function mentioned above. A mathematical audience often contains some 
people who use the more careful definition of function and some people who use
the less careful definition. For the latter kind of person, a function is always onto
something, namely its image, and a statement that a particular function is onto
might be regarded as a tautology. A function from one set to another is said to 
put the sets in one-one correspondence if the function is one-one and onto. 
When a function f : A → B is one-one and is onto B, there exists a function 

g : B → A such that g ◦ f is the identity function on A and f ◦ g is the identity 
function on B. The function g is unique, and it is defined by the condition, for 
y ∈ B, that g(y) is the unique x ∈ A with f (x) = y. The function g is called 
the inverse function of f and is often denoted by f −1. 
Conversely if f : A → B has an inverse function, then f is one-one and 

is onto B. The reason is that a composition g ◦ f can be one-one only if f is 
one-one, and in addition, that a composition f ◦ g can be onto the range of f 
only if f is onto its range. 
If f : A → B is a function and E is a subset of A, the restriction of f 

to E , denoted by f 
Ø
Ø
E , is the function f : E → B consisting of all ordered 

pairs (x, f (x)) with x ∈ E , this set being regarded as a subset of E × B, not of 
A× B. One especially common example of a restriction is restriction to one of the
variables of a function of two variables, and then the idea of using a dot in place
of a variable can be helpful notationally. Thus the function of two variables might
be indicated by f or (x, y) 7→ f (x, y), and the restriction to the first variable,
for fixed value of the second variable, would be f ( · , y) or x 7→ f (x, y). 
We conclude this section with a discussion of direct and inverse images of

sets under functions. If f : A → B is a function and E is a subset of A, we 
have defined f (E) = {y ∈ B | y = f (x) for some x ∈ E}. This is the same 
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as the image of f 
Ø
Ø
E and is frequently called the image or direct image of E 

under f . The notion of direct image does not behave well with respect to some
set-theoretic operations: it respects unions but not intersections. In the case of
unions, we have 

f 
≥[ ¥ [

Es = f (Es ); 
s∈S s∈S 

the inclusion ⊇ follows since f 
≥S

s∈S Es 
¥ 

⊇ f (Es ) for each s, and the inclusion 

⊆ follows because any member of the left side is f of a member of some Es . In 

the case of intersections, the question f (E ∩ F) = 
? f (E) ∩ f (F) can easily have 

a negative answer, the correct general statement being f (E ∩ F) ⊆ f (E)∩ f (F). 
An example with equality failing occurs when A = {1, 2, 3}, B = {1, 2}, f (1) = 
f (3) = 1, f (2) = 2, E = {1, 2} and F = {2, 3} because f (E ∩ F) = {2} and 
f (E) ∩ f (F) = {1, 2}. 
If f : A → B is a function and E is a subset of B, the inverse image of E 

under f is the set f −1(E) = {x ∈ A | f (x) ∈ E}. This is well defined even if f 
does not have an inverse function. (If f does have an inverse function f −1, then 
the inverse image of E under f coincides with the direct image of E under f −1.)
Unlike direct images, inverse images behave well under set-theoretic opera-

tions. If f : A → B is a function and {Es | s ∈ S} is a set of subsets of B,
then 

f −1
≥\ ¥ \

Es = f −1(Es ), 
s∈S s∈S 

f −1
≥[ ¥ [

f −1Es = (Es ), 
s∈S s∈S 

f −1(Es
c) = ( f −1(Es ))c . 

In the third of these identities, the complement on the left side is taken within
B, and the complement on the right side is taken within A. To prove the 
first identity, we observe that f −1

°T
s∈S Es 

¢ 
⊆ f −1(Es ) for each s ∈ S and 

hence f −1
°T

s∈S Es 
¢ 

⊆ 
T

s∈S f −1(Es ). For the reverse inclusion, if x is in T
s∈S f −1(Es ), then x is in f −1(Es ) for each s and thus f (x) is in Es for each s. 

Hence f (x) is in 
T

s∈S Es , and x is in f −1
°T

s∈S Es 
¢
. This proves the reverse

inclusion. The second and third identities are proved similarly. 

A2. Equivalence Relations 

An equivalence relation on a set S is a relation between S and itself, i.e., is a 
subset of S × S, satisfying three defining properties. We use notation like a ' b, 
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written “a is equivalent to b,” to mean that the ordered pair (a, b) is a member of 
the relation, and we say that “'” is the equivalence relation. The three defining 
properties are 

(i) a ' a for all a in S, i.e., ' is reflexive,
(ii) a ' b implies b ' a if a and b are in S, i.e., ' is symmetric. 
(iii) a ' b and b ' c together imply a ' c if a, b, and c are in S, i.e., ' is 

transitive. 
An example occurs with S equal to the set Z of integers with a ' b meaning

that the difference a − b is even. The properties hold because (i) 0 is even, (ii)
the negative of an even integer is even, and (iii) the sum of two even integers is 
even. 
There is one fundamental result about abstract equivalence relations. The 

equivalence class of a, written [a] for now, is the set of all members b of S such 
that a ' b. 

Proposition. If ' is an equivalence relation on a set S, then any two equiv-
alence classes are disjoint or equal, and S is the union of all the equivalence 
classes. 

PROOF. Let [a] and [b] be the equivalence classes of members a and b of S. 
If [a] ∩ [b] 6 ∅, choose c in the intersection. Then a= ' c and b ' c. By (ii), 
c ' b, and then by (iii), a ' b. If d is any member of [b], then b ' d. From 
(iii), a ' b and b ' d together imply a ' d. Thus [b] ⊆ [a]. Reversing the 
roles of a and b, we see that [a] ⊆ [b] also, whence [a] = [b]. This proves the
first conclusion. The second conclusion follows from (i), which ensures that a is 
in [a], hence that every member of S lies in some equivalence class. § 

EXAMPLE. With the equivalence relation on Z that a ' b if a − b is even,
there are two equivalence classes—the subset of even integers and the subset of
odd integers. 

The first two examples of equivalence relations in this book arise in Section
II.3. The first example, which is captured in the definition of square matrices
that are “similar,” yields equivalence classes exactly as above. A square matrix
A is similar to a square matrix B if there is a matrix C with B = C−1 AC . The 
text does not mention in Chapter II that similarity is an equivalence relation, but
it is routine to check that it is reflexive, symmetric, and transitive. The second
example is a relation “is isomorphic to” and implicitly is defined on the class of all
vector spaces. This class is not a set, and Section A1 of this appendix suggested
avoiding using classes that are not sets in order to avoid the logical paradoxes
mentioned at the beginning of the appendix. There is not much problem with
using general classes in this particular situation, but there is a simple approach 
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in this situation for eliminating classes that are not sets and thereby following
the suggestion of Section A1 without making an exception. The approach is to
work with any subclass of vector spaces that is a set. The equivalence relation
is well defined on the set of vector spaces in question, and the proposition yields
equivalence classes within that set. This set can be an arbitrary subclass of the
class of all vector spaces that happens to be a set, and the practical effect is the
same as if the equivalence relation had been defined on the class of all vector 
spaces. 

A3. Real Numbers 

Real numbers are taken as known, as are the rational numbers from which they
are constructed. It will be useful, however, to review the constructions of both
these number systems so as to be able to discuss the solvability of polynomial
equations better.
We take the set Z of integers as given, along with its ordering and its operations

of addition, subtraction, and multiplication. The set Q of rational numbers is 
constructed rigorously from Z as follows. We start from the set of ordered pairs 
(a, b) of integers such that b 6 0. The idea is that (a, b) is to correspond to = 
a/b and that we want (na, nb) to correspond to the same a/b if n is any nonzero 
integer. Thus we say that two such pairs have (a, b) ∼ (c, d) if ad = bc. 
This relation is evidently reflexive and symmetric, and it will be an equivalence
relation if it is transitive. If (a, b) ∼ (c, d) and (c, d) ∼ (e, f ), then ad = bc 
and c f = de. So ad f = bc f = bde. Since d 6= 0, a f = be and ∼ is transitive. 
From Section A2 the set of such pairs is partitioned into equivalence classes

by means of ∼. Each equivalence class is called a rational number. To de-
fine the arithmetic operations on rational numbers, we first define operations on
pairs, and then we check that the operations respect the partitioning into classes.
For addition, the definition is (a, b) + (c, d) = (ad + bc, bd). What needs 
checking is that if (a, b) ∼ (a0 , b0) and (c, d) ∼ (c0 , d 0), then (ad + bc, bd) ∼ 
(a0d 0 + b0c0 , b0d 0). This is a routine matter: (ad + bc)(b0d 0) = ab0dd 0 + bb0cd 0 = 
a0bdd 0 + bb0c0d = (a0d 0 + b0c0)bd, and thus addition of rational numbers is
well defined. The operations on pairs for negative, multiplication, and reciprocal 
are −(a, b) = (−a, b), (a, b)(c, d) = (ac, bd), and (a, b)−1 = (b, a), and we
readily check that these define corresponding operations on rational numbers.
Finally one derives the familiar associative, commutative, and distributive laws
for these operations on Q. 
The above construction is repeated, with more details, in the more general

construction of “fields of fractions” in Chapter VIII.
Inequalities on rational numbers are defined from inequalities on integers, tak-
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ing into account that an inequality between integers is preserved when multiplied
by a positive integer. Each rational number has a representative pair (a, b) with 
b > 0 because any pair can always be replaced by the pair of negatives. Thus 
let (a, b) and (c, d) be given with b > 0 and d > 0. We say that (a, b) ≤ (c, d)
if ad ≤ bc. One readily checks that this ordering respects equivalence classes
and leads to the usual properties of the ordering on Q. The positive rationals are
those greater than 0, and the negative rationals are those less than 0.
The formal definition is that a real number is a cut of rational numbers, i.e., 

a subset of rational numbers that is neither Q nor the empty set, has no largest
element, and contains all rational numbers less than any rational that it contains.
The set of cuts, i.e., the set of real numbers, is denoted by R. The idea of the 
construction is as follows: Each rational number q determines a cut q∗, namely 
the set of all rationals less than q. Under the identification of Q with a subset of 
R, the cut defining a real number consists of all rational numbers less than the
given real number.
The set of cuts gets a natural ordering, given by inclusion. In place of ⊆, we 

write ≤. For any two cuts r and s, we have r ≤ s or s ≤ r , and if both occur, 
then r = s. We can then define <, ∏, and > in the expected way. The positive 
cuts r are those with 0∗ < r , and the negative cuts are those with r < 0∗ . 
Once cuts and their ordering are in place, one can go about defining the usual

operations of arithmetic and proving that R with these operations satisfies the
familiar associative, commutative, and distributive laws, and that these interact
with inequalities in the usual ways. The definitions of addition and subtraction are
easy: the sum or difference of two cuts is simply the set of sums or differences of
the rationals from the respective cuts. For multiplication and reciprocals one has
to take signs into account. For example the product of two positive cuts consists
of all products of positive rationals from the two cuts, as well as 0 and all negative
rationals. After these definitions and the proofs of the usual arithmetic operations
are complete, it is customary to write 0 and 1 in place of 0∗ and 1∗ . 
This much allows us to define nth roots. The following proposition gives the 

precise details. 

Proposition. If r is a positive real number and n is a positive integer, then 
there exists a unique positive real number s such that sn = r . 

REMARK. In the terminology and notation introduced in Section I.3, the 
polynomial Xn − r in R[X] has a unique positive root if r is positive in R. 

SKETCH OF PROOF. Let s consist of all positive rationals q such that qn < r ,
together with all rationals ≤ 0. One checks that s is a cut and that sn = r . This 
proves existence. For uniqueness any positive cut s0 with (s 0)n = r must contain 
exactly the same rationals and hence must equal s. § 
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To make efficient use of cuts in connection with arithmetic and algebra, one
needs to develop a certain amount of real-variable theory. This theory will not
be developed in any detail here; let us be content with a sketch, giving a proof of
the one specific result that we shall need.5 

The first step in the process is to observe that any nonempty subset of reals
with an upper bound has a least upper bound (the supremum, written as sup).
This is proved by taking the union of the cuts for each of the given real numbers
and showing that the result is a cut. Similarly any nonempty subset of reals with
a lower bound has a greatest lower bound (the infimum, written as inf). This
property follows by applying the least-upper-bound property to the negatives of
the given reals and then taking the negative of the resulting least upper bound.
Meanwhile, we can introduce sequences of real numbers and convergence

of sequences in the usual way. In terms of convergence, the key property of
sequences of real numbers is given by the Bolzano–Weierstrass Theorem: any
bounded sequence has a convergent subsequence. In fact, if the given bounded
sequence is {sn}, it can be shown that there is a subsequence convergent to the
greatest lower bound over m of the least upper bound for k ∏ m of the numbers 
sk . 
Next one introduces continuity of functions in the usual way. The Bolzano– 

Weierstrass Theorem may readily be used to prove that any continuous real-valued
function on a closed bounded interval takes on its maximum and minimum values. 
With a little more effort the Bolzano–Weierstrass Theorem may be used also
to show that any continuous real-valued function on a closed bounded interval
is uniformly continuous. That brings us to the theorem that we shall use in 
developing basic algebra. 

Theorem (Intermediate Value Theorem). Let a < b be real numbers, and let 
f : [a, b] → R be continuous. Then f , in the interval [a, b], takes on all values 
between f (a) and f (b). 

PROOF. Let f (a) = α and f (b) = β, and let ∞ be between α and β. We may 
assume that ∞ is in fact strictly between α and β. Possibly by replacing f by 
− f , we may assume that also α < β. Let 

A = {x ∈ [a, b] | f (x) ≤ ∞ } and B = {x ∈ [a, b] | f (x) ∏ ∞ }. 

These sets are nonempty since a is in A and b is in B, and f is bounded since 
any continuous function on a closed bounded interval takes on finite maximum
and minimum values. Thus the numbers ∞1 = sup { f (x) | x ∈ A} and ∞2 = 
inf { f (x) | x ∈ B} are well defined and have ∞1 ≤ ∞ ≤ ∞2. 

5Details of the omitted steps may be found, for example, in Section I.1 of the author’s book Basic 
Real Analysis. 
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If ∞1 = ∞ , then we can find a sequence {xn} in A such that f (xn) converges to ∞ . 
Using the Bolzano–Weierstrass Theorem, we can find a convergent subsequence 
{xnk } of {xn}, say with limit x0. By continuity of f , { f (xnk )} converges to f (x0). 
Then f (x0) = ∞1 = ∞ , and we are done. Arguing by contradiction, we may 
therefore assume that ∞1 < ∞ . Similarly we may assume that ∞ < ∞2, but we do 
not need to do so. 
Let ≤ = ∞2 − ∞1, and choose, since the continuous function f is necessarily 

uniformly continuous, δ > 0 such that |x1 − x2| < δ implies | f (x1) − f (x2)| < 
≤ whenever x1 and x2 both lie in [a, b]. Then choose an integer n such that 
2−n(b − a) < δ, and consider the value of f at the points pk = a + k2−n(b − a)
for 0 ≤ k ≤ 2n . Since pk+1− pk = 2−n(b−a) < δ, we have | f ( pk+1)− f ( pk )| < 
≤ = ∞2 − ∞1. Consequently if f ( pk ) ≤ ∞1, then 

f ( pk+1) ≤ f ( pk) + | f ( pk+1) − f ( pk )| < ∞1 + (∞2 − ∞1) = ∞2, 

and hence f ( pk+1) ≤ ∞1. Now f ( p0) = f (a) = α ≤ ∞1. Thus induction shows 
that f ( pk ) ≤ ∞1 for all k ≤ 2n . However, for k = 2n , we have p2n = b. Hence 
f (b) = β ∏ ∞ > ∞1, and we have arrived at a contradiction. § 

A4. Complex Numbers 

Complex numbers are taken as known, and this section reviews their notation and
basic properties.
Briefly, the system C of complex numbers is a two-dimensional vector space 

over R with a distinguished basis {1, i} and a multiplication defined initially by 
11 = 1, 1i = i1 = i , and i i = −1. Elements may then be written as a + bi or 
a + ib with a and b in R; here a is an abbreviation for a1. The multiplication is 
extended to all of C so that the distributive laws hold, i.e., so that (a + bi)(c + di)
can be expanded in the expected way. The multiplication is associative and
commutative, the element 1 acts as a multiplicative identity, and every nonzero

a belement has a multiplicative inverse: (a + bi) 
° 
a2+b2 − i a2+b2 

¢ 
= 1. 

Complex conjugation is indicated by a bar: the conjugate of a + bi is a − bi 
if a and b are real, and we write a + bi = a − bi . Then we have z + w = z̄+ w̄, 
r z = r z̄ if r is real, and zw = z̄w̄. 
The real and imaginary parts of z = a + bi are Re z = a and Im z = b. 

1These may be computed as Re z = 2 (z + z̄) and Im z = − 2 
i (z − z̄). p

The absolute value function of z = a + bi is given by |z| = a2 + b2, and 
this satisfies |z|2 = zz̄. It has the simple properties that |z̄| = |z|, | Re z| ≤ |z|,
and | Im z| ≤ |z|. In addition, it satisfies 

|zw| = |z||w|
because |zw|2 = zwzw = zwz̄w̄ = zz̄ww̄ = |z|2|w|2 , 
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and it satisfies the triangle inequality 

|z + w| ≤ |z| + |w| 

because |z + w|2 = (z + w)(z + w) = zz̄ + zw̄ + wz̄ + ww̄

= |z|2 + 2 Re(z ¯ + 2|z ¯w) + |w|2 ≤ |z|2 w| + |w|2 

2= |z|2 + 2|z||w| + |w|2 = (|z| + |w|) . 

A5. Partial Orderings and Zorn’s Lemma 

A partial ordering on a set S is a relation between S and itself, i.e., a subset of 
S × S, satisfying two properties. We define the expression a ≤ b to mean that the 
ordered pair (a, b) is a member of the relation, and we say that “≤” is the partial 
ordering. The properties are 

(i) a ≤ a for all a in S, i.e., ≤ is reflexive,
(ii) a ≤ b and b ≤ c together imply a ≤ c whenever a, b, and c are in S, i.e., 

≤ is transitive. 
An example of such an S is any set of subsets of a set X , with ≤ taken to 

be inclusion ⊆. This particular partial ordering has a third property of interest, 
namely 

(iii) a ≤ b and b ≤ a with a and b in S imply a = b. 
However, the validity of (iii) has no bearing on Zorn’s Lemma below. A partial
ordering is said to be a total ordering or simple ordering if (iii) holds and also 

(iv) any a and b in S have a ≤ b or b ≤ a or both. 
For the sake of a result to be proved at the end of the section, let us interpolate
one further definition: a totally ordered set is said to be well ordered if every
nonempty subset has a least element, i.e., if each nonempty subset contains an
element a such that a ≤ b for all b in the subset. 
A chain in a partially ordered set S is a totally ordered subset. An upper

bound for a chain T is an element u in S such that c ≤ u for all c in T . A 
maximal element in S is an element m such that whenever m ≤ a for some a in 
S, then a ≤ m. (If (iii) holds, we can conclude in this case that m = a.) 

Zorn’s Lemma. If S is a nonempty partially ordered set in which every chain
has an upper bound, then S has a maximal element. 

REMARKS. Zorn’s Lemma will be proved below using the Axiom of Choice,
which was stated in Section A1. It is an easy exercise to see, conversely,
that Zorn’s Lemma implies the Axiom of Choice. It is customary with many 
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mathematical writers to mention Zorn’s Lemma each time it is invoked, even
though most writers nowadays do not ordinarily acknowledge uses of the Axiom
of Choice. Before coming to the proof, we give an example of how Zorn’s Lemma
is used. This example uses vector spaces and is expanded upon in Section II.9. 

EXAMPLE. Zorn’s Lemma gives a quick proof that any real vector space V 
has a basis. In fact, let S be the set of all linearly independent subsets of V , and 
order S by inclusion upward as in the example above of a partial ordering. The 
set S is nonempty because ∅ is a linearly independent subset of V . Let T be a 
chain in S, and let u be the union of the members of T . If t is in T , we certainly 
have t ⊆ u. Let us see that u is linearly independent. For u to be dependent 
would mean that there are vectors x1, . . . , xn in u with r1x1 + · · · + rnxn = 0 for 
some system of real numbers not all 0. Let xj be in the member tj of the chain 
T . Since t1 ⊆ t2 or t2 ⊆ t1, x1 and x2 are both in t1 or both in t2. To keep the 
notation neutral, say they are both in t2

0 . Since t20 ⊆ t3 or t3 ⊆ t2
0 , all of x1, x2, x3 

are in t2
0 or they are all in t3. Say they are both in t3

0 . Continuing in this way, 
we arrive at one of the sets t1, . . . , tn , say t 0 , such that all of x1, . . . , xn are all n
in t 0 . The members of t 0 are linearly independent by assumption, and we obtain n n
the contradiction r1 = · · · = rn = 0. We conclude that the chain T has an upper 
bound in S. By Zorn’s Lemma, S has a maximal element, say m. If m is not 
a basis, it fails to span. If a vector x is not in its span, it is routine to see that 
m ∪ {x} is linearly independent and properly contains m, in contradiction to the 
maximality of m. We conclude that m is a basis. 

We now begin the proof of Zorn’s Lemma. If T is a chain in a partially ordered 
set S, then an upper bound u0 for T is a least upper bound for T if u0 ≤ u for all 
upper bounds of T . If (iii) holds in S, then there can be at most one least upper 
bound for T . In fact, if u0 and u0

0 are least upper bounds, then u0 ≤ u0
0 since 

u0 is a least upper bound, and u0
0 ≤ u0 since u0

0 is a least upper bound; by (iii), 
u0 = u0

0. The proof follows that in Dunford–Schwartz’s Linear Operators I. 

Lemma. Let X be a nonempty partially ordered set such that (iii) holds, and 
write ≤ for the partial ordering. Suppose that X has the additional property that 
each nonempty chain in X has a least upper bound in X . If f : X → X is a 
function such that x ≤ f (x) for all x in X , then there exists an x0 in X with 
f (x0) = x0. 

PROOF. A nonempty subset E of X will be called admissible for purposes of 
this proof if f (E) ⊆ E and if the least upper bound of each nonempty chain in 
E , which exists in X by assumption, actually lies in E . By assumption, X is an 
admissible subset of X . If x is in X , then the intersection of admissible subsets of 
X containing x is admissible. Let Ax be the intersection of all admissible subsets 
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of X containing x . This is admissible, and since the set of all y in X with x ≤ y
is admissible and contains x , it follows that x ≤ y for all y ∈ Ax . By hypothesis, 
X is nonempty. Fix an element a in X , and let A = Aa . The main step will be to 
prove that A is a chain. 
To do so, consider the subset C of members x of A with the property that there 

is a nonempty chain Cx in A containing a and x such that 
• a ≤ y ≤ x for all y in Cx , 
• f (Cx − {x}) ⊆ Cx , and 
• the least upper bound of any nonempty subchain of Cx is in Cx . 

The element a is in C because we can take Ca = {a}. If x is in C , so that Cx 
exists, let us use the bulleted properties to see that 

A = Ax ∪ Cx . (∗) 

We have A ⊇ Cx by definition; also A ∩ Ax is an admissible set containing x and 
hence containing A, and thus A ⊇ Ax . Therefore A ⊇ Ax ∪ Cx . For the reverse 
inclusion it is enough to prove that Ax ∪Cx is an admissible subset of X containing 
a. The element a is in Cx , and thus a is in Ax ∪Cx . For the admissibility we have to 
show that f (Ax ∪Cx ) ⊆ Ax ∪ Cx and that the least upper bound of any nonempty 
chain in Ax ∪ Cx lies in Ax ∪ Cx . Since x lies in Ax , Ax ∪ Cx = Ax ∪ (Cx − {x})
and f (Ax ∪ Cx ) = f (Ax ) ∪ f (Cx − {x}) ⊆ Ax ∪ Cx , the inclusion following 
from the admissibility of A and the second bulleted property of Cx . 
To complete the proof of (∗), take a nonempty chain in Ax ∪ Cx , and let u be 

its least upper bound in X ; it is enough to show that u is in Ax ∪ Cx . The element 
u is necessarily in A since A is admissible. Observe that 

y ≤ x and x ≤ z whenever y is in Cx and z is in Ax . (∗∗) 

If the chain has at least one member in Ax , then (∗∗) implies that x ≤ u, and 
hence the set of members of the chain that lie in Ax forms a nonempty chain in 
Ax with least upper bound u. Since Ax is admissible, u is in Ax . Otherwise the 
chain has all its members in Cx , and then u is in Cx by the third bulleted property 
of Cx . 
This completes the proof of (∗). Let us now prove that if Cx and Cx 0 exist with 

x ≤ x 0 and x 6= x 0, then 
Cx ⊆ Cx 0 . (†) 

In fact, application of (∗) to x 0 gives A = Ax 0 ∪ Cx 0 . Intersecting both sides with 
Cx shows that Cx = (Cx ∩ Ax 0 ) ∪ (Cx ∩ Cx 0 ). On the right side, the first member 
is empty by (∗∗), and thus Cx = Cx ∩ Cx 0 . This proves (†). 
Let C be the set of all members x of A for which Cx exists. We have seen that 

a is in C . If we apply (∗) and (∗∗) first to a member x of C and then to a member 
x 0 of C , we see that either x ≤ x 0 or x 0 ≤ x . That is, C is a chain. 
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Let us see that f (C) ⊆ C . If x is in C , then the set D = Cx ∪ { f (x)} certainly
has a as a member. The second bulleted property of Cx shows that f carries 
Cx − {x} into D, and also f carries x into D. Thus f carries D − { f (x)} into 
D, and D satisfies the second bulleted property of Cf (x). If {xα} is a chain in D 
with least upper bound u, there are two possibilities. Either u is f (x), which is 
in D by construction, or u is in C , which contains the least upper bound of any 
nonempty chain in it. Thus u is in D, D satisfies the third bulleted property of 
Cf (x), and Cf (x) exists. In other words, f (x) is in C , and f (C) ⊆ C . 
Finally let us see that the least upper bound u of an arbitrary chain {xα} in C ,

which exists in X by assumption, is a member of C . If xα = u for some α, then 
Cu = Cxα 6exists, and u is in C . So assume that xα = u for all α. Our candidate 
for Cu will be D = (

S 
α Cxα

) ∪ {u}. This certainly contains a. We check that 
D satisfies the second bulleted property of Cu . For each α, we can find a β with 
xα ≤ xβ and xα 6 xβ = , since u is the least upper bound of all the x’s. Then (†)
gives Cxα ⊆ Cxβ − {xβ }, and f (Cxα

) ⊆ f (Cxβ − {xβ }) ⊆ Cxβ ⊆ D. Taking the 
union over α shows that D satisfies the second bulleted property of Cu . 
To see that D satisfies the third bulleted property of Cu , let v be the least upper 

bound in A of a chain {yβ } in Cu . If v 6= u, then v cannot be an upper bound of 
{xα}. So we can choose some xα0 such that v ≤ xα0 . Each yβ is ≤ v, and thus 
each yβ is ≤ xα0 . Referring to (∗), we see that all yβ ’s lie in Cxα0 

. By the third 
bulleted property of Cxα0

, v is in Cxα0 
. Thus v is in D, and D satisfies the third 

bulleted property of Cu . Consequently the least upper bound u of an arbitrary 
chain in C lies in C . 
In short, C is an admissible set containing a, and it also is a chain. Since A is 

a minimal admissible set containing a, C = A and also A is a chain. Let u be the 
least upper bound of A. We have seen that f (A) ⊆ A, and thus f (u) ≤ u. On 
the other hand, u ≤ f (u) by the defining property of f . Therefore f (u) = u,
and the proof is complete. 

PROOF OF ZORN’S LEMMA. Let S be a partially ordered set, with partial 
ordering ≤, in which every chain has an upper bound. Let X be the partially 
ordered system, ordered by inclusion upward ⊆, of nonempty chains6 in S. The 
partially ordered system X , being given by ordinary inclusion, satisfies property 
(iii). A nonempty chain C in X is a nested system of chains cα of S, and 

S 
cα isα

a chain in S that is a least upper bound for C . The lemma is therefore applicable 
to any function f : X → X such that c ⊆ f (c) for all c in X . We use the lemma 
to produce a maximal chain in X . 
Arguing by contradiction, suppose that no chain within S is maximal under 

6Here a chain is simply a certain kind of subset of S, and no element of S can occur more than 
once in it even if (iii) fails for the partial ordering. Thus if S = {x, y} with x ≤ y and y ≤ x , then 
{x, y} is in X and in fact is maximal in X . 
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inclusion. For each nonempty chain c within S, let f (c) be a chain with c ⊆ f (c)
and c 6 f (c).= (This choice of f (c) for each c is where we use the Axiom of 
Choice.) The result is a function f : X → X of the required kind, the lemma 
says that f (c) = c for some c in X , and we arrive at a contradiction. We conclude 
that there is some maximal chain c0 within S. 
By assumption in Zorn’s Lemma, every nonempty chain within S has an upper 

bound. Let u0 be an upper bound for the maximal chain c0. If u is a member of S 
with u0 ≤ u, then c0 ∪ {u} is a chain and maximality implies that c0 ∪ {u} = c0. 
Therefore u is in c0, and u ≤ u0. This is the condition that u0 is a maximal 
element of S. § 

Corollary (Zermelo’s Well-Ordering Theorem). Every set has a well ordering. 

PROOF. Let S be a set, and let E be the family of all pairs (E, ≤E ) such that E 
is a subset of S and ≤E is a well ordering of E . The family E is nonempty since 
(∅, ∅) is a member of it. We partially order E by a notion of “inclusion as an 
initial segment,” saying that (E, ≤E ) ≤ (F, ≤F ) if 

(i) E ⊆ F ,
(ii) a and b in E with a ≤E b implies a ≤F b,
(iii) a in E and b in F but not E together imply a ≤F b. 

In preparation for applying Zorn’s Lemma, let C = {(Eα, ≤α)} be a chain in E,
with the α’s running through some set I . Define E0 = 

S 
Eα and define ≤0 asα

follows: If e1 and e2 are in E0, let e1 be in Eα1 with α1 in I , and let e2 be in Eα2

with α2 in I . Since C is a chain, we may assume without loss of generality that 
(Eα1 , ≤α1 ) ≤ (Eα2 , ≤α2 ), so that Eα1 ⊆ Eα2 in particular. Then e1 and e2 are both 
in Eα2 and we define e1 ≤0 e2 if e1 ≤α2 e2, and e2 ≤0 e1 if e2 ≤α2 e1. Because of 
(i) and (ii) above, the result is well defined independently of the choice of α1 and 
α2. Similar reasoning shows that ≤0 is a total ordering of E0. If we can prove 
that ≤0 is a well ordering, then (E0, ≤0) is evidently an upper bound in E for the 
chain C, and Zorn’s Lemma is applicable.
Now suppose that F is a nonempty subset of E0. Pick an element of F , and 

let Eα0 be a set in the chain that contains it. Since (Eα0 , ≤α0 ) is well ordered and 
F ∩ Eα0 is nonempty, F ∩ Eα0 contains a least element f0 relative to ≤α0 . We show 
that f0 ≤0 f for all f in F . In fact, if f is given, there are two possibilities. One 
is that f is in Eα0 ; in this case, the consistency of ≤0 with ≤α0 forces f0 ≤0 f . 
The other is that f is not in Eα0 but is in some Eα1 . Since C is a chain and 
Eα1 ⊆ Eα0 fails, we must have (Eα0 , ≤α0 ) ≤ (Eα1 , ≤α1 ). Then f is in Eα1 but 
not Eα0 , and property (iii) above says that f0 ≤α1 f . By the consistency of the 
orderings, f0 ≤0 f . Hence f0 is a least element in F , and E0 is well ordered. 
Application of Zorn’s Lemma produces a maximal element (E, ≤E ) of E. If 

E were a proper subset of S, we could adjoin to E a member s of S not in E and 
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define every element e of E to be ≤ s. The result would contradict maximality. 
Therefore E = S, and S has been well ordered. § 

A6. Cardinality 

Two sets A and B are said to have the same cardinality, written card A = card B,
if there exists a one-one function from A onto B. On any set A of sets, “having the
same cardinality” is plainly an equivalence relation and therefore partitions A into 
disjoint equivalence classes, the sets in each class having the same cardinality. The
question of what constitutes cardinality (or a “cardinal number”) in its own right
is one that is addressed in set theory but that we do not need to address carefully
here; the idea is that each equivalence class under “having the same cardinality”
has a distinguished representative, and the cardinal number is defined to be that 
representative. We write card A for the cardinal number of a set A. 
Having addressed equality, we now introduce a partial ordering, saying that

card A ≤ card B if there is a one-one function from A into B. The first result below 
is that card A ≤ card B and card B ≤ card A together imply card A = card B. 

Proposition (Schroeder–Bernstein Theorem). If A and B are sets such that 
there exist one-one functions f : A → B and g : B → A, then A and B have 
the same cardinality. 

PROOF. Define the function g−1 : image g → A by g−1(g(a)) = a; this 
definition makes sense since g is one-one. Write (g ◦ f )(n) for the composition 
of g ◦ f with itself n times, and define ( f ◦ g)(n) similarly. Define subsets An 

and A0 of A and subsets Bn and B 0 for n ∏ 0 by n n 

An = image((g ◦ f )(n)) − image((g ◦ f )(n) ◦ g), 

A0 = image((g ◦ f )(n) ◦ g) − image((g ◦ f )(n+1)), n 

Bn = image(( f ◦ g)(n)) − image(( f ◦ g)(n) ◦ f ), 

B 0 = image(( f ◦ g)(n) ◦ f ) − image(( f ◦ g)(n+1)), n 

and let 

A∞ =
T∞

n=0 
image((g ◦ f )(n)) and B∞ =

T∞

n=0 
image(( f ◦ g)(n)). 

Then we have 

SSSS∞ ∞ ∞ ∞

n=0 n=0 n=0 n=0 
A = A∞ ∪ An ∪ A0 

n and B = B∞ ∪ Bn ∪ Bn0 , 
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with both unions disjoint.
Let us prove that f carries An one-one onto Bn0 . If a is in An , then a = 

(g ◦ f )(n)(x) for some x ∈ A and a is not of the form (g ◦ f )(n)(g(y)) with 
y ∈ B. Applying f , we obtain f (a) = ( f ◦ ((g ◦ f )(n))(x) = ( f ◦ g)(n)( f (x)),
so that f (a) is in the image of (( f ◦ g)(n) ◦ f ). Meanwhile, if f (a) is in the 
image of ( f ◦ g)(n+1), then f (a) = ( f ◦ g)(n+1)(y) = f ((g ◦ f )(n)(g(y))) for 
some y ∈ B. Since f is one-one, we can cancel the f on the outside and obtain 
a = (g ◦ f )(n)(g(y)), in contradiction to the fact that a is in An . Thus f carries 
An into B 0 , and it is certainly one-one. To see that f (An) contains all of B 0 , let n n
b ∈ B 0 be given. Then b = ( f ◦ g)(n)( f (x)) for some x ∈ A and b is not of the n
form ( f ◦ g)(n+1)(y) with y ∈ B. Hence b = f ((g ◦ f )(n)(x)), i.e., b = f (a)
with a = (g ◦ f )(n)(x). If this element a were in the image of (g ◦ f )(n) ◦ g,
we could write a = (g ◦ f )(n)(g(y)) for some y ∈ B, and then we would have 
b = f (a) = f ((g ◦ f )(n)(g(y))) = ( f ◦ g)(n+1)(y), contradiction. Thus a is in 
An , and f carries An one-one onto Bn0 . 
Similarly g carries Bn one-one onto A0 . Since A0 is in the image of g, we can n n

apply g−1 to it and see that g−1 carries A0 one-one onto Bn .n
The same kind of reasoning as above shows that f carries A∞ one-one onto 

B∞. In summary, f carries each An one-one onto B 0 and carries A∞ one-onen 
onto B∞, while g−1 carries each A0 one-one onto Bn . Then the function n 

Ω f on A∞ and each An,h = 
g−1 on each A0 

n, 

carries A one-one onto B. § 

Next we show that any two sets A and B have comparable cardinalities in the 
sense that either card A ≤ card B or card B ≤ card A. 

Proposition. If A and B are two sets, then either there is a one-one function 
from A into B or there is a one-one function from B into A. 

PROOF. Consider the set S of all one-one functions f : E → B with E ⊆ A,
the empty function with E = ∅ being one such. Each such function is a certain 
subset of A× B. If we order S by inclusion upward, then the union of the members
of any chain is an upper bound for the chain. By Zorn’s Lemma let G : E0 → B 
be a maximal one-one function of this kind, and let F0 be the image of G. If 
E0 = A, then G is a one-one function from A into B. If F0 = B, then G−1 

is a one-one function from B into A. If neither of these things happens, then 
there exist x0 ∈ A − E0 and y0 in B − F0, and the function Ge equal to G on 
E0 and having Ge(x0) = y0 extends G and is still one-one; thus it contradicts the 
maximality of G. § 
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Corollary. If E is an infinite set, then E has a countably infinite subset. 

PROOF. The proposition shows that either there is a one-one function from the
set of positive integers into E , in which case we are done, or there is a one-one 
function from E into the set of positive integers. In the latter case the image cannot 
be finite since E is assumed infinite. Then the image must be an infinite subset
of the positive integers. This set can be enumerated and is therefore countably
infinite. Thus E is countably infinite. § 

Cantor’s proof that there exist uncountable sets, done with a diagonal argument,
in fact showed how to start from any set A and construct a set with strictly larger 
cardinality. 

Proposition (Cantor). If A is a set and 2A denotes the set of all subsets of A,
then card 2A is strictly larger than card A. 

PROOF. The map x 7→ {x} is a one-one function from A into 2A. If we are 
given a one-one function F : A → 2A, let E be the set of all x in A such that x 
is not in F(x). If we define E = F(x0), then x0 ∈ E implies x0 ∈/ F(x0) = E ,
while x0 ∈/ E implies x ∈ F(x0) = E . We have a contradiction in any case, and 
hence E cannot be of the form F(x0). We conclude that F cannot be onto 2A. § 

Proposition. If E is an infinite set, then E is the disjoint union of sets that are 
each countably infinite. 

PROOF. Let S be the set of all disjoint unions of countably infinite subsets of 
E . If A = 

S 
Aα and B = 

S 
Bβ are members of S, say that A ≤ B if each α β

Aα is some Bβ . The result is a partial ordering on S. If U is a chain in S, then 
the collection C of all countably infinite sets that are Uα’s in some member of U 
is a collection of countably infinite subsets of E that contains each member of U. 
If Uα and Uβ are distinct members of C , then Uα and Uβ must both be in some 
member of U and hence must be disjoint. Thus C is an upper bound for U. Also, 
the empty union is a member of S. By Zorn’s Lemma, S has a maximal element 
M . Let F be the union of the members of M . If E − F were to be infinite, then 
the corollary above would show that E − F has a countably infinite subset Z ,
and M ∪ {Z} would contradict the maximality of M . Thus E − F is finite. Since 
E is infinite, the corollary shows that E contains at least one countably infinite 
subset. Thus M has some member T . The set T 0 = T ∪ (E − F) is countably 
infinite, and (M − {T }) ∪ T 0 is the required decomposition of E as the disjoint 
union of countably infinite sets. § 

Corollary. Let S and E be nonempty sets with S infinite, and suppose that to 
each element s of S is associated a countable subset Ex of E in such a way that 
E = 

S
s∈S Es . Then card E ≤ card S. 
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PROOF. The proposition allows us to write S as the disjoint union of countably 
infinite sets. If U is one of these sets, then EU = 

S
s∈U Es is countable, being

the countable union of countable sets. Therefore there exists a function from U 
onto EU . The union of these functions, as U varies, yields a function f from S 
onto 

S 
EU = E . Applying the Axiom of Choice, we can select, for each e ∈ E ,

an element s ∈ f −1({e}) and call it g(e). The result is a one-one function g from 
E into S, and consequently card E ≤ card S. § 

Addition is well defined for cardinals: the sum of two cardinal numbers is 
defined to be the cardinality of the disjoint union of the two sets in question. If
at least one of the two cardinals is infinite, the sum equals the larger of the two,
as an immediate consequence of the above corollary. 






