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CHAPTER IX

Foundations of Probability

Abstract. This chapter introduces probability theory as a system of models, based on measure
theory, of some real-world phenomena. The models are measure spaces of total measure 1 and
usually have certain distinguished measurable functions defined on them.
Section 1 begins by establishing the measure-theoretic framework and a short dictionary for

passing back and forth between terminology in measure theory and terminology in probability
theory. The latter terminology includes events, random variables, mean, probability distribution of a
random variable, and joint probability distribution of several random variables. An important feature
of probability is that it is possible to work with random variables without any explicit knowledge
of the underlying measure space, the joint probability distributions of random variables being the
objects of importance.
Section 2 introduces conditional probability and uses that to motivate themathematical definition

of independence of events. In turn, independence of events leads naturally to a definition of
independent random variables. Independent random variables are of great importance in the subject
and play a much larger role than their counterparts in abstract measure theory. Examples at the end
of the section indicate the extent to which functions of independent random variables can remain
independent. The techniques in the examples are of use in the subject of statistical inference, which
is introduced in Section 10.
Section 3 states and proves the Kolmogorov Extension Theorem, a foundational result allowing

one to create stochastic processes involving infinite sets of times out of data corresponding to finite
subsets of those times. A special case of the theorem provides the existence of infinite sets of
independent random variables with specified probability distributions.
Section 4 establishes the celebrated Strong Law of Large Numbers, which says that the Cesàro

sums of a sequence of identically distributed independent randomvariableswith finitemean converge
almost everywhere to a constant random variable, the constant being the mean. This is a theorem
that is vaguely known to the general public and is widely misunderstood. The proof is based on
Kolmogorov’s inequality.
Sections 5–8 provide background for the Central Limit Theorem, whose statement and proof

are in Section 9. Section 5 discusses three successively weaker kinds of convergence for random
variables—almost sure convergence, convergence in probability, and convergence in distribution.
Convergence in distribution will be the appropriate kind for the Central Limit Theorem. Section 6
contains the Portmanteau Lemma, which gives some equivalent formulations of convergence in
distribution, Section 7 introduces characteristic functions as Fourier transforms of probability dis-
tributions, and Section 8 proves the Lévy Continuity Theorem, which formulates convergence in
distribution in terms of characteristic functions.
Section 9 contains the statement and proof of the Central Limit Theorem, followed by some

simple examples. This theorem is the most celebrated result in probability theory and has many
applications in mathematics and other fields.
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376 IX. Foundations of Probability

Section 10 is a brief introduction to the subject of statistical inference, showing how the Central
Limit theorem plays a role in practice through the t test of W. S. Gosset.

1. Measure-Theoretic Foundations

Although notions of probability have been around for hundreds of years, it was
not until the twentieth century, with the introduction of Lebesgue integration, that
the foundations of probability theory could be established in any great generality.
The early work on foundations was done between 1929 and 1933 chiefly by A. N.
Kolmogorov and partly by M. Fréchet.
First of all, the idea is that probability theory consists of models for some

experiences in the real world. Second of all, these experiences are statistical in
nature, involving repetition. Thus one attaches probability 1/2 to the outcome
of “heads” for one flip of a standard coin based on what has been observed over
a period of time. One even goes so far as to attach probabilities to outcomes
that one can think of repeating even if they cannot be repeated as a practical
matter, such as the probability that a particular person will die from a certain kind
of surgery. But one does not try to incorporate probabilities into the theory for
contingencies that cannot remotely be regarded as repeatable. The philosopher
R. Carnap has asked, “What is the probability that the fair coin I have just tossed
has come up ‘heads’?” He would insist that the answer is 0 or 1, certainly
not 1/2. Mathematical probability theory leaves his question as something for
philosophers and does not address it.
The initial situation that is to be modeled is that of an experiment to be

performed; the experiment may be really simple, as with a single coin toss,
or it may have stages to it that may or may not be related to each other. For the
moment let us suppose that the number of stages is finite; later we shall relax
this condition. To fix the ideas, let us think of the outcome as a point in some
Euclidean space. Forcing the outcome to be a point in a Euclidean space may
not at first seem very natural for a single toss of a coin, but we can, for example,
identify “heads” with 1 and “tails” with 0 in R1. In any case, the experiment has
a certain range of conceivable outcomes, and these outcomes are to be disjoint
from one another. Initially we let ƒ be the set of these conceivable outcomes. If
an outcome occurs when conditions belonging to a set A are satisfied, one says
that the event A has taken place.
We imagine that probabilities have somehow been attached to the individual

outcomes, and to aggregates of them, on the basis of some experimental data. Us-
ing a frequency interpretationof probability, one is led to postulate that probability
in the model of this experiment is a nonnegative additive set function on some
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systemof subsets ofƒ that assigns the value 1 toƒ itself. Withoutmeasure theory
as a historical guide, onemight be hard pressed to postulate complete additivity as
well, but in retrospect complete additivity is not a surprising condition to impose.
At any rate, the model of the experiment within probability theory uses a

measure space (ƒ,A, P), normally with total measure P(ƒ) equal to 1, with
one or more measurable functions on ƒ to indicate the result of the experiment.
One way of setting up (ƒ,A, P) is as we just did—to let ƒ be the set of all
possible outcomes, i.e., all possible values of the measurable functions that give
the result of the experiment. Events are then simplymeasurable sets of outcomes,
and the measure P gives the probabilities of various sets of outcomes. Yet this
is not the only way, and successful work in the subject of probability theory
requires a surprising indifference to the nature of the particular ƒ used to model
a particular experiment.
We can give a rather artificial example right now, in the context of a single

toss of a standard coin, of how distinct ƒ’s might be used to model the same
experiment, and we postpone to the last two paragraphs of this section and to
the proof of Theorem 9.8 any mention of more natural situations in which one
wants to allow distinctƒ’s in general. The example occurs when the experiment
is a single flip of a standard coin. Let us identify “heads” with the real number 1
and “tails” with the real number 0. Centuries of data and of processing the data
have led to a consensus that the probabilities are to be 1/2 for each of the two
possible outcomes, 1 and 0. We can model this situation by takingƒ to be the set
{1, 0} of outcomes, A to consist of all subsets of ƒ, and P to assign weight 1/2
to each point of ƒ. The function f indicating the result of the experiment is the
identity function, with f (ω) = 1 if ω = 1 and with f (ω) = 0 if ω = 0. But it
would be just as good to take any other measure space (ƒ,A, P)with P(ƒ) = 1
and to suppose that there is some measurable subset A with P(A) = 1/2. The
measurable function f modeling the experiment has f (ω) = 1 if ω is in A and
f (ω) = 0 if not.
The problem of how to take real-world data and to extract probabilities in

preparation for defining a model is outside the domain of probability theory. This
involves a statistical part that obtains and processes the data, identifies levels of
confidence in the accuracy of the data, and assesses the effects of errors made in
obtaining the data accurately. Also it may involve making some value judgments,
such as what confidence levels to treat as decisive, and such value judgments are
perhaps within the domain of politicians. In addition, there is a fundamental
philosophical question in whether the model, once constructed, faithfully reflects
reality. This question is similar to the question of whether mathematical physics
reflects the physics of the real world, but with one complication: in physics
there is always the possibility that a single experimental result will disprove the
model, whereas probability gives no prediction that can be disproved by a single
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experimental result.
Apart from a single toss of a coin, another simple experiment whose outcome

can be expressed in terms of a single real number is the selection of a “random”
number from [0, 2]. The word “random” in this context, when not qualified in
some way, insists as a matter of definition that the experiment is governed by
normalized Lebesgue measure, that the probability of picking a number within a
set A is the Lebesgue measure of A divided by the Lebesgue measure of [0, 2]. If
we takeƒ to be [0, 2],A to be the Borel sets, and P to be 12 dx and if we use the
identity function as the measurable function telling the outcome, then we have
completely established a model.
The theory needed for setting up a model that incorporates given probabilities

is normally not so readily at hand, since one is quite often interested potentially in
infinitely many stages to an experiment and the given data concern only finitely
many stages at a time. In many cases of this kind, one invokes a fundamental
theorem of Kolmogorov to set up a measure space that can allow the set of
distinguished measurable functions to be infinite in number. We shall state and
prove this theorem in Section 3.
In the meantime let us take the measure space (ƒ,A, P) with P(ƒ) = 1 as

given to us. We refer to (ƒ,A, P) or simply (ƒ, P) as a probability space.
Probability theory has its own terminology. An event is a measurable set, thus a
set in the σ -algebraA. One speaks of the “probability of an event,” which means
the P measure of the set. The language used for an event is often slightly different
from the ordinaryway of defining a set. With the random-number example above,
one might well speak of the probability of the “event that the random number lies
in [1/2, 1]” when a more literal description is that the event is [1/2, 1]. It is not
a large point. The probability in either case, of course, is 1/4.
Let A and B be events. The event A ∩ B is the simultaneous occurrence of A

and B. The event A ∪ B is the event that at least one of A and B occurs. The
event Ac is the nonoccurrence of the event A. If A = ∅, event A is impossible; if
A = ƒ, event Amust occur. Containment B ⊆ Ameans that from the occurrence
of event B logically follows the occurrence of event A. Two events A and B are
incompatible if A ∩ B = ∅. A set-theoretic partitioning C of ƒ as a disjoint
union ƒ =

Sn
k=1 Ak corresponds to an experiment C consisting of determining

which of the events A1, . . . , An occurs. And so on.
A random variable is a real-valued measurable function on ƒ. With the

random-number example, a particular random variable is the number selected.
This is the function f that associates the real number ω to the member ω of the
spaceƒ. Theword “random” in the name “randomvariable” refers to the fact that
its value depends on which possibility inƒ is under consideration. Some latitude
needs to be made in the definition of measurable function to allow a function
taking on values “heads” and “tails” to be a random variable, but this point will
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not be important for our purposes.1 As we shall see, the random variables that
yield the result of the defining experiment of a probability model are, in a number
of important cases, coordinate functions on a setƒ given as a product, and random
variables are often indicated by letters like x suitable for coordinates.2
The mean or expectation or expected value E(x) of the random variable

x is motivated by a computation in the especially simple case that ƒ contains
finitely many outcomes/points and P(A) is computed for an event by adding the
weights attached to the outcomes ω of A. If ω is an outcome, the value of x at
ω is x(ω), and this outcome occurs with probability P({ω}). Summing over all
outcomes, we obtain

P
ω∈ƒ x(ω)P({ω}) as a reasonable notion of the expected

value. This sum suggests a Lebesgue integral, and accordingly the definition in
the general case is that E(x) =

R
ƒ x(ω) dP(ω). Probabilists say that E(x) exists

if x is integrable; cases in which the Lebesgue integral exists and is infinite are
excluded.
There is a second way of computing the mean. When ƒ is a finite set as

above, we can group all the terms in
P

ω∈ƒ x(ω)P({ω}) for which x(ω) takes
a particular value c and then sum on c. The regrouped value of the sum isP

c cP({ω | x(ω) = c}). The corresponding formula in the general case involves
the probability distribution of x , the Stieltjes measure µx on the Borel sets of
the line R defined by

µx(A) = P({ω ∈ ƒ | x(ω) ∈ A}).

The name “distribution” is traditional in probability theory to emphasize the way
in which mass has been spread in some fashion, and the adjective “probability”
refers to the fact that this measure has total mass µx(R) = P(ƒ) = 1. Although
Stieltjes measures are indeed distributions in the sense of Chapter V, it is not at all
helpful to think of them in this way in probability theory. Thus we shall usually
retain the adjective “probability” to head off any confusion.
The notion of µx , but not the name, was introduced in Section VI.10 of Basic.

The formula for the mean in terms of the probability distribution of x is E(x) =R
R x dµx ; the justification for this formula lies in the following proposition, which
was proved in Basic as Proposition 6.56a and which we re-prove here.

Proposition 9.1. If x : ƒ → R is a random variable on a probability space

1We return to this point in Section 3, where it will influence the hypotheses of the fundamental
theorem of Kolmogorov.

2In his book Measure Theory Doob writes on p. 179, “An attentive reader will observe . . . that
in other chapters a function is f or g, and so on, whereas in this chapter [on probability] a function
is more likely to be x or y, and so on, at the other end of the alphabet. This difference is traditional,
and is one of the principal features that distinguishes probability from the rest of measure theory.”
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(ƒ, P) and if µx is the probability distribution of x , then
Z

ƒ

8(x(ω)) dP(ω) =
Z

R
8(t) dµx(t)

for every nonnegative Borel measurable function 8 : R → R. The formula
extends linearly to the case in which the condition “nonnegative” on8 is dropped
if the integrals for 8+ = max(8, 0) and 8− = −min(8, 0) are both finite. It
extends to complex-valued 8 if the integral for |8| is finite.

PROOF. When8 is the indicator function IA of a Borel set A ofR, the two sides
of the identity are P(x−1(A)) and µx(A), and these are equal by definition of
µx . We can pass to nonnegative simple functions by linearity and then to general
nonnegative Borel measurable functions8 by monotone convergence. §

The qualitative conclusion of Proposition 9.1 is by itself important: the mean
of any function of a random variable can be computed in terms of the probability
distribution of the random variable—without reference to the underlyingmeasure
space ƒ.
The expression for E(x) arising from Proposition 9.1 can often be written as

a “Stieltjes integral,” which is a simple generalization of the Riemann integral,3
and thus the proposition in principle gives a way of computing means without
Lebesgue integration.4
Instead of working with the Stieltjes measure µx , one can work with an

associated monotone function on R. The particular monotone function used
by probabilists is the cumulative distribution function of x , defined by

Fx(t) = µx((−∞, t]).

The cumulative distribution function of x differs only by the additive constant
µx((−∞, 0]) from the distribution function introduced in Section VI.8 of Basic;
the value of the latter monotone function at t was

Ω
−µ((x, 0]) if x ≤ 0

µ((0, x]) if x ∏ 0.

When the probability measure µx is absolutely continuous with respect to
Lebesgue measure, we can write µx = fx(t) dt for a function fx by the Radon–
Nikodym Theorem.5 Such a function fx , which is determined up to sets of

3Stieltjes integration is developed briefly in the problems at the end of Chapter III of Basic.
4Consequently the resulting formula for means is handy pedagogically and is often exploited in

elementary probability books.
5Corollary 7.10 or Theorem 9.16 of Basic.
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measure 0, is called the density of the random variable x . In terms of monotone
functions, a density exists if and only if the cumulative distribution function
is absolutely continuous (for example, when it has a continuous derivative),
and in this case the density is the pointwise derivative a.e. of the cumulative
distribution function. If x has a density fx , the formula for the mean becomes
E(x) =

R
R t fx(t) dt ; this conclusion is just Proposition 9.1 for the Borel func-

tion 8(t) = t . More generally, E(8(x)) =
R

R 8(t) fx(t) dt for any 8 as in
Proposition 9.1.
A set of random variables is said to be identically distributed if all of them

have the same Stieltjes measure as probability distribution. As a consequence
of Proposition 9.1, identically distributed random variables have the same mean.
We shall make serious use of identically distributed random variables starting in
Section 4.
Although Proposition 9.1 allows us to compute the mean of any Borel function

of a randomvariable in termsof the probabilitydistributionof the randomvariable,
it does not help us when we have to deal with more than one random variable.
The appropriate device for more than one random variable is a “joint probability
distribution.” If x1, . . . , xN are random variables, define, for each Borel set A in
RN ,

µx1,...,xN (A) = P
°©

ω ∈ ƒ
Ø
Ø °
x1(ω), . . . , xN (ω)

¢
∈ A

™¢
.

Then µx1,...,xN is a Borel measure on RN with µx1,...,xN (RN ) = 1. It is called the
joint probability distribution of x1, . . . , xN . Referring to the definition, we see
that we can obtain the joint probability distribution of a subset of x1, . . . , xN by
dropping the relevant variables: for example, dropping xN enables us to pass from
the joint probability distribution of x1, . . . , xN to the joint probability distribution
of x1, . . . , xN−1, the formula being

µx1,...,xN−1
(B) = µx1,...,xN (B × R).

Proposition 9.2. If x1, . . . , xN are random variables on a probability space
(ƒ, P) and if µx1,...,xN is their joint probability distribution, then

Z

ƒ

8(x1(ω), . . . , xN (ω)) dP(ω) =
Z

RN
8(t1, . . . , tN ) dµx1,...,xN (t1, . . . , tN )

for every nonnegative Borel measurable function 8 : RN → R. The formula
extends linearly to the case in which the condition “nonnegative” on8 is dropped
if the integrals for 8+ = max(8, 0) and 8− = −min(8, 0) are both finite. It
extends to complex-valued 8 if the integral for |8| is finite.

PROOF. In (a), when8 is the indicator function IA of a Borel set A of RN , the
two sides of the identity are P((x1, . . . , xN )−1(A)) and µx1,...,xN (A), and these
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are equal by definition of µx1,...,xN . We can pass to nonnegative simple functions
by linearity and then to general nonnegative Borel measurable functions 8 by
monotone convergence. §

AswithProposition9.1, the qualitative conclusionofProposition9.2 is by itself
important: the mean of any function of N random variables can be computed in
terms of their joint probability distribution—without reference to the underlying
measure spaceƒ. For example the product of the N randomvariables is a function
of them, and therefore

E(x1 · · · xN ) =
Z

RN
t1 · · · tN dµx1,...,xN (t1, . . . , tN ).

When the probabilitymeasureµx1,...,xN is absolutely continuouswith respect to
Lebesgue measure, we can writeµx1,...,xN = fx1,...,xN (t) dt for a function fx1,...,xN
by the Radon–NikodymTheorem.6 Such a function fx1,...,xn , which is determined
up to sets of measure 0, is called the joint probability density of the random
variables x1, . . . , xN .
The possibility of making such computations without explicitly using ƒ has

the effect of changing the emphasis in the subject. Often it is not that one is
given such-and-such probability space and such-and-such random variables on
it. Instead, one is given some random variables and, if not their precise joint
probability distribution, at least some properties of it. Accordingly, we can ask,
What Borelmeasuresµ onRN withµ(RN ) = 1 are joint probability distributions
of some family x1, . . . , xN of N random variables on some probability space
(ƒ, P)?
The answer is, all Borel measuresµwithµ(RN ) = 1. In fact, we have only to

take (ƒ, P) = (RN , µ) and let xj be the j th coordinate function xj (ω1, . . . , ωN )

= ωj on RN . Substituting into the definition of joint probability distribution, we
see that the value of the joint probability distribution µx1,...,xN on a Borel set A in
RN is

µx1,...,xN (A) = µ({ω ∈ RN | (x1(ω), . . . , xN (ω)) ∈ A})

= µ({ω ∈ RN | (ω1, . . . , ωN ) ∈ A}) = µ(A).

Thus µx1,...,xN equals the given measure µ.
Even for N = 1, this conclusion is useful. In the proof of the Central Limit

Theorem later in this chapter, we shall encounter the “normal distribution on R1

with mean 0 and variance σ 2.” This is the Stieltjes measure µ on R defined by

µ(A) =
1

σ
p
2π

Z

A
e−u2/(2σ 2) du

6Theorem 9.16 of Basic.
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for everyBorel set A, i.e., the absolutely continuousStieltjesmeasurewith density
(σ

p
2π)−1 e−u2/(2σ 2); it has µ(R) = 1. The above remarks show how to define

a random variable with this particular probability distribution: the underlying
space is ƒ = R, the underlying probability measure is this µ, and the random
variable is the coordinate function x on R.

2. Independent Random Variables

Thenotionof independenceof events in probability theory is amatter of definition,
but the definition tries to capture the intuition that one might attach to the term.
Thusone seeks amathematical condition saying that a set of attributes determining
a first event has no influence on a second event and vice versa. Kolmogorov
writes,7

Historically, the independence of experiments and random variables
represents the very mathematical concept that has given the theory
of probability its peculiar stamp. The classical work of LaPlace,
Poisson, Tchebychev, Liapounov, Mises, and Bernstein is actually
dedicated to the fundamental investigation of series of independent
random variables. . . . We thus see, in the concept of independence, at
least the germof the peculiar type of problem in probability theory. . . .
In consequence, one of themost important problems in the philosophy
of the natural sciences is—in addition to thewell-knownone regarding
the essence of the concept of probability itself—to make precise the
premiseswhichwouldmake it possible to regard any given real events
as independent.

The path to discovering themathematical condition that captures independence
of events begins with “conditional probability.” Let A and B be two events, and
assume that P(B) > 0. Think of A as a variable. The conditional probability of
A given B, written P(A | B), is to be a new probability measure, as A varies, and
is to be a version of P adjusted to take into account that B happens. These words
are interpreted to mean that a normalization is called for, and the corresponding
definition is therefore

P(A | B) =
P(A ∩ B)

P(B)
.

In measure-theoretic terms, we pass from the measure space (ƒ,A, P) to
the measure space

°
B, A ∩ B, P(( · ) ∩ B)

±
P(B)

¢
. Conditional probabilities

P(A | B) are left undefined when P(B) = 0.

7In his Foundations of the Theory of Probability, second English edition, pp. 8–9.
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The intuition concerning independence of A and B is that the occurrence of B
is not to influence the probability of A. Thus two events A and B are to be inde-
pendent, at least when P(B) > 0, if P(A) = P(A | B). This condition initially
looks asymmetric, but if we substitute the definition of conditional probability,
we find that the condition is P(A) = P(A∩B)

P(B)
, hence that

P(A ∩ B) = P(A)P(B).

This condition is symmetric, and it allows us to drop the assumption that
P(B) > 0. We therefore define the events A and B to be independent if
P(A ∩ B) = P(A)P(B).
As the quotation above from Kolmogorov indicates, the question of the extent

to which this definition of independence captures from nature our intuition for
what the term should mean is a deep fundamental problem in the philosophy of
science. We shall not address it further.
But a word of caution is appropriate. The assumption of mathematical inde-

pendence carries with it far-reaching consequences, and it is not to be treated
lightly. Members of the public all too frequently assume independence without
sufficient evidence for it. Here are two examples that made national news in the
first decade of the twenty-first century.

EXAMPLES.
(1) In the murder trial of a certain sports celebrity, a criminalist presented

evidence that three characteristics of some of the blood at the scene matched
the defendant’s blood, and the question was to quantify the likelihood of this
match if the defendant was not the murderer. Two of the three characteristics
amounted to the usual blood type and Rh factor, and the criminalist said that
half the people in the population had blood with these characteristics. The third
characteristic was something more unusual, and he asserted that only 4% of the
population had blood with this characteristic. He concluded that only 2% of the
population had blood for which these three characteristics matched those in the
defendant’s blood and the blood at the scene. The defense attorney jumped on the
criminalist, asking how he arrived at the 2% figure, and received a confirmation
that the criminalist had simplymultiplied the probability .5 for the blood type and
Rh factor by the .04 for the third characteristic. Upon being questioned further,
the criminalist acknowledged that he had multiplied the probabilities because he
could not see that these characteristics had anything to do with each other. The
defense attorney elicited a further acknowledgment that the criminalist was aware
of no studies of the joint probability distribution. The criminalist’s testimony was
thus discredited, and the jurors could ignore it. What the criminalist could have
said, but did not, was that anyway at most 4% of the population had blood with
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those three characteristics because of that third characteristic alone; that assertion
would not have required any independence.
(2) In the 2004 presidential election, some malfunctions involving electronic

voting machines occurred in three states in a particular way that seemed to favor
one of the twomain candidates. One national commentatorwhopursued this story
rounded up an expert who examined closely what happened in one of the states
and came upwith a rather small probability of about .1 for themalfunction to have
been a matter of pure chance. Seeing that the three states were widely separated
geographically and that communication between officials of the different states
on Election Day was unlikely, the commentator apparently concluded in his mind
that the three events were independent. So he multiplied the probabilities and
announced to the public that the probability of this malfunction in all three states
on the basis of pure chance was a decisively small .001. What he ignored was
that the machines in the three states were all made by the same company; so the
assumption of independence was doubtful.

Ofmore importance for our purposes than independence of events is the notion
of independence of random variables. Tentatively let us say that two random
variables x and y on a probability space (ƒ, P) are defined to be independent
if {x(ω) ∈ A} and {y(ω) ∈ B} are independent events for every pair of Borel
subsets A and B of R. Substituting the definition of independent events, we see
that the condition is that

P({ω | (x(ω), y(ω)) ∈ A × B}) = P({ω | x(ω) ∈ A})P({ω | y(ω) ∈ B})

for every pair of Borel subsets of R. We can rewrite this condition in terms of
their probability distributions as

µx,y(A × B) = µx(A)µy(B).

In other words, the measureµx,y onR2 agrees with the product measureµx ×µy
on measurable rectangles. By Proposition 5.45 of Basic, the two measures must
then agree on all Borel sets of R2. Conversely if the two measures agree on all
Borel sets ofR2, then they agree on all measurable rectangles. We therefore adopt
the following definition: two random variables x and y on a probability space
(ƒ, P) are independent if their joint probability distribution is the product of
their individual probability distributions, i.e., if µx,y = µx × µy .
One can go through a similar analysis, starting from conditional probability

involving N events, and be led to a similar result for N random variables. The
upshot is that N random variables x1, . . . , xN on a probability space (ƒ, P)
are defined to be independent if their joint probability distribution µx1,...,xN is
the N -fold product of the individual probability distributions µx1, . . . , µxN . An
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infinite collection of random variables is said to be independent if every finite
subcollection of them is independent.
We can ask whether arbitrarily large finite numbers of independent random

variables exist on some probability space with specified probability distributions,
and the answer is “yes.” This question is a special case of the one near the end
of Section 1. If we are given N Borel measures µ1, . . . , µN on R and we seek
independent random variables with these measures as their respective individual
probability distributions, we form the product measure µ = µ1 × · · · × µN .
Then the observation at the end of Section 1 shows us that if we take (RN , µ)
as a probability space and if we define N random variables on RN to be the N
coordinate functions, then the N random variables have µ as joint probability
distribution. Since µ is a product, the random variables are independent.
The question ismore subtle if asked about infinitelymany independent random

variables. If, for example, we are given an infinite sequence of Borel measures on
R, we do not yet have tools for obtaining a probability space with a sequence of
independent random variables having those individual probability distributions.8
We can handle an arbitrarily large finite number, and we need a way to pass to
the limit. The passage to the limit for this situation is the simplest nontrivial
application of the fundamental theorem of Kolmogorov that was mentioned in
Section 1. The theorem will be stated and proved in Section 3.
We conclude this sectionwith two propositions and some examples concerning

independence.

Proposition 9.3. If x1, . . . , xN are independent random variables on a proba-
bility space, then E(x1 · · · xN ) = E(x1) · · · E(xN ).

PROOF. If µx1,...,xN is the joint probability distribution of x1, . . . , xN , then it
was observed after Proposition 9.2 that

E(x1 · · · xN ) =
Z

RN
t1 · · · tN dµx1,...,xN (t1, . . . , tn). (∗)

The independence means that dµx1,...,xN (t1, . . . , tn) = dµx1(t1) · · · dµxN (tN ).
Then the integral on the right side of (∗) splits as the product of N integrals, the
j th factor being

R
R tj dµxj (tj ). This j

th factor equals E(xj ), and the proposition
follows. §

Proposition 9.4. Let

x1, . . . , xk1, xk1+1, . . . , xk2, xk2+1, . . . , xk3, . . . , xkm−1+1, . . . , xkm
8There is one trivial case that we can already handle. An arbitrary set of constant random

variables can always be adjoined to an independent set, and the independence will persist for the
enlarged set.
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be km independent random variables on a probability space, define k0 = 0, and
suppose that Fj : Rkj−kj−1 → R is a Borel function for each j with 1 ≤ j ≤ m.
Then the m random variables Fj (xkj−1+1, . . . , xkj ) are independent.

REMARKS. That is, functions of disjoint subsets of a set of independent random
variables are independent.

PROOF. Put yj = (xkj−1+1, . . . , xkj ), and define y = (y1, . . . , ym) and F =
(F1, . . . , Fm). LetRj be the copyofRkj−kj−1 corresponding to variablesnumbered
kj−1 + 1 through kj , and regard the probability distribution µFj (yj ) of Fj as a
measure on Rj . What needs proof is that

µF(y) = µF1(y1) × · · · × µFm(ym). (∗)

Both sides of this expression are Borel measures on Rkm . On any product set
A = A1 × · · · × Am , where Aj is a Borel subset of Rj , we have

µF(y)(A) = P({ω | F(y(ω)) ∈ A})

= P({ω | Fj (yj (ω)) ∈ Aj for all j})

= P({ω | yj (ω) ∈ F−1
j (Aj ) for all j})

=
Qm

j=1 P({ω | yj (ω) ∈ F−1
j (Aj )}) by the assumed independence

=
Qm

j=1 P({ω | Fj (yj )(ω) ∈ Aj })

=
Qm

j=1 µFj (yj )(Aj ).

Consequently the two sides of (∗) are equal on all Borel sets. §

Now let us come to some examples. Proposition 9.4 is a useful tool for
generating independent random variables, as Examples 1 and 2 will show. On
the other hand, independence of random variables is not as robust a notion as
one might hope, according to Example 3a. Examples 3b and 3c are motivated
by Example 3a and develop a change-of-variables technique that is useful in
Section 10. Example 4 is a complement to Example 3a, showing that sometimes
independence occurs in new random variables defined in terms of other random
variables even when Examples 1 and 2 do not apply; this situation will be of
critical importance in Section 10.

EXAMPLES.
(1) If x1, x2, . . . , xN are independent random variables and F1, F2, . . . , FN are

Borel functions onR1, then F1(x1), F2(x2), . . . , FN (xN ) are independent random
variables.
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(2) If x1, . . . , xN are independent random variables and if sj = x1 + · · · + xj ,
then the two random variables sj and sN − sj are independent because sj depends
only on x1, . . . , xj and sN − sj depends only on xj+1, . . . , xN .
(3) Suppose that two independent random variables x1 and x2 are given, and

suppose that we form two new random variables y1 = f1(x1, x2) and y2 =
f2(x1, x2). Let us focus on what happens under the change of variables. For
simplicity suppose that the vector-valued function f =

≥
f1
f2

¥
is smooth and is

invertible with smooth inverse given by g =
≥
g1
g2

¥
. Suppose also that x1 and x2

both have densities: µx1 = h1(t1) dt1 and µx2 = h2(t2) dt2. The joint probability
distribution of x1 and x2 is µx1,x2 = h1(t1)h2(t2) dt1 dt2 because of the assumed
independence, and thus x1 and x2 have h1(t1)h2(t2) as joint probability density.
Proposition 9.2 shows that

Z

ƒ

8(x1(ω), x2(ω)) dP(ω) =
Z

R2
8(t1, t2)h1(t1)h2(t2) dt1 dt2. (∗)

for every nonnegative Borel function 8. We shall apply this formula in three
situations.
(3a) The first question is whether y1 and y2 are independent. For testing

independence of y1 and y2, let8 be the composition8 = IA×B ◦ f , where IA×B
is the indicator function of the product set. The left side of (∗) simplifies to
µy1,y2(A× B), and we evaluate the right side by making the change of variables≥
t1
t2

¥
= g

≥
u1
u2

¥
; the tool is Theorem 6.32 of Basic. The right side equals

Z

A×B
h1(g1(u1, u2))h2(g2(u1, u2))

Ø
Ø det

£
@ti
@uj

§ØØ du1 du2, (∗∗)

and the question is whether this expression is a product ∫1(A)∫2(B) for Stieltjes
measures ∫1 and ∫2. Essentially this is the question whether the integrand is the
product of a function of u1 and a function of u2. A fairly simple case is that f
is a specific linear function from R2 to R2, say f (x1, x2) = (x1 + x2, x1 − x2)
with inverse g(y1, y2) = ( 12 (y1 + y2), 12 (y1 − y2)). Then det

£
@ti
@uj

§
is the constant

function − 1
2 , and we are to consider an integrand of the form

1
2h1(

1
2 (u1 + u2))h2( 12 (u1 − u2)).

Without some special assumption on h1 and h2, this integrand has little chance
of being the product of a function of u1 by a function of u2. Thus y1 and y2 will
fail to be independent without special additional assumptions.
(3b) The second question is how to deduce from (∗) information about the

probability distribution of a real-valued function of two variables. Let us take the
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function (x1, x2) 7→ x1+x2 as an example. The question is to find the probability
distribution of x1 + x2 when x1 and x2 are known to be independent. The device
is to view (x1, x2) 7→ x1 + x2 as one coordinate of a change of variables. We
can take the other coordinate to be (x1, x2) 7→ x2, so that we are considering the
change of variables

≥
u1
u2

¥
=

≥
t1+t2
t2

¥
with inverse

≥
t1
t2

¥
=

≥
u1−u2
u2

¥
. Let8 be the

composition of this function followed by IA×R. Formulas (∗) and (∗∗) give
Z

ƒ

IA×R

≥
x1(ω)+x2(ω)

x2(ω)

¥
dP(ω) =

Z

R2
Ia×R

≥
t1+t2
t2

¥
h1(t1)h2(t2) dt1 dt2

=
Z

R2
IA×R(u1, u2)h1(u1 − u2)h2(u2) du1 du2

=
Z

R
IA(u1)

≥ Z

R
h1(u1 − u2)h2(u2) du2

¥
du1.

The left side is just
R
A(x1(ω) + x2(ω)) dP(ω), and thus this equality says that

the density of the sum of two random variables x1 and x2 is the convolution of
the separate densities of x1 and x2.
(3c) The third question is what happens when (x1, x2) 7→ x1 + x2 in (3b) is

replaced by some more general scalar-valued function (x1, x2) 7→ ϕ(x1, x2)with
ϕ smooth. Going over what happened in (3b), we see that we can certainly embed
this in a smooth change of variables if the partial derivative ofϕ in the first variable
is everywhere positive. The change of variables is then

≥
u1
u2

¥
=

≥
ϕ(t1,t2)
t2

¥
, and

the Jacobian determinant is @ϕ
@t1 6= 0. We can invert by means of either direct

computation or the Inverse Function Theorem9 and integrate out one variable just
as in (3b). We shall use this technique in Section 10.
(4) We now exhibit an assumption that succeeds in yielding independence in

Example 3. Suppose that n independent random variables x1, . . . , xn are given,
and suppose that new randomvariables y1, . . . , yn are formed by a linear function,
specifically that √ y1

...
yn

!

= A

√ x1
...
xn

!

for an invertible square matrix A. Suppose further that x1, . . . , xn have densities
given by a quadratic exponential independent of j : µxj = ce−ax2j dxj for all
j , where a is positive and c is chosen to make µxj have total mass 1. Using
the technique of Example 3, let us ask whether y1, . . . , yn are independent. In
Example 3 we have hj (tj ) = ce−at2j and

µx1,...,xn = cn
Q

j e
−at2j dtj = cne−at ·t dt1 · · · dtn, where t = (t1, . . . , tn).

9Theorem 3.17 of Basic.
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We write u = (u1, . . . , un) = A−1t and substitute into (∗∗) of Example 3. The
factor

Ø
Ø det

£
@ti
@uj

§ØØ is a positive constant p, and thus

µy1,...,yn = cn pe−a(A−1u)·(A−1u) du1 · · · dun = cn pe−a(A−1)tr(A−1u)·u du1 · · · dun.

Because of the transformationproperty of the exponential function, the coefficient
function on the right side is a product of functions of each variable if (A−1)tr(A−1)
is a diagonal matrix. As a result, the transformed random variables are indepen-
dent if (A−1)tr(A−1) is a diagonal matrix. An example of a nonsquare matrix
with this property is A =

≥
1 1

−1 1

¥
. We shall make use of this idea in Section 10.

3. Kolmogorov Extension Theorem

The problemaddressedby theKolmogorov theorem is the setting up of a “stochas-
tic process,” a notion that will be defined presently. Many stochastic processes
have a time variable in them, which can be discrete or continuous. The process
has a set S of “states,” which can be a finite set, a countably infinite set, or a
suitably nice uncountable set. It will be sufficient generality for our purposes that
the set of states be realizable as a subset of a Euclidean space, the measurable
subsets of states being the intersection of S with the Borel sets of the Euclidean
space. The defining measurable functions tell the state at each instant of time.
Accordingly, onemight want to enlarge the definition of random variable to allow
the range to contain S. But we shall not do so, instead referring to “measurable
functions” in the appropriate places rather than random variables.
Let us give one example of a stochastic process with discrete time and another

with continuous time, with particular attention to the passage to the limit that is
needed in order to have a probability model realizing the stochastic process.
In the example with discrete time, we shall assume also that the state space S is

countable. The probabilistic interpretation of the situation visualizes the process
as moving from state to state as time advances through the positive integers,
with probabilities depending on the complete past history but not the future; but
this interpretation will not be important for us. Let us consider the analysis.
In the nth finite approximation (ƒn,An, Pn) for n ∏ 1, the set ƒn is countable
and consists of all ordered n-tuples of members of S, while An is the set of
all subsets of ƒn . The measure Pn is determined by assigning a nonnegative
weight to each member of ƒn , the sum of all the weights being 1. As n varies,
a consistency condition is to be satisfied: the sum over S of all the weights in
ƒn+1 of the (n + 1)-tuples that start with a particular n-tuple is the weight in ƒn
attached to that n-tuple. The distinguished measurable functions10 that tell the

10The measurable functions are random variables in this case since S ⊆ R.
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result of an experiment are the n coordinate functions that associate to an n-tuple
ω its various entries. What is wanted is a single measure space (ƒ,A, P) that
incorporates all these approximations. It is fairly clear that ƒ should be the set
of all infinite sequences of members of S and that the distinguished measurable
functions are to be the infinite set of coordinate functions. Defining A and P is
a little harder. Each n-tuple ω(n) forms a singleton set in An , and we associate
to ω(n) the set Tn(ω(n)) of all members of ƒ whose initial segment of length n is
ω(n). The members of An are unions of these singleton sets, and we associate to
any member X ofAn the union Tn(X) of the sets Tn(ω(n)) forω(n) in X . Also, we
define P(Tn(X)) = Pn(X). In this way we identifyAn with a σ -algebra Tn(An)
of subsets of ƒ, and we attach a value of P to each member of Tn(An). Define

A0 =
∞[

n=1
Tn(An).

The σ -algebras Tn(An) increase with n, and it follows that the union of two
members of A0 is in A0 and that the complement of a member of A0 is in A0;
hence A0 is an algebra, and A can be taken as the smallest σ -algebra containing
A0. In the uniondefiningA0, a set can arise frommore thanone term. For example,
if a set X inAn is given and a set Y inAn+1 consists of all (n + 1)-tuples whose
initial n-tuple lies in X , then Tn(X) = Tn+1(Y ). The above consistency condition
implies that Pn(X) = Pn+1(Y ), and hence the two definitions of P on the set
Tn(X) = Tn+1(Y ) are consistent. The result is that P is well defined onA0. Since
the Tn(An) increase with n and since the restriction of P to each one is additive,
it follows that P is additive. However, it is not apparent whether P is completely
additive since themembers of a countable disjoint sequence of sets inA0might not
lie in a single Tn(An). This is the matter addressed by the Kolmogorov theorem.
For purposes of being able to have a general theorem, let us make an observa-

tion. Although the consistency condition used in the above example appears to
rely on the ordering of the time variable, that ordering really plays no role in the
above construction. We could aswell have defined an F th finite approximation for
each finite subset F of the positive integers; the above consistency condition used
inpassing from F = {1, . . . , n} to F 0 = {1, . . . , n, n+1} implies a consistency for
general finite sets of indiceswith F ⊆ F 0: the result of summing theweights of all
members ofƒF 0 whose restriction to the coordinates indexed by F is a particular
member ofƒF yields the weight of the member ofƒF . This observation makes it
possible to formulate theKolmogorov theorem in away that allows for continuous
time.
Let us then come to the examplewith continuous time. The example is amodel

of Brownian motion, which was discovered as a physical phenomenon in 1826.
Microscopic particles, when left alone in a liquid, can be seen to move along
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erratic paths; this movement results from collisions between such a particle and
molecules of the liquid. An experiment can consist of a record of the position
in R3 of a particle as a function of time. When the data are studied and suitably
extrapolated to the situation that the liquid is all of R3, one finds an explicit
formula usable to define the probability that the moving particle lies in given
subsets of R3 at a given finite set of times. Namely, for t > 0, define

pt(x, dy) =
1

(4π t)3/2
e−|x−y|2/(4t) dy.

If 0 = t0 < t1 < t2 · · · < tn , if A0, . . . , An are Borel sets inR3, and if the starting
probability distribution of the particle at time 0 is a measure µ on R3, then the
probability that the particle is in A0 at time 0, is in A1 at time t1, . . . , is in An−1
at time tn−1, and is in An at time tn is to be taken as
Z

x0∈A0

Z

x1∈A1
· · ·

Z

xn−1∈An−1

Z

xn∈An
p1tn (xn−1, dxn) p1tn−1(xn−2, dxn−1)

× · · · × p1t1(x0, dx1) dµ(x0),

where 1tj = tj − tj−1 for 1 ≤ j ≤ n. Let F be {0, t1, . . . , tn}. A model
describing Brownian motion at the times of F takesƒF to be the set of functions
from F into R3, i.e., a copy of (R3)n+1, and the measurable sets are the Borel
sets. The distinguished measurable functions are again coordinate functions;11
they pick off the values in R3 at each of the times in F . Finally the measure PF
takes the value given by the above formula on the product set A0× · · ·× An , and
it is evident that PF extends uniquely to a Borel measure on R3(n+1), the value
of PF(A) for A ⊆ Rn+1 being the integral over A of the integrand in the display
above. If F 0 is the union of F and one additional time, then PF 0 and PF satisfy a
consistency property saying that if xj is integrated over all ofR3, then the integral
can be computed and the result is the same as if index j were completely dropped
in the formula; this comes down to the identity

Z

y∈R3

1
(4πs)3/2

1
(4π t)3/2

e−|y−z|2/(4s)e−|x−y|2/(4t) dy =
e−|x−z|2/(4(s+t))

(4π(s + t))3/2
,

which follows from the formula
R ∞
−∞ e−πx2 dx = 1, Fubini’s Theorem, and

some elementary changes of variables. The passage to the limit that needs to
be addressed is how to get a model that incorporates all t ∏ 0 at once. The space
can be (R3)[0,+∞). An algebra A0 can be built from the σ -algebras of Borel sets

11Since their values are not in R, these measurable functions are not, strictly speaking, random
variables as we have defined them in Section 1.
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of the Euclidean spaces (R3)F , and an additive set function P can be consistently
defined on A0 so that one recovers PF on each space (R3)F . What needs to be
addressed is the complete additivity of P .
A stochastic process is nothing more than a family {xi | i ∈ I } of measurable

functions defined on a measure space (ƒ,A, P) with P(ƒ) = 1. The index
set I is assumed nonempty, but no other assumptions are made about it. The
measurable functions have values in a more general space S than R, but we
shall assume for simplicity that S is contained in a Euclidean space RN and
then we may take S equal to RN . Although stochastic processes generally are
interesting only when the measurable functions are related to each other in some
special way, the Kolmogorov theorem does not make use of any such special
relationship. It addresses the construction of a general stochastic process out of
the approximations to it that are formed from finite subsets of I .
The situation is then as follows. Let I be an arbitrary nonempty index set, let

the state space S be RN for some fixed integer N , and let ƒ = SI be the set of
functions from I to S. We let xi , for i ∈ I , be the coordinate function from ƒ
to S defined by xi (ω) = ω(i). For J ⊆ I , we let xJ = {xi | i ∈ J }; this is a
function carrying ƒ to SJ .
For each nonempty finite subset F of I , the image of xF is the Euclidean space

SF , in which the notion of a Borel set is well defined. A subset A of ƒ will be
said to bemeasurable of type F if A can be described by

A = x−1
F (X) = {ω ∈ ƒ | xF ∈ X} for some Borel set X ⊆ SF .

The collection of subsets of ƒ that are measurable of type F is a σ -algebra that
we denote byAF . If F and F 0 are finite subsets of I with F ⊆ F 0 and if the Borel
set X of SF exhibits A as measurable of type F , then the Borel subset X × SF 0−F

of SF 0 exhibits A as measurable of type F 0. ConsequentlyAF ⊆ AF 0 .
LetA0 be the union of theAF for all finite F . If F and G are finite subsets of

I , then we have AF ⊆ AF∪G and AG ⊆ AF∪G , and it follows that A0 is closed
under finite unions and complements. Hence A0 is an algebra of subsets of ƒ.
In effect theKolmogorov theoremwill assume thatwe have a consistent system

of stochastic processes for all finite subsets of I . In other words, for each finite
subset F of I , we assume that we have a measure space (SF ,BF , PF) with BF
as the Borel sets of the Euclidean space SF , with PF(SF) = 1, and with the
distinguished measurable functions taken as the xi for i in F . The measures PF
are to satisfy a consistency condition as follows. To each X in BF , we define
a subset AX of ƒ by AX = x−1

F (X); this subset of ƒ is measurable of type F ,
and we transfer the measure from BF to AF by defining PF(AX ) = PF(X).
The consistency condition is that there is a well-defined nonnegative additive set
function P onA0 whose restriction to eachAF is PF . The content of the theorem
is that we obtain a stochastic process for I itself.
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Theorem 9.5 (Kolmogorov Extension Theorem). Let I be a nonempty index
set, let S = RN , and let ƒ = SI be the set of functions from I to S. For each
nonempty finite subset F of I , let AF be the σ -algebra of subsets of ƒ that are
measurable of type F , and let A0 be the algebra of sets given by the union of
the AF for all finite F . If P is a nonnegative additive set function defined on A0

such that P(ƒ) = 1 and P
Ø
Ø
AF
is completely additive for every finite F , then P

is completely additive on A0 and therefore extends to a measure on the smallest
σ -algebra containingA0.

PROOF. Once we have proved that P is completely additive on A0, P extends
to a measure on the smallest σ -algebra containing A0 as a consequence of the
Extension Theorem.12 Let An be a decreasing sequence of sets in A0 with
P(An) ∏ ≤ > 0 for some positive ≤. It is enough to prove that

T∞
n=1 An is

not empty.
Each member ofA0 is measurable of type F for some finite F , and we suppose

that An is measurable of type Fn . There is no loss of generality in assuming that
F1 ⊆ F2 ⊆ · · · since a set that is measurable of type F is measurable of type F 0

for any F 0 containing F . Let xi , for i ∈ I , be the i th coordinate function on ƒ,
and let xF = {xi | i ∈ F} for each finite subset F of I . Just as in the definition
of joint probability distribution, we define a Borel measure µF on the Euclidean
space SF by µF(X) = P(x−1

F (X)). This is a measure since P
Ø
Ø
AF
is assumed to

be completely additive.
By definition of “measurable of type F ,” the set An is of the form

An =
©
ω ∈ ƒ

Ø
Ø xFn (ω) ∈ Xn

™

for some Borel subset Xn of the Euclidean space SFn . Since P(An) ∏ ≤, the
definition of µFn makes µFn (Xn) ∏ ≤. Since SFn is a Euclidean space, the
measure µFn is regular. Therefore there exists a compact subset Kn of Xn with
µF(Xn − Kn) ≤ 3−n≤. Putting

Bn =
©
ω ∈ ƒ

Ø
Ø xFn (ω) ∈ Kn

™
,

we see that P(An − Bn) ≤ 3−n≤. Let

Cn =
nT

j=1
Bn.

Each Cn is a subset of An , and the sets Cn are decreasing. We shall prove that

P(Cn) ∏ ≤/2. (∗)

12Theorem 5.5 of Basic.
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The proof of (∗) will involve an induction: we show inductively for each k

that Bk = Dk ∪ Ck with P(Dk) ≤
k−1P

j=1
3− j≤ and P(Ck) ∏

°
1−

kP

j=1
3− j¢≤. Since

1 −
kP

j=1
3− j ∏ 1 −

∞P

j=1
3− j = 1 − 1/3

1−1/3 = 1
2 , this induction will prove (∗).

The base case of the induction is k = 1. In this case we have C1 = B1. If we
take D1 = ∅, then we have B1 = D1 ∪ C1 and P(D1) ≤ 0 trivially, and we
have P(C1) ∏ (1− 1

3 )≤ by construction of B1. The inductive hypothesis is that

Bk = Dk ∪ Ck with P(Dk) ≤
k−1P

j=1
3− j≤ and P(Ck) ∏

°
1−

kP

j=1
3− j¢≤. We know

that Ak = (Ak − Bk) ∪ Bk . Since Bk+1 ⊆ Ak+1 ⊆ Ak , we can intersect Bk+1
with this equation and then use the inductive hypothesis to obtain

Bk+1 = (Bk+1 ∩ (Ak − Bk)) ∪ (Bk+1 ∩ Bk)
= (Bk+1 ∩ (Ak − Bk)) ∪ (Bk+1 ∩ (Dk ∪ Ck))
= (Bk+1 ∩ (Ak − Bk)) ∪ (Bk+1 ∩ Dk) ∪ Ck+1.

If we put Dk+1 = (Bk+1 ∩ (Ak − Bk)) ∪ (Bk+1 ∩ Dk), then Bk+1 = Dk+1 ∪Ck+1
and

P(Dk+1) ≤ P(Ak − Bk) + P(Dk) ≤ 3−k≤ +
k−1P

j=1
3− j≤ =

kP

j=1
3− j≤.

The identity Ak+1 = (Ak+1 − Bk+1) ∪ Bk+1 and the inequalities P(Ak+1) ∏ ≤
and P(Ak+1 − Bk+1) ≤ 3−k−1≤ together imply that P(Bk+1) ∏ (1 − 3−k−1)≤.
From Bk+1 = Dk+1 ∪ Ck+1 and P(Dk+1) ≤

Pk
j=1 3− j≤, we therefore conclude

that P(Ck+1) ∏
°
1−

k+1P

j=1
3− j¢≤. This completes the induction, and (∗) is thereby

proved.
The set Cn is in AFn since F1 ⊆ F2 ⊆ · · · ⊆ Fn , and thus Cn is given by

Cn =
©
ω ∈ ƒ

Ø
Ø xFn (ω) ∈ Ln

™

for some Borel subset Ln of Kn in SFn . For 1 ≤ j ≤ n, we have

Bj =
©
ω ∈ ƒ

Ø
Ø xFn (ω) ∈ Kj × SFn−Fj

™
,

and the set Kj × SFn−Fj is closed in SFn for j < n and compact for j = n. Thus
Ln =

Tn
j=1(Kj × SFn−Fj ) is a compact subset of SFn .

If F ⊆ F 0, let us identify SF 0 with the subset SF 0
× {0} ofƒ = SI , so that it is

meaningful to apply xF to SF
0 . Then we have xF xF 0 = xF , and xFn (Lp) makes

sense for p ∏ n.
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If p ∏ q, thenwe have x−1
Fp (Lp) = Cp ⊆ Cq = x−1

Fq (Lq) = x−1
Fp (Lq×SFp−Fq ),

and hence Lp ⊆ Lq × SFp−Fq . Application of xFq gives xFq (Lp) ⊆ Lq . If
p ∏ q ∏ n, then the further application of xFn gives xFn (Lp) ⊆ xFn (Lq) ⊆ Ln .
Thus the sets xFn (Lp), as p varies for p ∏ n, form a decreasing sequence of
compact sets in SFn . Since P(Cp) ∏ ≤/2 by (∗), Cp is not empty; thus Lp is not
empty and xFn (Lp) is not empty. Since Ln is a compact metric space,

Mn =
∞T

p=n
xFn (Lp)

is not empty.
Let us prove that

xFn (Mn+1) = Mn. (∗∗)
For p ∏ n + 1, we have xFn (Mn+1) ⊆ xFn (xFn+1(Lp)) = xFn (Lp). Intersecting
the right side over p gives xFn (Mn+1) ⊆ Mn . For the reverse inclusion, let m be
in Mn . Thenm = xFn (`p) with `p ∈ Lp for p ∏ n+ 1. For the same `p’s, define
m0
p = xFn+1(`p). Then xFn (m0

p) = xFn (xFn+1(`p)) = xFn (`p)) = m. The element
m0
p is in xFn+1(Lp) and hence in

Tp
q=n+1 xFn+1(Lq). The elementsm0

p all lie in the
compact set Lp+1, and hence they have a convergent subsequence{m0

pk }. The limit
m0 of this subsequence is in

Tpk
q=n+1 xFn+1(Lq) for all k, and thus m0 is in Mn+1.

Since xFn (m0
p) = m, we have xFn (m0) = xFn (limk m0

pk ) = limk xFn (m0
pk ) = m.

In other words, m lies in xFn (Mn+1). This proves (∗∗).
Using (∗∗), we shall define disjoint coordinate blocks of an element ω in ƒ.

Pick some m1 in M1, use (∗) to find some m2 in M2 with m1 = xF1(m2), use
(∗) to find some m3 in M3 with m2 = xF2(m3), and so on. Define ω so that
xF1(ω) = m1 and xFn−Fn−1(ω) = mn − mn−1 for n ∏ 2. Define ω to be 0 in all
coordinates indexed by I −

S∞
n=1 Fn . Then we have

xFn (ω) = xF1(ω) +
nP

k=2
xFk−Fk−1(ω) = m1 +

nP

k=2
(mk − mk+1) = mn.

Thus xFn (ω) is exhibited as in Mn ⊆ Ln for all n. Hence ω is in
T∞

n=1 Cn , and
we have succeeded in proving that

T∞
n=1 Cn is not empty. §

Corollary 9.6. Let I be a nonempty index set, and for each i in I let µi be a
Borel measure on R with µi (R) = 1. Then there exists a probability space with
independent randomvariables xi for i in I such that xi has probability distribution
µi .
PROOF. In Theorem 9.5 let S = R, and for each finite subset F of I , define

P
Ø
Ø
AF
to be the productmeasure

Q
i∈F µi on theEuclidean spaceRF . The theorem

makes RI into a probability space by exhibiting the consistent extension P of
all the P

Ø
Ø
AF
’s as completely additive. Then the coordinate functions xi are the

required independent random variables. §



4. Strong Law of Large Numbers 397

4. Strong Law of Large Numbers

Traditional laws of large numbers concern a sequence {xn} of identically dis-
tributed independent random variables, and we shall assume that their common
mean µ exists. Define sn = x1 + · · · + xn for n ∏ 1. The conclusion is that the
quantities 1n sn converge in some sense toµ, i.e., that the xn are Cesàro summable
to the constant µ. The simplest versions of the law of large numbers assume also
that the common “variance” is finite. Let us back up a moment and define this
notion.
The variance of a random variable x with mean E(x) = µ is the quantity

Var(x) = E
°
(x − µ)2

¢
= E(x2) − µ2,

the right-hand equality holding since
E

°
(x − µ)2

¢
= E(x2) − 2µE(x) + µ2E(1) = E(x2) − µ2.

For any randomvariables themeans add sincemean is linear. For two independent
random variables x and y, the variances add since we can apply Proposition 9.3,
compute the quantities

E((x + y)2) = E(x2) + 2E(xy) + E(y2) = E(x2) + 2E(x)E(y) + E(y2)

(E(x) + E(y))2 = E(x)2 + 2E(x)E(y) + E(y)2,and
and subtract to obtain
Var(x + y)) =

°
E(x2) − E(x)2

¢
+

°
E(y2) − E(y)2

¢
= Var(x) + Var(y).

For a constant multiple c of a random variable x , we have
E(cx) = cE(x) and Var(cx) = c2Var(x).

Returning to our sequence {xn} of identically distributed independent random
variables, we therefore have E(sn) = E(x1) + · · · + E(xn) = nµ and Var(sn) =
Var(x1) + · · · + Var(xn) = nσ 2, where σ 2 denotes the common variance of the
given random variables xk . Consequently

E
° 1
n sn

¢
= µ and Var

° 1
n sn

¢
= 1

n σ 2.

If we take our probability space to be (ƒ, P) and apply Chebyshev’s inequality
to the variance13 of 1n sn , we obtain

1
n σ 2 =

Z

ƒ

° 1
n sn − µ

¢2 dP ∏ ξ 2P
°
{| 1n sn − µ| ∏ ξ}

¢
.

Holding ξ fixed and letting n tend to infinity, we obtain the first form historically
of the law of large numbers, as follows.

13Chebyshev’s inequality appears in Section VI.10 of Basic and is the elementary inequalityR
X | f |2 dµ ∏ ξ2µ

°
{x

ØØ | f (x)| ∏ ξ}
¢
valid on any measure space for any measurable f and any real

ξ > 0.
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Theorem 9.7 (Weak Law of Large Numbers). Let {xn} be a sequence of
identically distributed independent random variables with a commonmeanµ and
a common finite variance. Define sn = x1 + · · · + xn . Then for every real ξ > 0,

lim
n→∞

P
°
{| 1n sn − µ| ∏ ξ}

¢
= 0.

REMARKS. In terminology that will be defined in Section 5, the statement
in words is that 1n sn “converges to µ in probability.” With more effort one can
obtain the conclusion of theWeak Law of Large Numbers without the hypothesis
of finite variance. Instead of making that direct extra effort, however, we shall
deduce in Section 5 the Weak Law of Large Numbers from the Strong Law of
Large Numbers below, and there will be no need to assume finite variance.

As a practical matter, the fact that P
°
{| 1n sn − µ| ∏ ξ}

¢
tends to 0 is of

comparatively little interest. Of more interest is a probability estimate for the
event that lim 1

n sn = µ. This is contained in the following theorem, whose proof
will occupy the remainder of this section.

Theorem 9.8 (Strong Law of Large Numbers). Let {xn} be a sequence of
identically distributed independent random variables whose common mean µ
exists. Define sn = x1 + · · · + xn . Then

lim
n→∞

1
n sn = µ with probability 1.

Many members of the public have heard of this theorem in some form. Mis-
conceptions abound, however. The usual misconception is that if the average
1
n sn(ω) has gotten to be considerably larger than µ by some point n in time, then
the chances become overwhelming that the average will have corrected itself
fairly soon thereafter. Independence says otherwise: that the future values of
the xk’s are not influenced by what has happened through time n. In fact, if
a person is persuaded that it was unreasonable for the average 1

n sn(ω) to have
gotten considerably larger than µ by some time n, then the person might better
instead question whether the mean µ is known correctly or even whether the
individual xn’s are genuinely independent. If µ has been greatly underestimated,
for example, not only was it reasonable for the average 1

n sn(ω) to have gotten
considerably larger than µ, but it is reasonable for it to continue to do so.
The proof of Theorem 9.8 will be preceded by three lemmas.

Lemma 9.9 (Borel–Cantelli Lemma). Let {Ak} be a sequence of events in a

probability space (ƒ, P) such that
∞P

k=1
P(Ak) < ∞. Then P

° ∞T

n=1

S

k∏n
Ak

¢
= 0.

Hence the probability that infinitely many of the events Ak occur is 0.
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PROOF. Since
∞P

k=1
P(Ak) is convergent, we have lim supn

∞P

k=n
P(Ak) = 0. For

every n, we have P
°T∞

n=1
S

k∏n Ak
¢

≤ P
°S

k∏n Ak
¢

≤
∞P

k=n
P(Ak). The left

side of the inequality is independent of n, and therefore P
°T∞

n=1
S

k∏n Ak
¢

≤

lim supn
∞P

k=n
P(Ak) = 0. This proves the first conclusion. Since

T∞
n=1

S
k∏n Ak

is the set of ω that lie in infinitely many of the sets Ak , the second conclusion
follows. §

Lemma 9.10. Let x be a random variable on a probability space (ƒ, P). Then
∞P

k=1
P({|x | > k}) < ∞ if and only if the mean of |x | exists.

PROOF. Proposition 6.56b of Basic gives
R
ƒ |x | dP =

R ∞
0 P({|x(ω)| > ξ}) dξ.

The lemma therefore follows from the inequalities
∞P

k=1
P({|x | > k}) =

∞P

k=0
P({|x | > k + 1}) ≤

∞P

k=0

R k+1
k P({|x | > ξ}) dξ

=
R ∞
0 P({|x | > ξ}) dξ ≤

∞P

k=0
P({|x | > k}). §

Lemma 9.11 (Kolmogorov’s inequality). Let x1, . . . , xn be independent ran-
dom variables on a probability space (ƒ, P), and suppose that E(xk) = 0 and
E(x2k ) < ∞ for all k. Put sk = x1 + · · · + xk . Then

P
°
{ω

Ø
Ø max(|s1|, . . . , |sn|) > c}

¢
≤ c−2E(s2n)

for every real c > 0.
REMARKS. It is not necessary to assume that E(x1) = 0. For n = 1, the

lemma consequently reduces to Chebyshev’s inequality.
PROOF. Let Aj be the event that j is the smallest index for which |sj | > c.

The sets Aj are disjoint, and their union is the set whose probability occurs on
the left side of the displayed inequality. Combining this fact with Chebyshev’s
inequality gives

P
°
{ω

Ø
Ø max(|s1|, . . . , |sn|) > c}

¢
=

nP

j=1
P(Aj ) ≤ c−2

nP

j=1
E(s2j IAj ), (∗)

where IAj is the indicator function of Aj . Since sn = sj + (sn − sj ),

E(s2n IAj ) = E(s2j IAj ) + 2E((sn − sj )sj IAj ) + E((sn − sj )2 IAj )

∏ E(s2j IAj ) + 2E((sn − sj )sj IAj ).
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The random variables sn − sj and sj IAj are independent by Proposition 9.4, and

their product has mean 0 by Proposition 9.3 since E(sn − sj ) =
nP

i= j+1
E(xi ) = 0.

Therefore E(s2n IAj ) ∏ E(s2j IAj ), and (∗) gives

P
°
{ω

Ø
Ø max(|s1|, . . . , |sn|) > c}

¢
≤ c−2

nP

j=1
E(s2j IAj ) ≤ c−2

nP

j=1
E(s2n IAj )

= c−2E(s2n IS
j Aj ) ≤ c−2E(sn)2. §

PROOF OF THEOREM 9.8. Let the underlying probability space be denoted by
(ƒ, P). Subtraction of the constant µ from each of the random variables xk does
not affect the independence, according to Proposition 9.4, and it reduces the proof
to the case that µ = 0. Therefore we may proceed under the assumption that
µ = 0. For integers k ∏ 1, define

x 0
k =

Ω xk where |xk | ≤ k,
0 where |xk | > k,

x 00
k =

Ω 0 where |xk | ≤ k,
xk where |xk | > k,

and

so that xk = x 0
k + x 00

k . Define s 0n = x 0
1 + · · · + x 0

n and s 00n = x 00
1 + · · · + x 00

n . It is
enough to show that 1n s

0
n and

1
n s

00
n both tend to 0 with probability 1.

Firstwe show that 1n s
00
n tends to 0with probability 1. Let x be a randomvariable

with the same probability distribution as the xk’s. Referring to the definition
of x 00

k , we see that P({|x | > k}) = P({|xk | > k}) = P({x 00
k 6= 0}). Since

E(|x |) exists by assumption, Lemma 9.10 shows that
∞P

k=1
P({|x | > k}) < ∞.

Therefore
∞P

k=1
P({x 00

k 6= 0}) < ∞. By the Borel–Cantelli Lemma (Lemma 9.10),

the probability that ω lies in infinitely many of the sets {x 00
k 6= 0} is 0. Thus by

disregarding ω’s in a set of probability 0, we may assume x 00
k (ω) 6= 0 for only

finitely many k. Then s00n (ω) remains constant as a function of n for large n, and
we must have limn

1
n s

00
n (ω) = 0.

Now we consider 1n s
0
n . The random variables x 0

k are independent, but they are
no longer identically distributed and they no longer need have mean 0. However,
they satisfy inequalities of the form |x 0

k | ≤ k, and these in turn imply that each
E(x 0

k
2) is finite. Concerning the means, let x be a random variable with the

same probability distribution as any of the xk’s. The random variable x#k equal
to x where |x | ≤ k and equal to 0 otherwise has |x#k | ≤ |x | for all k, and hence
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dominated convergence yields limk E(x#k ) = E(x) = 0. Since x 0
k and x#k have the

same probability distribution, we have limk E(x 0
k) = 0. The expression E( 1n s

0
n)

is a Cesàro sum of the sequence {E(x 0
k)}. Since the Cesàro sums tend to 0 when

the sequence itself tends to 0, we conclude that

lim
n
E( 1n s

0
n) = 0. (∗)

Let µ be the common probability distribution of the |xk |’s. The next step is to
show that

∞P

r=1
2−2r

2r−1P

k=2r−1
E(x 0

k
2) ≤ 2

R ∞
0 t dµ(t). (∗∗)

The quantity on the right is twice the common value of E(|xk |) and is finite since
we have assumed that the common mean of the xk’s exists. Once we have proved
(∗∗), we can therefore conclude that the quantity on the left side is finite. To
prove (∗∗), we write

∞P

r=1
2−2r

2r−1P

k=2r−1
E(x 0

k
2) =

∞P

r=1
2−2r

2r−1P

k=2r−1

R k
0 t

2 dµ(t)

≤
∞P

r=1
2−r R 2r

0 t2 dµ(t)

≤
R 1
0 t

2 dµ(t) +
∞P

r=1
2−r R 2r

1 t2 dµ(t).

Let us write I and II for the two terms on the right side. The estimate for II is

II =
∞P

r=1
2−r

rP

j=1

R 2 j
2 j−1 t

2 dµ(t) ≤
∞P

r=1

rP

j=1
2−r2 j

R 2 j
2 j−1 t dµ(t)

=
∞P

j=1

∞P

r= j
2−r2 j

R 2 j
2 j−1 t dµ(t) = 2

∞P

j=1

R 2 j
2 j−1 t dµ(t) = 2

R ∞
1 t dµ(t).

Therefore

I+ II ≤
R 1
0 t

2 dµ(t) + 2
R ∞
1 t dµ(t)

≤ 2
R 1
0 t dµ(t) + 2

R ∞
1 t dµ(t) = 2

R ∞
0 t dµ(t),

and (∗∗) is proved.
Form the sequence of random variables x∗

k = x 0
k − E(x 0

k), and put s∗n =
x∗
1 +· · ·+ x∗

n . The x∗
k are independent but no longer identically distributed. They

have mean 0. Since

E(x∗
k
2) = E

°
(x 0
k − E(x 0

k))
2¢ = E(x 0

k
2) − E(x 0

k)
2 ≤ E(x 0

k
2),
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(∗∗) shows that the x∗
k have the property that

∞P

r=1
2−2r

2r−1P

k=2r−1
E(x∗

k
2) < ∞. To

prove the theorem, it would be enough to prove that the Cesàro sums 1
n s

∗
n =

1
n s

0
n − E( 1n s

0
n) tend to 0, since we know from (∗) that limn E( 1n s

0
n) = 0.

Changing notation, we see that we have reduced matters to proving the fol-
lowing: if {xk} is a sequence of independent random variables with mean 0 and
with

∞P

r=1
2−2r

2r−1P

k=2r−1
E(x2k ) < ∞, (†)

and if sn denotes x1 + · · · + xn , then limn
1
n sn = 0 with probability 1.

To prove this assertion, we apply Kolmogorov’s inequality (Lemma 9.11) for
each r ∏ 0 to the 2r−1 random variables x2r−1, x2r−1+1, . . . , x2r−1. These are
independent with mean 0, and E(x2k ) is finite for each by (†). Their partial sums
are

s2r−1 − s2r−1−1, . . . , s2r−1 − s2r−1−1,

and the last partial sum has E
°
(s2r−1 − s2r−1−1)2

¢
=

2r−1P

k=2r−1
E(x2k ) by Proposition

9.3. Kolmogorov’s inequality therefore gives, for any fixed ε > 0,

P
°
{max(|s2r−1 − s2r−1−1|, . . . , |s2r−1− s2r−1−1|) > 2rε}

¢
≤ ε−22−2r

2r−1P

k=2r−1
E(x2k ).

Summing on r and applying (†), we see that
∞P

r=1
P

°
{max(2−r |s2r−1 − s2r−1−1|, . . . , 2−r |s2r−1 − s2r−1−1|) > ε}

¢
< ∞.

The Borel–Cantelli Lemma (Lemma 9.9) shows that with probability 1, there are
only finitely many r’s for which

max(2−r |s2r−1 − s2r−1−1|, . . . , 2−r |s2r−1 − s2r−1−1|) > ε.

Fix any ω that is not in the exceptional set Aε of probability 0, and choose
r0 = r0(ω) such that

max(2−r |s2r−1(ω) − s2r−1−1(ω)|, . . . , 2−r |s2r−1(ω) − s2r−1−1(ω)|) ≤ ε

for all r ∏ r0. If n > 2r0 is given, find r such that 2r−1 ≤ n ≤ 2r − 1. Then we
have

2−r |sn(ω) − s2r−1−1(ω)| ≤ ε,

2−(r−1)|s2r−1−1(ω) − s2r−2−1(ω)| ≤ ε,

...

2−r0 |s2r0−1(ω) − s2r0−1−1(ω)| ≤ ε.
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Multiplying the kth inequality by 2−k+2, summing for k ∏ 1, and applying the
triangle inequality, we obtain

n−1|sn(ω) − s2r0−1−1(ω)| ≤ 2−r+1|sn(ω) − s2r0−1−1(ω)| ≤ 4ε.

Therefore n−1|sn(ω)| ≤ 4ε + n−1|s2r0−1−1(ω)|.

Hence lim sup
n

1
n |sn(ω)| ≤ 4ε.

Ifω is not in the union
S∞

m=1 A1/m of the exceptional sets, then lim supn
1
n |sn(ω)|

= 0. This countable union of exceptional sets of probability 0 has probability 0,
and the proof is therefore complete. §

5. Convergence in Distribution

The two laws of large numbers concern convergence of a sequence of random
variables in two different fashions, and in this section we shall be a little more
systematic about different kinds of convergence.
Let {xn} be a sequence of random variables on a probability space (ƒ, P), and

let x be another random variable on that space. One says that {xn} converges
almost surely to x if limn xn(ω) = x(ω) pointwise except possibly on a set of
P measure 0. This is the notion of convergence in the Strong Law of Large
Numbers (Theorem 9.8). It is same notion as almost everywhere convergence,
but probabilists use a term for it that conveys something in probabilistic terms.
Another expression that is used for the same notion is that {xn} converges to x
with probability 1. Notation that is often used for this notion, but which we shall
not use, is

{xn}
a.s.

−→ x .

A second notion is that {xn} converges in probability to x if for each real
number ξ > 0, limn P

°
{ω

Ø
Ø |xn(ω) − x(ω)| ∏ ξ}

¢
= 0. Some authors write

{xn}
P

−→ x .

This is the notion of convergence in the Weak Law of Large Numbers (Theorem
9.7). We mentioned in Section 4 that the strong law implies the weak law and
that the assumption of finite variance is unnecessary in the weak law. This fact is
a special case of the following result.
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Proposition 9.12. If a sequence {xn} of random variables on a probability
space (ƒ, P) converges to a random variable x almost surely, then it converges
to x in probability.

PROOF. Let Z be themeasure-zerosubset ofƒonwhichpointwiseconvergence
of {xn(ω)} to x(ω) fails. Redefining x and all xn to be 0 on Z , we affect neither
the hypothesis nor the conclusion, but we now have convergence at every point.
Let ξ > 0 be given, and define

EN = {ω ∈ ƒ
Ø
Ø |xn(ω) − x(ω)| < ξ for all n ∏ N }.

Then {EN } is an increasing sequence of sets, and the pointwise convergence
of {xn} to x implies that

S
N EN = ƒ. By the complete additivity of P ,

limN P(EN ) = P(ƒ) = 1. Consequently

lim
N
P{ω ∈ ƒ

Ø
Ø |xn(ω) − x(ω)| ∏ ξ for some n ∏ N } = 0,

and it follows that

lim
N
P{ω ∈ ƒ

Ø
Ø |xN (ω) − x(ω)| ∏ ξ} = 0. §

EXAMPLE. The expected converse statement is false. That is, it is possible for
a sequence {xn} of random variables to converge to 0 in probability without con-
verging to 0 almost surely. Take the probability space to be [0, 1] with Lebesgue
measure m, and let xn be the indicator function of a set En to be specified. Then
{xn} converges to 0 in probability if (and only if) limn m(En) = 0, but it does
not converge to 0 almost surely if there is a set of points ω of positive Lebesgue
measure such that ω is in infinitely many of the sets En . To define such sets En ,
take a divergent infinite series

P
an whose terms are positive and tend to 0, such

as with an = 1/n. Let En be the interval extending from
Pn−1

k=1 ak to
Pn

k=1 ak
but taken modulo 1. Then the sets En have the required properties.

There is a third kind of convergence that will interest us, and this is the kind that
will occur in the Central Limit Theorem in Section 9. Let {xn} be a sequence of
random variables, and let x be another random variable. Let Fn be the cumulative
distribution function of xn , and let F be the cumulative distribution function of x .
One says that {xn} converges to x in distribution if limn Fn(t) = F(t) at every
point of continuity of F . The term converges in law is also used, and some
authors write

{xn}
L

−→ x .

A little surprisingly this kind of convergence is even weaker than convergence
in probability. In fact, convergence in distribution depends only on the cumu-
lative distribution functions in question. If, for example, we have any sequence
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of random variables with a common distribution function, then that sequence
converges in distribution. Such random variables do not even need to be defined
on the same space.
To have convergence in probability, we need the the differences |xn(ω)−x(ω)|

that appear in the definition of convergence in probability to be defined; thus x
and the xn need to be defined on the same space. So convergence in distribution
does not imply convergence in probability.

Proposition 9.13. Convergence of a sequence {xn} of random variables in
probability to a randomvariable x implies convergence of {xn} to x in distribution.

PROOF. Fix a point t where F is continuous, and fix a number ≤ > 0. Since
x(ω) > t + ≤ and |xn(ω) − x(ω)| ≤ ≤ together imply that xn > t , we have

{ω | xn(ω) ≤ t} ⊆ {ω | x(ω) ≤ t + ≤} ∪ {ω
Ø
Ø |xn(ω) − x(ω)| ∏ ≤}.

Hence

Fn(t) = P({ω | xn(ω) ≤ t})
≤ P({ω | x(ω) ≤ t + ≤}) + P({ω

Ø
Ø |xn(ω) − x(ω)| ∏ ≤})

= F(t + ≤) + P({ω
Ø
Ø |xn(ω) − x(ω)| ∏ ≤}).

Forming the limsuponn of this inequality and taking into account the convergence
in probability of {xn} to x gives

lim sup
n

Fn(t) ≤ F(t + ≤). (∗)

Similarly we have

{ω | x(ω) ≤ t − ≤} ⊆ {ω | xn(ω) ≤ t} ∪ {ω
Ø
Ø |xn(ω) − x(ω)| ∏ ≤}.

Hence
F(t − ≤) ≤ Fn(t) + P({ω

Ø
Ø |xn(ω) − x(ω)| ∏ ≤}).

Forming the lim inf on n of this inequality and taking into account the convergence
in probability of {xn} to x gives

F(t − ≤) ≤ lim inf
n

Fn(t).

Putting this inequality together with (∗), we conclude that

F(t − ≤) ≤ lim inf
n

Fn(t) ≤ lim sup
n

Fn(t) ≤ F(t + ≤).

Letting ≤ tend to 0 and taking into account the continuity of F at t , we see that
limn Fn(t) exists and equals F(t). §
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6. Portmanteau Lemma

It is sometimes inconvenient to use the definition of convergence in distribution
to work with the notion. Fortunately some equivalent formulations are available.
Some of these are identified in the following lemma. Fix a probability space
(ƒ, P).

Lemma 9.14 (Portmanteau14 Lemma). Let {xn} be a sequence of random
variables on (ƒ, P), and for each n, let Fxn and µxn be the corresponding
cumulative distribution function and probability distribution of xn on R. Let
x be another random variable on (ƒ, P), and let Fx and µx be the corresponding
cumulative distribution function and probability distribution on R. Then the
following statements are equivalent:

(a) {xn} converges in distribution to x , i.e., limn→∞ Fxn (u) = Fx(u) at every
point u of continuity of Fx ,

(b) limn→∞ E(g(xn)) = E(g(x)) for every g ∈ Ccom(R), i.e., {µxn } tends to
µx weak-star against Ccom(R),

(c) limn→∞ E(g(xn)) = E(g(x)) for every bounded complex-valued con-
tinuous function g on R.

REMARKS. In all three statements (a) through (c), the probability enters only as
an overlay of interpretation: the mathematical content concerns only monotone
functions and Stieltjes measures. Namely the means in (b) and (c) are nothing
more than the integrals with respect to Stieltjes measures given by E(g(xn)) =R

R g dµxn and E(g(x)) =
R

R g dµx . Integration on the probability space (ƒ, P)
can be completely avoided by repeated use of Proposition 9.1.

PROOF THAT (a) IMPLIES (b). Let g be any C1 function in Ccom(R), let h be the
derivative of g, and let [a, b] be any finite interval of R containing the support of
g in its interior. Integration by parts (Theorem 6.53 of Basic) gives
R b
a Fxn (t)h(t) dt = g(b)Fxn (b) − g(a)Fxn (a) −

R b
a g dµxn = −

R b
a g dµxn (∗)

and similarly
R b
a Fx(t)h(t) dt = −

R b
a g dµx . As n tends to infinity, (a) says that

Fxn (u) tends to Fx(u) at every point of continuity of Fx . This convergence takes
place everywhere except on a countable set, necessarily a Borel set of Lebesgue

14The etymology of the term “portmanteau” in this context is uncertain. The French word
“portemanteau” in the early sixteenth century referred to a person who carried a king’s cloak, and a
little later the term began to refer to a traveling case, generally with two halves to it, such as would
be used in riding horseback. Those definitions by themselves make the word apt for this lemma. In
English, Lewis Carroll in 1882 introduced the notion of a “portmanteau word” to refer to a single
word obtained by telescoping two words into one, and it can be argued that this lemma, having two
ideas that belong together, is akin to a portmanteau word.
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measure 0. Also the sequence is uniformly bounded by 1. Since h is bounded and
has compact support, limn→∞

R b
a Fxn (t)h(t) dt =

R b
a Fx(t)h(t) dt by dominated

convergence. Consequently

limn −
R b
a g dµxn = −

R b
a g dµx . (∗∗)

This proves the convergence asserted by (b) for all g ∈ C1com(R).
Let a general member g0 of Ccom(R) be given. Corollary 6.19 and Theorem

6.20 of Basic show how to convolve g0 with the members of an approximate
identity of functions inC∞

com(R) to obtain a sequence {gm} ofmembers ofC∞
com(R)

such that limm gm = g0 uniformly. Applying (∗∗) with g = gm and passing to
the limit, we obtain (∗∗) for the general member g0 of Ccom(R). §

PROOF THAT (b) IMPLIES (c). We make explicit use of the fact that µx and
all the µxn are probability measures. Given ≤ > 0, choose a finite open interval
I in R with µx(I ) ∏ 1 − ε, and fix h ∈ Ccom(R) with values in [0, 1] that is
1 on I . Then 1 − h has values in [0, 1] and is nonzero only on R − I . SoR

R (1− h) dµx ≤ µx(R− I ) = 1−µx(I ) ≤ ≤. From lim
R

R h dµxn =
R

R h dµx
and

R
R 1 dµxn = µxn (R) = 1 = µx(R) =

R
R dµx , we obtain

lim supn
R

R (1− h) dµxn =
R

R (1− h) dµx ≤ ≤.

For any continuous function g on R with 0 ≤ g ≤ 1, we can write g =
gh + g(1− h) and obtain
Ø
Ø R

R g dµxn −
R

R g dµx
Ø
Ø

≤
Ø
Ø R

R gh dµxn −
R

R gh dµx
Ø
Ø +

R
R (1−h)g dµxn +

R
R (1−h)g dµx

≤
Ø
Ø R

R gh dµxn −
R

R gh dµx
Ø
Ø +

R
R (1−h) dµxn +

R
R (1−h) dµx .

Since limn
R

R gh dµxn =
R

R gh dµx , it follows that

lim sup
n

Ø
Ø R

R g dµxn −
R

R g dµx
Ø
Ø ≤ 2≤.

Because ≤ is arbitrary, limn
R

R g dµxn =
R

R g dµx . Taking linear combinations
of such functions g allows us to conclude that limn

R
R g dµxn =

R
R g dµx for

every bounded continuous complex-valued function g on R. §

PROOF THAT (c) IMPLIES (a). Suppose that limn
R

R g dµxn =
R

R g dµx for all
bounded continuous g on R, and let u0 be a point of continuity of F . We shall
prove that limn Fxn (u0) = Fx(u0).
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For each subset S ofR, let IS denote the indicator function of S. Fix a positive
integer N . For all bounded continuous g on R with

I(−∞,u0] ≤ g ≤ I(−∞,u0+1/N ),

integration of the left inequality with respect to µxn and of the right inequality
with respect to µx yields

Fxn (u0) = µxn ((−∞, u0]) ≤
R

R g dµxn

and
R

R g dµx ≤ µx((−∞, u0 + 1/N ]) = Fx(u0 + 1/N ).

Thus

lim sup
n

Fxn (u0) ≤ lim sup
n

R
R g dµxn =

R
R g dµx ≤ Fx(u0 + 1/N ).

Since N is arbitrary and Fx is right continuous at u0,

lim sup
n

Fxn (u0) ≤ Fx(u0). (∗)

Fix a positive integer M . If g is a continuous function on R taking values in
[0, 1] and satisfying

I(−∞,u0−1/M] ≤ g ≤ I(−∞,u0]

then integration of the left inequality with respect toµx and of the right inequality
with respect to µxn yields

Fx(u0 − 1/M) ≤
R

R g dµx and
R

R g dµxn ≤ Fxn (u0).

Thus

Fx(u0 − 1/M) ≤
R

R g dµx = limn
R

R g dµxn ≤ lim infn Fxn (u0).

Since M is arbitrary and F is left continuous at u0,

Fx(u0) ≤ lim inf
n

Fxn (u0).

In combination with (∗), this inequality completes the proof. §
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7. Characteristic Functions

Throughout this section, (ƒ, P) denotes a probability space. Let x be a random
variable, and let µx be its probability distribution. The function on R given as
the Fourier transform of µx is called15 the characteristic function of x and is
denoted by ϕx :

ϕx(t) =
Z

R
e−2π i tu dµx(u).

The notion of the Fourier transform of a finite measure onRwas introduced in
Problem 6 of Chapter VIII of Basic. Among other things, that problem observed
that

(a) such functions are bounded and continuous,
(b) the only measure whose Fourier transform is 0 is the 0 measure.

Let us notice also that
(c) ϕx(0) = 1,
(d) ϕax(t) = ϕx(at).

Conclusion (d) follows from the chain of equalities

ϕx(at) =
R

R e
−2π i(at)u dµx(u) =

R
ƒ e

−2π i(at)x(ω) dP(ƒ)

=
R
ƒ e

−2π i t (ax)(ω) dP(ƒ) =
R

R e
−2π i tu dµax(u).

Conclusion (a) will be re-proved in the course of the proof of the Proposition 9.16
below.

Characteristic functions provide a viewpoint for studying probability distri-
butions that emphasizes aspects of the distributions that are not readily apparent
from their definitions. We shall see, for example, in the LevyContinuity Theorem
(Theorem 9.18 below) that convergence in distribution of random variables is
mirroredconveniently in convergenceof the characteristic functionsof the random
variables. This equivalence will be a key step in establishing the Central Limit
Theorem in Section 9.

Lemma 9.15. For all real x ,
Ø
Øx−1(eix − 1)

Ø
Ø ≤ 2.

15Some other authors use the term “characteristic function” to refer to a function that is 1 on
some set and 0 on the complement; we have referred to this kind of function systematically as an
indicator function. Still other authors use a definition of “characteristic function” involving different
constants from ours, in order to be consistent with their own particular definition of the Fourier
transform of a function.
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PROOF. Since |eix − 1| = |e−i x − 1|, we may assume that x > 0. Also we
may assume that x ≤ 1 because x ∏ 1 certainly implies

Ø
Øx−1(eix − 1)

Ø
Ø ≤ 2. For

0 < x ≤ 1, we use Taylor’s Theorem (Theorem 1.36 of it Basic) in the form

f (x) = f (0) + f 0(0)x +
R x
0 f 00(s)(x − s) ds

with f (x) = eix . Since f 0(0) = i and | f 00(s)| = 1,

|eix − 1| ≤ |x | +
R x
0 |x − s| ds = |x | + 1

2 |x |
2 ≤ |x | + 1

2 |x | ≤ 2|x |. §

Proposition 9.16. Let x be a random variable on the probability space (ƒ, P),
and let ϕx be its characteristic function. Then ϕx is bounded and continuous. For
each integer n ∏ 1 such that E(xn) exists, the function ϕx has n continuous
derivatives and the nth derivative ϕ

(n)
x is given by n-fold differentiation under the

integral defining ϕx , namely as (−2π i)n
R

R e
−2π i tuun dµx(u). In this case the

absolute value of the nth derivative ϕ
(n)
x is bounded by (2π)n E(|xn|).

PROOF. Let us prepare for an inductionby carrying out a preliminary continuity
step and a preliminary differentiation step.. Suppose that G is an integrable
function on R with respect to µx , and let H(t) =

R
R e

−2π i tuG(u) dµx(u). Then

H(t) − H(t0) =
R

R
°
e−2π i(t−t0)u − e−2π i t0u

¢
e−2π i t0uG(u) dµx(u),

and
|H(t) − H(t0)| ≤

R
R

Ø
Øe−2π i(t−t0)u − e−2π i t0u

Ø
Ø|G(u)| dµx(u).

The difference of exponentials is bounded by 2, and the rest of the integrand is a
fixed integrable function. Thus as t tends to t0, we have dominated convergence,
and continuity of H at t0 follows. This completes the preliminary continuity step.
For the preliminarydifferentiation step. Thedifferencequotient leading toward

the derivative of H(t) =
R

R e
−2π i tuG(u) dµx(u) is

h−1[H(t + h)−H(t)] = 1
h
£ R

R(e−2π i(t+h)u − e2π i tu)G(u) dµx(u)
§

=
R

R h
−1(e−2π ihu − 1)e−2π i tuG(u) dµx(u).

=
R

R(2π ihu)−1(e−2π ihu−1)(2π iu)e−2π i tuG(u) dµx(u).

Since Lemma 9.15 shows that
Ø
Ø(2π ihu)−1(e−2π ihu − 1)

Ø
Ø ≤ 2, the integrand is

dominated in absolute value by the single function 4π |u||G(u)| as t tends to
0. Consequently under the additional assumption that uG(u) is integrable with
respect to µx , our difference quotient is the integral of functions parametrized by
h and dominated by a fixed integrable function. The integrand tends to a limit as



8. Lévy Continuity Theorem 411

h tends to 0. So again we have dominated convergence, and H is differentiable
with value given by differentiation under the integral sign.
With those preparations done, we can induct, starting with n = 0 and G(u) =

1. The first conclusion gives the continuity of ϕx (as a result of the integrability
of 1), and the second shows that if |u| is integrable, then ϕ0

x is differentiable
with derivative given by differentiation under the integral sign. If we assume
inductively the integrability of un−1, then we obtain the continuity of ϕ

(n−1)
x

immediately. With the additional assumption of integrability of un , we obtain the
existence of ϕ

(n)
x and the formula for computing it. The bound for the absolute

value of ϕ
(n)
x follows from the derivative formula, since (2π)n

R
R |un| dµx(u)

equals (2π)n E(|xn|). §

Proposition 9.17. If x1, . . . , xn are independent random variables, then their
characteristic functions satisfy

ϕx1+···+xn = ϕx1 . . . ϕxn .

Proof. Propositions 9.3 and 9.4 together give

ϕx1+···+xn (t) = E(e−2π i t (x1+···+xn)) = E(e−2π i t x1 · · · e−2π i t xn )

= E(e−2π i t x1) · · · E(e−2π i t xN ) = ϕx1(t) · · ·ϕxn (t). §

8. Lévy Continuity Theorem

Let (8,ω) be a probability space. We shall now reformulate convergence in
distribution in terms of characteristic functions.

Theorem 9.18 (Lévy Continuity Theorem). Let {xn} be a sequence of ran-
dom variables on (ƒ, P), and for each n, let Fxn and ϕxn be the corresponding
cumulative distribution function and characteristic function of xn on R. Let x be
another random variable on (ƒ, P), and let Fx and ϕx be the corresponding
cumulative distribution function and characteristic function on R. Then the
following statements are equivalent:

(a) {xn} converges in distribution to x , i.e., limn→∞ Fn(u) = F(u) at every
point u of continuity of F ,

(b) {ϕxn } converges pointwise to ϕx , i.e., limn→∞ ϕxn (t) = ϕx(t) for every
t ∈ R.

REMARKS. In both halves of the proof, we let µxn and µx be the probability
distributions corresponding to Fxn and Fx . We make use of the equivalence of (a)
and (c) in the Portmanteau Lemma (Lemma 9.14).
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PROOF THAT (a) IMPLIES (b). We apply the implication (a) implies (c) of
Lemma 9.14. Since {xn} converges in distribution to x , the lemma shows for the
function g(u) = e−2π i tu that limn E(g(xn)) = E(g(x)), i.e., that

lim
n→∞

R
R e

−2π i tu dµxn (u) =
R

R e
−2π i tu dµx(u).

This is (b) of the present theorem. §

PROOF THAT (b) IMPLIES (a). Suppose that limn ϕxn (t) = ϕx(t) pointwise for
all t ∈ R. According to Proposition 8.10 of Basic, the Fourier transform operator
F is one-one from the Schwartz spaceS ofR onto itself. For√ inC∞

com(R),F−1√
is therefore a well defined member of S. In particular it is integrable. Since the
functions ϕxn and ϕx are bounded in absolute value by 1, dominated convergence
gives

lim
n

R
R ϕxn (t)(F−1√)(t) dt =

R
R ϕx(t)(F−1√)(t) dt.

Substituting for the definitions in this formula, we obtain

limn
R

R
° R

R e
−2π i tu dµxn (u)

¢
(F−1√)(t) dt

=
R

R
° R

R e
−2π i tu dµx(u)

¢
(F−1√)(t) dt

On the left side of this equation, the integrand in absolute value is just |F−1(√)(t)|,
and this is integrable for dµxn × dt . Thus we can interchange the integrals and
rewrite the left side as

limn
R

R
° R

R e
−2π i tu(F−1√)(t)) dt

¢
dµxn (u) = limn

R
R √(u) dµxn (u).

Similarly we can rewrite the right side as
R

R √(u) dµx(u). Thus we have

limn
R

R √(u) dµxn (u) =
R

R √(u) dµx(u) (∗)

for every √ in C∞
com(R). To complete the proof, let a general member √0 of

Ccom(R) be given. We arguewith an approximate identity of functions inC∞
com(R)

as at the end of the proof that (a) implies (b) in Lemma 9.14 to see that (∗) extends
to be valid when √ is replaced by √0. Because (b) implies (a) in Lemma 9.14,
the validity of (∗) for all √0 in Ccom(R) completes the proof. §

9. Central Limit Theorem

We come to the main result of the chapter. Again (ƒ, P) denotes a probability
space.
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Theorem 9.19 (Central Limit Theorem). If {xn, n ∏ 1} is a sequence of
identically distributed independent random variables on the probability space
(ƒ, P) with common mean µ and common nonzero finite variance σ 2 and if sn
denotes their partial sums sn =

Pn
k=1 xk , then as n tends to infinity, the random

variables
p
n (n−1sn − µ) converge in distribution to a random variable whose

cumulative distribution function has derivative 1
σ
p
2π
e−u2/(2σ 2). In particular,

lim
n→∞

P
≥
ω

Ø
Ø a <

p
n

°
n−1sn(ω) − µ

¢
< b

¥
=

1
σ
p
2π

Z b

a
e−u2/(2σ 2) du

whenever a and b are real numbers with a < b.
REMARKS. The probability distribution with density 1

σ
p
2π
e−(t−µ)2/2σ 2 dt is

called the normal distribution with mean µ and variance σ 2. It is commonly
denoted by N (µ, σ 2). Theorem 9.19 identifies the limiting distribution under
the conditions of the theorem as N (0, σ 2). The graph of the density function of
N (µ, σ 2) is a familiar bell-shaped curve. Figure 9.1 shows this curve for the case
that µ = 0 and σ = 1.

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

FIGURE 9.1. Graph of the density of the normal distribution N (0, 1),
namely the graph of (2π)−1/2e−u2/2.

The situation with σ 2 = 0 is a degenerate case of the theorem, and there is still a
result. In this case the random variables in question are almost surely constants,
the various expressions

p
n (n−1sn − µ) are almost surely 0, and the limiting

probability distribution is a point mass at 0.
Thenotation8 is oftenused for the cumulative distribution functionof N (0, 1):

8(t) =
1

p
2π

Z t

−∞
e−s2/2 ds,

and one can find extensive tables of the values of8. A small table of such values
appears in Figure 9.2.
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t 8(t) − 8(−t)
0.5 .382925
1.0 .682689
1.5 .866386
2.0 .954500
2.5 .987581
3.0 .997300
3.5 .999535
4.0 .999937

FIGURE 9.2. Approximate values of 8(x) − 8(−x) for the cumulative
distribution function8 of the normal distribution.

PROOF. Put yn = xn − µ. The means of yn and y2n are

E(yn) = E(xn)−µ = 0 and E(y2n) = E(x2n)−2µE(xn)+µ2 = E(x2n)−µ2.

Thus the variance of xn , namely Var(xn) = E(x2n) − µ2, is equal to the variance
of yn:

Var(yn) = E(y2n) − E(yn)2 = E(y2n) = E(x2n) − µ2 = Var(xn).

The statement of the theorem writes σ 2 for this quantity.
We shall detect the convergence in question by the Lévy Continuity Theorem,

Theorem 9.18. Let ϕy be the common characteristic function of the yn . Since
E(yn) and E(y2n) exist, Proposition 9.16 shows that ϕy is a C2 function. The
Taylor expansion about 0 of a C2 function ϕ is given for t > 0 by Theorem 1.36
of Basic as16

ϕ(t) = ϕ(0) + ϕ0(0)t +
R t
0 (t − s)ϕ00(s) ds

= ϕ(0) + ϕ0(0)t + 1
2ϕ

00(0)t2 +
R t
0

°
ϕ00(s) − ϕ00(0)

¢
(t − s)2 ds.

For ϕ = ϕy , Proposition 9.16 shows that ϕy(0) = 1, ϕ0
y(0) = 0, and

ϕ00
y (0) = −4π2

R
R u

2 dµy = −4π2E(y2) = −4π2σ 2.

Put α(t) =
R t
0

°
ϕ00(s) − ϕ00(0)

¢
(t − s)2 ds

±
t2. Since

Ø
Ø R t
0

°
ϕ00(s) − ϕ00(0)

¢
(t − s)2 ds

Ø
Ø ≤ sup0≤s≤t |ϕ00(s) − ϕ00(0)|

° 1
2 t
2¢,

16The case t < 0 is handled similarly and will be omitted.
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α(t) is continuous for t > 0 and has limt↓0 α(t) = 0. We conclude that the
expansion of ϕy is

ϕy(t) = 1− (2π2σ 2 − α(t))t2. (∗)

Now we consider the characteristic functions of the random variablesp
n (n−1sn − µ) of the theorem. We have

p
n (n−1sn − µ) = n−1/2° nP

k=1
xk − nµ

¢
= n−1/2°

nP

k=1
yk)

Hence

ϕp
n(n−1sn−µ)(t) = ϕy1+···+yn (t/

p
n) by property (d) of

characteristic functions
= ϕy1(t/

p
n) · · ·ϕyn (t/

p
n) by independence and

Proposition 9.17
= ϕy(t/

p
n)n by identical distributions

=
°
1−

°
2π2σ 2−α(t/

p
n)

¢
t2/n

¢n by (∗). (∗∗)

Let us see that this expression has a nonzero limit as n tends to infinity, t being
regarded as fixed. We shall take the logarithm of the expression, write h for 1/n,
and apply the estimate

| log(1− s) + s| ≤ 2s2. (†)

Estimate (†) is valid for |s| ≤ 1
2 by Taylor’s Theorem (Theorem 1.36 of Basic)

applied to the function log(1− s) about s = 0 and the bound of 4 on its second
derivative for |s| ≤ 1

2 .
The logarithm of our expression (∗∗) of interest is

log
°
1−

°
2π2σ 2 − α(t/

p
n )

¢
t2/n

¢n
= n log

°
1− (2π2σ 2 − α(t/

p
n )

¢
t2/n

¢

= h−1 log
°
1− h

°
2π2σ 2 − α(t

p
h )

¢
t2

¢

with h = 1/n, and (†) says that
Ø
Ø log

°
1− h

°
2π2σ 2 − α(t

p
h )

¢
t2

¢
+ h

°
2π2σ 2 − α(t

p
h )

¢
t2

Ø
Ø

≤ 2
°
h
°
2π2σ 2 − α(t

p
h )

¢
t2

¢2

if the side condition Ø
Øh

°
2π2σ 2 − α(t

p
h )

¢
t2

Ø
Ø ≤ 1

2 (††)
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is satisfied. Here t is fixed, and (††) is satisfied for positive h small enough
because limh↓0 α(t

p
h ) = 0. Thus the logarithm of (∗∗) satisfies

Ø
Ø log

°
1−

°
2π2σ 2 − α(t/

p
n )

¢
t2/n

¢n
+

°
2π2σ 2 − α(t

p
h )

¢
t2

Ø
Ø

≤ 2h
°°
2π2σ 2 − α(t

p
h )

¢
t2

¢2
,

where h = 1/n. The right side tends to 0 as n tends to infinity and h tends to 0,
and so does α(t

p
h )t2. Thus

lim
n→∞

log
°
1−

°
2π2σ 2 − α(t/

p
n )

¢
t2/n

¢n
= −2π2σ 2t2.

Since exp is a continuous function,wecanexponentiateboth sides and interchange
exponential and limit, obtaining

lim
n→∞

°
1−

°
2π2σ 2 − α(t/

p
n )

¢
t2/n

¢n
= e−2π2σ 2t2 .

In otherwords, the characteristic functionsof the randomvariables
p
n(n−1sn−µ)

satisfy
lim
n→∞

ϕp
n(n−1sn−µ)(t) = e−2π2σ 2t2

pointwise for all t .
To apply Theorem 9.18 and complete the proof, we need to identify a proba-

bility measure whose Fourier transform is e−2π2σ 2t2 . That is, we want the inverse
Fourier transform of e−2π2σ 2t2 . According to Proposition 8.2 of Basic and the
remarks afterward, the function e−πu2 has Fourier transform e−π t2 , and for a > 0,
the Fourier transform of the dilate u 7→ a−1e−πa−2u2 is t 7→ e−πa2t2 . Thus
the function 1

σ
p
2π
e−u2/(2σ 2) has Fourier transform e−2π2σ 2t2 . In other words,

the sequence {
p
n (n−1sn − µ)} of random variables on (ƒ, P) converges in

distribution to the random variable given by the coordinate function u on the
probability space

°
R, 1

σ
p
2π
e−u2/(2σ 2) du

¢
. §

EXAMPLES.
(1) Flipping a large number of coins results in a normal distribution for the

total number of heads. This special case of the Central Limit Theorem is the
Theorem of de Moivre and Laplace and is the subject of Problem 18 at the end
of the chapter.
(2) Brownian motion, as discussed near the beginning of Section 3. The

collisions of molecules with a microscopic particle impart small changes in the
path of a particle, and the overall motion of the particle can be analyzed in a
discrete model as a sum of independent random variables. Then it is natural to
expect that the motion is governed by the exponential of a quadratic expression,
and the formulas of the beginning of Section 3 are forced on the model. This
effect comes about from the Central Limit Theorem,
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(3) In the Central Limit Theorem, suppose that each of the random variables xj
has the normal distribution N (0, σ 2). In this case we can compute exactly what
is happening within the proof of the theorem. The characteristic function ϕy of
N (0, σ 2) is the Fourier transform of the function (2πσ 2)1/2e−u2/(2σ 2), which is
e−2πσ 2t2 , as was observed near the end of the proof. In other words the function
ϕy in the proof is exactly

ϕy(t) = e−2πσ 2t2 .

Since µ = 0, we obtain

ϕp
n(n−1sn−µ)(t) = ϕy(t/

p
n)n,

just as in (∗∗) of the proof. We have an exact expression for ϕy , and thus

ϕp
n(n−1sn−µ)(t) = (e−2πσ 2(t/

p
n)2)n = e−2πσ 2t2

exactly. Taking the inverse Fourier transform shows that the probability distribu-
tion of

p
n(n−1sn −µ) is exactly 1

σ
p
2π
e−u2/(2σ)2 du, which is N (0, σ 2). In other

words, all the terms of the sequence are the same, and the convergence is trivial.

So far in this chapter, we have seen that probability theory establishes models
that in principle can be used to generate data about future events. In real-world
applications, one wants to work in the opposite direction—taking some data from
past events, extracting parameters to be able to construct a probability model, and
comparing the given data with what happens in that model. This is the question
of statistical inference, a subject in the field of statistics. We look at one aspect
of that question in the next section.

10. Statistical Inference and Gosset’s t Distribution

The Central Limit Theorem is an important tool used in extracting information
in real-world applications. In many practical cases one works with a (very large)
populationbutmeasures someproperty in only someof the possible cases, those in
a sample. Let us concentrate on the mean value. Typically one wants to estimate
the mean value of this property for the whole population but as a practical matter
can compute it only for the sample. One then wants to extrapolate and use the
mean of the sample as the mean of the whole population. The difficulty is in
saying how reliable this extrapolated mean is likely to be, that the answer is
within such-and-such interval with a probability of at least a certain amount.17

17This interval is often called themargin of error. The usual convention unless an author states
otherwise is that the probability of being within the margin of error is at least .95.
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Examples of such cases are voter preferences for candidates for a particular
election and the efficacy of a new drug in medicine. In these examples the
population is made up of people, and each person in the sample is associated
with a random variable xn . The possible values of xn and their probabilities
give a probability distribution associated with that person. The Central Limit
Theorem then gives an idea what to expect of the general population, provided
the hypotheses of independence and identical distributions are satisfied.18
In practice certain known potential dependences need to be taken into account.

With voting preferences it is known that a voter’s age, gender, income, education,
and political affiliation may affect the voting preference. In testing a drug, it
is known that a person’s age, gender, and health history may affect how well a
drug works. The idea is to work with each category separately, assuming that its
members are more or less independent, and to apply the Central Limit Theorem
to each category. Then the results from the different categories are combined
with some weighting. We shall not pursue this question of handling potential
dependences but shall concentrate on situations in which the entire population is
assumed to be independent and identically distributed.
W. S.Gosset studied this situation in a famous 1908paper. Hewas an employee

of a brewery in Ireland, and one of his interests was in assessing the chemical
properties of barley on the basis of a rather small sample. The opening paragraphs
of his paper19 read as follows:

Any experiment may be regarded as forming an individual of a “pop-
ulation” of experiments which might be performed under the same
conditions. A series of experiments is a sample drawn from this
population.
Now any series of experiments is only of value in so far as it enables

us to form a judgment as to the statistical constants of the population
to which the experiments belong. In a greater number of cases the
question finally turns on the value of a mean, either directly, or as the
mean difference between the two quantities.
If the number of experiments be very large, we may have precise

information as to the value of the mean, but if our sample be small, we
have two sources of uncertainty: (1) owing to the “error of random
sampling” the mean of our series of experiments deviates more or
less widely from the mean of the population, and (2) the sample is
not sufficiently large to determine what is the law of distribution of
individuals. It is usual, however, to assume a normal distribution,
because, in a very large number of cases, this gives an approximation

18There are versions of the Central Limit Theorem that relax the assumptions of independence
and identical distributions somewhat, but these versions will not be of concern to us.

19W. S. Gosset (writing under the pseudonym “Student”), “The probable error of a mean,”
Biometrika 6 (1), 1–25.
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so close that a small sample will give no information as to the manner
in which the population deviates from normality: since some law of
distribution must be assumed it is better to work with a curve whose
area and ordinates are tabled, and whose properties are well known.
This assumption is accordingly made in the present paper, so that
its conclusions are not strictly applicable to populations known not
to be normally distributed, yet it appears probable that the deviation
from normality must be very extreme to lead to serious error. We are
concernedhere solelywith the first of these two sources of uncertainty.
The usual method of determining the probability that the mean of

the population lies within a given distance of the mean of the sample
is to assume a normal distribution about the mean of the sample with
a standard deviation equal to s/

p
n, where s is the standard deviation

of the sample, and to use tables of the probability integral.
But, as we decrease the number of experiments, the value of the

standard deviation found from the sample of experiments becomes
itself subject to an increasing error, until judgments reached in this
way become altogether misleading.
In routine work . . . .
There are other experiments, however, which cannot easily be re-

peated very often; in such cases it is sometimes necessary to judge
the certainty of the results from a very small sample, which itself
affords the only indication of the variability. Some chemical, many
biological, and most agricultural and large-scale experiments belong
to this class, which has hitherto been almost outside the range of
statistical inquiry.

. . . The aim of the present paper is to determine the point at which
we may use the tables of the probability integral [pertaining to the
Central Limit Theorem] in judging of the significance of the mean of
a series of experiments, and to furnish alternative tables for use when
the number of experiments is too few.

In the language we have been using, Gosset worked with a sample from a
large population. His random variables x1, . . . , xn picked out some numerical
property of eachmember of a sample of size n from the population. It is helpful to
regard each member ω of the the underlying probability spaceƒ as one possible
situation, as far as those n random variables are concerned. Gosset assumed that
x1, . . . , xn were independent and identically distributed, and he assumed further
that the common probability distribution of the xj ’s was a normal distribution
N (µ, σ 2) in which the mean µ and the variance σ 2 were unknown.20

20In real-life applications the common probability distribution is not likely to be exactly normal,
but it is often approximately normal. In this situation the usual practice is to proceed as if the
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He introduced the sample mean

x̄(ω) = n−1(x1(ω) + · · · + xn(ω))

and the sample variance defined by

s(ω)2 =
1

n − 1

nX

j=1

°
xj (ω) − x̄(ω)

¢2
,

which have
E(x̄) = µ and E(s2) = σ.

The latter equality is what accounts for the coefficient 1
n−1 in the definition of s

2.
Gosset worked with a random variable

t (ω) =
x̄(ω) − µ

s(ω)/
p
n

.

It has an interpretation as the difference between the locations of the samplemean
and the true mean, divided by the sample standard deviation, all multiplied by the
same normalizing factor

p
n as in the statement of the Central Limit Theorem.

In an allusion to Gosset’s pseudonym Student, the probability distribution of t is
often called Student’s t distribution, but we shall follow the simpler convention
of calling itGosset’s t distribution. It has the single parameter n, and for reasons
that will emerge below, one refers to it as the t distribution “with n − 1 degrees
of freedom.” The t distribution can therefore be used to estimate how likely the
true mean is to lie in a given interval about the sample mean.

Theorem 9.20. If n > 1 and if x1, . . . , xn are independent random variables
with the common probability distribution N (µ, σ 2), then the density fn(t) of the
t distribution with n − 1 degrees of freedom is given by21

fn(t) =
0

° n
2
¢

p
(n − 1)π 0

° n−1
2

¢
≥
1+

t2

n − 1

¥−
n
2
.

The proof will be given at the end of this section. Observe that fn(t) depends
neither on µ nor on σ . Because of this property, Gosset’s t distribution is indeed
usable for estimating how likely the true meanµ is to lie in a given interval about
the sample mean x̄(ω). We shall give an example in a moment.

distribution were exactly normal but to be aware that some errors may be introduced through the
approximation. We shall not pursue this matter.

21The formula makes use of the gamma function, defined by 0(x) =
R ∞
0 t x−1e−t dt for x > 0.

This function was studied in Proposition 6.34 of Basic, which showed that 0(x + 1) = x0(x) for
x > 0, 0(1) = 1, 0(n + 1) = n! for integers n ∏ 0, and 0( 12 ) =

p
π .
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The coefficient cn in the expression for fn(t) should be viewed as some harm-
less positive constant; the function (1+ (n− 1)−1t2)−n/2 is integrable on R, and
the coefficient makes

R
R fn(t) dt = 1. If we write cn separately for n even and n

odd, the value is22

cn =






(n − 2)(n − 4) · · · 5 · 3
2
p
n − 1 (n − 3)(n − 5) · · · 4 · 2

for n odd

(n − 2)(n − 4) · · · 4 · 2
π

p
n − 1 (n − 3)n − 5) · · · 5 · 3

for n even.

Problem 20 at the end of the chapter shows that the coefficient cn has a finite
nonzero limit as n tends to infinity and that

lim
n→∞

fn(t) =
1

p
2π

e−t2/2,

i.e., that fn(t) converges pointwise to the density of the normal distribution
N (0, 1). This convergence is illustrated in Figure 9.3. The density of the t
distribution is smaller in the center than that of the normal distribution, and it has
larger tails. As n increases, this effect becomes less pronounced.

FIGURE 9.3. Normal distribution as a limit of Gosset’s t distribution.

The opening of Gosset’s 1908 paper mentioned his forming some tables of his
distribution for various values of n. He stopped forming these tables with n = 30,

22Many authors refer to fn(t) and its coefficient cn by using the number of degrees of freedom
∫ = n − 1 as parameter and then using ∫ + 1 in place of n in all tables and formulas. The role of
the number of degrees of freedom will become a little clearer in the course of the proof of Theorem
9.20.
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apparently regarding the t distributionwith 29 degrees of freedomas close enough
to the normal distribution N (0, 1) to make further tables unnecessary. Nowadays
with high-speed computers, one does need to draw a distinction between small
values of n and large values; instead one can use the t distribution in all cases.
The table in Figure 9.4 shows the minimal choice of c needed so that

R c
−c fn(t) dt

is ∏ .95, ∏ .99, and ∏ .995.

n\Threshold .95 .99 .995
2 12.7065 63.6551 127.3447
3 4.3026 9.9247 14.0887
5 2.7764 4.6041 5.5976
7 2.4469 3.7074 4.3168
10 2.2621 3.2498 3.6896
12 2.2010 3.1058 3.4966
15 2.1448 2.9768 3.3257
20 2.0930 2.8609 3.1737
30 2.0452 2.7564 3.0380
50 2.0096 2.6800 2.9397

→ ∞ 1.9600 2.5759 2.8071

FIGURE 9.4. Table of approximate minimal values of c such thatR c
−c fn(t) dt exceeds a threshold.

23

EXAMPLE. A manufacturer of light bulbs claims in its advertising that one
type of its bulbs last for 1000 hours. A consumer advocate randomly selects 10
bulbs for testing. The sampled bulbs last a mean of 950 hours with a standard
deviation of 50 hours. If the advertising claim were true, what is the probability
that 10 randomly selected bulbs would have an average life of no more than 950
hours? To answer this question, we use the given data to compute a t score. The
computation gives

t =
x̄ − µ

s/
p
n

=
950− 1000
50/

p
10

= −
p
10 ≈ −3.16,

and Figure 9.4 shows that the probability is really small; more precisely the
probability is approximately

R −3.16
−∞ f14(t) dt ≈ .0058. The conclusion is that the

advertising probably exaggerates the lifetime of the light bulbs.

23For a larger table see http://www.easycalculation.com/statistics/
t-distribution/t-distribution-critical-value-table.php, from which this
small table was extracted in February 2016.
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We turn to the proof of Theorem 9.20, beginning with some preliminary work
with some specific probability distributions.
The first of these is the gammadistributionwith parametersα > 0 and ∏ > 0.

It is given by24
∏α

0(α)
xα−1e−∏x dx on (0,+∞).

It is taken to be 0 for x ≤ 0. To check that this is a probability distribution, we
need to check that the coefficient of dx has total integral 1. In fact, the change of
variables y = ∏x gives

∏α

0(α)

Z ∞

0
xα−1e−∏x dx =

∏α

0(α)

Z ∞

0
yα−1∏1−αe−y∏−1 dy = 1,

as required.

Lemma 9.21. Suppose that x1, . . . , xn are independent random variables
and that for 1 ≤ j ≤ n, the random variable xj has the gamma distribution
with parameters αj and ∏. Then x1 + · · · + xn has the gamma distribution with
parameters α1 + · · · + αn and ∏.

REMARK. The proofwill use facts about characteristic functions fromSection7
and also elementary complex analysis as in Appendix B of Basic.

PROOF. Fix α > 0. For Re z > 0, let f (z) =
R ∞
0 zαxα−1e−zx dx . If z

is real and positive, then the change of variables y = zx shows that f (z) =R ∞
0 yα−1e−y dy = 0(α). In other words, f (z) is the constant 0(α) for z real.
Let us show that f (z) is analytic, and then we can conclude that f (z) = 0(α)
for all z with Re z > 0.
The integrand for f (z) is continuous for (z, x) in the set {Re z > 0}× (0,∞),

and it is analytic in the first variable. Lemma B.12 and Corollary B.15 of Basic
show that fε,N (z) =

R N
ε zαxα−1e−zx dx is analytic for Re z > 0 whenever

0 < ε < N < ∞, and as ε tends to 0 and N tends to ∞, fε,N (z) converges
to f (z) uniformly on compact subsets of z with Re z > 0. Consequently f (z)
is analytic for Re z > 0. Since f (z) is constantly equal to 0(α) for z real and
positive, f (z) is constantly equal to 0(α) for Re z > 0. Taking z = ∏ + 2π i t
therefore gives

Z ∞

0
(∏ + 2π i t)αxα−1e−(∏+2π i t)x dx = 0(α) (∗)

for all real t .
24Warning: Some authors define the gamma distribution to have parameters α and β, where β

is the reciprocal of the parameter ∏ here.
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Now we can compute the characteristic function ϕx of a random variable x
having the gamma distribution with parameters α and ∏. This is just the Fourier
transform of the gamma distribution itself. Specifically

ϕx(t) =
Z ∞

0

∏α

0(α)
xα−1e−∏xe−2π i xt dx

=
1

0(α)

≥ ∏

∏ + 2π i t

¥α
Z ∞

0
(∏ + 2π i t)αxα−1e−(∏+2π i t)x dx

Applying (∗), we see that

ϕx(t) =
≥ ∏

∏ + 2π i t

¥α

. (∗∗)

Finally we can prove the lemma. Equation (∗∗) shows for each j that ϕxj (t) =°
∏

∏+2π i t
¢αj . The assumed independence and Proposition 9.17 therefore give

ϕx1+···+xn (t) =
nQ

j=1
ϕxj (t) =

nQ

j=1

°
∏

∏+2π i t
¢αj =

°
∏

∏+2π i t
¢α1+···+αn .

By (∗∗) the right side is the Fourier transform of the gamma distribution with
parameters α1 + · · · + αn and ∏. Since the Fourier transform operator is one-one
on L1(R), x1+· · ·+ xn has the gamma distribution with parameters α1+· · ·+αn
and ∏. §

The second specific probability distribution that we need is the distribution of
u21 + · · · + u2k if u1, . . . , uk are independent random variables with the common
normal distribution N (0, 1). This called the chi-square distribution with k
degrees of freedom. The notation χ2(k) is used for this distribution.

Lemma 9.22. The chi-square distribution with k degrees of freedom equals
the gamma distribution with parameters α = k

2 and ∏ = 1
2 and is given by

1
2k/20(k/2)

xk/2−1e−x/2 dx on (0,∞).

It is 0 for x ≤ 0.

PROOF. First consider k = 1. The statement that u1 has the distribution
N (0, 1) means that the probability distribution of u1 is

(2π)−1/2e−x2/2 dx .
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This implies for a ∏ 0 and b > 0 that

P(a < u1(ω)2 < b) = P(
p
a < |u1(ω)| <

p
b) = 2

R p
bp
a (2π)−1/2e−x2/2 dx .

We apply the change of variables y = x2 and see that the above expression is

= 21/2
R b
a π−1/2e−y/2 1

2 y
−1/2 dy = 2−1/2π−1/2 R b

a y
−1/2e−y/2 dy.

From this we can conclude that the probability distribution of u21 is

2−1/20( 12 )y
−1/2e−y/2 dy on (0,+∞),

which is the gamma distribution with parameters α = 1
2 and ∏ = 1

2 .
Now consider general k. The independence of u1, . . . , uk implies that

u21, . . . , u
2
k are independent, according to Proposition 9.4. Each of them has

the gamma distribution with parameters α = 1
2 and ∏ = 1

2 , and we conclude
from Lemma 9.21 that uk1+ · · ·+ u2k has the gamma distribution with parameters
α = k

2 and ∏ = 1
2 . §

Lemma 9.23. If w and v are independent random variables such that w has
the distribution N (0, 1) and v has the distribution χ2(k) with k > 0, then the
random variable t defined by

t =
w

p
v/k

has Gosset’s t distribution with k degrees of freedom, namely

0( k+12 )
p
kπ 0( k2 )

≥
1+

t2

k

¥− k+1
2

REMARKS. In our application of this lemma to the proof of Theorem 9.20,
the integer k will be n − 1, not n. In the notation of Theorem 9.20, the exact
distributions to which the lemma will be applied are

w =
x̄ − µ

σ/
p
n

=
p
n

≥ x̄ − µ

σ

¥

and v =
(n − 1)s2

σ 2
.

To apply the lemma, we shall need to prove that w has probability distribution
N (0, 1), v has probability distribution χ2(n − 1), and w and v are independent.
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PROOF. We use the technique of Example 3b in Section 2. By independence
the joint probability distribution of (w, v) is

1
p
2π

e−w2/2 1
2k/20(k/2)

vk/2−1e−v/2 dw dv on R × (0,+∞).

Define a new random variable t by t = w/
p

v/k, and change variables from
(w, v) to (t, u) using the transformation with t = w/

p
v/k and u = v. Here

(t, u) lies in R × (0,+∞), and (w, v) 7→ (t, u) is one-one onto. The inverse
transformation hasw = t

p
u/k and v = u, and the Jacobianmatrix of the inverse

transformation is ≥
@w/@t @w/@u

@v/@t @v/@u

¥
=

≥ p
u/k 1

2 t/
p
ku

0 1

¥
.

Thus dw dv =
p
u/k dt du, and the joint probability distribution in the new

variables is p
u/k

p
2π 2k/20(k/2)

e−t2u/(2k)uk/2−1e−u/2 dt du.

To obtain the probability distribution of w, we integrate out the variable u for
u ∈ R. We need to compute

1/
p
k

p
π 0(k/2)

Z ∞

−∞
e−u(1+t2/k)/2(u/2)(k+1)/2u−1 du. (∗)

We use the change of variables x = u(1+ t2/k)/2 to see that (∗) is

=
1

p
kπ 0(k/2)

Z ∞

−∞
e−x x (k+1)/2(1+ t2/k)−(k+1)/2x−1 dx

=
0((k + 1)/2)
p
kπ 0(k/2)

(1+ t2/k)−(k+1)/2,

as required. §

An n-by-n real matrix A is said to be orthogonal if it satisfies AAtr = 1. In
this case we have also AtrA = 1. The condition AAtr = AtrA = 1 is equivalent
to the condition that the columns of A are orthogonal under the dot product and
have length 1, and similarly for rows. The linear transformation corresponding
to an orthogonal matrix preserves volumes and therefore has determinant±1.

Lemma 9.24. Let p1, . . . , pn be independent random variables with N (0, 1)
as probability distribution, and let A be an n-by-n orthogonal matrix. Then the

random variables y1, . . . , yn defined by

√ y1
...
yn

!

= A

√ p1
...
pn

!

are independent and

have N (0, 1) as probability distribution.
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REMARK. This lemma is an illustration of the principle in Example 4 in
Section 2.
PROOF. Write p and y for the respective column vectors p = (p1, . . . , pn)

and (y1, . . . , yn). The probability distribution of each pj is (2π)−1/2e−p2j /2 dpj
by assumption. In terms of the dot product, the independence implies that the
joint probability distribution of p1, . . . , pn is

(2π)−n/2
nQ

j=1
e−(p21+···+p2n)/2 dp1 · · · dpn = (2π)−n/2e−(p·p)/2 dp1 · · · dpn. (∗)

Since A is an orthogonal matrix, y · y = Ap · Ap = p · AtrAp = p · p, and also
| det A| = 1. Thus under the change of variables y = Ap, the expression (∗) is

= (2π)−n/2e−(y·y)/2 dy1 · · · dyn = (2π)−n/2
nQ

j=1
e−(y21+···+y2n )/2 dy1 · · · dyn

=
nQ

j=1
(2π)−1e−y2j /2 dyj

The fact that the joint probability distribution splits as a product proves the
independence of y1, . . . , yn , and we can read off from this formula that the
probability distribution of yj is (2π)−1e−y2j /2 dyj , i.e., that yj has probability
distribution N (0, 1). §

PROOF OF THEOREM 9.20. We define random variables w = σ−1pn(x̄ − µ)
and v = σ−2(n − 1)s2 as in the remarks with Lemma 9.23. Then v/k =
v/(n−1) = σ−2s2, and

p
v/k = σ−1s. The quotient in the statement of Lemma

9.23, which is labeled as t , becomes
w

p
v/k

=
σ−1pn (x̄ − µ)

σ−1s
=
x̄ − µ

s/
p
n

and matches the random variable t in the statement of Theorem 9.20. Theorem
9.20 will therefore follow from Lemma 9.23 if we show that w has probability
distribution N (0, 1), v has probability distribution χ2(n − 1), and w and v are
independent.
Let A be any n-by-n orthogonal matrix whose first row has every entry equal

to 1/
p
n. For example, we can start from

B =














1p
n

1p
n

1p
n

1p
n · · · 1p

n

− 1
2

1
2 0 0 · · · 0

− 1
3 − 1

3
2
3 0 · · · 0

− 1
4 − 1

4 − 1
4

3
4 · · · 0

...
. . .

...

− 1
n − 1

n − 1
n − 1

n · · · n−1
n














.
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Observe that the rows of B are orthogonal under dot product. Define a matrix
A to be the same as B except that the j th row, for j ∏ 2, is to be multiplied byp
j/( j − 1). Then the rows of A are orthogonal and have length 1, so that A is

an orthogonal matrix.25
Define random variables pj for 1 ≤ j ≤ n by pj = σ−1(xj − µ). Proposition

9.4 shows that p1, . . . , pn are independent. A change of variables gives

1p
2π
e−p2j /2 dpj = 1

σ
p
2π
e−(xj−µ)2/(2σ 2) dxj ,

and it follows that pj has probability distribution N (0, 1). Next define random

variables y1, . . . , yn by




y1
...
yn



 = A




p1
...
pn



. Lemma 9.24 shows that y1, . . . , yn

are independent and that each has N (0, 1) as probability distribution. The first
of the new random variables is

y1 = 1p
n (p1 + · · · + pn) = 1

σ
p
n (x1 + · · · + xn − nµ) =

p
n

σ
(x̄ − µ) = w. (∗)

In particular, w has probability distribution N (0, 1). We calculate that

s2 = 1
n−1

nP

j=1
(xj − x̄)2 = 1

n−1
° nP

j=1
x2j − 2x̄

nP

j=1
xj + nx̄2

¢
= 1

n−1
° nP

j=1
x2j − nx̄2

¢
.

(∗∗)
Consequently

nP

j=2
y2j =

nP

j=1
y2j − σ−2n(x̄ − µ)2 by (∗)

=
nP

j=1

° xj−µ

σ

¢2
− σ−2n(x̄ − µ)2 since A is orthogonal

=
≥
σ−2

nP

j=1
x2j − 2σ−2µnx̄ + σ−2nµ2

¥

+
°
− σ−2nx̄2 + 2σ−2nx̄µ − σ−2nµ2

¢

= σ−2
nP

j=1
x2j − σ−2nx̄2

= σ−2(n − 1)s2 by (∗∗)
= v.

25This particular choice of A is called a Helmert matrix. Other choices can be obtained by
extending the first row of the above B to a basis of row vectors and then applying the Gram–Schmidt
orthogonalization process to the rows as in Basic, digital second edition, page 599. All such choices
will serve in the present proof.
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Since the yj are independent and each has probability distribution N (0, 1),
v = σ−2(n − 1)s2 is exhibited as a sum of squares of independent random
variables each distributed according to N (0, 1), and it has probability distribution
χ2(n − 1). Since w depends only on y1 and v depends only on y2, . . . , yn−1,
Proposition 9.4 shows that w and v are independent. Lemma 9.23 is therefore
applicable with n = k − 1, and Theorem 9.20 follows. §

BIBLIOGRAPHICAL REMARKS ABOUT CHAPTER IX. The proof of Theorem
9.5 is adapted from Doob’s Measure Theory, and the proof of Theorem 9.8 is
adapted from Feller’s Volume II of An Introduction to Probability Theory and Its
Applications. The material in Sections 5–9 is partly adapted from the Wikipedia
article “Central Limit Theorem,” as of January 2015, and from the chapter26
“Limit Theorems” of the online Analysis of Data project of Guy Lebanon dated
2012. The mathematics in Section 10 is adapted from the chapter27 “Distri-
butions Derived from the Normal Distribution” in the online lecture notes of
Barbara Bailey on multivariate statistics from Summer 2009. The organization
and overview of Section 10 and the end of Section 9 owe much to conversations
with two statisticians, Sarah Knapp Abramowitz and Jon Kettenring.

11. Problems

1. If x is a random variable with probability distribution µx , find a formula for the
probability distribution µ|x | of |x | in terms of µx .

2. Let x1, . . . , xN be random variables on a probability space (ƒ, P), let µx1,...,xN
be their joint probability distribution, and let 8 : RN → R be a nonnegative
Borel function. Prove that

R
R 8(t1, . . . , tN ) dµx1,...,xN (t1, . . . , tN ) =

R
R s dµ8◦(x1,...,xN )(s),

where µ8◦(x1,...,xN ) is the probability distribution of 8 ◦ (x1, . . . , xN ).

3. Suppose on a probability space (ƒ, P) that {yn}∞n=1 is a sequence of random
variables with a common mean µ and with variance σ 2n , and suppose that
8 : R → R is a bounded continuous function.
(a) Prove that P({|yn − µ| ∏ δ}) ≤ σ 2n δ−2 for all n.
(b) Suppose that |8| ≤ M and that δ and ≤ are positive numbers such that

|t − µ| < δ implies |8(t) − 8(µ)| < ≤. Prove that |E(8(yn)) − 8(µ)| ≤
≤ + 2Mσ 2n δ−2.

(c) Prove that if limn σ 2n = 0, then limn E(8(yn)) = 8(µ).

26This is Chapter 8 of Volume 1.
27This is Chapter 6, and the relevant lectures are Lectures 9 and 11.
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(d) Show that the argument in (c) continues to work if8 is the indicator function
of an interval whose closure does not contain µ. Why does the conclusion
in this case contain the conclusion of the Weak Law of Large Numbers as in
Theorem 9.7?

4. (Bernstein polynomials) This problem gives a constructive proof of the Weier-
strass Approximation Theorem by using probability theory.
(a) Fix p with 0 ≤ p ≤ 1. A certain unbalanced coin comes up “heads” with

probability p and “tails” with probability 1 − p; “heads” is scored as the
outcome 1, and “tails” is scored as the outcome 0. Set up a probabilitymodel
(ƒ, P) for a sequence of independent coin tosses of this unbalanced coin,
and let xn be the outcome of the nth toss.

(b) Show that the mean of the outcome of a single toss of the coin is p and the
variance is p(1− p).

(c) Let sn = x1 + · · · + xn . Show for each integer k with k ≤ n that
P({sn = k}) =

°n
k
¢
pk(1− p)n−k .

(d) For continuous 8 : [0, 1] → R, extend 8 to all of R so as to be constant
on (−∞, 0] and on [1,+∞). Apply the result of Problem 3c to show that
limn

Pn
k=08

° k
n
¢°n
k
¢
pk(1− p)n−k = 8(p).

(e) Prove that the convergence in (d) is uniform for 0 ≤ p ≤ 1, and conclude
that8 is the uniform limit of an explicit sequence of polynomials on [0, 1].

Problems 5–9 are closely related to the Kolmogorov Extension Theorem (Theorem
9.5) and in a sense explain the mystery behind its proof. Let X be a compact metric
space, and for each integer n ∏ 1, let Xn be a copy of X . Define ƒ(N ) = ×N

n=1Xn ,
and let ƒ = ×∞

n=1Xn . Each of ƒ(N ) and ƒ is given the product topology. If E
is a Borel subset of ƒ(N ), we can regard E as a subset of ƒ by identifying E with
E ×

°×∞
n=N+1Xn). In this way any Borel measure on ƒ(N ) can be regarded as a

measure on a certain σ -subalgebra FN of the σ -algebra B(ƒ) of Borel sets.

5. Prove that
S∞

n=1Fn = F is an algebra of sets.

6. Let ∫n be a (regular) Borel measure on ƒ(n) with ∫(ƒ(n)) = 1, and regard ∫n
as defined on Fn . Suppose for each n that ∫n agrees with ∫n+1 on Fn . Define
∫(E) for E in F to be the common value of ∫n(E) for n large. Prove that ∫ is
nonnegative additive, and prove that in a suitable sense ∫ is regular on F.

7. Using the kind of regularity established in the previous problem, prove that ∫ is
completely additive on F.

8. In view of Problems 6 and 7, ∫ extends to a measure on the smallest σ -algebra
for ƒ containing F. Prove that this σ -algebra is B(ƒ).
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9. Let X be a 2-point space, and let ∫n be 2−n on each one-point subset of ƒ(n), so
that the resulting ∫ onƒ is coin-tossing measure on the space of all sequences of
“heads” and “tails.” Exhibit a homeomorphism ofƒ onto the standard Cantor set
in [0, 1] that sends ∫ to the usual Cantor measure, which is the Stieltjes measure
corresponding to the Cantor function that is constructed in Section VI.8 of Basic.

Problems 10–14 concern the Kolmogorov Extension Theorem (Theorem 9.5) and its
application to Brownian motion. If J is a subset of the index set I , a subset A of ƒ

will be said to be of type J if A can be described by

A = x−1
J (E) = {ω ∈ ƒ | xJ ∈ E} for some subset E ⊆ SJ .

As in the statement of the Kolmogorov theorem, let A0 be the smallest algebra
containing all subsets of ƒ that are measurable of type F for some finite subset
F of I . Let A be the smallest σ -algebra containingA0.
10. From the fact that the collection of subsets ofƒ that are of type J is a σ -algebra,

prove that every set in A is of type J for some countable set J .
11. Form Brownian motion for time I = [0, T ] by means of the Kolmogorov Exten-

sion Theorem. Let C be the subset of continuous elements ω inƒ. Prove that C
is not in A.

12. With C as in Problem 11, prove that the only member ofA contained in C is the
empty set, and conclude that the inner measure of C relative to P is 0.

13. Still with C as in Problem 11, suppose that E is a subset ofƒ of type J for some
countable J and that C ⊆ E . Prove that the set CJ of elements ω in ƒ that are
uniformly continuous on J is contained in E .

14. Still with C as in Problem 11, suppose for every countable subset J of I that the
set CJ of elements ω in ƒ that are uniformly continuous on J is in A and has
P(CJ ) = 1. Prove that the outer measure of C relative to P is 1.

Problems 15–19 concern methods of convergence and examples of them. In each
problem, all random variables are assumed to be defined on a fixed probability space
(ƒ, P).
15. Prove that if a sequence of random variables {xn} converges to x in probability,

then a subsequence of {xn} converges to x almost surely.
16. Suppose that c is a constant and {xn} is a sequence of random variables such

that E(xn) = c for all n and limn Var(xn) = 0. Prove that {xn} converges to the
constant c in probability.

17. In connection with the implication (b) implies (c) in the Portmanteau Lemma,
give an example to show that there exist a sequence {µn} of finite Stieltjes mea-
sures and another Stieltjes measure µ such that limn

R
R g dµn =

R
R g dµ for all

g ∈ Ccom(R) but not for all bounded continuous g on R.
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18. (Theorem of de Moivre and Laplace ) The setting of this problem is the same
as for Problems 4a–c, the repeated tossing of an unbalanced coin, and the result is
the original historical conclusion of the Central Limit Theorem. Using Theorem
9.19, verify that

lim
n
P

≥
ω

Ø
Ø a<(

p
n)−1

°
sn(ω) − np

¢
< b

¥
=

R b
a exp

°
− u2
2p(1−p)

¢
du

p
2πp(1− p)

.

19. For integers k ∏ 0 and n ∏ 0 and real ∏, define pn,∏(k) =
°n
k
¢°

∏
n
¢k°1 − ∏

n
¢n−k

and p∏(k) = ∏k

k! e
−∏.

(a) Check that
nP

k=0
pn,∏(k) = 1 and that

∞P

k=0
p∏(k) = 1. The probability distri-

bution that assigns weight pn,∏(k) to the integer k is called the binomial
distribution with parameters n and ∏, and the probability distribution that
assigns weight p∏(k) to the integer k is called the Poisson distribution
with parameter ∏.

(b) Fix ∏, let xn,∏ be a random variable having probability distribution given by
pn,∏, and let x∏ be a random variable having probability distribution given
by p∏. Prove that {xn,∏} converges to x∏ in distribution.

(c) Calculate the mean and variance of x∏.

20. InTheorem9.20write fn(t) = cn
°
1+ t2

n−1
¢−n/2, i.e., write cn for the coefficient in

the statement of the theorem. This problem shows that fn(t) converges pointwise
to (2π)−1/2e−t2/2, as was asserted just before Figure 9.3.
(a) Prove for arbitrary c > 0 that s 7→ (1+ c/s)s is an increasing function of s

for s > 0.
(b) Deduce from (a) that n 7→

°
1+ t2

n−1
¢−(n−1)/2 decreases to e−t2/2 as n tends to

+∞, and explain why it follows that limn→∞ c−1n fn(t) = e−t2/2 pointwise.
(c) Using the Dominated Convergence Theorem, prove the pointwise limit

formula
lim
n→∞

R
R

°
1+ t2

n−1
¢−n/2 dt =

R
R e

−t2/2 dt,

and deduce as a consequence that limn→∞ c−1n =
p
2π .

21. In the setting in Section 10 of sample size n, let tn = (x̄ − µ)/(s/
p
n) be the

random variable defined before the statement of Theorem 9.20, and let t∞ be
a random variable with distribution N (0, 1). Suppose that the sample size n in
Theorem 9.20 is allowed to tend to infinity. Explain how it follows from Problem
20 that the random variables tn converge to t∞ in distribution.

Problems 22–26 give a direct computational proof, without characteristic functions,
of the Central Limit Theorem (Theorem 9.19) under the assumption that the common
distribution of the random variables xn is normal of type N (µ, σ 2).
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22. If c is a constant and if a random variable x has a probability distribution of the
form f (t) dt , what is the form of the probability distribution of x + c?

23. If c is a positive constant and if a random variable x has a probability distribution
of the form f (t) dt , what is the form of the probability distribution of cx?

24. If x and y are independent random variables whose respective probability dis-
tributions are of the form f (x) dx and g(x) dx , it was shown in Example 3b in
Section 2 that the probability distribution of x + y is ( f ∗ g)(x) dx . Under the
assumption that x and y are independent and have probability distributions both
normal, of the respective forms N (µ, σ 2) and N (µ0, σ 02), show that x + y is
normally distributed of the form N (µ + µ0, σ 2 + σ 02).

25. Suppose that {xn, n ∏ 1} is a sequence of independent random variables, each
with the probability distribution N (µ, σ 2). Find the distribution of the random
variable

wn =
p
n

≥ x1 + · · · + xn
n

− µ
¥
.

26. In what sense is the convergence in distribution of the random variables wn in
the previous problem to a random variable with probability distribution N (0, σ 2)
trivial?




