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CHAPTER VI

Compact and Locally Compact Groups

Abstract. This chapter investigates several ways that groups play a role in real analysis. For the
most part the groups in question have a locally compact Hausdorff topology.
Section 1 introduces topological groups, their quotient spaces, and continuous group actions.

Topological groups are groups that are topological spaces in such a way that multiplication and
inversion are continuous. Their quotient spaces by subgroups are of interestwhen they areHausdorff,
and this is the case when the subgroups are closed. Many examples are given, and elementary
properties are established for topological groups and their quotients by closed subgroups.
Sections 2–4 investigate translation-invariant regular Borel measures on locally compact groups

and invariant measures on their quotient spaces. Section 2 deals with existence and uniqueness in the
group case. A left Haar measure on a locally compact group G is a nonzero regular Borel measure
invariant under left translations, and right Haar measures are defined similarly. The theorem is that
left and right Haar measures exist on G, and each kind is unique up to a scalar factor. Section
3 addresses the relationship between left Haar measures and right Haar measures, which do not
necessarily coincide. The relationship is captured by the modular function, which is a certain
continuous homomorphism of the group into the multiplicative group of positive reals. The modular
function plays a role in constructing Haar measures for complicated groups out of Haar measures for
subgroups. Of special interest are “unimodular” locally compact groups G, i.e., those for which the
left Haarmeasures coincidewith the right Haarmeasures. Every compact group, and of course every
locally compact abelian group, is unimodular. Section 4 concerns translation-invariant measures on
quotient spaces G/H . For the setting in which G is a locally compact group and H is a closed
subgroup, the theorem is that G/H has a nonzero regular Borel measure invariant under the action
of G if and only if the restriction to H of the modular function of G coincides with the modular
function of H . In this case the G invariant measure is unique up to a scalar factor. Section 5
introduces convolution on unimodular locally compact groups G. Familiar results valid for the
additive group of Euclidean space, such as those concerning convolution of functions in various L p
classes, extend to be valid for such groups G.
Sections 6–8 concern the representation theory of compact groups. Section 6 develops the

elementary theory of finite-dimensional representations and includes some examples, Schur or-
thogonality, and properties of characters. Section 7 contains the Peter–Weyl Theorem, giving an or-
thonormal basis of L2 in terms of irreducible representations and concludingwith an Approximation
Theorem showing how to approximate continuous functions on a compact group by trigonometric
polynomials. Section 8 shows that infinite-dimensional unitary representations of compact groups
decompose canonically according to the irreducible finite-dimensional representations of the group.
An example is given to show how this theorem may be used to take advantage of the symmetry in
analyzing a bounded operator that commutes with a compact group of unitary operators. The same
principle applies in analyzing partial differential operators.

212



1. Topological Groups 213

1. Topological Groups

The theme of this chapter is the interaction of real analysis with groups. We shall
work with topological groups, their quotients, and continuous group actions, all
of which are introduced in this section. A topological group is a group G with a
Hausdorff topology such that multiplication, as a mapping G ×G → G, and in-
version, as amappingG → G, are continuous. Ahomomorphism of topological
groups is a continuous group homomorphism. An isomorphism of topological
groups is a group isomorphism that is a homeomorphism of topological spaces.

EXAMPLES.
(1) Any discrete group, i.e., any group with the discrete topology.
(2) The additive group R or C with the usual metric topology. The group

operation is addition, and the inversion operation is negation.
(3) The multiplicative groups R× = R − {0} and C× = C − {0}, with the

relative topology from R or C.
(4) Any subgroup of a topological group, with the relative topology. Thus, for

example, the circle
©
z ∈ C

Ø
Ø |z| = 1

™
is a subgroup of C×.

(5) Any product of topological groups, with the product topology. Thus,
for example, the additive groups RN and CN are topological groups. So is the
countable product of two-element groups, each with the discrete topology; in this
case the topological space in question is homeomorphic to the standard Cantor
set in [0, 1].
(6) The general linear group GL(N , C) of all nonsingular N -by-N complex

matrices, with matrix multiplication as group operation. The topology is the
relative topology from CN 2 . Each entry in a matrix product is a polynomial in
the 2N 2 entries of the two matrices being multiplied and is therefore continuous;
thus matrix multiplication is continuous. Inversion is defined on the set where
the determinant polynomial is not 0 and is given, according to Cramer’s rule, in
each entry by the quotient of a polynomial function and the determinant function;
thus inversion is continuous. By (4), the general linear group GL(N , R) is a
topological group.
(7) The additive group of any topological vector space in the sense of Section

IV.1. The additive groups of normed linear spaces are special cases.

In working with topological groups, we shall use expressions like

aU = {au | u ∈ U} and Ub = {ub | u ∈ U},

U−1 = {u−1 | u ∈ U} and UV = {uv | u ∈ U, v ∈ V }.
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In any topological group every left translation y 7→ xy and every right translation
y 7→ yx is a homeomorphism. The continuity of each translation follows by
restriction from the continuity of multiplication, and the continuity of the inverse
of a translation follows because the inverse of a translation is translation by the
inverse element. For an abstract topological group, we write 1 for the identity
element.
Continuity of the multiplication mapping G × G → G at (1, 1) implies, for

any open neighborhood V of the identity inG, that there is an open neighborhood
U of the identity for whichUU ⊆ V . Inversion, being a continuous operation of
order two, carries open sets to open sets; therefore if U is an open neighborhood
of the identity, so is U ∩ U−1. Combining these facts, we see that if V is an
open neighborhood of the identity, then there is an open neighborhood U of the
identity such that UU−1 ⊆ V .
Conversely if whenever V is an open neighborhood of the identity, there is an

open neighborhoodU of the identity such thatUU−1 ⊆ V , then it follows that the
mapping (x, y) 7→ xy−1 is continuous at (x, y) = (1, 1). If also all translations
are homeomorphisms, then (x, y) 7→ xy−1 is continuous, and it follows easily
that x 7→ x−1 and (x, y) 7→ xy are continuous.

Proposition 6.1. If G is a topological group, thenG is regular as a topological
space.

PROOF. We are to separate by disjoint open sets a point x and a closed set
F with x /∈ F . Since translations are homeomorphisms, we may assume x to
be 1. Then V = Fc is an open neighborhood of 1, and we can choose an open
neighborhood U of 1 such that UU ⊆ V . Let us see that U cl ⊆ V . From
UU ⊆ V and 1 ∈ U , we haveU ⊆ V . Thus let y be inU cl −U . Since y is then
a limit point of U and since U−1y is an open neighborhood of y, U−1y meets
U . If z is in U−1y ∩ U , then z = u−1y for some u in U , and so y = uz is in
UU ⊆ V . Thus U cl ⊆ V and U cl ∩ F = ∅. Consequently G is regular. §

If H is a subgroup of G, then the quotient space G/H of left cosets aH
results from the equivalence relation that a ∼ b if there is some h in H with
a = bh. The quotient space is given the quotient topology. Quotient spaces of
topological groups are sometimes called homogeneous spaces.

Proposition 6.2. Let G be a topological group, let H be a closed subgroup,
and let q : G → G/H be the quotient map. Then q is an open map, and
G/H is a Hausdorff regular space such that the action of G on G/H given by
(g, aH) 7→ (ga)H is continuous. Moreover,

(a) G separable implies G/H separable,
(b) G locally compact implies G/H locally compact,
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(c) G is compact if and only if H and G/H are compact,
(d) H normal in the group-theoretic sense implies that G/H is a topological

group.

PROOF. Let U be open. To show that q(U) is open, we are to show that
q−1(q(U)) is open. But q−1(q(U)) =

S
h∈H Uh, which is open, being the union

of open sets. Hence q is open.
To consider the action of G on H , we start from the continuous open mapping

1 × q : G × G → G × (G/H) given by (g, a) 7→ (g, aH). This descends to
a well-defined one-one mapping eq : (G × G)/(1 × H) → G × (G/H) given
by (g, a)(1 × H) 7→ (g, aH), and the quotient topology is defined in such a
way that this is continuous. The image under eq of an open set is the same as
the image under 1 × q of the same open set, and this is open. Thereforeeq is a
homeomorphism.
The mapping (g, a) 7→ (ga)H is the composition of multiplication (g, a) 7→

ga followed by q and is therefore continuous. Hence it descends to a continuous
map (g, a)(1 × H) 7→ (ga)H . If eq−1 is followed by this continuous map, the
resulting map is (g, aH) 7→ (ga)H , which is the action of G on G/H . Hence
the action is continuous.
To see that G/H is regular, we are to separate by disjoint open sets a point x

in G/H and a closed set F with x /∈ F . The continuity of the action shows that
we may assume x to be 1H . Then M = Fc is an open neighborhood of 1H in
G/H , and the continuity of the action at (1, 1H) shows that we can choose an
open neighborhood U of 1 in G and an open neighborhood N of 1H in G/H
such that UN ⊆ M . Let us see that N cl ⊆ M . Using the identity element of U ,
we see that N ⊆ M . Thus let y be in N cl − N . Since y is then a limit point of N
and sinceU−1y is an open neighborhood of y (q being open),U−1y meets N . If
z is inU−1y ∩ N , then z = u−1y for some u inU , and so y = uz is inUN ⊆ M .
Thus N cl ⊆ M and N cl ∩ F = ∅. Consequently G/H is regular.
To see that G/H is Hausdorff, consider the inverse image under q of a coset

xH . This inverse image is xH as a subset of G, and this subset is closed in G
since H is closed and translations are homeomorphisms. Thus G/H is T1, as
well as regular, and consequently it is Hausdorff.
Conclusion (a) follows from the fact that q is open, since the image under q of

a countable base of open sets is therefore a countable base for G/H . Conclusion
(b) is similarly immediate; the image of a compact neighborhood of a point is a
compact neighborhood of the image point.
In (c), letG be compact. Then H is compact as a closed subset of a compact set,

and G/H is compact as the continuous image of a compact set. In the converse
direction let U be an open cover of G. For each x in G, U is an open cover of the
subset xH of G, which is compact since it is homeomorphic to H . Let Vx be a
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finite subcover of xH , and let

Vx = {y ∈ G | yH is covered by Vx}.

We show that Vx is open in G. Let Wx be the open union of the members of
Vx . If y is in Vx , then yh is in Wx for all h in H . For each such h, we use the
continuity of multiplication to find open neighborhoods Uh of 1 and Nh of h in
G such that UhyNh ⊆ Wx . As h varies, the sets Nh cover H . If {Nh1, . . . , Nhm }
is a finite subcover, then each set (Uh1 ∩ · · · ∩Uhm )yNhj lies in Wx and hence so
does (Uh1 ∩ · · · ∩Uhm )yH . Thus (Uh1 ∩ · · · ∩Uhm )y lies in Vx , and Vx is open.
The definition of Vx makes Vx H = Vx , and thus q−1qVx = Xx . The open

sets Vx together cover G, and hence the open sets qVx cover G/H . SinceG/H is
compact, some finite subcollection {qVx1, . . . , qVxn } covers G/H . The equality
q−1qVxj = Vxj for all j implies that {Vx1, . . . , Vxn } is an open cover of G. ThenSn

j=1 Vxj is a finite subcollection of U that covers G. This proves (c).
In (d), suppose that H is group-theoretically normal, and let V be an open

neighborhood of 1 in G/H . Choose, by the continuity of the action on G/H , an
open neighborhoodU of 1 inG and an open neighborhood N of 1H inG/H such
that UN ⊆ V . Then qU and N are open neighborhoods of the identity in G/H
such that (qU)N ⊆ V . Hence multiplication in G/H is continuous at (1, 1).
Since the map G → G/H given for fixed aH by g 7→ (ga)H is continuous,
the descended map gH 7→ (gH)(aH) is continuous. Thus left translations are
continuous on G/H , and multiplication on G/H is continuous everywhere. To
see continuity of inversion on G/H , let V be an open neighborhood of 1 in
G/H , and let U be an open neighborhood of 1 in G with U−1 ⊆ q−1(V ). Then
q(U−1) ⊆ V , and inversion is continuous at the identity. Since left and right
translations are continuous on G/H , inversion is continuous everywhere. This
completes the proof. §

Proposition 6.3. If G is a topological group, then
(a) any open subgroup H ofG is closed and the quotientG/H has the discrete

topology,
(b) any discrete subgroup H ofG (i.e., any subgroupwhose relative topology

is the discrete topology) is closed.

REMARK. Despite (a), a closed subgroup need not be open. For example, the
closed subgroup Z of integers is not open in the additive group R.
PROOF. For (a), if H is an open subgroup, then every subset xH of G is open

in G. Then the formula H = G −
S

x /∈H xH shows that H is closed. Also,
since G → G/H is an open map, the openness of the subset xH of G implies
that every one-element set {xH} in G/H is open. Thus G/H has the discrete
topology.



1. Topological Groups 217

For (b), choose by discreteness an open neighborhood V of 1 in G such that
H ∩ V = {1}. By continuity of multiplication, choose an open neighborhoodU
of 1 with UU ⊆ V . If H is not closed, let x be a limit point of H that is not
in H . Then the neighborhood U−1x of x must contain a member h of H , and h
cannot equal x since x is not in H . Write u−1x = h with u ∈ U . Then u = xh−1

is a limit point of H that is not in H , and we can find h0 6= 1 in H such that h0

is in Uu. But Uu ⊆ UU ⊆ V , and so h0 is in H ∩ V = {1}, contradiction. We
conclude that H contains all its limit points and is therefore closed. §

A compactgroup is a topological groupwhose topology is compactHausdorff.
Similarly a locally compact group is a topological group whose topology is lo-
cally compactHausdorff. Among the examplesat thebeginningof this section, the
following are locally compact: any group with the discrete topology, the additive
groups R and C, the multiplicative groups R× and C×, the circle as a subgroup
of C×, the additive groups RN and CN , the general linear groups GL(N , R)
and GL(N , C), and the additive groups of finite-dimensional topological vector
spaces. An arbitrary direct product of compact groups, with the product topology,
is a compact group. Similarly any finite direct product of locally compact groups
is a locally compact group.
A number of interesting subgroups of GL(N , R) and GL(N , C) are defined

as the sets of matrices where certain polynomials vanish. Since polynomials are
continuous, these subgroups are closed in GL(N , R) or GL(N , C). The next
proposition says that they provide further examples of locally compact groups.

Proposition 6.4. Any closed subgroup of a locally compact group is a locally
compact in the relative topology.

PROOF. Let G be the given locally compact group, and let H be the closed
subgroup. As a subgroup of a topological group, H is a topological group. For
local compactness, choose a compact neighborhoodUh in G of any element h of
H . ThenUh∩H is a compact set in H since H is closed, and it is a neighborhood
of h in the relative topology. Thus h has a compact neighborhood, and H is a
locally compact group. §

EXAMPLES OF CLOSED SUBGROUPS OF GL(N , R) AND GL(N , C).

(1) Affine group of the line. This consists of all matrices
≥
a b
0 1

¥
with a and b

real and with a > 0.
(2) Upper triangular group over R or C. This consist of all matrices whose

entries on the diagonal are all nonzero, whose entries above the diagonal are
arbitrary, and whose entries below the diagonal are 0.
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(3) Commutator subgroup of previous example. This consists of all matrices
whose entries on the diagonal are all 1, whose entries above the diagonal are
arbitrary in R or C, and whose entries below the diagonal are 0.
(4) Special linear group SL(N , F) with F equal to R or C. This consists of all

N -by-N matrices with determinant 1.
(5) Symplectic group Sp(N , F) with F equal to R or C. This consists of all

2N -by-2N matrices g with determinant 1 such that gtr
≥

0 1N
−1N 0

¥
g =

≥
0 1N

−1N 0

¥
.

(6) Unitary groupU(N ). This consists of all N -by-N complex matrices g that
are unitary in the sense that ḡtrg = 1. The group is compact; the compactness of
the topology follows since the members of U(N ) form a closed bounded subset
of a Euclidean space. The group SU(N ) is the subgroup of all g in U(N ) with
determinant 1; it is a closed subgroup of U(N ) and hence is compact.
(7) Orthogonal group O(N ) and rotation group SO(N ). The group O(N )

consists of all N -by-N realmatrices that areorthogonal in the sense that gtrg = 1;
it is the intersection1 of the unitary group U(N ) with GL(n, R). Members of
O(N ) have determinant±1. The subgroup SO(N ) consists of those members of
O(N ) with determinant 1, i.e., the rotations. The groups O(N ) and SO(N ) are
compact.

Proposition 6.5. If G is a locally compact group, then
(a) any compact neighborhood V of 1 with V = V−1 has the property that

H =
S∞

n=1 V n is a σ -compact open subgroup,
(b) G is normal as a topological space.
PROOF. The set V n is the result of applying the multiplication mapping to

V × · · · × V with n factors. This mapping is continuous, and hence V n is
compact. Thus H is σ -compact. Since V nVm = Vm+n , H is closed under
multiplication. Since V = V−1, we have V n = (V−1)n = (V n)−1, and H is
closed under inversion. Thus H is a subgroup. Since V is a neighborhood of 1,
V x is a neighborhood of x . Therefore V n+1 is a neighborhood of each member
of V n , and H is open. This proves (a).
Let H be as in (a). The subspace H ofG is σ -compact and hence Lindelöf, and

Tychonoff’s Lemma2 shows that it is normal as a topological subspace. Let {xα}
be a complete system of coset representatives for H inG, so thatG =

S
α xαH is

exhibited as the disjoint union of open closed sets, each of which is topologically
normal. If E and F are disjoint closed sets in G, then E ∩ xαH and F ∩ xαH
are disjoint closed sets in xαH . Hence there exist disjoint open sets Uα and Vα

in xαH such that E ∩ xαH ⊆ Uα and F ∩ xαH ⊆ Vα. Then U =
S

α Uα and

1This fact provides justification for using the term “unitary” in Proposition 2.6 even when F = R.
2Proposition 10.9 of Basic.
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V =
S

α Vα are disjoint open sets inG such that E ⊆ U and F ⊆ V . This proves
(b). §

The final proposition of the section shows that members of Ccom(G) are
uniformly continuous in a certain sense that can be defined without the aid of
a metric.

Proposition 6.6. If G is a locally compact group and f is in Ccom(G), then
for any ≤ > 0, there is an open neighborhood W of the identity with W = W−1

such that xy−1 ∈ W implies | f (x) − f (y)| < ≤.

PROOF. Let S be the support of f , and let ≤ > 0 be given. For each y in S, let
Uy be an open neighborhood of y such that x ∈ Uy implies | f (x)− f (y)| < ≤/2.
Since Uy y−1 is a neighborhood of 1, we can find an open neighborhood Vy of 1
with Vy = Vy−1 and VyVy ⊆ Uy y−1. As y varies through S, the sets Vy y
form an open cover of S. Let {Vy1 y1, . . . , Vyn yn} be a finite subcover, and put
W = Vy1 ∩ · · · ∩ Vyn . This will be the required neighborhood of 1.
To see thatW has the property asserted, let xy−1 be inW . If f (x) = f (y) = 0,

then | f (x) − f (y)| < ≤. If f (y) 6= 0, then for some k, y is in Vyk yk ⊆
Uyk y

−1
k yk = Uyk and thus | f (yk) − f (y)| < ≤/2. Also, x = (xy−1)y is in

WVyk yk ⊆ Vyk Vyk yk ⊆ Uyk y
−1
k yk ⊆ Uyk and thus | f (x) − f (yk)| < ≤/2. Hence

| f (x) − f (y)| < ≤. Finally if f (x) 6= 0, then W = W−1 implies that yx−1 is in
W , the roles of x and y are interchanged, and the proof that | f (x) − f (y)| < ≤
goes through as above. §

Corollary 6.7. If G is a locally compact group and f is in Ccom(G), then the
map of G × G into C(G) given by (g, g0) 7→ f (g( · )g0) is continuous.

PROOF. We first prove two special cases. If g0 ∈ G and ≤ > 0 are given,
then Proposition 6.6 produces an open neighborhood W of the identity such
that supx∈G | f (gx − f (g0x)| < ≤ for gg−1

0 in W , and hence g 7→ f (g( · )) is
continuous. Applying this result to the function ef given by ef (x) = f (x−1)
and using continuity of the inversion map x 7→ x−1 within G, we see that
g0 7→ f (( · )g0) is continuous.
Now we reduce the general case to these two special cases. If (g0, g0

0) is given
in G × G, then

| f (gxg0) − f (g0xg0
0)| ≤ | f (gxg0) − f (g0xg0)| + | f (g0xg0) − f (g0xg0

0)|

≤ sup
x∈G

| f (gx) − f (g0x)| + sup
x∈G

| f (xg0) − f (xg0
0)|.

The two special cases show that the right side tends to 0 as (g, g0) tends to (g0, g0
0),

and the corollary follows. §
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If G is a group and X is a set, a group action of G on X is a function
G × X → X , often written (g, x) 7→ gx , such that

(i) 1x = x for all x in X ,
(ii) g1(g2x) = (g1g2)x for all x in X and all g1 and g2 in G.

If G is a topological group and X has a Hausdorff topology, a continuous group
action is a group action such that the map (g, x) 7→ gx is continuous. In this case
we say that G acts continuously on X . The fundamental example is the action of
G on the quotient space G/H by a closed subgroup: (g, g0H) 7→ (gg0)H .
An orbit for a group action of G on X is any subset Gx of X . The action

is transitive if there is just one orbit, i.e., if Gx = X for some, or equivalently
every, x in X . This is the situation with the fundamental example above. The
action of the general linear group GL(N , R) on RN by matrix multiplication is a
continuous group action that is not transitive; it has two orbits, one open and the
other closed.
LetG act continuously on X , fix x0 in X , and let H be the subgroup of elements

h inGwith hx0 = x0. This is the isotropy subgroup at x0. It is a closed subgroup,
being the inverse image in G of the closed set {x0} under the continuous function
g 7→ gx0. Proposition 6.2 shows that the quotient topology on the setG/H of left
cosets is Hausdorff. Since G/H has the quotient topology, the continuous map
G → Gx0 given by g 7→ gx0 descends to a one-one continuous map G/H →
Gx0. In favorable cases the map G/H → Gx0 is a homeomorphism with its
image, and Problems 2–4 at the end of the chapter give sufficient conditions for
it to be a homeomorphism. Sometimes the ability to do serious analysis on X
depends on having the map be a homeomorphism. A case in which it is not a
homeomorphism is the action of the discrete additive line G on the ordinary line
X = R by translation.

2. Existence and Uniqueness of Haar Measure

The point of view in Basic in approaching the Riesz Representation Theorem
for a locally compact Hausdorff space X was that the steps in the construction
of Lebesgue measure work equally well with X . The only thing that is missing
is some device to encode geometric data—to provide a generalization of length.
That missing ingredient is captured by any positive linear functional onCcom(X),
but there is no universal source of interesting such functionals.
For the next few sections we shall impose additional structure on X , assuming

now that X is a locally compact group in the sense of Section 1. We shall see in
this case that a nonzero positive linear functional always exists with the property
that it takes equal values on a function and any left translate of the function.
In other words the positive linear functional has the same kind of invariance
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property under translation as the Riemann integral. The corresponding regular
Borel measure, which is Lebesguemeasure in the case of the line, is called a (left)
“Haar measure” and is the main object of study in Sections 2–5 of this chapter.
Several examples of locally compact groups were given in Section 1. Among

them are the circle group, the additive group RN , and the general linear groups
GL(N , C) andGL(N , R), which consist of all N -by-N nonsingular matrices and
have matrix multiplication as the group operation. Proposition 6.4 showed that
any closed subgroup of a locally compact group is itself a locally compact group.
Special linear groups, unitary groups, orthogonal groups, and rotation groups are
among the examples that were mentioned.
Thus let G be a locally compact group. We shall write the group multiplica-

tively exceptwhenweare dealingwith special exampleswhere a different notation
is more suitable. Ordinarily no special symbol will be used for a translation map
in G. Thus left translations are simply the homeomorphisms x 7→ gx for g in G,
and right translations are the maps x 7→ xg.
Let us consider these as special cases of what any continuous mapping does.

The notationwill be clearer if we distinguish the domain from the image. Thus let
8 be a continuousmapping of a locally compact Hausdorff space X into a locally
compact Hausdorff space Y . The mapping 8 carries subsets of X to subsets of
Y by the rule 8(E) = {8(x) | x ∈ E}.
If8 is a homeomorphism, it preserves the topological character of sets. Thus

compact sets go to compact sets, Gδ’s go to Gδ’s, and so on. Consequently Borel
sets map to Borel sets, and Baire sets map to Baire sets.
By contrast a scalar-valued function f on Y pulls back to the scalar-valued

function f 8 on X given by f 8(x) = f (8(x)), with continuity being preserved.
A Borel measure µ on X pushes forward to a measure µ8 on Y given by
µ8(E) = µ(8−1(E)); the measure µ8 is defined on Borel sets but need not be
finite on compact sets. If 8 is a homeomorphism, however, then µ8 is a Borel
measure, and regularity of µ implies regularity of µ8.
Of great importance for current purposes is the effect of 8 on integration,

where the effect is that of a change of variables. The formula is

Z

X
f 8 dµ =

Z

Y
f dµ8

if f is a Borel function ∏ 0, for example. To prove this formula, we first
take f to be the indicator function IE of a subset E of Y . On the left side we
have I8

E (x) = IE(8(x)) = I8−1(E)(x). Hence the left side equals
R
X I

8
E dµ =

µ(8−1(E)) = µ8(E), which in turn equals the right side
R
Y IE dµ8. Linearity

allowsus to extend this conclusion to nonnegative simple functions, andmonotone
convergence allows us to pass to Borel functions ∏ 0.
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An important consequence of the boxed formula is the formula

(F dµ)8 = F8−1
dµ8.

In fact, if we set f = F8−1 IE in the boxed formula, then we obtain
R
X F I

8
E dµ =

R
Y F

8−1 IE dµ8. Thus
R
8−1(E) F dµ =

R
E F

8−1 dµ8 and (F dµ)8(E) =

(F dµ)(8−1(E)) =
R
8−1(E) F dµ =

R
E F

8−1 dµ8 = (F8−1 dµ8)(E).
The Euclidean change-of-variables formula3 is a special case of the boxed

formula, and the content of the theoremamounts to an explicit identificationofµ8.
Let ϕ : U → ϕ(U) be a diffeomorphism with detϕ0(x) nowhere 0. If y = ϕ(x),
then the formula gives dy = | detϕ0(x)| dx . Since dy = d(ϕ(x)) = (dx)ϕ−1 , the
formula is saying that (dx)ϕ−1 = | detϕ0(x)| dx . We recover the usual Euclidean
integration formula by applying the boxed formula with 8 = ϕ−1, X = ϕ(U),
Y = U , dµ = dy, and dµϕ−1 = | detϕ0(x)| dx , and then by letting F = f ϕ−1 .
The result is

R
ϕ(U) F(y) dy =

R
U F(ϕ(x))| detϕ0(x)| dx , as it should be.

The rule for composition for points and sets is that (9 ◦ 8)(x) = 9(8(x))
and (9 ◦ 8)(E) = 9(8(E)). But for functions and measures the rules are
f 9◦8 = ( f 9)8 and µ9◦8 = (µ8)9 . In other words, when 8 is followed by
9 in operating on points and sets, 8 is again followed by 9 in pushing forward
measures, but 9 is followed by 8 in pulling back functions. In the special
case that X = Y = G, this feature will mean that certain expressions that we
might want to write as triple products do not automatically satisfy an expected
associativity property without some adjustment to the notation.
First consider left translation. On points, left translation Lh by h sends x to

hx , and left translation by g sends this to g(hx) = (gh)x . The behavior on
sets is similar. On functions and measures we therefore have f Lgh = f Lg Lh =
( f Lh )Lg and µLgh = µLgLh = (µLh )Lg . To obtain group actions on functions and
measures, we therefore define

(g f )(x) = f L
−1
g (x) = f (g−1x) and (gµ)(E) = µLg (E) = µ(g−1E)

for g in G. With these definitions we have g(h f ) = (gh) f and g(hµ) = (gh)µ,
consistently with the formulas for a group action.
With right translation the effect on points is that right translation by h sends x

to xh, and right translation by g sends this to (xh)g = x(hg). The behavior on
sets is similar. We want the same kind of formula with functions and measures,
and to get it we define

( f g)(x) = f (xg−1) and (µg)(E) = µ(Eg−1)

3Theorem 6.32 of Basic.
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for g in G. With these definitions we have ( f h)g = f (hg) and (µh)g = µ(hg).
These are the formulas of what we might view as a “right group action.”
A nonzero regular Borel measure on G invariant under all left translations is

called a left Haar measure on G. A right Haar measure on G is a nonzero
regular Borel measure invariant under all right translations. The main theorem,
whose proof will occupy much of the remainder of this section, is as follows.

Theorem 6.8. IfG is a locally compact group, thenG has a left Haar measure,
and it is unique up to a multiplicative constant. Similarly G has a right Haar
measure, and it is unique up to a multiplicative constant.

Before coming to the proof, we give some examples. Checking the invariance
in each case involves using the boxed formula above for some homeomorphism
8. In Euclidean situations we can often evaluate µ8 directly by the change-of-
variables formula for multiple integrals. In an abelian group the left and right
Haar measures are the same, and we speak simply of Haar measure; but this need
not be true in nonabelian groups, as one of the examples will illustrate.

EXAMPLES.
(1) G = RN under addition. Lebesgue measure is a Haar measure.
(2) G = GL(N , R). Problem 4 in Chapter VI of Basic showed that if MN is

the N 2-dimensional Euclidean space of all real N -by-N matrices and if dx refers
to its Lebesgue measure, then

Z

MN

f (gx)
dx

| det x |N
=

Z

MN

f (x)
dx

| det x |N

for each nonsingular matrix g and Borel function f ∏ 0. In the formula, gx is
the matrix product of g and x . Problem 10 in the same chapter showed that the
zero locus of any polynomial that is not identically zero has Lebesgue measure 0.
Thus the set where det x = 0 hasmeasure 0, andwe can rewrite the above formula
as Z

GL(N ,R)

f (gx)
dx

| det x |N
=

Z

GL(N ,R)

f (x)
dx

| det x |N
,

where dx is still Lebesgue measure on the underlying Euclidean space of all
N -by-N matrices. This formula says that dx

| det x |N is a left Haar measure on
GL(N , R). This measure happens to be also a right Haar measure.

(3) G =
n≥

a b
0 1

¥o
with real entries and a > 0. Then a−2 da db is a left Haar

measure and a−1 da db is a right Haar measure. To check the first of these asser-
tions, let ϕ be left translation by

≥
a0 b0
0 1

¥
. Since

≥
a0 b0
0 1

¥ ≥
a b
0 1

¥
=

≥
a0a a0b+b0
0 1

¥
,
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we can regard ϕ as the vector function ϕ
° a
b

¢
=

≥
a0a

a0b+b0

¥
with ϕ0

° a
b

¢
=

≥
a0 0
0 a0

¥

and
Ø
Ø detϕ0

° a
b

¢ Ø
Ø = a20. Then (da db)ϕ−1 = a20 da db and (a−2 da db)ϕ−1 =

(a−2)ϕ(da db)ϕ−1 = (a0a)−2a20 da db = a−2 da db. So a−2 da db is indeed a
left Haar measure. By a similar argument, a−1 da db is a right Haar measure.

We shall begin the proof of Theorem 6.8 with uniqueness. The argument will
use Fubini’s Theorem for certain Borel measures on G, and we need to make two
adjustments to make Fubini’s Theorem apply. One is to work with Baire sets,
rather than Borel sets, so that the product σ -algebra from the Baire sets of G
times the Baire sets of G is the σ -algebra of Baire sets for G × G.4 The other is
to arrange that the spaces we work with are σ -compact. The device for achieving
the σ -compactness is Proposition 6.5, which shows that G always has an open
σ -compact subgroup H . Imagine that we understand the restriction of a left Haar
measure µ to H . We form the left cosets gH , all of which are open in G. Any
compact set is covered by all these cosets, and there is a finite subcover. That
means that any compact set K is contained in the union of finitely many cosets
gH , say in g1H ∪ · · · ∪ gnH . We can compute µ on any gH by translating the
set by g−1. This fact and the formula µ(K ) =

Pn
j=1 µ(K ∩ gj H) together show

that we can compute µ(K ) from a knowledge of µ on H . Thus there is no loss
of generality in the uniqueness question in assuming that G is σ -compact.

PROOF OF UNIQUENESS IN THEOREM 6.8. As remarked above, G has a
σ -compact open subgroup H , and it is enough to prove the uniqueness for H .
Changing notation, we may assume that our given group is σ -compact. We work
with Baire sets in this argument.
Letµ1 andµ2 be left Haar measures. Then the sumµ = µ1+µ2 is a left Haar

measure, andµ(E) = 0 impliesµ1(E) = 0. By the Radon–Nikodym Theorem,5
there exists a Baire function h1 ∏ 0 such that µ1 = h1 dµ. Fix g in G. By the
left invariance of µ1 and µ, we have

Z

G
f (x)h1(g−1x) dµ(x) =

Z

G
f (gx)h1(x) dµ(x) =

Z

G
f (gx) dµ1(x)

=
Z

G
f (x) dµ1(x) =

Z

G
f (x)h1(x) dµ(x)

for every Baire function f ∏ 0. Therefore the measures h1(g−1x) dµ(x) and
h1(x) dµ(x) are equal, and h1(g−1x) = h1(x) for almost every x ∈ G (with
respect to dµ). We can regard h1(g−1x) and h1(x) as functions of (g, x) ∈ G×G,

4Proposition 11.17 of Basic.
5Theorem 9.16 of Basic.
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and these are Baire functions since the group operations are continuous. For each
g, they are equal for almost every x . By Fubini’s Theorem they are equal for
almost every pair (g, x) (with respect to the productmeasure), and then for almost
every x they are equal for almost every g. Pick one such x , say x0. Then it follows
that h1(x) = h1(x0) for almost every x . Thus dµ1 = h1(x0) dµ. So dµ1 is a
multiple of dµ, and so is dµ2. §

Nowwe turn our attention to existence. The shortest and best-motivated known
proof dates from 1940 andmodifies Haar’s original argument in two ways that we
shall mention. First let us consider that original argument, in which the setting is
a locally compact separable metric topological group. In trying to construct an
invariant measure, there is not much to work with, the situation being so general.
We can get an idea how to proceed by examining RN , where we are trying to
construct Lebesgue measure out of almost nothing. We do have some rough
comparisons of size because of the compactness. If we take a compact geometric
rectangle and an open geometric rectangle, the latter centered at the origin, the
compactness ensures that finitely many translates of the open rectangle together
cover the compact rectangle. The smallest such number of translates is a rough
estimate of the ratio of their Lebesgue measures. This integer estimate in some
sense becomes more refined as the open rectangle gets smaller, but the integer in
question grows in size also. To take this scaling factor into account, we compare
this integer ratio with the integer ratio for some standard compact rectangle as
the open rectangle gets small. This ratio of two integer ratios appears to be a
good approximation to the ratio of the measure of the general compact rectangle
to the measure of the standard compact rectangle. In fact, one easily shows that
this ratio of ratios is bounded above and below as the open rectangle shrinks
in size through a sequence of rectangles to a point. The Bolzano–Weierstrass
Theorem gives a convergent subsequence for the ratio of ratios. It turns out that
this convergence has to be addressed only for countably many of the compact
rectangles, and this we can do by the Cantor diagonal process. Then we obtain
a value for the measure of each compact rectangle in the countable set and, as
a result, for all compact rectangles. It then has to be shown that we can build a
measure out of this definition of the measure on compact rectangles.
Two things are done to modify the above argument to obtain a general proof

for locally compact groups. One is to replace the Cantor diagonal process by an
application of the Tychonoff Product Theorem. The other is to bypass the long
process of constructing a measure on Borel sets from its values on compact sets
by instead using positive linear functionals and applying the Riesz Representation
Theorem. Once an initial comparison can be made with continuous functions of
compact support, rather than compact sets and open sets, the path to the theorem
is fairly clear. It is Lemma 6.9 below that says that the initial comparison can be
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carried out with such functions. For a locally compact group G, let C+
com(G) be

the set of nonnegative elements in Ccom(G).

Lemma 6.9. If f and ϕ are nonzero members of C+
com(G), then there exist

a positive integer n, finitely many members g1, . . . , gn of G, and real numbers
c1, . . . , cn all > 0 such that

f (x) ≤
nX

j=1
cjϕ(gj x) for all x .

REMARK. We let H( f,ϕ) be the infimum of all finite sums
P

j cj as in the
statement of the lemma. The expression H( f,ϕ) is called the value of the Haar
covering function at f and ϕ.

PROOF. Fix c > k f ksup/kϕksup. The set U = {x | cϕ(x) > k f ksup} is open
and nonempty, and the sets hU , for h ∈ G, form an open cover of the support
of f . Choose a finite subcover, writing

support( f ) ⊆ h1U ∪ · · · ∪ hnU.

For 1 ≤ j ≤ n, we then have

hjU = {x | h−1
j x ∈ U} = {x | cϕ(h−1

j x) > k f ksup}

⊆ {x | f (x) ≤
Pn

j=1 cϕ(h−1
j x)}.

Hence
support( f ) ⊆ {x | f (x) ≤

Pn
j=1 cϕ(h−1

j x)}.

The lemma follows with gj = h−1
j and with all cj equal to c. §

Lemma 6.10. The Haar covering function has the properties that
(a) H(g f,ϕ) = H( f,ϕ) for g in G,
(b) H( f1 + f2,ϕ) ≤ H( f1,ϕ) + H( f2,ϕ),
(c) H(c f,ϕ) = cH( f,ϕ) for c > 0,
(d) f1 ≤ f2 implies H( f1,ϕ) ≤ H( f2,ϕ),
(e) H( f,√) ≤ H( f,ϕ)H(ϕ,√),
(f) H( f,ϕ) ∏ k f ksup

±
kϕksup.

PROOF. Properties (a) through (d) are completely elementary. For (e), the
inequalities f (x) ≤

P
i ciϕ(gi x) and ϕ(x) ≤

P
j dj√(hj x) together imply that

f (x) ≤
P

i, j ci dj√(hj gi x). Therefore

H( f,√) ≤ inf
P

i, j ci dj =
°
inf

P
i ci

¢°
inf

P
j dj

¢
= H( f,ϕ)H(ϕ,√).
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For (f), the fact that a continuous real-valued function on a compact set attains its
maximum value allows us to choose y such that f (y)=k f ksup. Then k f ksup=
f (y) ≤

P
j cjϕ(gj y) ≤

P
j cjkϕksup and hence k f ksup

±
kϕksup ≤

P
j cj . Tak-

ing the infimum over systems of constants cj gives k f ksup
±
kϕksup ≤ H( f,ϕ).

§

Following the outline above, we now perform the normalization. Fix a nonzero
member f0 of C+

com(G). If ϕ and f are nonzero members of C+
com(G), define

`ϕ( f ) = H( f,ϕ)
±
H( f0,ϕ).

After listing some elementary properties of `ϕ , we shall prove in effect that `ϕ is
close to being additive if the support of ϕ is small.

Lemma 6.11. `ϕ( f ) has the properties that
(a) 0 < 1

H( f0, f ) ≤ `ϕ( f ) ≤ H( f, f0),
(b) `ϕ(g f ) = `ϕ( f ) for g in G,
(c) `ϕ( f1 + f2) ≤ `ϕ( f1) + `ϕ( f2),
(d) `ϕ(c f ) = c`ϕ( f ) if c > 0 is a constant.

PROOF. Properties (b), (c), and (d) are immediate from (a), (b), and (c) of
Lemma 6.10. For (a), we apply Lemma 6.10e with ϕ there equal to f0 and with
√ there equal to ϕ, and the resulting inequality is H( f,ϕ) ≤ H( f, f0)H( f0,ϕ).
Thus `ϕ( f ) ≤ H( f, f0). Then we apply apply Lemma 6.10e with f there equal
to f0, ϕ there equal to f , and √ there equal to ϕ. The resulting inequality is
H( f0,ϕ) ≤ H( f0, f )H( f,ϕ). Thus 1/H( f0, f ) ≤ `ϕ( f ). §

Lemma 6.12. If f1 and f2 are nonzero members of C+
com(G) and if ≤ > 0 is

given, then there exists an open neighborhood V of the identity in G such that

`ϕ( f1) + `ϕ( f2) ≤ `ϕ( f1 + f2) + ≤

for every nonzero ϕ in C+
com(G) whose support is contained in V .

PROOF. Let K be the support of f1 + f2, and let F be a member of Ccom(G)
with values in [0, 1] such that F is 1 on K . The number ≤ > 0 is given in the
statement of the lemma, and we let δ be a positive number to be specified. Define
f = f1 + f2 + δF , h1 = f1/ f , and h2 = f2/ f , with the convention that h1 and
h2 are 0 on the set where f is 0.
The functions h1 and h2 are continuous: In fact, there is no problem on the

open set where f (x) 6= 0. At a point x where f (x) = 0, the functions h1 and h2
are continuous unless x is a limit point of the set where f1 + f2 is not 0. This
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set is contained in K , and thus x must be in K . On the other hand, F is 1 on K ,
and hence f is ∏ δ on K . Hence there are no points x where h1 or h2 fails to be
continuous.
Let η > 0 be another number to be specified. By Proposition 6.6 let V be an

open neighborhood of the identity such that V = V−1 and also
|h1(x) − h1(y)| < η and |h2(x) − h2(y)| < η

whenever xy−1 is in V . If ϕ ∈ C+
com(G) has support in V and if positive constants

cj and group elements gj are chosen such that f (x) ≤
P

j cjϕ(gj x) for all x ,
then every x for which ϕ(gj x) > 0 has the property that

|h1(g−1
j ) − h1(x)| < η and |h2(g−1

j ) − h2(x)| < η.

Hence
f1(x) = f (x)h1(x) ≤

X

j
cjϕ(gj x)h1(x) ≤

X

j

°
cj (h1(g−1

j ) + η)
¢
ϕ(gj x).

Consequently
H( f1,ϕ) ≤

X

j

°
cj (h1(g−1

j ) + η)
¢
.

Similarly
H( f2,ϕ) ≤

X

j

°
cj (h2(g−1

j ) + η)
¢
.

Adding, we obtain

H( f1,ϕ) + H( f2,ϕ) ≤
X

j

°
cj (h1(g−1

j ) + h2(g−1
j ) + 2η)

¢
≤

X

j
cj (1+ 2η)

since h1 + h2 ≤ 1. Taking the infimum over the cj ’s and the gj ’s gives
H( f1,ϕ) + H( f2,ϕ) ≤ H( f,ϕ)(1+ 2η).

Therefore
`ϕ( f1) + `ϕ( f2)

≤ `ϕ( f )(1+ 2η)

≤
°
`ϕ( f1 + f2) + δ`ϕ(F)

¢
(1+ 2η) by (c) and (d) in Lemma 6.11

≤ `ϕ( f1 + f2) +
°
δH(F, f0) + 2δηH(F, f0) + 2ηH( f1 + f2, f0)

¢
,

the last inequality holding by Lemma 6.11a. This proves the inequality of the
lemma if δ and η are chosen small enough that

δH(F, f0) + 2δηH(F, f0) + 2ηH( f1 + f2, f0) < ≤. §

Lemma 6.13. There exists a nonzero positive linear functional ` on Ccom(G)
such that `( f ) = `(g f ) for all g ∈ G and f ∈ Ccom(G).
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PROOF. For each nonzero f in C+
com(G), let Sf be the closed interval

[1/H( f0, f ), H( f, f0)]. Let S be the compact Hausdorff space

S = ×
f ∈C+

com(G),

f 6=0

Sf .

A member of S is a function that assigns to each nonzero member f of C+
com(G)

a real number in the closed interval Sf , and `ϕ( f ) is such a function, according
to Lemma 6.11a. For each open neighborhood V of the identity in G, define

EV =
©
`ϕ

Ø
Ø ϕ ∈ C+

com(G), ϕ 6= 0, support(ϕ) ⊆ V
™

as a nonempty subset of S. If V ⊆ V 0, then EV ⊆ EV 0 and hence also EclV ⊆ EclV 0 .
Thus if V1, . . . , Vn are open neighborhoods of the identity, then

EclV1∩···∩Vn ⊆ EclV1 ∩ · · · ∩ EclVn .

Consequently the closed sets EclV have the finite-intersection property. Since S is
compact, they have nonempty intersection. Let ` be a point of S lying in their
intersection. For ` to be in EclV for a particular V means that for each ≤ > 0 and
each finite set f1, . . . , fn of nonzero members of C+

com(G), there is a nonzero ϕ
in C+

com(G) with support in V such that

|`( f j ) − `ϕ( f j )| < ≤ for 1 ≤ j ≤ n. (∗)

On the nonzero functions in C+
com(G), let us observe the following facts:

(i) `( f ) ∏ 0 and `( f0) = 1, the latter because `ϕ( f0) = 1 for all ϕ.
(ii) `( f ) = `(g f ) for g ∈ G, since for any ≤ > 0, |`( f ) − `(g f )| ≤

|`( f )− `ϕ( f )|+ |`ϕ( f )− `ϕ(g f )|+ |`ϕ(g f )− `(g f )| < 2≤ by Lemma
6.11b if V and ϕ are as in (∗) for the two functions f and g f .

(iii) `( f1 + f2) = `( f1) + `( f2) because if ≤ > 0 is given, if V is chosen for
this ≤ according to Lemma 6.12, and if ϕ is chosen for f1, f2, and f as in
(∗), then we have `( f1 + f2) ≤ `ϕ( f1 + f2) + ≤ ≤ `ϕ( f1) + `ϕ( f2) + ≤
≤ `( f1) + `( f2) + 3≤ and `( f1) + `( f2) ≤ `ϕ( f1) + `ϕ( f2) + 2≤ ≤
`ϕ( f1 + f2) + 3≤ ≤ `( f1 + f2) + 4≤, the next-to-last inequality holding
by Lemma 6.12.

(iv) `(c f ) = c`( f ) for c > 0 because if V and ϕ are as in (∗) for ≤ > 0
and the two functions f and c f , then we have `(c f ) ≤ `ϕ(c f ) + ≤ =
c`ϕ( f )+≤ ≤ c`( f )+(c+1)≤ and c`( f ) ≤ c`ϕ( f )+c≤ = `ϕ(c f )+c≤ ≤
`(c f ) + (c + 1)≤.

Becauseof (iii) and (iv), ` extends to a linear functional onCcom(G), and this linear
functional is positive by (i) and satisfies the invariance condition `( f ) = `(g f )
by (ii). §
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PROOF OF EXISTENCE IN THEOREM 6.8. Fix a nonzero function f0 in C+
com(G),

and let µ be the measure given by the Riesz Representation Theorem as corre-
sponding to the positive linear functional ` in Lemma 6.13. If K0 is a nonempty
compact Gδ and if { fn} is a decreasing sequence in Ccom(G)with pointwise limit
IK0 , then we have

R
G g fn dµ =

R
G fn dµ for all g ∈ G and all n. Passing to

the limit and applying dominated convergence gives
R
G gIK0 dµ =

R
G IK0 dµ.

Now gIK0(x) = IK0(g−1x) = IgK0(x), and hence µ(gK0) = µ(K0) for all g.
In other words, the regular Borel measures g−1µ and µ agree on compact Gδ’s.
This equality is enough6 to force the equality g−1µ = µ for all g. Finally µ is
not the 0 measure since

R
G f0 dµ = 1. §

3. Modular Function

We continue with G as a locally compact group. From now on, we shall often
denote particular left and right Haar measures on G by dl x and dr x , respectively.
An important property of left and right Haar measures is that

any nonempty open set has nonzero Haar measure.

In fact, in the case of a left Haarmeasure, if any compact set is given, finitelymany
left translates of the given open set together cover the compact set. If the open set
had 0 measure, so would its left translates and so would every compact set. Then
the measure would be identically 0 by regularity. A similar argument applies to
any right Haar measure. We shall occasionally make use of this property without
explicit mention.
Actually, left Haar measure and right Haar measure have the same sets of

measure 0, as will follow from Proposition 6.15c below. Thus we are completely
justified in using the expression “nonzero Haar measure” above.
Fix a left Haar measure dl x . Since left translations on G commute with right

translations, dl( · g) is a left Haar measure for any g ∈ G. Left Haar measures
are proportional, and we therefore define themodular function1 : G → R+ of
G by

dl( · g) = 1(g−1) dl( · ).

Lemma 6.14. For any regular Borel measure µ on G, any g0 in G, and any p
with 1 ≤ p < ∞, the limit relations

limg→g0
R
G | f (gx) − f (g0x)|p dµ(x) = 0

limg→g0
R
G | f (xg) − f (xg0)|p dµ(x) = 0and

6Propositions 11.19 and 11.18 of Basic.



3. Modular Function 231

hold for each f in Ccom(G). In particular,

g 7→
R
G f (gx) dµ(x) and g 7→

R
G f (xg) dµ(x)

are continuous scalar-valued functions for such f .
PROOF. Corollary 6.7 shows that g 7→ f (g( · )) is continuous from G into

C(G). Let ≤ > 0 be given, and choose a neighborhood N of g0 such that
supx∈G | f (gx)− f (g0x)| ≤ ≤ for g in N . If K is a compact neighborhood of g0,
then the set of products K support( f ) is compact, being the continuous image of a
compact subset of G×G under multiplication. It therefore has finite µmeasure,
say C . When g is in K ∩ N , we have

R
G | f (gx) − f (g0x)|p dµ(x) ≤ ≤ pµ(K support( f )) = C≤ p,

and the first limit relation follows. Taking p = 1, we have
Ø
Ø R

G f (gx) dµ(x) −
R
G f (g0x) dµ(x)

Ø
Ø ≤

R
G | f (gx) − f (g0x)| dµ(x),

and we have just seen that the right side tends to 0 as g tends to g0. This proves
the first conclusion about continuity of scalar-valued functions.
For the other limit relation and continuity result, we replace f by the function

ef with ef (x) = f (x−1), and we apply to ef what has just been proved, taking into
account the continuity of the inversion mapping on G. §

Proposition 6.15. The modular function1 for G has the properties that
(a) 1 : G → R+ is a continuous group homomorphism,
(b) 1(g) = 1 for g in any compact subgroup of G,
(c) dl(x−1) and 1(x) dl x are right Haar measures and are equal,
(d) dr (x−1) and 1(x)−1 dr x are left Haar measures and are equal,
(e) dr (g · ) = 1(g) dr ( · ) for any right Haar measure on G.

PROOF. For (a), we take dµ(x) = dl x in Lemma 6.14 and see that the function
g 7→

R
G f (xg) dl x =

R
G f (x) dl(xg−1) = 1(g)

R
G f (x) dl x is continuous if f

is in Ccom(G). Since there exist functions f in Ccom(G) with
R
G f (x) dl x 6= 0,

g 7→ 1(g) is continuous. The homomorphismproperty follows from the fact that
1(hg) dl x=dl(x(hg)−1)=dl((xg−1)h−1)=1(h) dl(xg−1)=1(h)1(g) dl x .
For (b), the image under 1 of any compact subgroup of G is a compact

subgroup of R+ and hence is {1}.
In (c), put dµ(x) = 1(x) dl x . This is a regular Borel measure since 1 is

continuous by (a). Since1 is a homomorphism, we have
R
G f (xg) dµ(x) =

R
G f (xg)1(x) dl x =

R
G f (x)1(xg−1) dl(xg−1)

=
R
G f (x)1(x)1(g−1)1(g) dl x

=
R
G f (x)1(x) dl x =

R
G f (x) dµ(x).
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Hence dµ(x) is a rightHaarmeasure. Meanwhile, dl(x−1) is a rightHaarmeasure
because

R
G f (xg) dl(x−1) =

R
G f (x−1g) dl x =

R
G f ((g−1x)−1) dl x

=
R
G f (x−1) dl x =

R
G f (x) dl(x−1).

Thus Theorem 6.8 for right Haar measures implies that dl(x−1) = c1(x) dl x for
some constant c > 0. Changing x to x−1 in this formula, we obtain

dl x = c1(x−1) dl(x−1) = c21(x−1)1(x) dl x = c2 dl x .

Hence c = 1, and (c) is proved.
For (d) and (e) there is no loss of generality in assuming that dr x = dl(x−1) =

1(x) dl x , in view of (c). Conclusion (d) is immediate from this identity if we
replace x by x−1. For (e) we have
R
G f (x) dr (gx) =

R
G f (g−1x) dr x=

R
G f (g−1x)1(x) dl x=

R
G f (x)1(gx) dl x

= 1(g)
R
G f (x)1(x) dl x = 1(g)

R
G f (x) dr x,

and we conclude that dr (g · ) = 1(g) dr ( · ). §

The locally compact group G is said to be unimodular if every left Haar
measure is a right Haar measure (and vice versa). In this case we can speak of
Haar measure on G.
In view of Proposition 6.15e, G is unimodular if and only if 1(t) = 1 for all

t ∈ G. Locally compact abelian groups are of course unimodular. Proposition
6.15b shows that compact groups are unimodular.
Any commutator ghg−1h−1 in G is carried to 1 by the modular function 1.

Consequently any group that is generated by commutators, such as SL(N , R),
is unimodular. More generally any group that is generated by commutators,
elements of the center, and elements of finite order is unimodular; GL(N , R) is
an example.

Theorem 6.16. Let G be a separable locally compact group, and let S and T
be closed subgroups such that S ∩ T is compact, multiplication S × T → G is
an open map, and the set of products ST exhausts G except possibly for a set of
Haar measure 0. Let1T and1G denote the modular functions of T andG. Then
the left Haar measures on G, S, and T can be normalized so that

Z

G
f (x) dl x =

Z

S×T
f (st)

1T (t)
1G(t)

dls dl t

for all Borel functions f ∏ 0 on G.
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REMARK. The assumption of separability avoids all potential problems with
using Fubini’s Theorem in the course of the proof. Problems 21–22 at the end of
the chapter give a condition under which multiplication S × T → G is an open
map, and they provide examples.

PROOF. Let ƒ ⊆ G be the set of products ST , and let K = S ∩ T . The group
S×T acts continuously onƒ by (s, t)ω = sωt−1, and the isotropy subgroup at 1
is diag K . Thus the map (s, t) 7→ st−1 descends to a map (S× T )/diag K → ƒ.
This map is a homeomorphism since multiplication S × T → G is assumed to
be an open map.
Hence any Borel measure on ƒ can be reinterpreted as a Borel measure on

(S×T )/diag K . We apply this observation to the restrictionof a leftHaarmeasure
dl x for G from G to ƒ, obtaining a Borel measure dµ on (S × T )/diag K . On
ƒ, we have

dl(s0xt−10 ) = 1G(t0) dl x,

and the action unwinds to

dµ((s0, t0)(s, t)(diag K )) = 1G(t0) dµ((s, t)(diag K )) (∗)

on (S × T )/diag K . Using the Riesz Representation Theorem, define a measure
deµ(s, t) on S × T in terms of a positive linear functional on Ccom(S × T ) by

Z

S×T
f (s, t) deµ(s, t) =

Z

(S×T )/diag K

h Z

K
f (sk, tk) dk

i
dµ((s, t)(diag K )),

where dk is a Haar measure on K normalized to have total mass 1. From (∗) it
follows that

deµ(s0s, t0t) = 1G(t0) deµ(s, t).

The same proof as for the uniqueness in Theorem 6.8 shows that any two Borel
measures on S× T with this property are proportional, and1G(t) dls dl t is such
a measure. Therefore

deµ(s, t) = 1G(t) dls dl t

for a suitable normalization of dls dl t .
The resulting formula is

Z

ƒ

f (x) dl x =
Z

S×T
f (st−1)1G(t) dls dl t

for all Borel functions f ∏ 0 on ƒ. On the right side the change of variables
t 7→ t−1 makes the right side become

Z

S×T
f (st)1G(t)−1 dls1T (t) dl t,
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according to Proposition 6.15c, and we can replaceƒ by G on the left side since
the complement of ƒ in G has measure 0 by assumption. This completes the
proof. §

4. Invariant Measures on Quotient Spaces

If H is a closed subgroup of G, then we can ask whether G/H has a nonzero G
invariant Borel measure. Theorem 6.18 belowwill give a necessary and sufficient
condition for this existence, butweneed somepreparation. Fix a leftHaarmeasure
dlh for H . If f is in Ccom(G), define

f #(g) =
Z

H
f (gh) dlh.

This function is invariant under right translation by H , and we can define

f ##(gH) = f #(g).

The function f ## has compact support on G/H .

Lemma 6.17. The map f 7→ f ## carries Ccom(G) onto Ccom(G/H), and a
nonnegative member of Ccom(G/H) has a nonnegative preimage in Ccom(G).

PROOF. Let π : G → G/H be the quotient map. Let F ∈ Ccom(G/H) be
given, and let K be a compact set in G/H with F = 0 off K . We first produce
a compact set eK in G with π(eK ) = K . For each coset in K , select an inverse
image x and let Nx be a compact neighborhood of x in G. Since π is open, π of
the interior of Nx is open. These open sets cover K , and a finite number of them
suffices. Then we can take eK to be the intersection of the closed set π−1(K )with
the compact union of the finitely many Nx ’s.
Next let KH be a compact neighborhood of 1 in H . Since nonempty open

sets always have positive Haar measure, the left Haar measure on H is positive
on KH . Let eK 0 be the compact set eK 0 = eKKH , so that π(eK 0) = π(eK ) = K .
Choose f1 ∈ Ccom(G) with f1 ∏ 0 everywhere and with f1 = 1 on eK 0. If g is in
eK 0, then

R
H f1(gh) dlh is ∏ the H measure of KH , and hence f ##1 is > 0 on K .

Define

f (g) =






f1(g)
F(π(g))
f ##1 (π(g))

if π(g) ∈ K ,

0 otherwise.

Then f ## equals F on K and equals 0 off K , and therefore f ## = F everywhere.
Certainly f has compact support. To see that f is continuous, it suffices to

check that the two formulas for f (g) fit together continuously at points g of the
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closed setπ−1(K ). It is enough to check points where f (g) 6= 0. Say gα → g for
a net {gα}. We must have F(π(g)) 6= 0. Since F is continuous, F(π(gα)) 6= 0
eventually. Thus for all α sufficiently large, f (gα) is given by the first of the two
formulas. Thus f is continuous. §

Theorem 6.18. LetG be a locally compact group, let H be a closed subgroup,
and let 1G and 1H be the respective modular functions. Then a necessary and
sufficient condition forG/H to have a nonzeroG invariant regular Borel measure
is that the restriction to H of1G equal1H . In this case such a measure dµ(gH)
is unique up to a scalar, and it can be normalized so that

Z

G
f (g) dlg =

Z

G/H

h Z

H
f (gh) dlh

i
dµ(gH)

for all f ∈ Ccom(G).
PROOF. Let dµ(gH) be a nonzero invariant regular Borel measure on G/H .

Using the function f ## defined above, we can define a measure deµ(g) on G via
a linear functional on Ccom(G) by

Z

G
f (g) deµ(g) =

Z

G/H
f ##(gH) dµ(gH).

Since f 7→ f ## commutes with left translation by G, deµ is a left Haar measure
on G. By Theorem 6.8, deµ is unique up to a scalar; hence dµ(gH) is unique up
to a scalar.
Under the assumption that G/H has a nonzero invariant Borel measure, we

have just seen in essence that we can normalize the measure so that the boxed
formula holds. If we replace f in the boxed formula by f ( · h0), then the left
side is multiplied by1G(h0), and the right side is multiplied by1H (h0). Hence
1G

Ø
Ø
H = 1H is necessary for existence.
Let us prove that this condition is sufficient for existence. If h in Ccom(G/H)

is given, we can choose f in Ccom(G) by Lemma 6.17 such that f ## = h. Then
we define L(h) =

R
G f (g) dlg. If L is well defined, then it is a linear functional,

Lemma 6.17 shows that it is positive, and L certainly is the same on a function as
on itsG translates. By the Riesz RepresentationTheorem, L defines aG invariant
Borel measure dµ(gH) on G/H such that the boxed formula holds.
Thus all we need to do is see that L is well defined if 1G

Ø
Ø
H = 1H . We are

thus to prove that if f ∈ Ccom(G) has f # = 0, then
R
G f (g) dlg = 0. Let √

be in Ccom(G). Since Fubini’s Theorem is applicable to continuous functions of
compact support, we have

0 =
R
G √(g) f #(g) dlg

=
R
G

£ R
H √(g) f (gh) dlh

§
dlg



236 VI. Compact and Locally Compact Groups

=
R
H

£ R
G √(g) f (gh) dlg

§
dlh

=
R
H

£ R
G √(gh−1) f (g) dlg

§
1G(h) dlh by definition of 1G

=
R
G f (g)

£ R
H √(gh−1)1G(h) dlh

§
dlg

=
R
G f (g)

£ R
H √(gh)1G(h)−11H (h) dlh

§
dlg by Proposition 6.15c

=
R
G f (g)√#(g) dlg since 1G

Ø
Ø
H = 1H .

By Lemma 6.17 we can choose √ ∈ Ccom(G) such that √## = 1 on the image in
G/H of the support of f . Then the right side of the above display is

R
G f (g) dlg,

and the conclusion is that this is 0. Thus L is well defined, and existence is
proved. §

EXAMPLE. Let G = SL(2, R), and letH be the upper half plane in C, namely
{z | Im z > 0}. The group G acts continuously on H by linear fractional
transformations, the action being

µ
a b
c d

∂
(z) =

az + b
cz + d

.

This action is transitive since
µ
y1/2 xy−1/2

0 y−1/2

∂
(i) = x + iy if y > 0, (∗)

and the subgroup that leaves i fixed, by direct computation, is the rotation
subgroup K , which consists of the matrices

≥
cos θ − sin θ

sin θ cos θ

¥
. The mapping of

G to H given by g 7→ g(i) therefore descends to a one-one continuous map
of G/K onto H, and Problem 3 at the end of the chapter shows that this map
is a homeomorphism. The group G is generated by commutators and hence is
unimodular, and the subgroup K is unimodular, being compact. Theorem 6.18
therefore says thatH has aG-invariant Borel measure that is unique up to a scalar
factor. Let us see for p = −2 that the measure y p dx dy is invariant under the
subgroup acting in (∗). We have

µ
y1/20 x0y

−1/2
0

0 y−1/2
0

∂
(x + iy) = y0(x + iy) + x0 = (y0x + x0) + iy0y. (∗∗)

If ϕ denotes left translation by the matrix on the left in (∗∗), then (dx dy)ϕ−1 =
y20 dx dy. Hence (y−2 dx dy)ϕ−1 = (y−2)ϕ (dx dy)ϕ−1 = (y−2

0 y−2)(y20 dx dy) =
y−2 dx dy, and y−2 dx dy is preserved by every matrix in (∗∗). The group G is
generated by the matrices in (∗∗) and the one additional matrix

≥
0 1

−1 0

¥
. Since

µ
0 1

−1 0

∂
(x + iy) =

1
(−1)(x + iy)

=
−x + iy
x2 + y2

,
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≥
0 1

−1 0

¥
sends y−2 dx dy to

° y
x2+y2

¢−2
| det J | dx dy, where J is the Jacobian

matrix of F(x, y) =
°

−x
x2+y2 ,

y
x2+y2

¢
, namely J =

√ x2−y2
(x2+y2)2

2xy
(x2+y2)2

−2xy
(x2+y2)2

x2−y2
(x2+y2)2

!

. Cal-

culation gives | det J | = (x2 + y2)−2, and therefore
≥

0 1
−1 0

¥
sends y−2 dx dy to

itself. Consequently y−2 dx dy is, up to a multiplicative constant, the one and
only G-invariant measure onH.

5. Convolution and L p Spaces

We turn our attention to the way that Haar measure arises in real analysis. This
section will introduce convolution, and aspects of Fourier analysis in the setting
of various kinds of locally compact groups will be touched upon in later sections
and in the problems at the end of that chapter. In most such applications of
Haar measure to Fourier analysis, one assumes that the group under study is
unimodular, even if some of its closed subgroups are not.
Thus let G be a locally compact group. We assume throughout this section

that G is unimodular. We can then write dx for a two-sided Haar measure on G.
Proposition 6.15c shows that we have

R
G f (x−1) dx =

R
G f (x) dx for all Borel

functions f ∏ 0. We abbreviate L p(G, dx) as L p(G).

Proposition 6.19. Let G be unimodular, let 1 ≤ p < ∞, and let f be a Borel
function in L p. Then g 7→ g f and g 7→ f g are continuous functions from G
into L p.
PROOF. Lemma 6.14 gives the result for f in Ccom(G). Proposition 11.21 of

Basic shows that Ccom(G) is dense in L p(G). Given g0 ∈ G and ≤ > 0, find h in
Ccom(G) with k f − hkp ≤ ≤. Then

kg f − g0 f kp ≤ kg f − ghkp + kgh − g0hkp + kg0h − g0 f kp
= 2k f − hkp + kgh − g0hkp by left invariance of dx

≤ 2≤ + kgh − g0hkp,

and hence lim supg→g0 kg f − g0 f kp ≤ 2≤. Since ≤ is arbitrary, we see that g f
tends to g0 f in L p(G) as g tends to g0. Similarly f g tends to f g0 in L p(G) as
g tends to g0. §

A key tool for real analysis on G is convolution, just as it was with RN . On a
formal level the convolution f ∗ h of two functions f and h is

( f ∗ h)(x) =
Z

G
f (xy−1)h(y) dy =

Z

G
f (y)h(y−1x) dy.
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The formal equality of the two integrals comes about by changing y into y−1 in the
first integral and then replacing xy by y. If G is abelian, then xy−1 = y−1x ; thus
the first integral for f ∗ h equals the second integral for h ∗ f , and the conclusion
is that convolution is commutative. However, convolution is not commutative if
G is nonabelian.
To make mathematical sense out of f ∗ h, we adapt the corresponding known

discussion7 for the special case G = RN . Let us begin with the case that f and h
are nonnegativeBorel functions onG. The question iswhether f ∗h ismeaningful
as a Borel function ∏ 0. In fact, (x, y) 7→ f (xy−1) is the composition of the
continuous function F : G×G → G given by F(x, y) = xy−1, followed by the
Borel function f : G → [0,+∞]. If U is open in [0,+∞], then f −1(U) is in
B(G), and an argument like the one for Proposition6.8 shows that ( f ◦F)−1(U) =
F−1( f −1(U)) is in B(G × G). Then the product (x, y) 7→ f (xy−1)g(y) is a
Borel function, and we would like to use Fubini’s Theorem to conclude that
x 7→ ( f ∗ h)(x) is a Borel function∏ 0. Unfortunately we do not know whether
the σ -algebras match properly, specifically whether B(G ×G) = B(G) ×B(G).
On the other hand, this kind of product relation does hold for Baire sets. We

therefore repeat the above argument with nonnegative Baire functions in place of
nonnegative Borel functions. Now the only possible difficulty comes from the
fact that Haar measure onG might not be σ -finite. This problem is easily handled
by the same kind of localization argument as with the proof of uniqueness for
Theorem 6.8: Suppose thatG is not σ -compact and that f ∏ 0 is a Baire function
on G. If E is any subset of [0,+∞], then f −1(E) and f −1(Ec) are disjoint
Baire sets. Since any two Baire sets that fail to be σ -bounded have nonempty
intersection, only oneof f −1(E) and f −1(Ec) can fail to beσ -bounded. It follows
that there is exactly onemember c of [0,+∞] forwhich f −1(c) is not σ -bounded.
So as to avoid unimportant technicalities, let us assume for all Baire functions
under discussion that this value is 0, i.e., that each Baire function considered
in some convolution vanishes off some σ -bounded set. Any σ -bounded set is
contained in some σ -compact open subgroup G0 of G, and thus the convolution
effectively takes place on the σ -compact open subgroup G0; the convolution is 0
outside G0.

Proposition 6.20. Suppose that f and h are nonnegative Baire functions on
G, each vanishing off a σ -bounded subset of G. Let 1 ≤ p ≤ ∞, and let p0

be the dual index. Then convolution is finite almost everywhere in the following
cases, and then the indicated inequalities of norms are satisfied:

(a) for f in L1(G) and h in L p(G), and then k f ∗ hkp ≤ k f k1khkp,
for f in L p(G) and h in L1(G), and then k f ∗ hkp ≤ k f kpkhk1,

7The discussion in question appears in Section VI.2 of Basic.
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(b) for f in L p(G) and h in L p0
(G), and then k f ∗ hksup ≤ k f kpkhkp0 ,

for f in L p0
(G) and h in L p(G), and then k f ∗ hksup ≤ k f kp0khkp.

Consequently f ∗ h is defined in the above situations even if the scalar-valued
functions f and h are not necessarily∏ 0, and the estimates on the norm of f ∗ h
are still valid. In case (b), the function f ∗ h is actually continuous.

REMARK. The proof of the continuity in (b) will show actually that f ∗ h is
uniformly continuous in a certain sense.

PROOF. The argument for measurability has been given above. The argument
for the norm inequalities is proved in the same way8 as in the special case that
G = RN . Namely, we use Minkowski’s inequality for integrals to handle (a),
and we use Hölder’s inequality to handle (b).
Now consider the question of continuity in (b). At least one of the indices

p and p0 is finite. First suppose that p is finite. We observe for g ∈ G that
g( f ∗h)(x) = ( f ∗h)(g−1x) =

R
G f (g−1xy−1)h(y) dy =

R
G(g f )(xy−1)h(y) dy

= (g f ) ∗ h(x). Then we use the bound k f ∗ hksup ≤ k f kpkhkp0 to make the
estimate, for g ∈ G, that

kg( f ∗ h) − ( f ∗ h)ksup = k(g f ) ∗ h − f ∗ hksup
= k(g f − f ) ∗ hksup ≤ kg f − f kpkhkp0 .

Proposition 6.19 shows that the right side tends to 0 as g tends to 1, and hence
limg→1( f ∗ h)(g−1x) = ( f ∗ h)x . If instead p0 is finite, we argue similarly
with right translations of h, finding first that ( f ∗ h)g = f ∗ (hg) and then that
k( f ∗ h)g − ( f ∗ h)ksup ≤ k f kpkhg − hkp0 . Application of Proposition 6.19
therefore shows that limg→1( f ∗ h)(xg−1) = ( f ∗ h)(x). §

Corollary 6.21. Convolution makes L1(G) into an associative algebra
(possibly without identity) in such a way that the norm satisfies k f ∗ hk1 ≤
k f k1khk1 for all f and h in L1(G).

PROOF. The norm inequality was proved in Proposition 6.20a, and it justifies
the interchange of integrals in the calculation

(( f1 ∗ f2) ∗ f3)(x) =
R
G

R
G f1(y) f2(y−1z) f3(z−1x) dy dz

=
R
G

R
G f1(y) f2(y−1z) f3(z−1x) dz dy

=
R
G

R
G f1(y) f2(z) f3(z−1y−1x) dz dy under z 7→ yz

= ( f1 ∗ ( f2 ∗ f3))(x),

which in turn proves associativity. §

8Propositions 6.14 and 9.10 of Basic.
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We shall need the following result in proving the Peter–Weyl Theorem in
Section 7.

Proposition 6.22. Let G be a compact group, let f be in L1(G), and let h
be in L2(G). Put F(x) =

R
G f (y)h(y−1x) dy. Then F is the limit in L2(G)

of a sequence of functions, each of which is a finite linear combination of left
translates of h.

REMARK. For a comparable result in RN , see Corollary 6.17 of Basic. We
know from Proposition 6.15b that compact groups are unimodular.

For the proof we require a lemma.

Lemma 6.23. Let G be a compact group, and let h be in L2(G). For any
≤ > 0, there exist finitely many yi ∈ G and Borel sets Ei ⊆ G such that the Ei
disjointly cover G and

kh(y−1x) − h(y−1
i x)k2,x < ≤ for all i and for all y ∈ Ei .

PROOF. By Proposition 6.19 choose an open neighborhood U of 1 such
that kh(gx) − h(x)k2,x < ≤ whenever g is in U . For each z0 ∈ G, we have
kh(gz0x) − h(z0x)k2,x < ≤ whenever g is in U . The set Uz0 is an open
neighborhood of z0, and such sets cover G as z0 varies. Find a finite subcover,
sayUz1, . . . ,Uzn , and letUi = Uzi . Define Fj = Uj −

S j−1
i=1 Ui for 1 ≤ j ≤ n.

Then the lemma follows with yi = z−1i and Ei = F−1
i . §

PROOF OF PROPOSITION 6.22. Given ≤ > 0, choose yi and Ei as in Lemma
6.23, and put ci =

R
Ei f (y) dy. Then

∞
∞ R

G f (y)h(y−1x) dy −
P

i ci h(y
−1
i x)

∞
∞
2,x

≤
∞
∞P

i
R
Ei | f (y)||h(y

−1x) − h(y−1
i x)| dy

∞
∞
2,x

≤
P

i
R
Ei | f (y)| kh(y

−1x) − h(y−1
i x)k2,x dy

≤
P

i
R
Ei | f (y)|≤ dy = ≤k f k1. §

6. Representations of Compact Groups

The subject of functional analysis always suggests trying to replace a mathe-
matical problem about functions by a problem about a space of functions and
working at solving the latter. By way of example, this point of view is what lay
behind our approach in Section I.2 to certain kinds of boundary-value problems
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by using the method of separation of variables. In some of the cases of separation
of variables we considered, as well as in other situations arising in nature, the
problem has some symmetry to it, and that symmetry gets passed along to the
space of functions under study. Mathematically the symmetry is captured by a
group, since the set of symmetries is associative and is closed under composition
and inversion. The subject of representation theory deals with exploiting such
symmetry, at least in cases for which the problem about functions is linear.
We shall begin with a definition and some examples of finite-dimensional rep-

resentations of an arbitrary topological group, and then we shall develop a certain
amount of theory of finite-dimensional representations under the assumption that
the group is compact. The main theorem in this situation is the Peter–Weyl
Theorem, which we take up in the next section. In Section 8 we introduce
infinite-dimensional representations because vector spaces of functions that arise
in analysis problems are frequently infinite-dimensional; in that section we study
what happenswhen the group is compact, but a considerable body ofmathematics
beyond the scope of this book investigates what can happen for a noncompact
group.
Historically the original representations that were studied were matrix rep-

resentations. An N -by-N matrix representation of a topological group G
is a continuous homomorphism 8 of G into the group GL(N , C) of invert-
ible complex matrices. In other words, 8(g) is an N -by-N invertible com-
plex matrix for each g in G, the matrices are related by the condition that
8(gh)i j =

PN
k=18(g)ik8(h)k j , and the functions g 7→ 8(g)i j are continuous.

Eventually it was realized that sticking to matrices obscures what is really
happening. For one thing the group GL(N , C) is being applied to the space CN

of column vectors, and some vector subspaces of CN seem more important than
others when they are really not. Instead, it is better to replace CN by a finite-
dimensional complex vector space V and consider continuous homomorphisms
ofG into the groupGLC(V ) of invertible linear transformations on V . Specifying
an ordered basis of V allows one to identify GLC(V ) with GL(N , C), and then
the homomorphism gets identified with a matrix representation. In the special
case that V = CN , this identification can be taken to be the usual identification of
linear functions andmatrices. The point, however, is that it is unwise to emphasize
one particular ordered basis in advance, and it is better to work with a general
finite-dimensional complex vector space.
Thus we define a finite-dimensional representation of a topological group

G on a finite-dimensional complex vector space V to be a continuous homomor-
phism8 of G into GLC(V ). The continuity condition means that in any basis of
V the matrix entries of 8(g) are continuous for g ∈ G. It is equivalent to say
that g 7→ 8(g)v is a continuous function from G into V for each v in V , i.e.,
that for each v in V , if 8(g)v is expanded in terms of a basis of V , then each
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entry is a continuous function of g. The vector space V is allowed to be CN in
the definition, and thus matrix representations are part of the theory.
Before coming to a list examples, let us dispose of two easy kinds of examples

that immediately suggest themselves.
For anyG the trivial representationofG on V is the representation8 ofG for

which8(g) = 1 for all g ∈ G. Sometimeswhen the term “trivial representation”
is used, it is understood that V = C; sometimes the case V = C is indicated by
referring to the “trivial 1-dimensional representation.”
If G is a group of real or complex invertible N -by-N matrices, then G is

a subgroup of GL(N , C), and the relative topology from GL(N , C) makes G
into a topological group. The inclusion mapping 8 of G into GL(N , C) is
a representation known as the standard representation of G. The following
question then arises: If G is such a group, why consider representations of G
when we already have one? The answer, from an analyst’s point of view, is that
representations are thrust on us by some mathematical problem that we want to
solve, and we have to work with what we are given; other representations than
the standard one may occur in the process.

EXAMPLES OF FINITE-DIMENSIONAL REPRESENTATIONS.
(1) One-dimensional representations. A continuous homomorphism of a topo-

logical group G into the multiplicative groupC× of nonzero complex numbers is
a representation because we can regard C× as GL(1, C). Of special interest are
the representations of this kind that take values in the unit circle {eiθ }. These are
calledmultiplicative characters.

(a) The exponential functions that arise in Fourier series are examples; the
group G in this case is the circle group S1, namely the quotient of R modulo the
subgroup 2πZ of multiples of 2π , and for each integer n, the function x 7→ einx
is a multiplicative character of R that descends to a well-defined multiplicative
character of S1.

(b) The exponential functions that arise in the definition of the Fourier
transform on RN , namely x 7→ eix ·y , are multiplicative characters of the additive
group RN .

(c) Let Jm be the cyclic group {0, 1, 2, . . . ,m−1} of integers modulo m
under addition, and let ≥m = e2π i/m . For each integern and for k in Jm , the formula
χn(k) = (≥ nm)k defines a multiplicative character χn of Jm . These multiplicative
characters are distinct for 0 ≤ n ≤ m − 1.

(d) If G is the symmetric group Sn on n letters, then the sign mapping
σ 7→ sgn σ is a multiplicative character.

(e) The integer powers of the determinant are multiplicative characters of
the unitary group U(N ).
(2) Some representations of the symmetric groupS3 on three letters.
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(a) The trivial character and the sign character defined in Example 1d above
are the only multiplicative characters.

(b) For each permutation σ , let 8(σ ) be the 3-by-3 matrix of the
linear transformation carrying the standard ordered basis (e1, e2, e3) of C3 to
the ordered basis (eσ (1), eσ (2), eσ (3)). To check that 8 is indeed a representa-
tion, we start from 8(σ )ej = eσ ( j); applying 8(τ ) to both sides, we obtain
8(τ )8(σ )ej = 8(τ )eσ ( j) = eτ (σ ( j)) = e(τσ )( j) = 8(τσ )ej , and we conclude
that 8(τ )8(σ ) = 8(τσ ). The vector e1 + e2 + e3 is fixed by each 8(σ ), and
therefore the 1-dimensional vector subspaceC(e1 + e2 + e3) is “invariant” in the
sense of being carried to itself under 8(S3).

(c) Place an equilateral triangle in the plane R2 with its center at the origin
and with vertices given in polar coordinates by (r, θ) = (1, 0), (1, 2π/3), and
(1, 4π/3). Let the vertices be numbered 1, 2, 3, and let 8(σ ) be the matrix of
the linear transformation carrying vertex j to vertex σ ( j) for each j . Then 8 is
given on the transpositions ( 1 2 ) and ( 2 3 ) by

8(( 1 2 )) =

µ
−1/2

p
3/2p

3/2 1/2

∂
and 8(( 2 3 )) =

µ
1 0
0 −1

∂

and is given on any product of these two transpositions by the corresponding
product of the above two matrices. The eigenspaces for8(( 2 3 )) are Ce1 and
Ce2, and these subspaces are not eigenspaces for 8(( 1 2 )). Consequently the
only vector subspaces carried to themselves by8(S3) are the trivial ones, namely
0 and C2. The functions on S3 of the form σ 7→ 8(σ )i j will play a role similar
to the role of the functions x 7→ einx in Fourier series, and we record their values
here:

σ 8(σ )11 8(σ )12 8(σ )21 8(σ )22

(1) 1 0 0 1
(123) −1/2 −

p
3/2

p
3/2 −1/2

(132) −1/2
p
3/2 −

p
3/2 −1/2

(12) −1/2
p
3/2

p
3/2 1/2

(23) 1 0 0 −1
(13) −1/2 −

p
3/2 −

p
3/2 1/2

(3) A family of representations of the unitary group G = U(N ). Let V
consist of all polynomials in z1, . . . , zN , z̄1, . . . , z̄N homogeneous of degree k,
i.e., having every monomial of total degree k, and let

8(g)P








z1
...
zN



 ,




z̄1
...
z̄N







 = P



g−1




z1
...
zN



 , ḡ−1




z̄1
...
z̄N







 .

Thevector subspaceV 0 ofholomorphicpolynomials (thosewith no z̄’s) is carried
to itself by all 8(g), and therefore V 0 is an invariant subspace in the sense of
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being carried to itself by 8(G). The restriction of the 8(g)’s to V 0 is thus itself
a representation. When k = 1, this representation on V 0 may at first seem to be
the standard representation of U(N ), but it is not. In fact, V 0 for k = 1 consists
of all linear combinations of the N linear functionals




z1
...
zN



 7→ z1 through




z1
...
zN



 7→ zN .

In other words, V 0 is actually the space of all linear functionals on CN . The
definition of 8 by 8(g)`(z) = `(g−1z) for z ∈ CN and for ` in the space of
linear functionals involves no choice of basis. The representation on V 0 when
N = 1 is the “contragredient” of the standard representation, in a sense that will
be defined for any representation in Example 6 below.
(4) A family of representations of the special unitary group G = SU(2) of

all 2-by-2 unitary matrices of determinant 1, namely all matrices
≥

α β

−β̄ ᾱ

¥
with

|α|2 + |β|2 = 1. Let V be the space of homogeneous holomorphic polynomials
of degree n in z1 and z2, let8 be the representation defined in the same way as in
Example 3, and let V 0 be the space of all holomorphic polynomials in z of degree
n with

80

µ
α β

−β̄ ᾱ

∂
Q(z) = (β̄z + α)nQ

µ
ᾱz − β

β̄z + α

∂
.

Define E : V → V 0 by (EP)(z) = P
° z
1
¢
. Then E is an invertible linear

mapping and satisfies E8(g) = 80(g)E for all g, and we say that E exhibits 8
and 80 as equivalent (i.e., isomorphic).
(5) A family of representations for G equal to the orthogonal group O(N ) or

the rotation subgroup SO(N ). Let V consist of all polynomials in x1, . . . , xN
homogeneous of degree k, and let

8(g)P








x1
...
xN







 = P



g−1




x1
...
xN







 .

Then 8 is a representation. When we want to emphasize the degree, let us write
8k and Vk . Define the Laplacian operator as usual by

1 =
@2

@x21
+ · · · +

@2

@x2N
.

This carries Vk to Vk−2, and one checks easily that it satisfies 18k(g) =
8k−2(g)1. This commutativity property implies that the kernel of 1 is an
invariant subspace of Vk , the space of homogeneous harmonic polynomials
of degree k.
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(6) Contragredient representation. Let G be any topological group, and let
8 be a finite-dimensional representation of G on the complex vector space V .
The contragredient of8 is the representation8c of G on the space of all linear
functionals on V defined by (8c(g)`)(v) = `(8(g−1)v) for any linear functional
` and any v in V .

Having given a number of examples, let us return to a general topological
groupG. An important equivalent definition of finite-dimensional representation
is that8 is a continuous group action ofG on a finite-dimensional complex vector
space V by linear transformations. In this case the assertion about continuity is
that the map G × V → V is continuous jointly, rather than continuous only as a
function of the first variable.
Let us deduce the joint continuity from continuity in the first variable. To do

so, it is enough to verify continuity of G × V → V at g = 1 and v = 0. Let
dimC V = N . The topology on V is obtained, as was spelled out above, by
choosing an ordered basis and identifying V with CN . The resulting topology
makes V into a topological vector space, and the topology does not depend on the
choice of ordered basis; the independence of basis follows from the fact that every
linear mapping on CN is continuous. Thus we fix an ordered basis (v1, . . . , vN )

and regard the map {ci }Ni=1 7→
PN

i=1 civi as a homeomorphism of CN onto V .
Put

∞
∞PN

i=1 civi
∞
∞ =

°PN
i=1 |ci |2

¢1/2. Given ≤ > 0, choose for each i between 1
and N a neighborhood Ui of 1 in G such that k8(g)vi − vik < 1 for g ∈ Ui . If
g is in

TN
i=1Ui and if v =

P
i civi has kvk < ≤, then

k8(g)vk ≤
∞
∞8(g)

°P
civi

¢
−

°P
civi

¢∞∞ + kvk

≤
P

|ci |k8(g)vi − vik + kvk

≤
°P

|ci |2
¢1/2N 1/2 + kvk by the Schwarz inequality

≤ (N 1/2 + 1)≤.

This proves the joint continuity at (g, v) = (1, 0), and the joint continuity
everywhere follows by translation in the two variables separately.
A representation on a nonzero finite-dimensional complex vector space V

is irreducible if it has no invariant subspaces other than 0 and V . Every
1-dimensional representation is irreducible, and we observed that Example 2c
is irreducible. We observed also that Examples 2b and 3 are not irreducible.
A representation8 on the finite-dimensional complex vector space V is called

unitary if an inner product, always assumed Hermitian, has been specified for V
and if each8(g) is unitary relative to that inner product (i.e., has8(g)∗8(g) = 1
and hence8(g)∗ = 8(g)−1 for all g ∈ G). On the level of the inner product for
V , a unitary representation has the property that (8(g)u, v) = (u,8(g)∗v) =
(u,8(g)−1v) = (u,8(g−1)v).
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The question of whether a representation is unitary is important for analysis
because it gets at the notion of exploiting symmetries by using representation
theory. Specifically for a unitary representation the orthogonal complement U⊥

of an invariant vector subspace U is an invariant subspace because

(8(g)u⊥, u) = (u⊥,8(g−1)u) ∈ (u⊥,U) = 0 for u⊥ ∈ U⊥, u ∈ U.

Thus when an analysis problem leads us to a unitary representation and we locate
an invariant vector subspace, the orthogonal complement will be an invariant
vector subspace also. In this way the analysis problemmay have been subdivided
into two simpler problems.
Now let us suppose that the topological groupG is compact. One of the critical

properties of such a group for representation theory is that G has, up to a scalar
multiple, a unique two-sided Haar measure, i.e., a nonzero regular Borel measure
that is invariant under all left and right translations. This result was proved in
Theorem 6.8 and Proposition 6.15b. Let us normalize this Haar measure so
that it has total measure 1. Since the normalized measure is unambiguous, we
usually write integrals with respect to normalized Haar measure by expressions
like

R
G f (x) dx , dropping any name like µ from the notation. Also, we write

L1(G) and L2(G) in place of L1(G, dx) and L2(G, dx).
We shall want to use convolution of functions on G, and we therefore need

to confront the technical problem that the measurability in Fubini’s Theorem can
break downwith Borel measurable functions ifG is not separable. For this reason
we shall stick to Baire measurable functions, where no such difficulty occurs.9
In particular the spaces L1(G) and L2(G) will be understood to have the Baire
sets as the relevant σ -algebras.10
The prototypes for the theory with G compact are the cases that G is the circle

group S1 and that G is a finite group, such as the symmetric groupS3. The Haar
measure is 1

2π dx in the first case, where this time we retain the convention that
dx is Lebesgue measure. The Haar measure is 16 times the counting measure in
the second case, the 16 having the effect of making the total measure be 1.

Proposition 6.24. If 8 is a representation of a compact group G on a finite-
dimensional complex vector space V , then V admits an inner product such that
8 is unitary.

9Corollary 11.16 of Basic shows that every continuous function of compact support on a locally
compact Hausdorff space is Baire measurable.

10Problem 3 at the end of Chapter XI of Basic shows for any regular Borel measure on a compact
Hausdorff space that every Borel measurable function can be adjusted on a Borel set of measure 0 to
be Baire measurable. Consequently the spaces L1(G) and L2(G) as Banach spaces are unaffected
by specifying Baire measurability rather than Borel measurability if the Borel measure is regular.
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PROOF. Let h · , · i be any Hermitian inner product on V , and define

(u, v) =
R
G h8(x)u,8(x)vi dx .

It is straightforward to see that ( · , · ) has the required properties. §

Corollary 6.25. If 8 is a representation of a compact group G on a finite-
dimensional complex vector space V , then 8 is the direct sum of irreducible
representations. In other words, V = V1 ⊕ · · · ⊕ Vk , with each Vj an invariant
vector subspace on which 8 acts irreducibly.

REMARK. The “direct-sum” notation V = V1 ⊕ · · · ⊕ Vk means that each
element of V has a unique expansion as a linear combination of k vectors, one
from each Vj . If G is the noncompact group of all complex matrices

≥
a b
0 1

¥
, then

the standard representation ofG onC2 hasCe1 as an invariant subspace, but there
is no other invariant subspace V 0 such that C2 = Ce1 ⊕ V 0. Thus the corollary
breaks down if the hypothesis of compactness is dropped completely.

PROOF. Form ( · , · ) as in Proposition 6.24. Find an invariant subspace U 6=
0 of minimal dimension and take its orthogonal complement U⊥. Since the
representation is unitary relative to ( · , · ),U⊥ is an invariant subspace. Repeating
the argument with U⊥ and iterating, we obtain the required decomposition. §

Proposition 6.26 (Schur’s Lemma, part 1). Suppose that 8 and 80 are ir-
reducible representations of a compact group G on finite-dimensional complex
vector spaces V and V 0, respectively. If L : V → V 0 is a linear map such that
80(g)L = L8(g) for all g ∈ G, then L is one-one onto or L = 0.

PROOF. We see easily that ker L and image L are invariant subspaces of V and
V 0, respectively, and then the only possibilities are the ones listed. §

Corollary 6.27 (Schur’s Lemma, part 2). Suppose 8 is an irreducible repre-
sentation of a compact group G on a finite-dimensional complex vector space V .
If L : V → V is a linear map such that 8(g)L = L8(g) for all g ∈ G, then L
is scalar.

REMARK. This is the first place where we make use of the fact that the scalars
are complex, not real.

PROOF. Let ∏ be an eigenvalue of L . Then L − ∏I is not one-one onto, but it
does commute with 8(g) for all g ∈ G. By Proposition 6.26, L − ∏I = 0. §
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Corollary 6.28. Every irreducible finite-dimensional representation of a com-
pact abelian group G is given, up to equivalence, by a multiplicative character.

PROOF. If G is abelian and 8 is irreducible, we apply Corollary 6.27 with
L = 8(g0) and see that 8(g0) is scalar. All the members of 8(G) are therefore
scalar, and every vector subspace is invariant. For irreducibility the representation
must then be 1-dimensional. Fixing a basis {v} of the 1-dimensional vector
space and forming the corresponding 1-by-1 matrices, we obtain a multiplicative
character. §

EXAMPLE 1a, CONTINUED. For the circle group S1 = R
±
2πZ, we observed

that we obtain a family of multiplicative characters parametrized by the integers,
the nth such character being

x 7→ einx .

The corresponding 1-dimensional representation is x 7→ multiplication by einx .
In the next corollary we shall prove that the multiplicative characters are orthogo-
nal in L2(S1) in the same sense that the exponential functions are orthogonal. The
knowncompletenessof the orthonormal systemof exponential functions therefore
gives a proof, though not the simplest proof, that the exponential functions are
the only multiplicative characters of S1. A simpler proof can be constructed via
real-variable theory by making direct use of the multiplicative property and the
continuity.

EXAMPLES 2a AND 2c, CONTINUED. We noted that the trivial character and
the sign character are the only multiplicative characters of S3. These are the
following two functions of σ ∈ S3:

σ 8 = 1 8 = sign

(1) 1 1
(123) 1 1
(132) 1 1
(12) 1 −1
(23) 1 −1
(13) 1 −1

For this example the corollary below will say that these two functions on S3,
together with the four functions listed earlier for Example 2c, form an orthogonal
set of six functions. They are not quite orthonormal since the four functions f
listed earlier have k f k2 =

q
1
2 relative to the normalized counting measure. The

interpretation of
q
1
2 is that its square is the reciprocal of the dimension of the

underlying vector space.
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Corollary 6.29 (Schur orthogonality relations).
(a) Let8 and80 be inequivalent irreducible unitary representations of a com-

pact groupG on finite-dimensional complex vector spaces V and V 0, respectively,
and let the understood inner products be denoted by ( · , · ). Then

Z

G
(8(x)u, v)(80(x)u0, v0) dx = 0 for all u, v ∈ V and u0, v0 ∈ V .

(b) Let 8 be an irreducible unitary representation on a finite-dimensional
complex vector space V , and let the understood inner product be denoted by
( · , · ). Then

Z

G
(8(x)u1, v1)(8(x)u2, v2) dx =

(u1, u2)(v1, v2)
dim V

for u1, v1, u2, v2 ∈ V .

REMARK. The proof of (b) will make use of the notion of the “trace” of a square
matrix or of a linear map from a finite-dimensional vector space V to itself. For
an n-by-n square matrix A the trace is the sum of the diagonal entries. This is
(−1)n−1 times the coefficient of ∏n−1 in the polynomial det(A − ∏1). Because
of the multiplicative property of the determinant, this polynomial is the same for
A as for BAB−1 if B is invertible. Hence A and BAB−1 have the same trace.
Then it follows that the trace Tr L of a linear map L from V to itself is well
defined as the trace of the matrix of the linear map relative to any basis. For
further background about the trace, see Section II.5.

PROOF. (a) Let l : V 0 → V be any linear map, and form the linear map

L =
R
G 8(x)l80(x−1) dx .

(This integration can be regarded as occurring for matrix-valued functions and
is to be handled entry-by-entry.) Because of the left invariance of dx , we obtain
8(y)L80(y−1) = L , so that 8(y)L = L80(y) for all y ∈ G. By Proposition
6.26 and the assumed inequivalence, L = 0. Thus (Lv0, v) = 0. For the particular
choice of l as l(w0) = (w0, u0)u, we have

0 = (Lv0, v) =
R
G (8(x)l80(x−1)v0, v) dx

=
R
G

°
8(x)(80(x−1)v0, u0)u, v

¢
dx =

R
G (8(x)u, v)(80(x−1)v0, u0) dx,

and (a) results since (80(x−1)v0, u0) = (80(x)u0, v0).
(b) We proceed in the same way, starting from l : V → V , and obtain L = ∏I

from Corollary 6.27. Taking the trace of both sides, we find that

∏ dim V = Tr L = Tr l,
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so that ∏ = (Tr l)
±
dim V . Thus

(Lv2, v1) =
Tr l
dim V

(v1, v2).

Choose l(w) = (w, u2)u1, so that Tr l = (u1, u2). Then

(u1, u2)(v1, v2)
dim V

=
Tr l
dim V

(v1, v2) = (Lv2, v1) =
R
G (8(x)l8(x−1)v2, v1) dx

=
R
G

°
8(x)(8(x−1)v2, u2)u1, v1

¢
dx =

R
G (8(x)u1, v1)(8(x−1)v2, u2) dx,

and (b) results since (8(x−1)v2, u2) = (8(x)u2, v2). §

We can interpret Corollary 6.29 as follows. Let {8(α)} be a maximal set
of mutually inequivalent finite-dimensional irreducible unitary representations
of the compact group G. For each 8(α), choose an orthonormal basis for the
underlying vector space, and let 8(α)

i j (x) be the matrix of 8(α)(x) in this basis.
Then the functions {8(α)

i j (x)}i, j,α form an orthogonal set in the space L2(G) of
square integrable functions on G. In fact, if d(α) denotes the degree of 8(α)

(i.e., the dimension of the underlying vector space), then {(d(α))1/28
(α)
i j (x)}i, j,α

is an orthonormal set in L2(G). The Peter–Weyl Theorem in the next section will
generalize Parseval’s Theorem in the subject of Fourier series by showing that
this orthonormal set is an orthonormal basis.
We can use Schur orthogonality to get a qualitative idea of the decomposi-

tion into irreducible representations in Corollary 6.25 when 8 is a given finite-
dimensional representation of the compact group G. By Proposition 6.24 there
is no loss of generality in assuming that 8 is unitary. If 8 is a unitary finite-
dimensional representation of G, amatrix coefficient of8 is any function on G
of the form (8(x)u, v). The character or group character of 8 is the function

χ8(x) = Tr 8(x) =
X

j
(8(x)uj , uj ),

where {ui } is an orthonormal basis. This functiondepends only on the equivalence
class of 8 and satisfies

χ8(gxg−1) = χ8(x) for all g, x ∈ G.

If 8 is the direct sum of representations81, . . . ,8n , then

χ8 = χ81
+ · · · + χ8n

.

Any multiplicative character is the group character of the corresponding
1-dimensional representation.



7. Peter–Weyl Theorem 251

EXAMPLE 4, CONTINUED. Characters for SU(2). Let 8n be the representation
of SU(2) on the homogeneous holomorphic polynomials of degree n in z1 and
z2. A basis for V consists of the monomials zk1z

n−k
2 for 0 ≤ k ≤ n, and we

easily check that 8 of the diagonal matrix tθ = diag
°
eiθ , e−iθ¢ has zk1z

n−k
2 as an

eigenvector with eigenvalue ei(n−2k)θ . Therefore

χ8n
(tθ ) = Tr8n(tθ ) = einθ + ei(n−2)θ + · · · + e−inθ .

Every element of SU(2) is conjugate to somematrix tθ , and therefore this formula
determines χ8n

on all of SU(2).

Corollary 6.30. IfG is a compact group, then the characterχ of an irreducible
finite-dimensional representation has L2 norm satisfying kχk2 = 1. If χ and χ 0

are characters of inequivalent irreducible finite-dimensional representations, thenR
G χ(x)χ 0(x) dx = 0.

PROOF. These formulas are immediate from Corollary 6.29 since characters
are sums of matrix coefficients. §

Now let8 be a given finite-dimensional representation ofG, andwrite8 as the
direct sum of irreducible representations81, . . . ,8n . If τ is an irreducible finite-
dimensional representation of G, then the sum formula for characters, together
with Corollary 6.30, shows that

R
G χ8(x)χτ (x) dx is the number of summands

8i equivalent to τ . Evidently this integer is independent of the decomposition of
8 into irreducible representations. It is called themultiplicity of τ in 8.

7. Peter–Weyl Theorem

The goal of this section is to extend Parseval’s Theorem for the circle group
S1 = R

±
2πZ to a theorem valid for all compact groups. The extension is the

Peter–Weyl Theorem. We continue with the notation of the previous section,
letting G be the group, dx be a two-sided Haar measure normalized to have
total measure one, and, in cases when G is not separable, working with Baire
measurable functions rather than Borel measurable functions.
For S1, we observed in Corollary 6.28 that the irreducible finite-dimensional

representations are 1-dimensional, hence are given by multiplicative characters.
The exponential functions x 7→ einx are examples of multiplicative characters,
and it is an exercise in real-variable theory, not hard, to prove that there are no
other examples. The matrix coefficients of the 1-dimensional representations
are just the same exponential functions x 7→ einx . The Peter–Weyl Theorem
specialized to this group says that the vector space of finite linear combinations
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of exponential functions is dense in L2(S1); the statement is a version of Fejér’s
Theorem for L2 but without the precise detail of Fejér’s Theorem. In view of
the known orthogonality of the exponential functions, an equivalent formulation
of the result for S1 is that {einx}∞n=−∞ is a maximal orthonormal set in L2(S1).
By Hilbert-space theory, {einx}∞n=−∞ is an orthonormal basis of L2(S1). For
general compactG, the Peter–Weyl Theorem asserts that the vector space of finite
linear combinations of all matrix coefficients of all irreducible finite-dimensional
representations is again dense in L2(G). The new ingredient is that wemust allow
irreducible representations of dimension > 1; indeed, examination of the group
S3 shows that the 1-dimensional representations are not enough. An equivalent
formulation in terms of orthonormal bases will be given in Corollary 6.32 below
and will use Schur orthogonality (Corollary 6.29).

Theorem 6.31 (Peter–Weyl Theorem). If G is a compact group, then the
linear span of all matrix coefficients for all finite-dimensional irreducible unitary
representations of G is dense in L2(G).
PROOF. If h(x) = (8(x)u, v) is such a matrix coefficient, then the following

functions of x are also matrix coefficients for the same representation:

h(x−1) = (8(x)v, u),

h(gx) = (8(x)u,8(g−1)v),

h(xg) = (8(x)8(g)u, v).

Then the closure U in L2(G) of the linear span of all matrix coefficients of
all finite-dimensional irreducible unitary representations is stable under the map
h(x) 7→ h(x−1) and under left and right translation. Arguing by contradiction,
suppose thatU 6= L2(G). ThenU⊥ 6= 0, andU⊥ is closed under h(x) 7→ h(x−1)
and under left and right translation.
We first prove that there is a nonzero continuous function in U⊥. Thus let

H 6= 0 be in U⊥. For each open neighborhood N of 1 that is a Gδ, we define

fN (x) = 1
|N | (IN ∗ H)(x) = 1

|N |

R
G IN (y)H(y−1x) dy,

where IN is the indicator function of N and |N | is the Haar measure of N .
Since IN and H are in L2(G), Proposition 6.20 shows that fN is continuous. As
N shrinks to {1}, the functions fN tend to H in L2 by the usual approximate-
identity argument; hence some fN is not 0. Finally each linear combination of
left translates of H is in U⊥, and fN is therefore in U⊥ by Proposition 6.22.
Thus U⊥ contains a nonzero continuous function. Using translations and

scalar multiplications, we can adjust this function so that it becomes a continuous
function F1 in U⊥ with F1(1) real and nonzero. Set

F2(x) =
R
G F1(yxy

−1) dy.
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Then F2 is continuous, F2(gxg−1) = F2(x) for all g ∈ G, and F2(1) = F1(1)
is real and nonzero. To see that F2 is in U⊥, we argue as follows: Corollary
6.7 shows that the map (g, g0) 7→ F1(g( · )g0) is continuous from G × G into
C(G), and hence the restriction y 7→ F1(y( · )y−1) is continuous from G into
C(G). The domain is compact, and therefore the image is compact, hence totally
bounded. Consequently if ≤ > 0 is given, then there exist y1, . . . , yn such that
each y ∈ G has some yj such that kF1(y( · )y−1) − F1(yj ( · )y−1

j )ksup < ≤. Let
Ej be the subset of y’s such that j is the first index for which this happens, and
let |Ej | be its Haar measure. Then
Ø
Ø R

G F1(yxy
−1) dy −

P
j |Ej | F1(yj xy

−1
j )

Ø
Ø

=
Ø
ØP

j
R
Ej [F1(yxy

−1) − F1(yj xy−1
j )] dy

Ø
Ø

≤
P

j
R
Ej |F1(yxy

−1)−F1(yj xy−1
j )| dy ≤

P
j ≤

R
Ej dy = ≤,

and we see that F2 is the uniform limit of finite linear combinations of group
conjugates of F1. Each such finite linear combination is in U⊥, and hence F2 is
in U⊥.
Finally put

F(x) = F2(x) + F2(x−1).

Then F is continuous and is in U⊥, F(gxg−1) = F(x) for all g ∈ G, F(1) =
2F2(1) is real and nonzero, and F(x) = F(x−1). In particular, F is not the 0
function in L2(G).
Form the continuous function K (x, y) = F(x−1y) and the integral operator

T f (x) =
R
G K (x, y) f (y) dy =

R
G F(x−1y) f (y) dy for f ∈ L2(G).

Then K (x, y) = K (y, x) and
R
G×G |K (x, y)|2 dx dy < ∞. Also, T is not 0

since F 6= 0. The Hilbert–Schmidt Theorem (Theorem 2.4) applies to T as a
linear operator from L2(G) to itself, and there must be a real nonzero eigenvalue
∏, the corresponding eigenspace V∏ ⊆ L2(G) being finite dimensional.
Let us see that the subspace V∏ is invariant under left translation by g, which

we write as (L(g) f )(x) = f (g−1x). In fact, f in V∏ implies

T L(g) f (x) =
R
G F(x−1y) f (g−1y) dy =

R
G F(x−1gy) f (y) dy

= T f (g−1x) = ∏ f (g−1x) = ∏L(g) f (x).

By Proposition 6.19, g 7→ L(g) f is continuous fromG into L2(G), and therefore
L is a representation of G in the finite-dimensional space V∏. By dimensionality,
V∏ contains an irreducible invariant subspace W∏ 6= 0.
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Let ( f1, . . . , fn) be an ordered orthonormal basis of W∏. The matrix coeffi-
cients for W∏ are the functions

hi j (x) = (L(x) f j , fi ) =
R
G fj (x−1y) fi (y) dy

and by definition are in U . Since F is in U⊥, we have

0 =
R
G F(x)hii (x) dx =

R
G

R
G F(x) fi (x−1y) fi (y) dy dx

=
R
G

R
G F(x) fi (x−1y) fi (y) dx dy

=
R
G

R
G F(yx−1) fi (x) fi (y) dx dy

=
R
G

£R
G F(x−1y) fi (y) dy

§
fi (x) dx since F(gxg−1) = F(x)

=
R
G [T fi (x)] fi (x) dx = ∏

R
G | fi (x)|2 dx

for all i , in contradiction to the fact that W∏ 6= 0. We conclude that U⊥ = 0 and
therefore that U = L2(G). §

Corollary 6.32. If {8(α)} is a maximal set of mutually inequivalent finite-
dimensional irreducible unitary representations of a compact group G and if
{(d(α))1/28

(α)
i j (x)}i, j,α is a corresponding orthonormal set of matrix coefficients,

then {(d(α))1/28
(α)
i j (x)}i, j,α is an orthonormal basis of L2(G). Consequently any

f in L2(G) has the property that

k f k22 =
X

α

X

i, j
dα |( f,8(α)

i j )|2,

where ( · , · ) is the L2 inner product.
REMARK. The displayed formula, which extends Parseval’s Theorem from S1

to the compact group G, is called the Plancherel formula for G.
PROOF. The linear span of the orthonormal set in question equals the linear

span of all matrix coefficients for all finite-dimensional irreducible unitary rep-
resentations of G. Theorem 6.31 implies that the orthonormal set is maximal.
Hilbert-space theory then shows that the orthonormal set is an orthonormal basis
and that Parseval’s equality holds, and the latter fact yields the corollary. §

As is implicit in the proof ofCorollary 6.32, the partial sums in the expansion of
f in terms of the orthonormal set of normalizedmatrix coefficients are converging
to f in L2(G). Thenext result along these lines gives an analogofFejér’sTheorem
for Fourier series of continuous functions. Taking a cue from the theory of Fourier
series, let us refer to any finite linear combination of the functions8

(α)
i j (x) in the

above corollary as a trigonometric polynomial.
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Corollary6.33 (ApproximationTheorem). There exists a netT (β)of uniformly
bounded linear operators from C(G) into itself such that for every f in C(G),
T (β) f is a trigonometric polynomial for each β and limβ T (β) f = f uniformly
on G.
PROOF. The directed set will consist of pairs β = (N , ≤), where N is an open

Gδ containing the identity of G and where 1 ∏ ≤ > 0, and the partial ordering
is that (N , ≤) ≤ (N 0, ≤0) if N ⊇ N 0 and ≤ ∏ ≤0. If β = (N , ≤) is given, let
|N | be the Haar measure of N , and let √N = |N |−1 IN be the positive multiple
of the indicator function of N that makes √N have k√Nk1 = 1. Since √N is
in L2(G), Theorem 6.31 shows that we can find a trigonometric polynomial ϕβ

such that k√N − ϕβk2 ≤ ≤. The operator T (β) will be given by convolution:
T (β) f = ϕβ ∗ f .
Since k√N − ϕβk1 ≤ k√N − ϕβk2 ≤ ≤ ≤ 1, we have kϕβk1 ≤ 2. Therefore

the operator norm of T (β) on C(G) is ≤ 2.
To see that T (β) f converges uniformly to f , we use a variant of a familiar

argument with approximate identities. We write

kT (β) f − f ksup ≤ k(ϕβ − √N ) ∗ f ksup + k√N ∗ f − f ksup.

The first term on the right is ≤ kϕβ − √Nk1k f ksup ≤ kϕβ − √Nk2k f ksup ≤
≤k f ksup. For the second term we have

|√N ∗ f (x) − f (x)| =
Ø
Ø R

G √N (y)[ f (y−1x) − f (x)] dy
Ø
Ø

≤
R
G √N (y)| f (y−1x) − f (x)| dy

= |N |−1
R
N | f (y−1x) − f (x)| dy

≤ sup
y∈N

| f (y−1x) − f (x)|,

and Proposition 6.6 shows that this expression tends to 0 as N shrinks to {1}.
Finally we show that T (β) f is a trigonometric polynomial, i.e., that there are

only finitely many irreducible representations8, up to equivalence, such that the
L2 inner product (T (β) f,8i j ) can be nonzero. This inner product is equal to

R
G (ϕβ ∗ f )(x)8i j (x) dx =

RR
G×G ϕβ(xy−1) f (y)8i j (x) dx dy

=
RR

G×G ϕβ(x) f (y)8i j (xy) dx dy

=
P

k
RR

G×G ϕβ(x) f (y)8ik(x) 8k j (y) dx dy

=
P

k
R
G f (y)8k j (y)

£ R
G ϕβ(x)8ik(x) dx

§
dy,

and Schur orthogonality (Corollary 6.29) shows that the expression in brackets
is 0 unless8 is equivalent to one of the irreducible representations whose matrix
coefficients contribute to ϕβ . §



256 VI. Compact and Locally Compact Groups

8. Fourier Analysis Using Compact Groups

In the discussion of the representation theory of compact groups in the previous
two sections, all the representations were finite dimensional. A number of appli-
cations of compact groups to analysis, however, involve naturally arising infinite-
dimensional representations, and a theory of such representations is needed. We
address this problemnow, andwe illustrate how the theory of infinite-dimensional
representations can be used to simplify analysis problems having a compact group
of symmetries.
We continue with the notation of the previous two sections, letting G be the

compact group and dx be a two-sided Haar measure normalized to have total
measure one. In cases inwhichG is not separable,weworkwithBairemeasurable
functions rather than Borel measurable functions.
Recall from Section II.4 and Proposition 2.6 that if V is a complex Hilbert

space with inner product ( · , · ) and norm k · k, then a unitary operatorU on V is
a bounded linear operator from V into itself such that U∗ is a two-sided inverse
of U , or equivalently is a linear operator from V to itself that preserves norms
and is onto V , or equivalently is a linear operator from V to itself that preserves
inner products and is onto V .
From the definition the unitary operators on V form a group. Unlike what

happens with the N -by-N unitary group U(N ), this group is not compact if V
is infinite-dimensional. A unitary representation of G on the complex Hilbert
space V is a homomorphism of G into the group of unitary operators on V such
that a certain continuity property holds. Continuity is a more subtle matter in the
present context than it was in the finite-dimensional case because not all possible
definitions of continuity are equivalent here. The continuity property we choose
is that the group action G × V → V , given by g × v 7→ 8(g)v, is continuous.
When 8 is unitary, this property is equivalent to strong continuity, namely that
g 7→ 8(g)v is continuous for every v in V .
Let us see this equivalence. Strong continuity results fromfixing the V variable

in the definition of continuity of the group action, and therefore continuity of
the group action implies strong continuity. In the reverse direction the triangle
inequality and the equality k8(g)k = 1 give

k8(g)v − 8(g0)v0k ≤ k8(g)(v − v0)k + k8(g)v0 − 8(g0)v0k
= kv − v0k + k8(g)v0 − 8(g0)v0k,

and it follows that strong continuity implies continuity of the group action.
With this definition of continuity in place, an example of a unitary repre-

sentation is the left-regular representation of G on the complex Hilbert space
L2(G), given by (l(g) f )(x) = f (g−1x). Strong continuity is satisfied according
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to Proposition 6.19. The right-regular representation of G on L2(G), given by
(r(g) f )(x) = f (xg), also satisfies this continuity property.
In working with a unitary representation 8 of G on V , it is helpful to define

8( f ) for f in L1(G) as a smeared-out version of the various 8(x)’s for x in
G. Formally 8( f ) is to be

R
G f (x)8(x) dx . But to avoid integrating functions

whose values are in an infinite-dimensional space, we define 8( f ) as follows:
The function

R
G f (x)(8(x)v, v0) dx of v and v0 is linear in v, conjugate linear

in v0, and bounded in the sense that
Ø
Ø R

G f (x)(8(x)v, v0) dx
Ø
Ø ≤ k f k1kvkkv0k.

Hilbert-space theory shows as a consequence11 that there exists a unique linear
operator8( f ) such that

(8( f )v, v0) =
Z

G
f (x)(8(x)v, v0) dx for all v and v0 in V

and that this operator is bounded with

k8( f )k ≤ k f k1.

From the existence and uniqueness of8( f ), it follows that8( f ) depends linearly
on f .
Let us digress for a moment to consider 8( f ) if 8 happens to be finite-

dimensional. If {ui } is an ordered orthonormal basis of the underlying finite-
dimensional vector space, then the matrix corresponding to 8( f ) in this basis
has (i, j)th entry (8( f )ui , uj ) =

R
G f (x)(8(x)ui , uj ) dx . The expression

P
i, j |(8( f )ui , uj )|2 =

P
i, j

Ø
Ø R

G f (x)(8(x)ui , uj ) dx
Ø
Ø2

is, on the one hand, the kind of term that appears in the Plancherel formula in
Corollary 6.32 and, on the other hand, is what in Section II.5 was called the
Hilbert–Schmidt norm squared k8( f )k2HS of 8( f ). It has to be independent of
the basis here in order to yield consistent formulas as we change orthonormal
bases, and that independence of basis was proved in Section II.5. Using the
Hilbert–Schmidt norm, we can rewrite the Plancherel formula in Corollary 6.32
as

k f k2 =
X

α

dα k8(α)( f )k2HS.

Unlike the formula in Corollary 6.32, this formula is canonical, not depending on
any choice of bases.

11See the remarks near the beginning of Section XII.3 of Basic.
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Returning from our digression, let us again allow8 to be infinite-dimensional.
The mapping f 7→ 8( f ) for f in L1(G) has two other properties of note. The
first is that

8( f )∗ = 8( f ∗),

where f ∗(x) = f (x−1). To prove this formula, we simply write everything out:

(8( f )∗v, v0) = (v,8( f )v0) =
R
G (v, f (x)8(x)v0) dx

=
R
G f (x)(v,8(x)v0) dx =

R
G f (x−1)(v,8(x−1)v0) dx

=
R
G f ∗(x)(8(x)v, v0) dx = (8( f ∗)v, v0).

The other property concerns convolution and is that

8( f ∗ h) = 8( f )8(h).

The formal computation to prove this is

8( f ∗ h) =
R
G

R
G f (xy−1)h(y)8(x) dy dx =

R
G

R
G f (xy−1)h(y)8(x) dx dy

=
R
G

R
G f (x)h(y)8(xy) dx dy =

R
G

R
G f (x)h(y)8(x)8(y) dx dy

= 8( f )8(h).

Tomake this computation rigorous, we put the appropriate inner products in place
and use Fubini’s Theorem to justify the interchange of order of integration:

(8( f ∗ h)v, v0)

=
R
G

R
G f (xy

−1)h(y)(8(x)v, v0) dy dx=
R
G

R
G f (xy

−1)h(y)(8(x)v, v0) dx dy
=

R
G

R
G f (x)h(y)(8(xy)v, v0) dx dy=

R
G

R
G f (x)h(y)(8(x)8(y)v, v0) dx dy

=
R
G

R
G f (x)h(y)(8(y)v,8(x)∗v0) dx dy

=
R
G

R
G f (x)h(y)(8(y)v,8(x)∗v0) dy dx =

R
G f (x)(8(h)v,8(x)∗v0) dx

=
R
G f (x)(8(x)8(h)v, v0) dx = (8( f )8(h)v, v0).

Thiskindof computation translatinga formal argument about8( f ) into a rigorous
argument is one that we shall normally omit from now on.
An important instance of a convolution f ∗ h is the case that f and h are

characters of irreducible finite-dimensional representations. The formula in this
case is

χτ ∗ χτ 0 =

Ω d−1
τ χτ if τ ∼= τ 0 and dτ is the degree of τ ,

0 if τ and τ 0 are inequivalent.
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This follows by expanding the characters in terms of matrix coefficients and
computing the integrals using Schur orthogonality (Corollary 6.29).
If f ∏ 0 vanishes outside an open neighborhood N of 1 that is a Gδ in G and

if
R
G f (x) dx = 1, then (8( f )v−v, v0) =

R
G f (x)(8(x)v−v, v0) dx . When

kv0k ≤ 1, the Schwarz inequality therefore gives

|(8( f )v−v, v0)| ≤
Z

N
f (x)k8(x)v − vkkv0k dx ≤ sup

x∈N
k8(x)v − vk.

Taking the supremum over v0 with kv0k ≤ 1 allows us to conclude that

k8( f )v − vk ≤ sup
x∈N

k8(x)v − vk.

We shall make use of this inequality shortly.
An invariant subspace for a unitary representation 8 on V is, just as in the

finite-dimensional case, a vector subspaceU such that8(g)U ⊆ U for all g ∈ G.
This notion is useful mainly when U is a closed subspace. In any event if U is
invariant, so is the closed orthogonal complementU⊥ since u⊥ ∈ U⊥ and u ∈ U
imply that

(8(g)u⊥, u) = (u⊥,8(g)∗u) = (u⊥,8(g)−1u) = (u⊥,8(g−1)u)

is in (u⊥,U) = 0. If V 6= 0, the representation is irreducible if its only closed
invariant subspaces are 0 and V .
Two unitary representations of G, 8 on V and 80 on V 0, are said to be

equivalent if there is a bounded linear E : V → V 0 with a bounded inverse
such that 80(g)E = E8(g) for all g ∈ G.

Theorem 6.34. If 8 is a unitary representation of the compact group G on
a complex Hilbert space V , then V is the orthogonal sum of finite-dimensional
irreducible invariant subspaces.

REMARK. The new content of the theorem is for the case that V is infinite
dimensional. The theorem says that if one takes the union of orthonormal bases
for each of certain finite-dimensional irreducible invariant subspaces, then the
result is an orthonormal basis of V .

PROOF. By Zorn’s Lemma, choose a maximal orthogonal set of finite-
dimensional irreducible invariant subspaces, and letU be the closure of the sum.
Arguing by contradiction, suppose that U is not all of V . Then U⊥ is a nonzero
closed invariant subspace. Fix v 6= 0 inU⊥. For each open neighborhood N of 1
that is a Gδ in G, let fN be the indicator function of N divided by the measure of
N . Then fN is an integrable function ∏ 0 with integral 1. It is immediate from
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the definition of (8( fN )v, u) that8( fN )v is inU⊥ for every N and every u ∈ U .
The inequality k8( fN )v − vk ≤ supx∈N k8(x)v − vk and strong continuity of
8 show that 8( fN )v tends to v as N shrinks to {1}. Hence some 8( fN )v is not
0. Fix such an N .
Choose by the Peter–Weyl Theorem (Theorem 6.31) a function h in the lin-

ear span of all matrix coefficients for all finite-dimensional irreducible unitary
representations such that k fN − hk2 ≤ 1

2k8( fN )vk
±
kvk. Then

k8( fN )v − 8(h)vk = k8( fN − h)vk ≤ k fN − hk1kvk

≤ k fN − hk2kvk ≤ 1
2k8( fN )vk.

Hence

k8(h)vk ∏ k8( fN )vk − k8( fN )v − 8(h)vk ∏ 1
2k8( fN )vk > 0,

and 8(h)v is not 0.
The function h lies in some finite-dimensional vector subspace S of L2(G)

that is invariant under left translation. Let h1, . . . , hn be a basis of S, and write
hj (g−1x) =

Pn
i=1 ci j (g)hi (x). The formal computation

8(g)8(hj )v = 8(g)
R
G hj (x)8(x)v dx =

R
G hj (x)8(gx)v dx

=
R
G hj (g

−1x)8(x)v dx =
Pn

i=1 ci j (g)
R
G hi (x)8(x)v dx

=
Pn

i=1 ci j (g)8(hi )v

suggests that the vector subspace
Pn

j=1 C8(hj )v, which is finite dimensional
and lies in U⊥, is an invariant subspace for 8 containing the nonzero vector
8(h)v. To justify the formal computation, we argue as in the proof of the formula
8( f ∗ h) = 8( f )8(h), redoing the calculation with an inner product with
v0 in place throughout. The existence of this subspace of U⊥ contradicts the
maximality of U and proves the theorem. §

Corollary 6.35. Every irreducible unitary representation of a compact group
is finite dimensional.

PROOF. This is immediate from Theorem 6.34. §

Corollary 6.36. Let8 be a unitary representation of the compact group G on
a complex Hilbert space V . For each irreducible unitary representation τ ofG, let
Eτ be the orthogonal projection on the sum of all irreducible invariant subspaces
of V that are equivalent to τ . Then Eτ is given by dτ8(χτ ), where dτ is the
degree of τ and χτ is the character of τ , and the image of Eτ is the orthogonal



8. Fourier Analysis Using Compact Groups 261

sum of irreducible invariant subspaces that are equivalent to τ . Moreover, if τ
and τ 0 are inequivalent, then Eτ Eτ 0 = Eτ 0Eτ = 0. Finally every v in V satisfies

v =
X

τ

Eτv,

with the sum an infinite sum over a set of representatives τ of all equivalence
classes of irreducible unitary representations of G and taken in the sense of
convergence in the Hilbert space.
REMARK. For each τ , the projection Eτ is called the orthogonal projection on

the isotypic subspace of type τ .
PROOF. Let τ be irreducible with degree dτ , and put E 0

τ = dτ8(χτ ). Our
formulas for characters and for operators8( f ) give us the two formulas

E 0
τ E

0
τ 0 = dτdτ 08(χτ )8(χτ 0) = dτdτ 08(χτ ∗ χτ 0) = 0 if τ ¿ τ 0,

E 0
τ
2 = d2τ 8(χτ ∗ χτ ) = dτ8(χτ ) = E 0

τ .

The first of these says that E 0
τ E 0

τ 0 = E 0
τ 0E 0

τ = 0 if τ and τ 0 are inequivalent,
and the second says that E 0

τ is a projection. In fact, E 0
τ is self adjoint and is

therefore an orthogonal projection. To see the self-adjointness, we let {ui } be an
orthonormal basis of the vector space on which τ operates by unitary transfor-
mations. Then χτ

∗(x) = χτ (x−1) =
P

i (τ (x−1)ui , ui ) =
P

i (ui , τ (x−1)ui ) =P
i (τ (x)ui , ui ) = χτ (x). Therefore

E 0
τ
∗ = dτ8(χτ )

∗ = dτ8(χτ
∗) = dτ8(χτ ) = E 0

τ ,

and the projection Eτ 0 is an orthogonal projection.
Let U be an irreducible finite-dimensional subspace of V on which 8

Ø
Ø
U

is equivalent to τ , and let u1, . . . , un be an orthonormal basis of U . If we
write 8(x)uj =

Pn
i=18i j (x)ui , then 8i j (x) = (8(x)uj , ui ) and χτ (x) =Pn

i=18i i (x). Thus a formal computation with Schur orthogonality gives

E 0
τuj = dτ

R
G χτ (x)8(x)uj dx = dτ

R
G

P
i,k 8kk(x)8i j (x)ui dx = uj ,

and we can justify this computation by using inner products with v0 throughout.
As a result, we see that E 0

τ is the identity on every irreducible subspace of type τ .
Now let us apply E 0

τ to a Hilbert space orthogonal sum V =
P

Vα of the kind
in Theorem 6.34. We have just seen that E 0

τ is the identity on Vα if Vα is of type
τ . If Vα is of type τ 0 with τ 0 not equivalent to τ , then E 0

τ 0 is the identity on Vα,
and we have E 0

τu = E 0
τ E 0

τ 0u = 0 for all u ∈ Vα. Consequently E 0
τ is 0 on Vα,

and we conclude that E 0
τ = Eτ . This completes the proof. §

EXAMPLE. The right-regular representation r of G on L2(G). Let τ be an
abstract irreducible unitary representation of G, let (u1, . . . , un) be an ordered
orthonormal basis of the space on which τ acts, and form matrices relative to
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this basis that realize each τ (x). The formula is τi j (x) = (τ (x)uj , ui ). The
computation (r(g)τi j )(x) = τi j (xg) =

P
k τik(x)τk j (g) =

P
i 0 τi 0 j (g)τi i 0(x)

shows that the matrix coefficients corresponding to a fixed row, those with i fixed
and j varying, form an invariant subspace for r . The matrix of this representation
is [τi 0 j (g)], and thus the representation is irreducible of type τ . Since these spaces
are orthogonal to one another by Schur orthogonality, the dimension of the image
of Eτ is at least d2τ . On the other hand, Corollary 6.32 says that such matrix
coefficients relative to an orthonormal basis, as τ varies through representatives of
all equivalence classes of irreducible representations, form a maximal orthogonal
system in L2(G). The coefficients corresponding to any τ 0 not equivalent to τ
are in the image of Eτ 0 and are not of type τ . Therefore the orthogonal sum of the
spaces of matrix coefficients for each fixed row equals the image of Eτ , and the
dimension of the image equals d2τ . The corollary tells us that the formula for the
projection is Eτ f = r(dτχτ ) f . To see what this is concretely, we use the defini-
tions to compute that (Eτ f, h) = (r(dτχτ ) f, h) =

R
G dτχτ (x)(r(x) f, h) dx =R

G
R
G dτχτ (x)(r(x) f )(y)h(y) dy dx =

R
G

R
G dτχτ (x) f (yx)h(y) dy dx =R

G
R
G dτχτ (x−1) f (yx)h(y) dx dy = ( f ∗ dτχτ , h). Therefore the orthogonal

projection is given by Eτ f = f ∗ dτχτ .

Corollary 6.36 is a useful result in taking advantage of symmetries in analysis
problems. Imagine that the problem is to understand some linear operator on the
space in question, and suppose that the space carries a representation of a compact
group that commutes with the operator. This is exactly the situation with some
of the examples of separation of variables in partial differential equations as in
Section I.2. The idea is that under mild assumptions, the operator carries each
isotypic subspace to itself. Hence the problem gets reduced to an understanding
of the linear operator on each of the isotypic subspaces.
In order to have a concrete situation for purposes of illustration, let us assume

that the linear operator is bounded, has domain the whole Hilbert space, and
carries the space into itself. The following proposition then applies.

Proposition 6.37. Let T : V → V be a bounded linear operator on the Hilbert
space V , and suppose that 8 is a unitary representation of the compact group G
on V such that T8(g) = 8(g)T for all g in G. Let τ be an abstract irreducible
unitary representation of G, and let Eτ be the orthogonal projection of V on the
isotypic subspace of type τ . Then T Eτ = EτT .
PROOF. For v and v0 in V , (T Eτv, v0) is equal to

(Eτv, T ∗v0) = dτ

R
G χτ (x)(8(x)v, T ∗v0) dx = dτ

R
G χτ (x)(T8(x)v, v0) dx

= dτ

R
G χτ (x)(8(x)T v, v0) dx = (EτT v, v0) dx,

and the result follows. §
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EXAMPLE. The Fourier transform on L2(RN ) commutes with each member ρ
of theorthogonalgroupO(N )because if f hasFourier transform bf , then bf (ρy) =R

RN f (x)e−2π i x ·ρy dx =
R

RN f (x)e−2π iρ−1x ·y dx =
R

RN f (ρx)e−2π i x ·y dx says
that x 7→ f (ρx) has Fourier transform y 7→ bf (ρy). Proposition 6.37 says that
the Fourier transform carries each isotypic subspace of L2(RN ) under O(N ) into
itself. Let us return to Example 5 in Section 6, in which we dealt with the vector
space Vk of all polynomials on RN homogeneous of degree k. We saw that the
vector subspace Hk of harmonic polynomials homogeneous of degree k is an
invariant subspace under O(N ). In fact, more is true. One can show that Hk is
irreducible and that the Laplacian1 carries Vk onto |x |2Vk−2. It follows from the
latter fact that the space of restrictions to the unit sphere SN−1 of all polynomials
is the same as the space of restrictions to SN−1 of all harmonic polynomials,
with each irreducible representation Hk of O(N ) occurring with multiplicity 1.
Applying the Stone–Weierstrass Theorem on SN−1 and untangling matters, we
find for L2(SN−1) that the isotypic subspaces under O(N ) are the restrictions of
the members of Hk , each having multiplicity 1. Passing to L2(RN ) and thinking
in terms of spherical coordinates, we see that each relevant τ for L2(RN ) is the
representation on some Hk and that the image of Eτ is the space of L2 functions
that are finite linear combinations

P
j h j f j (|x |) of products of a member of Hk

and a function of |x |, the members of Hk being linearly independent. According
to the proposition, this image is carried to itself by the Fourier transform. The
restriction of the Fourier transform to this image still commutes with members
of O(N ), and the idea is to use Schur’s Lemma (Corollary 6.27) to show that
the Fourier transform has to send any hj (x) f (|x |) to hj (x)g(|x |); the details are
carried out in Problem 14 at the end of the chapter. Thus we can see on the
basis of general principles that the Fourier transform formula reduces to a single
1-dimensional integral on each space corresponding to some Hk . Armedwith this
information, one can look for a specific integral formula, and the actual formula
turns out to involve an integration and classical Bessel functions.12

CONCLUDING REMARKS. Proposition 6.37 and the above example are con-
cerned with understanding a particular bounded linear operator, but realistic
applications are more concerned with linear operators that are unbounded. For
example, when the domain of a linear partial differential operator can be arranged
in such a way that the operator is self adjoint and a compact group of symmetries
operates, then one wants to exploit the symmetry group in order to express the
space of all functions annihilated by the operator as the limit of the sum of those
functions in an isotypic subspace. In mathematical physics the very hope that
this kind of reduction is possible has itself been useful, even without knowing
in advance the differential operator and the group of symmetries. The reason

12Bessel functions were defined in Section IV.8 of Basic.
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is that numerical invariants of the compact group, such as the dimensions of
some of the irreducible representations, appear in physical data. One can look
for an appropriate group yielding those numerical invariants. This approach
worked long ago in analyzing spin, it workedmore recently in attempts to classify
elementary particles, and it has been used still more recently in order to guess at
the role of group theory in string theory.

9. Problems

1. Let G be a topological group.
(a) Prove that the connected component of the identity element of G, i.e., the

union of all connected sets containing the identity, is a closed subgroup that is
group-theoreticallynormal. This subgroup is called the identity component
of G.

(b) Give an example of a topological group whose identity component is not
open.

2. The rotation group SO(N ) acts continuously on the the unit sphere SN−1 in RN

by matrix multiplication.
(a) Prove that the subgroup fixing the first standard basis vector is isomorphic

to SO(N − 1).
(b) Prove that the action by SO(N ) is transitive on SN−1 for N ∏ 2.
(c) Deduce that there is a homeomorphism SO(N )/SO(N − 1) → SN−1 for

N ∏ 2 that respects the action by SO(N ).
3. LetG be a separable locally compact group, and suppose thatG has a continuous

transitive group action on a locally compact Hausdorff space X . Suppose that
x0 is in X and that H is the (closed) subgroup of G fixing x0, so that there is a
one-one continuous map π of G/H onto X . Using the Baire Category Theorem
for locally compact Hausdorff spaces (Problem 3 of Chapter X of Basic), prove
that π is an open map and that π is therefore a homeomorphism.

4. Let G1 and G2 be separable locally compact groups, and let π : G1 → G2 be a
continuous one-one homomorphism onto. Prove that π is a homeomorphism.

5. Let T 2 = {(eiθ , eiϕ)}. The line R1 acts on T 2 by
°
x, (eiθ , eiϕ)

¢
7→ (eiθ+i x , eiϕ+i x

p
2 ).

Let p be the point (1, 1) of T 2 corresponding to θ = ϕ = 0. The mapping of R1
into T 2 given by x 7→ xp is one-one. Is it a homeomorphism? Explain.

6. Let G be a noncompact locally compact group, and let V be a bounded open set.
By using the fact that G cannot be covered by finitely many left translates of V ,
prove that G must have infinite left Haar measure, i.e., that a Haar measure for
a locally compact group can be finite only if the group is compact.
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7. (a) Suppose thatG is a compact group, ∏ is a left Haarmeasure, ρ is a right Haar
measure, and E is a Baire set. By evaluating

R
G×G IE (xy) d(ρ × ∏)(x, y)

as an iterated integral in each order, prove that ∏(E)ρ(G) = ∏(G)ρ(E).
(b) Deduce the uniqueness of Haar measure for compact groups, together with

the unimodularity, from (a) and the existence of left and right Haar measures
for the group.

8. Suppose that {Gn}∞n=1 is a sequence of separable compact groups. Let G
(n) =

G1 × · · · ×Gn , and let G be the direct product of all Gn . Let µn , µ(n), and µ be
Haar measures on Gn , G(n), and G, all normalized to have total measure 1.
(a) Why is µ(n) equal to the product measure µ1 × · · · × µn?
(b) Show that µ(n) defines a measure on a certain σ -algebra of Borel sets of G

that is consistent with µ.
(c) Show that the smallest σ -algebra containing, for every n, the “certain

σ -algebra of Borel sets of G” as in (b), is the σ -algebra of all Borel sets of
G, so that µ can be regarded as the infinite product of µ1, µ2, . . . .

9. Let G be a locally compact topological group with a left Haar measure dl x , and
let 8 be an automorphism of G as a topological group, i.e., an automorphism
of the group structure that is also a homeomorphism of G. Prove that there is a
positive constant a(8) such that dl(8(x)) = a(8) dl x .

10. Let G be a locally compact group with two closed unimodular subgroups S and
T such that G = S × T topologically and such that T is group-theoretically
normal. Write elements of G as st with s ∈ S and t ∈ T . Let ds and dt be Haar
measures on S and T . Since t 7→ sts−1 is an automorphism of T for each s ∈ S,
the previous problem produces a constant δ(s) such that d(sts−1) = δ(s) dt .
(a) Prove that ds dt is a left Haar measure for G.
(b) Prove that δ(s) ds dt is a right Haar measure for G.

11. This problem leads to the same conclusion as Proposition 4.8, that any locally
compact topological vector space overR is finite-dimensional, but it gives amore
conceptual proof than the one in Chapter IV. Let V be such a space. For each
real c 6= 0, let |c|V be the constant a(8) from Problem 9 when the measure is an
additive Haar measure for V and 8 is multiplication by c. Define |0|V = 0.
(a) Prove that c 7→ |c|V is a continuous function fromR into [0,+∞) such that

|c1c2|V = |c1|V |c2|V and such that |c1| ≤ |c2| implies |c1|V ≤ |c2|V .
(b) If W is a closed vector subspace of V , use Theorem 6.18 to prove that

|c|V = |c|W |c|V/W .
(c) Using (b), Proposition 4.5, Corollary 4.6, and the formula |c|RN = |c|N ,

prove that V has to be finite-dimensional.
12. Let 8 be a finite-dimensional unitary representation of a compact group G on a

finite-dimensional inner-product space V . The members of the dual V ∗ are of
the form `v = ( · , v)with v in V , by virtue of the Riesz Representation Theorem



266 VI. Compact and Locally Compact Groups

for Hilbert spaces. Define (`v1, `v2) = (v2, v1). Prove that the result is the inner
product on V ∗ giving rise to the Banach-space norm on V ∗, and prove that the
contragredient representation 8c has 8c(x)`v = `8(x)v and is unitary in this
inner product.

13. Let 8 and 80 be two irreducible unitary representations of a compact group
G on the same finite-dimensional vector space V , and suppose that they are
equivalent in the sense that there is some linear invertible E : V → V with
E8(g) = 80(g)E for all g ∈ G. Prove that8 and80 are unitarily equivalent in
the sense that this equality for some invertible E implies this equality for some
unitary E .

14. This problem seeks to fill in the argument concerning Schur’s Lemma in the
example near the end of Section 8. Introduce an inner product in the space
Hk of harmonic polynomials on RN homogeneous of degree k to make the
representation of O(N ) on Hk be unitary, and let {hj } be an orthonormal basis.
The representation8 on Hk and its correspondingmatrices [8(ρ)i j ] are given by
(8(ρ)hj )(x) = hj (ρ−1x) =

P
i 8(ρ)i j hi (x). LetF be the Fourier transformon

RN , and fix a function f (|x |) such that |x |k f (|x |) is in L2(RN ). Define a matrix
F(|y|) = [ fi j (|y|)] for each |y| by F(hj (x) f (|x |))(y) =

P
i hi (y) fi j (|y|).

(a) Assuming that the functions f and F are continuous functions of |x |, prove
that F(|y|)[8(ρ)i j ] = [8(ρ)i j ]F(|y|) for all ρ.

(b) Deduce from (a) and Corollary 6.27 that F(h(x) f (|x |)) is of the form
h(y)g(|y|) if h is in Hk and the continuity hypothesis is satisfied.

(c) Show how the continuity hypothesis can be dropped in the above argument.

15. Making use of the result of Problem 12, show that the matrix coefficients of the
contragredient 8c of a finite-dimensional representation 8 of a compact group
are the complex conjugates of those of 8 and the characters satisfy χ8c = χ8.

16. An example in Section 8 examined the right-regular representation r of a compact
group G, given by (r(g) f )(x) = f (xg), and showed that the linear span of the
matrix coefficients of an irreducible τ equals the whole isotypic space of type
τ , a decomposition of this space into irreducible representations being given by
the decomposition into rows. Show similarly for the left-regular representation
l, given by (l(g) f )(x) = f (g−1x), that the linear span of the matrix coefficients
of the irreducible τ equals the whole isotypic space of type τ c, a decomposition
of this space into irreducible representations being given by the decomposition
into columns.

17. Let G be a compact group, and let V be a complex Hilbert space.
(a) For G = S1, prove that the left-regular representation l of G on L2(G) is

not continuous in the operator norm topology, i.e., that g 7→ l(g) is not
continuous from G into the Banach space of bounded linear operators on
L2(G).
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(b) Suppose that g 7→ 8(g) is a homomorphismofG into unitaryoperators onV
that is weakly continuous, i.e., that has the property that g 7→ (8(g)u, v)

is continuous for each u and v in V . Prove that g 7→ 8(g) is strongly
continuous in the sense that g 7→ 8(g)v is continuous for each v in V , i.e.,
that 8 is a unitary representation.

18. Let G be a compact group.
(a) Let 8 be an irreducible unitary representation of G, and let f be a linear

combination of matrix coefficients of the contragredient8c of8. Prove that
f (1) = d Tr8( f ), where d is the degree of f .

(b) Let {8(α)} be a maximal set of mutually inequivalent irreducible unitary
representations of G, and let d(α) be the degree of 8(α). Prove that each
trigonometric polynomial f on G satisfies the Fourier inversion formula
f (1) =

P
α d(α) Tr8(α)( f ), the sum being a finite sum in the case of a

trigonometric polynomial.
(c) Deduce the Plancherel formula for trigonometric polynomials onG from (b).
(d) If G is a finite group, prove that every complex-valued function on G is a

trigonometric polynomial.
19. Let G be a compact group.

(a) Prove that if h is any member ofC(G) such that h(gxg−1) = h(x) for every
g and x in G, then h ∗ f = f ∗ h for every f in L1(G).

(b) Prove that if f is a trigonometric polynomial, then x 7→
R
G f (gxg−1) dg is

a linear combination of characters of irreducible representations.
(c) Using the Approximation Theorem, prove that any member of C(G) such

that h(gxg−1) = h(x) for every g and x in G is the uniform limit of a
sequence of linear combinations of irreducible characters.

(d) Prove that the irreducible characters form an orthonormal basis of the
closed vector subspace of all members h of L2(G) satisfying h(x) =R
G h(gxg

−1) dg almost everywhere.
20. Let G be a finite group, let {8(α)} be a maximal set of inequivalent irreducible

representations of G, and let d(α) be the degree of 8(α).
(a) Prove that

P
α (d(α))2 equals the number of elements in G.

(b) Using (d) in the previous problem, prove that the number of8(α)’s equals the
number of conjugacy classes of G, i.e., the number of equivalence classes of
G under the equivalence relation that x ∼ y if x = gyg−1 for some g ∈ G.

(c) In a symmetric group Sn , two elements are conjugate if and only if they
have the same cycle structure. InS4, two of the irreducible representations
are 1-dimensional. Using this information and the above facts, determine
how many 8(α)’s there are forS4 and what degrees they have.

Problems 21–22 concern Theorem 6.16, its hypotheses, and related ideas. In the
theory of (separable) “Lie groups,” if S and T are closed subgroups of a Lie group G
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whose intersection is discrete and the sum of whose dimensions equals the dimension
of G, then multiplication S × T → G is an open map. These problems deduce
this open mapping property in a different way without any knowledge of Lie groups,
and then they apply the result to give two explicit formulas for the Haar measure of
SL(2, R) in terms of measures on subgroups.
21. LetG be a separable locally compact group, and let S and T be closed subgroups

such that the image of multiplication as a map S × T → G is an open set in G.
Using the result of Problem 3, prove that S × T → G is an open map.

22. For the groupG = SL(2, R), let K =
n
kθ =

≥
cos θ − sin θ

sin θ cos θ

¥o
, M = {m± = ±1},

A =
n
ax =

≥
ex 0
0 e−x

¥o
, N =

n
ny =

≥
1 y
0 1

¥o
, and V =

n
vt =

≥
1 0
t 1

¥o
.

(a) Prove that AN is a closed subgroup and that every element of G is uniquely
the product of an element of K and an element of AN . Using Theorem 6.16,
show that the formula

`( f ) =
R 2π
θ=0

R ∞
x=−∞

R ∞
y=−∞ f (kθaxny)e2x dy dx dθ

defines a translation-invariant linear functional on Ccom(G).
(b) Prove that MAN is a closed subgroup and that every element

≥
a b
c d

¥
of G

with a 6= 0, and no other element of G, is a product of an element of V and
an element of MAN . Assume that the subset of elements

≥
a b
c d

¥
of G with

a = 0 has Haar measure 0. Using Theorem 6.16, show that the formula

`( f ) =
P

m±∈M
R ∞
t=−∞

R ∞
x=−∞

R ∞
y=−∞ f (vtm±axny)e2x dy dx dv

defines a translation-invariant linear functional on Ccom(G).
Problems 23–27 do some analysis on the group G = SU(2) of 2-by-2 unitary
matrices of determinant 1. Following the notation introduced in Example 4 in
Section 6 and in its continuation later in that section, let 8n be the representation
of G on the homogeneous holomorphic polynomials of degree n in z1 and z2 given
by (8n(g)P)

≥ z1
z2

¥
= P

≥
g−1

≥ z1
z2

¥¥
. Let T = {tθ }, with tθ = diag

°
eiθ , e−iθ

¢
, be

the diagonal subgroup. The text calculated that the character χn of 8n is given on T
by

χn(tθ ) = Tr8n(tθ ) = einθ + ei(n−2)θ + · · · + e−inθ =
ei(n+1)θ − e−i(n+1)θ

eiθ − e−iθ
.

Take for granted that 8n is irreducible for each n ∏ 0.
23. Take as known from linear algebra that every member of SU(2) is of the form

gtθg−1 for some g ∈ SU(2) and some θ . Show that the only ambiguity in tθ is
between θ and−θ . Prove that the linear mapping ofC(G) toC(T ) carrying f in
C(G) to the function tθ 7→

R
G f (gtθg−1) dg has image all functions ϕ ∈ C(T )

with ϕ(t−θ ) = ϕ(tθ ).
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24. Reinterpret the image in the previous problem as all continuous functions on the
quotient space T/{1,√}, where √ : T → T interchanges t−θ and tθ . Why is
this space compact Hausdorff? Why then can it be identified with [0,π]?

25. Prove that there is a Borel measure µ on [0,π] such that
R
G f (x) dx =

R
[0,π]

R
G f (gtθg−1) dg dµ(θ)

for all f in C(G).
26. Follow these steps to identify dµ(θ) in the previous problem and thereby have

a formula for integrating over G = SU(2) by first integrating over conjugacy
classes. Such a formula can be obtained by computations with coordinates and
use of the change-of-variables formula formultiple integrals, but themethod here
is shorter.
(a) Using the orthogonality relations

R
G χn(x)χ0(x) dx = δn0, prove thatR

[0,π] dµ(θ) = 1 and that
R
[0,π] (e

ikθ + e−ikθ ) dµ(θ) is −1 for k = 2
but is 0 for k = 1 and k ∏ 3.

(b) Extendµ to [−π,π] by setting it equal to 0 on [−π, 0), defineµ0 on [−π,π]
by µ0(E) = 1

2
°
µ(E) + µ(−E)

¢
, observe that µ0 is even, and check thatR

[−π,π] cos nθ dµ0(θ) is equal to 1 for n = 0, to −1 for n = 2, and to 0 for
n = 1 and n ∏ 3.

(c) Deduce that the periodic extension of µ0 from (−π,π] to R is given by its
Fourier–Stieltjes series dµ0(θ) = 1

2π (1− cos 2θ) dθ .
(d) (Special case ofWeyl integration formula) Conclude that

R
G f (x) dx = 1

π

R π
π

£ R
G f (gt±θg−1) dg

§
sin2 θ dθ .

27. Prove that every irreducible unitary representation of SU(2) is equivalent to
some 8n .

Problems 28–32 concern locally compact topological fields. Each such is of interest
from the point of view of the present chapter because its additive group is a locally
compact abelian group and its nonzero elements form another locally compact abelian
group under multiplication. A topological field is a field with a Hausdorff topology
such that addition, negation, multiplication, and inversion are continuous. The fields
R andC are examples. Another example is the fieldQp of p-adic numbers, where p is
a prime. To construct this field, onedefineson the rationalsQ a function | · |p by setting
|0|p = 0 and taking |pnr/s|p equal to p−n if r and s are relatively prime integers.
Then d(x, y) = |x− y|p is a metric onQ, and themetric space completion isQp. The
function | · |p extends continuously toQp and is called the p-adic norm. It satisfies
something better than the triangle inequality, namely |x+ y|p ≤ max{|x |p, |y|p}; this
is called the ultrametric inequality. Problems 27–31 of Chapter II of Basic show
that the arithmetic operations on Q extend continuously to Qp and that Qp becomes
a topological field such that |xy|p = |x |p|y|p. Because of the ultrametric inequality
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the subset Zp of Qp with |x |p ≤ 1 is a commutative ring with identity; it is called
the ring of p-adic integers. It is a topological ring in that its addition, negation, and
multiplication are continuous. Moreover, it is compact because every closed bounded
subset ofQp can be shown to be compact. The subset I of Zp with |x |p ≤ p−1 is the
unique maximal ideal of Zp, and the quotient Zp/I is a field of p elements.

28. Prove that every compact topological field is finite.

29. Let F be a locally compact topological field, and let F× be the group of nonzero
elements, the group operation being multiplication.
(a) Let c be in F×, and define |c|F to be the constant a(8) from Problem 9

when the measure is an additive Haar measure and8 is multiplication by c.
Define |0|F = 0. Prove that c 7→ |c|F is a continuous function from F into
[0,+∞) such that |c1c2|F = |c1|F |c2|F .

(b) If dx is a Haar measure for F as an additive locally compact group, prove
that dx/|x |F is a Haar measure for F× as a multiplicative locally compact
group.

(c) Let F = R be the locally compact field of real numbers. Compute the
function x 7→ |x |F . Do the same thing for the locally compact field F = C
of complex numbers.

(d) Let F = Qp be the locally compact field of p-adic numbers, where p is a
prime. Compute the function x 7→ |x |F .

(e) For the field F = Qp of p-adic numbers, suppose that the ring Zp of p-adic
integers has additive Haar measure 1. What is the additive Haar measure of
the maximal ideal I of Zp?

30. Consider Qp as a locally compact abelian group under addition.
(a) Prove from the continuity that any multiplicative character of the additive

group Qp is trivial on some subgroup pnZp for sufficiently large n.
(b) Tell how to define a multiplicative character ϕ0 of the additive group Qp in

such a way that ϕ0 is 1 on Zp and ϕ0(p−1) = e2π i/p.
(c) If ϕ is any multiplicative character of the additive groupQp, prove that there

exists a unique element k of Qp such that ϕ(x) = ϕ0(kx) for all x in Qp.

31. Let P = {∞} ∪ {primes}. For v in P , let Qv be the field of p-adic numbers if v
is a prime p, or R if v = ∞. For v in P , define | · |v onQv as follows: this is to
be the p-adic norm on Qp if v is a prime p, and it is to be the ordinary absolute
value on R if v = ∞. Each member of the rationals Q can be regarded as a
member of Qv for each v in P . Prove that each rational number x has |x |v 6= 1
for only finitely many v.

32. (Artin product formula) For each nonzero rational number x , the fact that
|x |v 6= 1 for only finitely many v in P shows that

Q
v |x |v is a well-defined

rational number. Prove that actually
Q

v |x |v = 1.
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Problems 33–38 concern the ring AQ of adeles of the rationals Q and the group of
ideles defined in terms of it. These objects are important tools in algebraic number
theory, and they provide interesting examples of locally compact abelian groups. Part
of the idea behind them is to study number-theoretic questions about the integers, such
as the solving of Diophantine equations or the factorization of monic polynomials
with integer coefficients, by first studying congruences. One studies a congruence
modulo each power of any prime, as well as any limitations imposed by treating
the coefficients as real. The ring AQ of adeles of Q is a structure that incorporates
simultaneously information about all congruencesmodulo each primepower, together
with information aboutR. Its definition makes use of the construction of direct limits
of topological spaces as in Problems 26–30 in Chapter IV, as well as the material
concerning p-adic numbers in Problems 29–32 above.

33. The construction of restricted direct products in Problem 30 at the end of Chap-
ter IV assumed that I is a nonempty index set, S0 is a finite subset, Xi is a locally
compact Hausdorff space Xi for each i ∈ I , and Ki is a compact open subset of
Xi for each i /∈ S0. As in that problem, for each finite subset S of I containing
S0, let

X (S) =
°×i∈S Xi

¢
×

°×i /∈SKi
¢
,

giving it the product topology. Suppose that each Xi , for i ∈ I , is in fact a locally
compact group and Ki , for i /∈ S0, is a compact open subgroup of Xi . Prove
that each X (S), with coordinate-by-coordinate operations, is a locally compact
group and that the direct limit X acquires the structure of a locally compact group.
Prove also that if each Xi is a locally compact topological ring and each Ki is a
compact subring, then each X (S) is a locally compact topological ring and so is
the direct limit X .

34. In the construction of the previous problem, let I = P = {∞} ∪ {primes}
and S0 = {∞}, and form the restricted direct product of the various topo-
logical fields Qv for v ∈ P with respect to the compact open subrings Zv .
The above constructions lead to locally compact commutative rings AQ(S) for
each finite subset S of P containing S0, and the direct limit AQ is the locally
compact commutative topological ring of adeles for Q. Show that each AQ(S)
is an open subring of AQ. Show that we can regard elements of AQ as tuples
x = (x∞, x2, x3, x5, . . . , xv, . . . ) = (xv)v∈P in which all but finitely many
coordinates xp are in Zp.

35. For each rational number x , the fact that |x |v ≤ 1 for all but finitely many v

allows us to regard the tuple (x, x, x, . . . ) as a member of AQ. Thus we may
regard Q, embedded “diagonally,” as a subfield of the ring AQ. Prove that Q is
discrete, hence closed.

36. In the setting of the previous problem, prove that AQ/Q is compact.
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37. For the ringsQv , Zv , andAQ, letQ×
v , Z×

v , andA×
Q be the groups consisting of the

members of the rings whosemultiplicative inverses are in the rings. GiveQ×
v and

Z×
v the relative topology. In the case of A×

Q, define the topology as a restricted
direct product of the locally compact groups Q×

v for v ∈ P with respect to the
compact open subgroups Z×

v . The locally compact groupA×
Q is called the group

of ideles ofQ. Show that the set-theoretic inclusion ofA×
Q intoAQ is continuous

but is not a homeomorphism of A×
Q with its image.

38. This problem constructs Haar measure on the ring AQ considered as an additive
group. As in Problem 34, S denotes any finite subset of P containing {∞}.
(a) Fix S. This part of the problem constructs Haar measure on AQ(S). For

each prime p in S, define Haar measure µp on Qp to be normalized so
that µp(Zp) = 1. Form a measure µS on AQ(S) as follows: On the product
X (S) ofR and theQp for p prime in S, use the product of Lebesguemeasure
and µp. On the product Y (S) of all Zp for p /∈ S, use the Haar measure on
the infinite product of the Zp’s obtained as in Problem 8. Then AQ(S) =
X (S) × Y (S). Show that Haar measure µS on AQ(S) may be taken as the
product of these measures on X (S) and Y (S) and that the resultingmeasures
are consistent as S varies.

(b) Show that each measure µS defines a set function on a certain σ -subalgebra
B(S) of Borel sets ofAQ that is the restriction to B(S) of a Haar measure on
all Borel subsets of AQ.

(c) Show that the smallest σ -algebra for AQ containing, for every finite S con-
taining {∞}, the σ -algebra B(S) as in (b) is the σ -algebra of all Borel sets
of AQ.

Problems 39–47 concern almost periodic functions on topological groups. Let G be
any topological group. Define a bounded continuous function f : G → C to be left
almost periodic if every sequence of left translates of f , i.e., every sequence of the
form {gn f } with (gn f )(x) = f (g−1

n x), has a uniformly convergent subsequence;
equivalently the condition is that the closure in the uniform norm of the set of left
translates of f is compact. Define right almost periodic functions similarly; it will
turn out that left almost periodic and right almost periodic imply each other. Take for
granted that the set of left almost periodic functions, call it LAP(G), is a uniformly
closed algebra stable under conjugation and containing the constants. Application of
the Stone Representation Theorem (Theorem 4.15) to LAP(G) produces a compact
Hausdorff space S1, a continuous map p : G 7→ S1 with dense image, and a norm-
preserving algebra isomorphism of LAP(G) onto C(S1). The space S1 is called the
Bohr compactification of G. These problems show that S1 has the structure of a
compact group and that the map of G into S1 is a continuous group homomorphism.
Application of the Peter–Weyl Theorem to S1 will give a Fourier analysis of LAP(G)

and an approximation property for its members in terms of finite-dimensional unitary
representations of G.
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39. Suppose that K is a compact group and that ∂ : G → K is a continuous
homomorphism.
(a) Prove that every member of C(K ) is left almost periodic and right almost

periodic on K .
(b) If F is in C(K ), let f be the function on G defined by f (x) = F(∂(x)) for

x ∈ G. Prove that f is left almost periodic and right almost periodic on G.

40. Let 8 be a finite-dimensional unitary representation of G, and let f be a matrix
coefficient of 8. Prove that f is left almost periodic and right almost periodic.

41. Let f be left almost periodic on G, let L f be the subset of C(G) consisting of
the left translates of f , and let K f be the closure in C(G) of L f . The set K f is
compact by definition of left almost periodicity.
(a) Prove that f is left uniformly continuous in the sense that for any ≤ > 0,

there is a neighborhoodU of {1} such that kg f − f ksup < ≤ for all g in U .
(b) Each member of the group G acts on L f with g0(g f ) = (g0g) f . Prove that

this operation of g0 on L f is an isometry of L f onto itself.
(c) Prove that the operation of each g0 on L f extends uniquely to an isometry

∂ f (g0) of K f onto itself.

42. Let X be a compact metric space with metric d, and let 0 be the group of
isometries of X onto itself. Make 0 into a metric space (0, ρ) by defining
ρ(ϕ1,ϕ2) = supx∈X d(ϕ1(x),ϕ2(x)).
(a) Prove that 0 is compact as a metric space.
(b) Prove that 0 is a topological group in this topology, hence a compact group.
(c) Prove that the group action 0 × X → X given by (∞ , x) 7→ ∞ (x) is

continuous.

43. Let 0 f be the isometry group of K f , and consider 0 f as a compact metric space
with metric as in the previous problem.
(a) Prove that the mapping ∂ f : G → 0 f defined in Problem 41c is continuous.
(b) Prove that if h is in K f , then the definition Ff (h)(∞ ) = (∞ −1h)(1) for

∞ ∈ 0 f yields a continuous function on 0 such that h(g0) = Ff (h)(∂ f (g0)).
(c) Conclude fromthe foregoing that f is right almostperiodicandhence that left

almost periodic functions can now be considered as simply almost periodic.

44. For each almost periodic function f on G, let ∂ f : G → 0 f be the continu-
ous homomorphism discussed in Problems 41c and 43a. Let 0 =

Q
f 0 f be

the product of the compact groups 0 f , and define ∂(g) =
Q

f ∂ f (g), so that
∂ : G → 0 is a continuous homomorphism. Problem 39b shows that if F is in
C(0), then the function h defined on G by h(x) = F(∂(x)) is almost periodic.
Prove that every almost periodic function on G arises in this way from some
continuous F on this particular 0.



274 VI. Compact and Locally Compact Groups

45. Let K be the closure of ∂(G) in the compact group 0 in the previous problem, let
S1 be the Bohr compactification ofG, and let p : G → S1 be the continuousmap
defined by evaluations at the points of G. Prove that there is a homeomorphism
8 : S1 → K such that 8 ◦ p = ∂, so that the construction of K can be regarded
as imposing a compatible group structure on the Bohr compactification of G.

46. Apply the Approximation Theorem to prove that every almost periodic function
on G can be approximated uniformly by linear combinations of matrix coeffi-
cients of finite-dimensional unitary representations of G.

47. Suppose thatG is abelian, and let p : G → K be the continuous homomorphism
of G into its Bohr compactification. Prove that the continuous multiplicative
characters ofG coincidewith the continuousmultiplicative characters of K under
an identification by p. (Educational note: It is known from “Pontryagin duality”
that if the group bK of continuousmultiplicative characters of the compact abelian
group K is given the discrete topology, then K is isomorphic to the compact group
of multiplicative characters of bK , the topology on this character group being the
relative topology as a subset of the unit ball of the dual of C(bK ) in the weak-
star topology. Thus K may be obtained by forming the group of continuous
multiplicative characters of G, imposing the discrete topology, and forming the
group of multiplicative characters of the result.)




