Indices (Index of Notation, General Index), 717-730

DOI: 10.3792/euclid/9781429799928-13

from

Advanced Algebra
Digital Second Edition
Anthony W. Knapp

Full Book DOI: 10.3792/euclid/9781429799928
ISBN: 978-1-4297-9992-8

Distributed by Project Euclid.
For copyright information, see the following page.
Anthony W. Knapp
81 Upper Sheep Pasture Road
East Setauket, N.Y. 11733–1729, U.S.A.
Email to: aknapp@math.stonybrook.edu
Homepage: www.math.stonybrook.edu/~aknapp

Title: Advanced Algebra
Cover: Content of the Snake Lemma; see page 185.

Mathematics Subject Classification (2010): 11–01, 13–01, 14–01, 16–01, 18G99, 55U99, 11R04, 11S15, 12F99, 14A05, 14H05, 12Y05, 14A10, 14Q99.

©2007 Anthony W. Knapp
Published by Birkhäuser Boston

Digital Second Edition, not to be sold, no ISBN
©2016 Anthony W. Knapp
Published by the Author

All rights reserved. This file is a digital second edition of the above named book. The text, images, and other data contained in this file, which is in portable document format (PDF), are proprietary to the author, and the author retains all rights, including copyright, in them. The use in this file of trade names, trademarks, service marks, and similar items, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

All rights to print media for the first edition of this book have been licensed to Birkhäuser Boston, c/o Springer Science+Business Media Inc., 233 Spring Street, New York, NY 10013, USA, and this organization and its successor licensees may have certain rights concerning print media for the digital second edition. The author has retained all rights worldwide concerning digital media for both the first edition and the digital second edition.

The file is made available for limited noncommercial use for purposes of education, scholarship, and research, and for these purposes only, or for fair use as understood in the United States copyright law. Users may freely download this file for their own use and may store it, post it online, and transmit it digitally for purposes of education, scholarship, and research. They may not convert it from PDF to any other format (e.g., EPUB), they may not edit it, and they may not do reverse engineering with it. In transmitting the file to others or posting it online, users must charge no fee, nor may they include the file in any collection of files for which a fee is charged. Any exception to these rules requires written permission from the author.

Except as provided by fair use provisions of the United States copyright law, no extracts or quotations from this file may be used that do not consist of whole pages unless permission has been granted by the author (and by Birkhäuser Boston if appropriate).

The permission granted for use of the whole file and the prohibition against charging fees extend to any partial file that contains only whole pages from this file, except that the copyright notice on this page must be included in any partial file that does not consist exclusively of the front cover page. Such a partial file shall not be included in any derivative work unless permission has been granted by the author (and by Birkhäuser Boston if appropriate).

Inquiries concerning print copies of either edition should be directed to Springer Science+Business Media Inc.
INDEX OF NOTATION

This list indexes recurring symbols introduced in Chapters I through X (pages 1–648). For recurring symbols introduced in Basic Algebra, see the list of Notation and Terminology on pages xxiii–xxvi. Some of the latter notation has been repeated here for the reader’s convenience.

In the list below, each piece of notation is regarded as having a key symbol. The first group consists of those items for which the key symbol is a fixed Latin letter, and the items are arranged roughly alphabetically by that key symbol. The next group consists of those items for which the key symbol is a Greek letter. The final group consists of those items for which the key symbol is a variable or a nonletter, and these are arranged by type. To locate an item below, first proceed on the assumption that the key symbol is a Latin or Greek letter; if the item does not appear to be in the list, then treat it as if its key symbol is a variable or a letter.

\[
\begin{align*}
\mathbb{A}, \mathbb{A}_K & , 389, 559 \\
\mathbb{A}^n, \mathbb{A}_K^n & , 455, 559 \\
\mathcal{A}(K, \text{Gal}(K/F), a) & , 137 \\
\mathcal{A}_F & , 542, 543 \\
\mathcal{A}_F^* & , 542, 543 \\
\mathcal{A}(V) & , 579 \\
\mathcal{A} & , 570 \\
\mathcal{A}_d & , 570 \\
\mathcal{A}(V) & , 584 \\
\mathcal{A}(V_d) & , 585 \\
\mathcal{a}, \varphi & , 639 \\
\mathcal{B}(F) & , 126 \\
\mathcal{B}(K/F) & , 127 \\
\mathcal{C} & , 330 \\
\mathcal{C}(a) & , 620 \\
\mathcal{C}(K) & , 169 \\
\mathcal{C}(V(a)) & , 633 \\
\mathcal{C}_F & , 532, 549 \\
\mathcal{C}_F^0 & , 534 \\
\mathcal{E}^c & , \text{complement, xxiii} \\
\text{coimage } f & , 240 \\
coker f & , 175 \\
D(\xi) & , 279 \\
D(K/F) & , 372 \\
D_F & , 532, 549 \\
D_{F,0} & , 534 \\
D_X & , 267 \\
D(\Gamma) & , 267 \\
\text{Diff}(\mathbb{F}) & , 547 \\
\text{Div}(\omega) & , 548 \\
d_{-1} & , 194 \\
d_{\alpha} & , 153, 154 \\
X = \{(X_n, d_n)\}_{n=-\infty}^{\infty} & , 174 \\
\text{dim } R & , 424 \\
\text{Ext}_R^p(a, B) & , 223 \\
e_i, f_i, g & , 275, 354 \\
\langle e_{i_1}, \ldots, e_{i_k} \rangle & , 619 \\
\text{ext}_R^p(a, B) & , 223 \\
\mathbb{F}_q[[X]] & , 347 \\
\mathbb{F}_q((X)) & , 347 \\
\mathbb{F}_p & , 346 \\
\text{Fr}_q & , 437
\end{align*}
\]
Index of Notation

- \(f_v \), 533
- \(G_p \), 368
- \(\text{Gal}(F_2/F_1) \), 434
- \(\leq_{\text{GLEX}} \), \(\leq_{\text{GREVLEX}} \), 494
- \(g \), 538
- \(g_x \), 538
- \(\mathcal{H}(s, a) \), 633
- \(\mathcal{H}_a(s, a) \), 621, 626
- \(H(s, a) \), 633
- \(H_a(s, a) \), 625, 628
- \(H_j \), 620
- \(H_n(X) \), 153, 172
- \(H_n^*(X) \), 153, 174
- \(H_s(X) \), 172
- \(H_s^*(X) \), 174
- \(H_n(G, M) \), 209
- \(H_n^*(G, M) \), 147
- \(\text{Hom}_K(A, B) \), 169
- \(h(D) \), 7, 14
- \(h_{\text{dr}} \), 299
- \(I, I_K \), 390
- \(I^1 \), 390
- \(I, J \), 330, 393, 576
- \(\mathfrak{f} \), 576
- \(I = (r_1, r_2) \), 38
- \(I = (r_1, r_1) \), 38
- \(I(E) \), 560
- \(I(P) \), 571
- \(I(P, F \cap G) \), 474
- \(I(P, L \cap F) \), 467
- \(\text{image } f \), 240
- \(J(\xi) \), 272
- \(K(S) \), 409
- \(\overline{K}(E) \), 412
- \(k \), 528, 559
- \(k(V) \), 480, 585
- \(k' \), 531
- \(\mathcal{L}(A) \), 544
- \(L(A) \), 535
- \(L(s, \chi) \), 63
- \(\text{LCM}(X^\alpha, X^\beta) \), 501
- \(\text{Log} \), 289
- \(\text{LM}(f) \), \(\text{LC}(f) \), \(\text{LT}(f) \), 496
- \(\text{LT}(I) \), 497
- \(\leq_{\text{LEX}} \), 493
- \(\ell(A) \), 536
- \(\lim_{\rightarrow} \), 439
- \(M \), 493, 620
- \(M_p \), 600
- \(M_x \), 431
- \(m_p \), 600
- \(m_x \), 431
- \(m_{p}(F) \), 474
- \(N(I) \), 39, 273
- \(N_{A/F}(\cdot) \), 165
- \(N_{K/F}(\cdot) \), \(\text{norm} \), xxvi
- \(\text{Nrd}_{A/F}(\cdot) \), 165
- \(\mathcal{O}(U) \), 580, 582, 587, 641
- \(\mathcal{O}_P(U) \), 582, 587
- \(\mathcal{O}_P(V) \), 580, 585
- \(R^0 \), \(\text{opposite ring} \), xxiv
- \(\text{ord}_v(A) \), 532
- \(\mathbb{P}^2 \), 456
- \(\mathbb{P}^n \), 457, 570
- \(\mathbb{P}^n_K \), 457
- \(\mathcal{P} \), 330, 393
- \(\mathcal{P}_S \), 532, 549
- \(\mathcal{P}_P \), 322, 533
- \(\mathbb{Q}_p \), 316, 318
- \(\mathcal{R}(f, g) \), 451
- \(\mathcal{R}(f, g) \), 451
- \(\mathcal{R}(f_1, F) \), 514
- \(R_{0} \), 346
- \(R_v \), 322, 533
- \(R_x \), 431
- \(\text{Residue} \), 542
- \(\text{Residue}_{p(v)} \), 541
- \(r_1, r_2 \), 348, 383
- \(\text{rad } A \), 78
- \(S(f_1, f_2) \), 502
\[S_\infty, 391 \]
\[S^{-1}R, \text{ localization, xxvi} \]
\[\text{Spec } A, 639 \]
\[(\text{Spec } A, O), 641 \]
\[\text{Tor}_n^R(A, B), 224 \]
\[\text{Tr}_{A/F}(\cdot), 165 \]
\[\text{Tr}_{K/F}(\cdot), \text{ trace, xxvi} \]
\[\text{Trd}_{A/F}(\cdot), 165 \]
\[A^t, \text{ transpose, xxiii} \]
\[\text{tor}_n^R(A, B), 224 \]
\[\text{tr deg } R, 424 \]
\[V(C), V_K(C), 455–456 \]
\[V(I), 429 \]
\[V(S), 559, 571 \]
\[V(f_1, \ldots, f_k), 559 \]
\[V_p, 532 \]
\[v_p(\cdot), 321 \]
\[v_\infty, 328 \]
\[X(S), 388 \]
\[X^a, 494, 620 \]
\[x_j(P), 559 \]
\[\mathbb{Z}(\Gamma), 268 \]
\[\mathbb{Z}_p, 318 \]
\[\mathbb{Z}, 437 \]
\[\mathbb{Z}G, \text{ integral group ring, xxv} \]

Functors given by subscripts and superscripts

\[R^\times, \text{ units, xxiv} \]
\[R_p, \text{ localization, xxvi} \]
\[X^+, 194 \]
\[K_{alg}, \text{ algebraic closure, 434} \]
\[K_{sep}, \text{ separable algebraic closure, 434} \]
\[M^G, \text{ invariants, 208} \]
\[M_G, \text{ coinvariants, 209} \]
\[\tilde{M}, \text{ dual fractional ideal, 372} \]
\[M_p, 376 \]
\[L^\phi, 460 \]

Specific functions

\[\alpha = (\alpha_1, \ldots, \alpha_n), \text{ multi-index, 494} \]
\[|\alpha|, 620 \]
\[(\frac{2}{p}), \text{ Legendre symbol, 8} \]
\[(\frac{\alpha}{\nu}), \text{ Jacobi symbol, 68} \]
\[[K : F], \text{ degree, xxvi} \]
\[|\cdot|_p, 316 \]
\[|\cdot|, \text{ absolute value, 331} \]
\[\|\cdot\|, \text{ norm, 356} \]
\[(x)_0, (x)_\infty, 532 \]

Isolated symbols

\[\sim, \text{ Brauer equivalent, 124} \]
\[\cong, \text{ homotopic, 154} \]
\[\partial_n, 153, 172 \]
\[\partial_{-1}, 194 \]
\[\prod, \text{ restricted direct product, 388} \]

Operations on sets and classes

\[RG, \text{ group algebra, xxv} \]
\[\sqrt{T}, \text{ radical, 405} \]
\[K[X_1, \ldots, X_{n+1}], 458 \]
\[A \xrightarrow{\alpha} B, \text{ morphism, 235} \]

Miscellaneous

\[(x), \text{ principal divisor, 532} \]
\[(x_i)_{i \in I}, 388 \]
$I = (r_1, r_2)$, generated ideal, 38
$I = \langle r_1, r_2 \rangle$, 38
$[x, y, w]$, point in \mathbb{P}^2, 459
$[x_0, \ldots, x_n]$, point in \mathbb{P}^n, 570
$\varphi = \{(E, \varphi_E)\}$, rational map, 595
$X = \{(X_n, \partial_n)\}_{n=-\infty}^{\infty}$, 171
$(F, | \cdot |_F)$, valued field, 342
$\mathcal{O}(U), \rho_{VU}$, presheaf, 640

Index of Notation
INDEX

Abel, 521
abelian category, 238
abelian group
divisible, 196
torsion, 169
abelian Lie algebra, 78
absolute discriminant, 35, 267
absolute norm of ideal, 39, 273
absolute value, 289, 331
archimedean, 289
discrete, 338
nontrivial, 332
normalized, 383, 384, 385, 386
of idele, 390
trivial, 331
acyclic resolution, 219
additive category, 233
additive functor, 170, 178
adele, 389
adjoint, 252
affine algebraic set, 559
dimension of, 566
irreducible, 563
affine coordinate ring, 579
affine curve, irreducible, 529
affine Hilbert function, 621, 626
affine Hilbert polynomial, 625, 628
affine hypersurface, irreducible, 430, 562
affine local coordinates, 461
affine n-space, 455, 559
affine plane curve, 455
irreducible, 430, 524, 562
affine plane line, 455
affine scheme, 642
affine variety, 429, 562
algebra, xxv
abelian Lie, 78
central, 111
central simple, 111
crossed-product, 137
cyclic, 122, 162, 163
generalized quaternion, 121
Lie, 77
semisimple associative, 80
semisimple Lie, 79
simple associative, 80
simple Lie, 79
solvable Lie, 78
tensor product for, 104
Weyl, 85
algebra polynomial, 164
algebraic closure, separable, 434
algebraic set
affine, 559
irreducible affine, 563
projective, 571
algebraically independent, 409
aligned primitive forms, 25
archimedean, 331, 333, 346
absolute value, 289
place, 383
valuation, 289
Artin product formula, 387, 390, 395
Artin reciprocity, 265
Artin’s Theorem, 89
Artinian ring, 87
associated prime ideal, 446
associated translation, 622
associated vector subspace, 622
associative algebra
semisimple, 80
simple, 80
augmentation map, 149
Baer, 168
base field, 327
base space, 640
Bayer–Stillman ordering, 494

721
Bezout, 449
Bezout’s Theorem, 447, 453, 465, 471, 487, 488
bidegree, 617
bifunctor, 223
bihomogeneous polynomial, 617
binary quadratic form, 3, 12
similar, 74
birational, 595
map, 595
birationally equivalent, 595
Blichfeldt, 293
boundary, 172
map, 172
operator, 172
bounded sequence, 317
bracket, 78
Brauer equivalent, 124
Brauer group, 126
relative, 127
Brauer’s Lemma, 91
Buchberger, 450
Buchberger’s algorithm, 506

canonical class, 551
canonical divisor, 551
Cartan, E., 79
Cartan, H., 168
category
abelian, 238
additive, 233
good, 169
Cauchy sequence, 317
Cayley, 77
central algebra, 111
central simple algebra, 111
centralizer, 114
chain complex, 171
double, 257
in abelian category, 240
tensor product for, 258
chain map, 154, 155, 173
character
Dirichlet, 62
genus, 74
multiplicative, 61
principal Dirichlet, 62
Chase, 141
Chevalley, 165, 168
Chinese Remainder Theorem, xxv, 30, 69, 106, 314, 341, 367, 480, 483
class field, Hilbert, 265
class field theory, 265
class group
form 28
ideal, 42, 265, 299, 330, 393
class number, 299, 393
Dirichlet, 7, 14
co-invariant, 209
co-invariants functor, 209
coboundary, 174
map, 174
operator, 174
cocycle complex, 173
cocycle map, 154, 174
cocycle, 174
codomain of morphism, 232
cohomology, 153, 174
sheaf, 168, 171, 218, 643
coincidence in abelian category, 240
cokernel, 175
cokernel of morphism, 236
universal mapping property of, 236
common discriminant divisor, 272
common index divisor, 272, 287, 310, 371
commutator ideal, 78
complete presheaf, 641
complete valued field, 343
equal-characteristic case, 398
unequal-characteristic case, 398
completion, 342
universal mapping property of, 343
complex, 171
chain, 171
cochain, 173
double, 257
flat, 259
in abelian category, 240
place, 383
composition formula, 24
condition (C1), 165, 518
cone, 572, 633
conic, 458
conjugate, 266, 288, 383
connecting homomorphism, 185, 187
connecting morphism in abelian category, 248
convergent infinite product, 51
convergent sequence, 317
coordinate, 455, 559
 affine local, 461
coordinate hyperplane, 620
coordinate ring
 affine, 579
 homogeneous, 584
coordinate subspace, 619
coproduct, xxv
correspondence, one-one, xxiii
countable, xxiii
Cramer, 448
Cramer’s paradox, 449
Cramer’s rule, 448
crossed-product algebra, 137
cubic, 458
 extension, pure, 280
 number field, 279, 302
twisted, 562
cubical singular chain, 172
cubical singular homology, 172
cup product, 256
curve, affine plane, 455
curve, elliptic, 648
curve, irreducible, 604
 affine, 529
 affine plane, 430, 524, 562
curve projective plane, 458
cycle, 172
cyclic algebra, 122, 162, 163
cyclotomic field, 309
decomposition group, 368
Dedekind, 77
Dedekind Discriminant Theorem, 275, 371, 379, 381
Dedekind domain, xxvi, 266
 extension of, xxvi, 327, 417
Dedekind example, 287, 302, 310
Dedekind’s Theorem on Different, 376
defined at a point, 580, 585
degenerate, 172
degree, 153
 of divisor, 533
 of inseparability, 415
residue class, 275, 354, 533
total, 457
transcendence, 413
derived functor, 204
 formation of, 205
 long exact sequence for, 211, 214
Dickson, 122
different, 279
 relative, 279, 372
differential, 543, 547
differential form, 541
dimension
 geometric, 565
 Krull, 403, 424, 426, 528, 529,
 564, 566, 605, 619, 630, 639
 of affine algebraic set, 566
 of affine variety, 563
 of zero locus, 423
Diophantus, 1
direct product, restricted, 388
direct sum in additive category, 233
directed set, 438
Dirichlet, 2, 24, 77
Dirichlet box principle, 297
Dirichlet character modulo m, 62
Dirichlet class number, 7, 14
Dirichlet L function, 63
Dirichlet pigeonhole principle, 297
Dirichlet series, 56
Dirichlet Unit Theorem, 290, 292, 384, 390, 395
Dirichlet’s Theorem, 7, 50
discrete, 290
discrete absolute value, 338
discrete valuation, 322
 defined over k, 529
discriminant, 12
 absolute, 35, 267
 field, 35, 264, 267
 fundamental, 33
 of commutative semisimple algebra, 382
 of ordered basis, 267
 relative, 275, 381
discriminant divisor, 272
divisible abelian group, 196
divisible module, 251
division algorithm, generalized, 499
divisor, 532
divisor class, 532, 549
divisor, principal, 532
domain of morphism, 232
dominant rational map, 595
Double Centralizer Theorem, 115
double chain complex, 257
dual of fractional ideal, 372

Eckmann, 168
Eilenberg, 168
Eisenstein, 12
Eisenstein polynomial, 402
elimination ideal, 512
Eisenstein polynomial, 402
elimination type ordering, 494, 512
equivalence class of forms
ordinary, 13
proper, 13
equivalence of
absolute values, 333
completions, 383
forms, 13, 32
forms, improper, 13
forms, proper, 13, 32
ideals, 40, 298
ideals, narrow, 40
ideals, strict, 40, 298
morphisms, 242
Euler, 1, 3, 9, 50
Euler product, 50, 54, 60
first-degree, 60
Euler’s Theorem, 516, 646
exact complex, 175
exact functor, 179
left, 182
right, 183
exact on injectives, 222
exact on projectives, 222
exact sequence, 175
in abelian category, 240
long, 187, 188
short, 175
split, 200
Exchange Lemma, 412
Ext functor, 223

extension
normal, 435
of Dedekind domain, xxvi, 327, 417
of integrally closed domain, 610
of valued field, 358
purely transcendental, 409
Extension Theorem, 512
factor set, 133
trivial, 135
Fermat, 1, 3, 9
field discriminant, 35, 264, 267
field of formal Laurent series, 347
field of fractions, xxv
field polynomial, 266
fine sheaf, 218
finiteness of class number, 390
first-degree Euler product, 60
flabby sheaf, 218
flat complex, 259
flat module, 257
form
binary quadratic, 3, 12
class group, 28
negative definite, 14
positive definite, 14
primitive aligned, 25
reduced primitive, 18, 21
Fourier inversion formula for finite abelian
groups, 61
fractional ideal, 321
principal, 321
relative dual of, 372
free resolution, 152, 195
Freudenthal, 168
Frobenius element, 437
Frobenius’s Theorem about division algebras
over the reals, 118, 160
function field, 419, 528, 580, 582, 585, 587
in one variable, 326, 382, 528, 529
in r variables, 419
functor
additive, 170, 178
co-invariants, 209
derived, 204
exact, 179
Ext, 223
global-sections, 218
homology-of-groups, 209
invariants, 208
left exact, 182
right exact, 183
Tor, 224
functorial, 177
functoriality of long exact sequence of
derived functors, 215, 218
functoriality with long exact sequence, 191
functoriality with snake diagram, 190
fundamental discriminant, 33
fundamental parallelootope, 293
Fundamental Theorem of Galois Theory, 443
fundamental unit, 36, 288
Galois, 77
Galois group, 434
gap sequence, 557
Gauss, 1, 3, 9, 24, 77
Gauss’s group, 5, 28
Gelfand, 348
generalized division algorithm, 499
generalized quaternion algebra, 121
generalized resultant, 514
genus, 32, 539, 556, 557
principal, 33
genus character, 74
genus group, 33, 70, 73
genomic dimension, 565
germ, 584
global field, 382
global-sections functor, 218
good category, 169
graded lexicographic ordering, 493
graded monomial ordering, 627
graded reverse lexicographic ordering, 494
Gröbner, 450
Gröbner basis, 450, 497, 564
minimal, 508
reduced, 509
Grothendieck, 638
Haar measure, 385
Halphen, 450
Hamilton, 77
Hensel, 279
Hensel’s Lemma, 349, 351, 353, 399
Herstein, 130
Hilbert, 404
Hilbert Basis Theorem, xxvi, 491, 560
Hilbert class field, 265
Hilbert function, 633
affine, 621, 626
Hilbert polynomial, 633
affine, 625, 628
Hilbert’s Theorem 90, 71, 145
homogeneous coordinate ring, 584
homogeneous ideal, 458, 570
homogeneous member of homogeneous
coordinate ring, 585
homogeneous Nullstellensatz, 572, 586, 635
homogeneous polynomial, 457
homology, 153, 172
cubical singular, 172
simplicial, 172
homology-of-groups functor, 209
homomorphism, 78
connecting, 185, 187
inflation, 254
of valued field, 342
restriction, 254
homotopic, 154, 173, 174, 193, 198
homotopy, 173, 174, 193, 198
Hopf, H., 167
Hopkins, 92
Hurewicz, 167
hyperplane coordinate, 620
hypersurface, irreducible affine, 430, 562
hypersurface, irreducible projective, 573
ideal
fractional, 321
in Lie algebra, 78
principal fractional, 321
valuation, 322
ideal class group, 42, 265, 299, 330
idele, 390
idele class group, 393
idempotent, 91, 369
idempotent primitive, 369
image in abelian category, 240
Implicit Function Theorem, 428, 600
improper equivalence of forms, 13
independent algebraically, 409
index, 272
ramification, 275, 354
index inertia group, 370
inertia subfield, 368
inflation homomorphism, 254
inflation-restriction sequence, 254
injective, 195
in abelian category, 241
injective module, 195
injective resolution, 199, 205
inseparable element, 414
integral closure, xxvi, 610
integral domain, xxv
integral element, xxvi
integrally closed, xxvi
intersection multiplicity, 467, 474
intersection number, 467
invariant, 208
invariants functor, 208
inverse lim, 439
standard, 439
inverse system, 438
irreducible
affine algebraic set, 563
affine curve, 529
affine hypersurface, 430, 562
affine plane curve, 430, 524, 562
closed set, 564, 573
curve, 604
element, xxv
ideal, 446
projective hypersurface, 573
irredundant, 446
isomorphic idempotents, 97
isomorphism, 78
of valued field, 342
of varieties, 591
Jacobi, 521
Jacobi identity, 77
Jacobi symbol, 68
Jacobson radical, 89
kernel of morphism, 235
universal mapping property of, 235
Koszul, 168
Kronecker, 77
Krull dimension, 403, 424, 426, 528, 529,
564, 566, 605, 619, 630, 639
Kummer, 77
Kummer’s criterion, 275
Künneth Theorem, 258–259
Lagrange, 1, 4
Langlands reciprocity, 265
largest domain, 583, 595
Lasker–Noether Decomposition Theorem, 446, 639
lattice, 290
Law of Quadratic Reciprocity, 3, 8
least common multiple, 501
left adjoint, 252
left Artinian ring, 87
left exact functor, 182
left Noetherian ring, 87
left semisimple ring, 81
Legendre, 1, 4
Legendre symbol, 8
Leibniz, 7
Leray, 168
Levi, E. E., 79
lexicographic ordering, 493
Lie algebra, 77
abelian, 78
semisimple, 79
simple, 79
solvable, 78
Lie subalgebra, 78
line
affine plane, 455
at infinity, 459
projective, 458
Liouville, 521
local expression, 462
local field, 383
local morphism, 642
local ring, xxvi
at a point, 580, 582, 585, 587
local/global approach, 371
localization, xxvi
locus of common zeros, 429, 559, 571
long exact sequence, 187, 188
functoriality with, 191
of derived functors, 211, 214
functoriality of, 215, 218
Mac Lane, 168, 420
Macaulay, 627
maps of a good category, 169
matrix units, 101
member in abelian category, 242
minimal Gröbner basis, 50
Minkowski, 301, 302
Minkowski Lattice-Point Theorem, 293, 384
modules of a good category, 169
monic, 232
mono, 232
monomial, 457
 reduced, 646
monomial ideal, 619
monomial ordering, 493
 graded, 627
monomorphism, 232
morphism, 169
 local, 642
 of affine scheme, 642
 of ringed space, 642
 of varieties, 591
multiplicative, 60
multiplicative character, 61
 strictly, 60
multiplicity of a tangent line, 478
Nakayama’s Lemma, xxv, 120, 605, 606
narrow equivalence of ideals, 40
 natural, 177
 negative, xxiii
 negative definite form, 14
 negatively oriented, 40
neighbor, 21
 on the left, 21
 on the right, 21
nil left ideal, 89
nilpotent element, 89
nilpotent left ideal, 80, 90
Noether Normalization Lemma, 612
Noether-Jacobson Theorem, 130
Noetherian, xxvi
Noetherian ring, 87
Noetherian topological space, 564
nonarchimedean, 331, 335, 338
nonarchimedean place, 383
nonsingular curve, 604
nonsingular point, 429, 600, 601
nontrivial absolute value, 332
norm, 165, 356
norm of ideal, 39
 absolute, 273
 normal extension, 435
normalized absolute value, 383, 384, 385, 486
Nullstellensatz, 403, 404, 428, 455, 480, 487,
 510, 516, 518, 524, 526, 529, 559, 561,
 563, 572, 579, 580, 581
 homogeneous, 572, 586, 635
number field, xxvi
 cubic, 279, 302
cyclotomic, 309
quadratic, 35, 69, 263, 269
Oka, 168
one-one correspondence, xxiii
order, 532
order of vanishing, 474
ordering
 Bayer-Stillman type, 494
 from tuple of weight vectors, 494
 graded lexicographic, 493
 graded monomial, 627
 graded reverse lexicographic, 494
 \(k\)-elimination type, 494, 512
 lexicographic, 493
 monomial, 493
 total, 493
ordinary equivalence class of forms, 13
 oriented, 40
orthogonal idempotents, 99, 369
Ostrowski, 348
Ostrowski’s Theorem, 336

\(p\)-adic absolute value, 316
\(p\)-adic integer, 279, 318
\(p\)-adic number, 346
\(p\)-adic metric, 316
\(p\)-adic number, 279, 316, 318
\(p\)-adic number, 346
parallelogram, 548
 fundamental, 293
Peirce decomposition, 95
perfect field, 418, 554
place, 383
plane, projective, 456
plane curve
 affine, 455
 irreducible affine, 430, 524, 562
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>projective</td>
<td>458</td>
</tr>
<tr>
<td>plane line, affine</td>
<td>455</td>
</tr>
<tr>
<td>Plücker</td>
<td>450</td>
</tr>
<tr>
<td>point, 455, 456, 459, 559</td>
<td></td>
</tr>
<tr>
<td>points at infinity</td>
<td>459</td>
</tr>
<tr>
<td>pole part</td>
<td>537</td>
</tr>
<tr>
<td>pole set, 581, 585</td>
<td></td>
</tr>
<tr>
<td>positive, xxiii</td>
<td></td>
</tr>
<tr>
<td>positive definite form, 14</td>
<td></td>
</tr>
<tr>
<td>positively oriented, 40</td>
<td></td>
</tr>
<tr>
<td>presheaf, 640</td>
<td></td>
</tr>
<tr>
<td>complete, 641</td>
<td></td>
</tr>
<tr>
<td>primary ideal, 445</td>
<td></td>
</tr>
<tr>
<td>prime element, xxv</td>
<td></td>
</tr>
<tr>
<td>prime ideal, xxv</td>
<td></td>
</tr>
<tr>
<td>associated, 446</td>
<td></td>
</tr>
<tr>
<td>primitive, 12</td>
<td></td>
</tr>
<tr>
<td>primitive form</td>
<td></td>
</tr>
<tr>
<td>aligned, 25</td>
<td></td>
</tr>
<tr>
<td>reduced, 18, 21</td>
<td></td>
</tr>
<tr>
<td>primitive idempotent, 369</td>
<td></td>
</tr>
<tr>
<td>primitive represent, 14</td>
<td></td>
</tr>
<tr>
<td>principal Dirichlet character, 62</td>
<td></td>
</tr>
<tr>
<td>principal divisor, 532</td>
<td></td>
</tr>
<tr>
<td>principal fractional ideal, 321</td>
<td></td>
</tr>
<tr>
<td>principal genus, 33</td>
<td></td>
</tr>
<tr>
<td>problem</td>
<td></td>
</tr>
<tr>
<td>ideal-equality, 510</td>
<td></td>
</tr>
<tr>
<td>ideal-membership, 507</td>
<td></td>
</tr>
<tr>
<td>proper-ideal, 507</td>
<td></td>
</tr>
<tr>
<td>product, xxv</td>
<td></td>
</tr>
<tr>
<td>profinite group, 441</td>
<td></td>
</tr>
<tr>
<td>projective, 192</td>
<td></td>
</tr>
<tr>
<td>algebraic set, 571</td>
<td></td>
</tr>
<tr>
<td>closure, 575</td>
<td></td>
</tr>
<tr>
<td>hypersurface, irreducible, 573</td>
<td></td>
</tr>
<tr>
<td>in abelian category, 241</td>
<td></td>
</tr>
<tr>
<td>limit, 439</td>
<td></td>
</tr>
<tr>
<td>line, 458</td>
<td></td>
</tr>
<tr>
<td>module, 192</td>
<td></td>
</tr>
<tr>
<td>n-space, 457</td>
<td></td>
</tr>
<tr>
<td>plane, 456</td>
<td></td>
</tr>
<tr>
<td>plane curve, 458</td>
<td></td>
</tr>
<tr>
<td>resolution, 195, 205</td>
<td></td>
</tr>
<tr>
<td>transformation, 460</td>
<td></td>
</tr>
<tr>
<td>variety, 572</td>
<td></td>
</tr>
<tr>
<td>proper equivalence class of forms, 13</td>
<td></td>
</tr>
<tr>
<td>forms over \mathbb{Q}, 32</td>
<td></td>
</tr>
<tr>
<td>forms over \mathbb{Z}, 13</td>
<td></td>
</tr>
<tr>
<td>pullback, 242</td>
<td></td>
</tr>
<tr>
<td>pure cubic extension, 280</td>
<td></td>
</tr>
<tr>
<td>type of, 281</td>
<td></td>
</tr>
<tr>
<td>purely inseparable element, 415</td>
<td></td>
</tr>
<tr>
<td>purely inseparable extension, 416</td>
<td></td>
</tr>
<tr>
<td>purely transcendental extension, 409</td>
<td></td>
</tr>
<tr>
<td>pushout, 202, 243</td>
<td></td>
</tr>
<tr>
<td>quadratic form, binary, 3, 12</td>
<td></td>
</tr>
<tr>
<td>quadratic form, similar, 74</td>
<td></td>
</tr>
<tr>
<td>quadratic number field, 35, 69, 263, 269</td>
<td></td>
</tr>
<tr>
<td>quadratic reciprocity, 3, 8, 68</td>
<td></td>
</tr>
<tr>
<td>quartic, 458</td>
<td></td>
</tr>
<tr>
<td>quasi-affine variety, 568</td>
<td></td>
</tr>
<tr>
<td>quasiprojective variety, 573</td>
<td></td>
</tr>
<tr>
<td>quaternion algebra, 121</td>
<td></td>
</tr>
<tr>
<td>radical</td>
<td></td>
</tr>
<tr>
<td>associative algebra, 80</td>
<td></td>
</tr>
<tr>
<td>ideal, 405</td>
<td></td>
</tr>
<tr>
<td>Jacobson, 89</td>
<td></td>
</tr>
<tr>
<td>of Lie algebra, 78</td>
<td></td>
</tr>
<tr>
<td>Wedderburn–Artin, 89, 91</td>
<td></td>
</tr>
<tr>
<td>ramification index, 275, 354</td>
<td></td>
</tr>
<tr>
<td>ramified, 367</td>
<td></td>
</tr>
<tr>
<td>ramify, 264, 275, 308</td>
<td></td>
</tr>
<tr>
<td>rational function, 580, 585</td>
<td></td>
</tr>
<tr>
<td>rational map, 595</td>
<td></td>
</tr>
<tr>
<td>dominant, 595</td>
<td></td>
</tr>
<tr>
<td>rational point, 455, 456, 457, 459</td>
<td></td>
</tr>
<tr>
<td>real place, 383</td>
<td></td>
</tr>
<tr>
<td>reciprocity</td>
<td></td>
</tr>
<tr>
<td>Artin, 265</td>
<td></td>
</tr>
<tr>
<td>Langlands, 265</td>
<td></td>
</tr>
<tr>
<td>quadratic, 3, 8, 68</td>
<td></td>
</tr>
<tr>
<td>reduced Gröbner basis, 509</td>
<td></td>
</tr>
<tr>
<td>reduced monomial, 646</td>
<td></td>
</tr>
<tr>
<td>reduced norm, 165</td>
<td></td>
</tr>
<tr>
<td>reduced polynomial, 165</td>
<td></td>
</tr>
<tr>
<td>reduced primitive form, 18, 21</td>
<td></td>
</tr>
<tr>
<td>reduced trace, 165</td>
<td></td>
</tr>
<tr>
<td>reducible ideal, 446</td>
<td></td>
</tr>
<tr>
<td>regular at a point, 580, 582, 585</td>
<td></td>
</tr>
<tr>
<td>regular function at a point, 587</td>
<td></td>
</tr>
<tr>
<td>regular function on an open set, 580, 582, 587, 641</td>
<td></td>
</tr>
</tbody>
</table>
regular point, 429
relative Brauer group, 127
relative different, 279, 372
relative discriminant, 275, 381
relative dual of fractional ideal, 372
represent, 14
primitively, 14
residue class degree, 275, 354, 533
residue class field, 322
Residue Theorem, 543
resolution, 194
acyclic, 219
free, 152, 195
injective, 199, 205
projective, 195, 205
standard, 149
restricted direct product, 388
restriction homomorphism, 241
resultant, 449, 451
generalized, 514
Riemann, 521
Riemann hypothesis, 530
Riemann sphere, 328
Riemann surface, 522
Riemann zeta function, 540, 551
Riemann–Roch Theorem, 520, 522, 523, 530, 540, 543, 551, 552, 648
Riemann’s inequality, 538
right adjoint, 252
right Artinian ring, 87
right exact functor, 183
right Noetherian ring, 87
right semisimple ring, 81
ring of formal power series, 347
ringed space, 642
S-polynomial, 502
scheme, 642
affine, 642
defined over a ring, 643
Schmidt, 422
Schreier, 168
Schur’s Lemma, 83
section, 641
Segre embedding, 617, 646
Segre variety, 617
semisimple
associative algebra, 80
Lie algebra, 78
module, xxiv
ring, 81, 84
separable
algebraic closure, 434
element, 414
extension, 415
polynomial, 414
semisimple algebra over a field, 109
separably generated extension, 419
separating transcendence basis, 419
sheaf, 168, 640
fine, 218
flabby, 218
cohomology, 168, 171, 218, 643
structure, 641
short exact sequence, 175
in abelian category, 241
similar binary quadratic form, 74
simple
associative algebra, 80
Lie algebra, 79
module, xxiv, 80
ring, 85
simplicial homology, 172
singular cube, 172
singular homology, 172
singular point, 429, 600, 601
Skolem–Noether Theorem, 113
snake diagram, 185, 261
functoriality with, 190
Snake Lemma, 185, 248
solution of problem
ideal-equality, 510
ideal-membership, 507
proper-ideal, 507
solvable Lie algebra, 78
spectral sequence, 171
spectrum, 639
split algebra, 127
split exact sequence, 200
splitting field, 127
stalk, 640
standard inverse limit, 439
standard resolution, 149
standard subset, 622
Stickelberger’s condition, 309
Stone, 638
strict equivalence of ideals, 40, 298
strictly multiplicative, 60
strong approximation property, 374
Strong Approximation Theorem, 373, 390, 391
structure sheaf, 641
subalgebra, Lie, 78
summation by parts, 56
tangent lines, 478
tensor product of
 algebras, 104
 chain complexes, 258
 fields, 104
Theorem 90, Hilbert’s, 71, 145
Tor functor, 224
Tornheim, 349
torsion abelian group, 169
torsion submodule, 257
total degree, 457
total ordering, 493
totally ramified, 367
trace, 165
transcendence basis, 409, 424
existence, 411
 separating, 419
 transcendence degree, 413
 transcendence set, 409
 translate of form, 26
 triangular ring, 88
trivial absolute value, 331
trivial factor set, 135
twisted cubic, 562
type of pure cubic extension, 281
ultrametric inequality, 316, 331
unequal-characteristic case, 398
uniformizer, 323
uniformizing element, 323
unit, xxiv, 36, 288
 fundamental, 36, 288
unital, xxiv
Universal Coefficient Theorem, 261
universal mapping property of
cokernel, 236
 completion of valued field, 343
 kernel, 235
unramified, 367
valuation, 322, 331
 archimedean, 289
discrete, 322, 529
valuation ideal, 322
valuation ring, 322
valued field, 342
 complete, 343
 extension of, 358
homomorphism of, 342
isomorphism of, 342
variety, 590
affine, 429, 562
as a scheme, 643
projective, 572
quasi-affine, 568
quasiprojective, 573
Segre, 617
Weak Approximation Theorem, 340, 374
Wedderburn, 79, 86, 164
Wedderburn–Artin radical, 89, 91
Wedderburn’s Main Theorem, 94
Wedderburn’s Theorem about finite division
 rings, 117, 160
Wedderburn’s Theorem about semisimple
 rings, 83
Weierstrass, 521
Weierstrass gap, 557
Weierstrass point, 557
Weierstrass valuation, 557
weight vectors, 494
Weil, 530, 541, 543
Weyl algebra, 85
Zariski closure, 561, 578
Zariski topology, 560, 571
Zariski’s Theorem, 403, 431, 525, 558,
 600, 601, 605, 606
zero locus, 455, 559, 571
zero member, 245
zero morphism, 233
zero object, 233
zeta function, 530
 Riemann, 52, 58