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CHAPTERI

Smooth Manifolds

Abstract. This chapter introduces just enough differential topology to serve as a suitable framework
for Stokes’s Theorem. The subject matter is the elementary structure of smooth manifolds, which is
a topic in real analysis that sits at the intersection of algebraic topology and differential geometry.

Section 1 presents the beginning definitions and results about smooth manifolds, tangent vectors
and vector fields, cotangent vectors and differential 1 forms, derivatives of smooth mappings, and
differentials.

Section 2 defines the exterior algebra of a finite dimensional real vector space. Tensor algebras,
which are discussed in Chapter VI of the author’s Basic Algebra, are taken as known.

Section 3 introduces differential forms and their pullbacks under smooth maps. It shows how to
compute pullbacks, and it establishes some properties of them.

Section 4 introduces the exterior derivative, which is the differentiation operator to be used with
differential forms, and shows that it satisfies a number of properties.

Section 5 contains the construction of a smooth partition of unity, which is a device making it
unnecessary in many cases to cut manifolds into pieces when treating integration problems.

Section 6 introduces the notion of an oriented smooth manifold and integration of top-degree
differential forms on it. The section shows also the relationship between integration and pullback.

1. Smooth Manifolds, Vector Fields, Derivatives, and Differentials

This section introduces smooth manifolds, and it briefly develops the notions of
smooth function, tangent and cotangent space, vector field, derivative, differential
1 form, and differential. For a more thorough presentation of this material, the
reader may wish to consult the author’s Advanced Real Analysis, particularly
Sections VIII.1-4.

“Manifolds” in our treatment are built from “charts,” each manifold has a
uniform dimension, and each manifold will be assumed to be separable in the
sense of having a countable base for its topology. The term “smooth” is used
interchangeably with the term C*°. The prototype for a manifold is the surface
of a sphere in three dimensions. Let us discuss this case informally first and then
return to develop the formal mathematics.

In the real world one describes the surface of the earth by means of “charts,”
with each chart containing a likeness of part of the earth’s surface and with all
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2 1. Smooth Manifolds

the charts together describing the whole surface. The collection of charts is an
“atlas.” The sense in which a chart contains a likeness of part of the surface is
that there is an understood one-one function (“map”) from the one onto the other.
In mathematics this function goes from a part of the surface into a likeness; in
the real world it tends to go in the opposite direction, namely from the likeness
into the surface.

Let M be a separable! Hausdorff topological space, and fix an integer m > 0.
A chart (M,, o) on M of dimension m is a homeomorphism « : M, — «a(M,)
of a nonempty open subset M, of M onto an open subset « (M, ) of R™; the chart
is said to be about a point p in M if p is in the domain M, of «. We say that M
is a manifold if there is an integer m > 0 such that each point of M has a chart
of dimension m about it.

A smooth structure of dimension m on a manifold M is a family F of
m dimensional charts with the following three properties:

(i) any two charts (M, o) and (Mg, B) in F are smoothly compatible in
the sense that 8 o @', as a mapping of the open subset o (M, N Mpg) of
R™ to the open subset 8(M, N Mpg) of R™, is smooth and has a smooth
inverse,
(i1) the system of compatible charts (M, o) is an atlas in the sense that the
domains M, together cover M,
(ii1) Fis maximal among families of compatible charts on M.

A smooth manifold of dimension m is a manifold together with a smooth
structure of dimension m. In the presence of an understood atlas, a chart will be
said to be compatible if it is compatible with all the members of the atlas.

Once we have an atlas of compatible m dimensional charts for a manifold M,
i.e., once (i) and (ii) are satisfied, then the family of all compatible charts satisfies
(1) and (iii), as well as (ii), and therefore is a smooth structure. In other words,
an atlas of compatible charts determines one and only one smooth structure. As
a practical matter we can thus construct a smooth structure for a manifold by
finding an atlas satisfying (i) and (ii), and the extension of the atlas for (iii) to
hold is automatic. Particularly in discussing orientability in Section 6, it will be
convenient to work with atlases that are not maximal.

EXAMPLE. The unit sphere M = S" in R"*!, the set of vectors of Euclidean
norm 1, can be made into a smooth manifold of dimension n by using two charts
defined as follows. One of these charts is (M, ¢) with

X1 Xn
QX1 vy Xpp1) = e
I = xnt1 I — X4

IThe treatment in Sections VIII.1—4 of Advanced Real Analysis does not insist on separability
of manifolds.



1. Smooth Manifolds, Vector Fields, Derivatives, and Differentials 3

and with domain M, = §" — {(0, ..., 0, 1)}, and the other is (M, ) with

w(xl,...,xnﬂ):(L N xfn)

1+xn+1’ "1+-xn+l

and with domain M, = §" — {(0,...,0, —1)}. We need to check that the two
charts are smoothly compatible. The set M, N My, is " — {(0, ..., 0, £1)}, and
the image of this under ¢ and v is R" — {(0,...,0)}. Puty; = x;/(1 — x,11),
sothat o ' (y1, ..., yp) = (X1, ..., Xnq1). Then o o~ (y1, ..., yp) is

= (xl/(l +xn+1)v cee ,X,,/(] +xn+1))
= (10 = x0)/ A+ X))o Yo (1= X)) /(14 X011)).

n+1
To compute (1 — x,41)/(1 + x,41), we take Y sz = 1 into account and write
j=1

yi=0=x7 /(1 =x,40)" =
1

n+1 n n
,:

1= Zl sz = xr21+1 + Zl yjz(l —Xp41)%. Then
Jj= iz A
(1 + xp4+1)/(1 — xp41), and

Yoo sy n) = <YI/X%Y},--~7Yn/X%Y}>-
Jj= j=

The entries on the right are smooth functions of y since y # 0. Similarly if we
put z; = x;/(1 + x,41), we calculate that

oy Nzy, ... z0) = (Zl/izza---zn/izjz),
Jj=1 j=1

Again the entries on the right are smooth functions of z since z # 0. Thus the
two charts are smoothly compatible, and S” is a smooth manifold.

Euclidean space R™ itself is of course a smooth manifold of dimension m, with
an atlas consisting of the single chart (R™, 1), where 1 is the identity function
on R™. Real projective spaces, which are defined in Problem 3 at the end of
the chapter, give further straightforward examples. A number of interesting
manifolds arise as a part of the space of simultaneous solutions of some equations,
often polynomial equations in several variables. The technical device that shows
the solution space to be part of a smooth manifold is normally the Implicit Function
Theorem (Theorem 3.16 of Basic Real Analysis), as is explained in Problem 30
at the end of the chapter.

Another simple example of a smooth manifold M of dimension m is any
nonempty open subset U of M. The subset U becomes a smooth manifold
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of dimension m if we define an atlas for it to consist of all restrictions
UNM,, o |UﬂMm) of members of the atlas {(M,, «)} for M; then we must discard
occurrences of the empty set. We shall often use this observation without special
notice, in effect making definitions and deducing conclusions for nonempty open
subsets of amanifold M from the corresponding definitions and conclusions about
all manifolds.

Most manifolds, however, are constructed globally out of other manifolds
or are pieced together from local data. The Hausdorff condition often has to
be checked, is often subtle, and is always important. The first place that the
Hausdorff condition plays a role is in Lemma 1.2 below.

Any manifold is a locally compact Hausdorff space. The separability implies
that there exists an exhausting sequence in M, i.e., an increasing sequence of
compact sets with union all of M and with each set contained in the interior of the
next member of the sequence. This is Proposition 10.25 of Basic Real Analysis.

Let us mention that because of the separability and Theorem 10.45 of Basic
Real Analysis, the topology of a manifold can always be realized by a metric; this
fact turns out to be more comforting than useful.

Although manifolds have a global definition, it is often convenient to work
with them by referring matters to local coordinates. If p is a point of the smooth
manifold M of dimension m, then a compatible chart (M,,, @) about p can be
viewed as giving a local coordinate system near p. Specifically if the Euclidean
coordinates in a(M,) are (uy, ..., uy), then g = o~ '(uy, ..., u,) is a general
point of M,,, and we define m real-valued functions g — x;(g) on M by x;(q) =
uj,1 < j<m. Theno = (x1,..., x,). To refer the functions x; to Euclidean
space R™, we use x; o o~ !, which carries (u, ..., uy) to u;.

The way that the functions x; are referred to Euclidean space mirrors how
a more general real-valued function on an open subset of M may be referred
to Euclidean space, and then we can define a real-valued function on M to be
smooth if it is smooth in the sense of Euclidean differential calculus when referred
to Euclidean space.

Therefore a smooth function f : M — R on the smooth manifold M is by
definition a function such that for each p € M and each compatible chart (M, o)
about p, the function f oa~! is smooth as a function from the open subset o (M,,)
of R™ into R. A smooth function is necessarily continuous.

In verifying that a real-valued function f on M is smooth, it is sufficient, for
each point in M, to check smoothness within only one compatible chart about
that point. The reason is the compatibility of the charts: if (M, o) and (Mg, B)
are two compatible charts about p, then f o 87! is the composition of the smooth
function o o B! followed by f oa™!.

The space of smooth real-valued functions on the nonempty open set U of M
will be denoted by C*°(U). The space C>°(U) is an associative algebra over R
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under the pointwise operations, and it contains the constants. The support of a
real-valued function is the closure of the set where the function is nonzero. We
write Cgo (U) for the subset of C*°(U) of functions whose support is a compact
subset of U.

The space Cg5,,(U) is not 0. This fact is a consequence of the following result
for Euclidean space that appeared as Proposition 8.12 in Basic Real Analysis.

Lemma 1.1. If K and U are subsets of R” with K compact, U open, and
K C U, then there exists ¢ € Cgy,(U) with values in [0, 1] such that ¢ is
identically 1 on K.

Lemma 1.2. If U is a nonempty open subset of a smooth manifold M and if
fisin CZ (U), then the function F defined on M so as to equal f on U and to

com

equal O off U is in C3o (M) and has support contained in U,

com

PROOF. The set S = support(f) is a compact subset of U and is compact
as a subset of M since the fact that U gets the relative topology means that the
inclusion of U into M is continuous. Since M is Hausdorff, S is closed in M.
The function F is smooth at all points of U and in particular at all points of S, and
we need to prove that it is smooth at all points of the open complement V of S in
M. If pisin V, we can find a compatible chart (M,,, &) about p with M, C V.
The function FisOon M, NU € VNU = §S° N U because it equals f on U
and f is O on the complement of S in U. The function F is 0 on M, N U° since
itis O everywhere on U¢. Therefore F is identically O on M, and is exhibited as

smooth in a neighborhood of p. Thus F is smooth. O
@
U uc

(/o

FIGURE 1.1. Diagram for Lemma 1.2 with p shown outside M, N U.

Lemma 1.3. Suppose that p is a point in a smooth manifold M, that (M,,, «)
is a compatible chart about p, and that K is a compact subset of M, containing
p. Then there is a smooth function f : M — R with compact support contained
in M, such that f has values in [0, 1] and f is identically 1 on K.
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PROOF. The set o(K) is a compact subset of the open subset o(M,) of
Euclidean space, and Lemma 1.1 produces a smooth function g in C5o (at(My))
with values in [0, 1] that is identically 1 on «(K). If f is defined to be g o &
on M, then f is in C (M,). Extending f to be 0 on the complement of M,

in M and applying Lemma 1.2, we see that the extended f satisfies the required
conditions. g

Proposition 1.4. Let p be a point of a smooth manifold M, let U be an open
neighborhood of p, and let f be in C°>°(U). Then there is a function g in C*°(M)
such that g = f in a neighborhood of p.

PROOF. Possibly by shrinking U, we may assume that U is the domain of
some compatible chart (M,,, o) about p. Let K be a compact neighborhood of p
contained in U, and use Lemma 1.3 to find 4 in C*° (M) with compact support in
U such that 4 is identically 1 on K. Define g to be the pointwise product 4f on
U and to be 0 off U. Then g equals f on the neighborhood K of p, and Lemma
1.2 shows that g is everywhere smooth. g

In the same way that we defined smoothness of real-valued functions on smooth
manifolds by means of local coordinates, we define smoothness for a continuous
function from an m dimensional manifold M into an n dimensional manifold N.
Namely let p be in M, so that F(p) is in N. Assuming that F is continuous at
D, let a local coordinate system be given at F'(p) by means of a chart (Ng, ),
and choose a local coordinate system at p given by a chart (M,, «) such that
F(M,) € Ng. The local version of F is the function 8 o F o a~ !, which carries
a(M,) into B(Npg). If we write @ = (x1, ..., xn) and B = (y1, ..., yu), then we
obtain an expression of the form

(yly--'ayl’l)ZIBOFOa_l(xlv""xm)’

and we see that 8 o F o a~! is the local function in the Euclidean setting that
corresponds to F in the manifold setting. The function F : M — N is said to
be smooth if it is continuous and all the functions 8 o F o a~! are smooth, more
precisely if it is continuous and for each p in E and each compatible chart g about
F (p), there is some compatible chart o about p such that 8 o F oo~ is defined
and smooth. In this case we often call F a smooth map. A smooth function
between smooth manifolds with a smooth inverse is called a diffeomorphism.

In this way all questions about smoothness of functions in the manifold setting
can be translated into questions about smoothness of functions in the Euclidean
setting. One consequence, by means of the Inverse Function Theorem,? is that
the dimension of a smooth manifold is well defined. More specifically the
same underlying topological space cannot have two compatible atlases of distinct
dimensions.

2Theorem 3.17 of Basic Real Analysis.
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We turn to a discussion of tangent spaces and vector fields. Let M be a smooth
manifold of dimension m. The idea is that the tangent space to M at p is the space
of all first-order derivatives at p. To make this notion precise, one introduces the
space of germs C, (M) of smooth functions at p. These are equivalence classes
formed from pairs ( f, U), each pair consisting of an open set U containing p and a
smooth real-valued function f defined on that open set, two such being equivalent
if their restrictions are equal on some subneighborhood of p. The set C,(M) of
equivalence classes inherits arithmetic operations that make it into an associative
algebra over R. Evaluation at p is a well defined linear functional e on C,(M).
A derivation of C,(M) is a linear function L : C,(M) — R such that L(fg) =
L(f)e(g) + e(f)L(g). Each such L annihilates constant functions because

L(1)=L(1-1) = L(De() +e(1)L(1) = 2L(1)

forces L(1) = 0. The set of derivations of C, (M) forms a real vector space that is
denoted by T,,(M) and is called the tangent space of M at p. If a local coordinate

system at p is given by means of a chart (M,,, o) witha = (xy, ..., x»), thenm
examples of members of T),(M) are given by the derivations [%]p defined by
7
af I(foa™) ,
[_] = - 7 for j=1,...,m.
dx;dp ou;j (U1 eestt)= (X1 (D), oos X (P))
These derivations satisfy
BX,' 8u,~
] -
Oxjdp Ouj G ttn) =1 (p)..i (p)

where §;; is the Kronecker delta. It follows that the m derivations [%]p are
J

linearly independent. Actually these m derivations form a vector-space basis
of T,,(M), as is shown in the following proposition. Spanning follows from an
expansion formula established by the proposition for all members of 7, (M).

Proposition 1.5. If M is a smooth manifold and if a compatible chart (M,,, o)
about a point p in M is given by ¢« = (x, ..., x;), then each member L of
T,(M) is given on C, (M) by

m 5
L= ; L(x;) [8—%]17

Consequently the m derivations [%]p form a vector-space basis of T,,(M).
J
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PROOF. Let L be a derivation of C,(M), and let (f, U) represent a member of
Cp(M), U being an open neighborhood of p in M. Without loss of generality,
we may assume that U € M, and that «¢(U) is an open ball in R”. Put
uo = (Wo,...,Uuom) = a(p), let g be a variable point in U, and define
u = (uy,...,u,) = a(g). Taylor’s Theorem® applied to f o ™! on a(U)
gives

(foa™h

foa ()= foa (up) + 3 (uj — uo ;) ———(uo)
j=1 du,

+ 2 (i — uo,i) (uj — uo ) Rij(u)
ij
with each R;; in C*°(a(U)). Referring this formula to M, we obtain

_ S of
1@ = £+ 2 560 — 5 [

idp
+ Z (xi(g) — x; (p))(x;(q) — x;(p)rij(q)
ij

onU,wherer;; = R;joa onU. Because L annihilates constant functions and has
the derivation property and satisfies e(x;) = x;(p) for 1 < j < m, application of
L yields

L =Y L) |-
j=1

8XJ'

| + % (L) —x et
LJ

+ (e(x))—x;(P))L(x))e(rij) + (e(x;))—xi(p))(e(x;)—x;(p))L(rij))

=Y L[]
]; / an )4
as asserted. O

Still with M as a smooth manifold, form the set 7 (M) of all pairs (p, L)
such that p is in M and L is in T,(M). The set T (M) can be topologized and
given a smooth manifold structure in a natural way, and then the pair consisting
of T'(M) together with the projection-to-the-first-component function is called
the tangent bundle of M. For current purposes we do not need to know what
the topology and manifold structure on 7 (M) are, and we shall ignore them.* A
vector field X on M is a function from M into T (M) that selects a member of
T, (M) for each p in M; in other words, a vector field is any right inverse to the
projection-to-the-first-component function under composition.’ An immediate
consequence of Proposition 1.5 is the following expansion of any vector field.

3In the form of Theorem 3.11 of Basic Real Analysis.

4The construction is a chore to carry out. Not needing it, we skip the details. The reader who
would like to see a careful construction of the tangent bundle may wish to look at Proposition 8.14
and the remarks after it in Section VIIL.4 of Advanced Real Analysis.

>In the terminology of tangent bundles, a vector field is any section of the tangent bundle.
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Corollary 1.6. Let M be a smooth manifold of dimension m. If (M, @) is

any compatible chart for M, say witha = (x1, ..., x,,), and if X is a vector field
on M,, then
Xf(p) Em af()(X )(p)
= —_— xi
p ox; p p

i=1

for all p in My and f in C*(M,,).

For vector fields we satisfy ourselves with the following definition of
smoothness: the vector field X on M is defined to be smooth on M if Xx;
is smooth for each coordinate function x; of each compatible chart® on M. From
Corollary 1.6 it is apparent that the set of smooth vector fields on M is closed
under addition and scalar multiplication and is also closed under multiplication
by members of C*°(M). It is therefore a C°°(M) module.

Next we discuss derivatives. Let F : M — N be a smooth function from
a smooth manifold M of dimension m into a smooth manifold N of dimension
n. For any p in M, the function F carries any tangent vector L in T,(M)
into a tangent vector (DF),(L) in Tr)(N) by the formula (DF),(L)(g) =
L(g o F) for g in the space Cr(,)(N) on which a tangent vector in Tr(,)(N)
operates. The result is a linear function (DF),, : T,(M) — Tr(,)(N) called the
derivative of F at p. The name “derivative” and the notation (D F),, are a change
from Advanced Real Analysis.”

Proposition 1.7. Let M and N be smooth manifolds of respective dimensions
m and n, and let F : M — N be a smooth function. Fix p in M, let « =
(x1, ..., xy) be a compatible chart in M about p, and let 8 = (y;,..., y,) be a
compatible chartin N about F(p). Define F; = y; o F for 1 <i < n. Relative to

ad a
the bases [—] of T,,(M) and [—] of Tr(py(N), the matrix of the linear
dx;dp 0y; 41F(p)

Xj Vi
function (DF), : T,(M) — Tr()(N) has size n by m, and its (7, )M entry is
5

O | i =51 ()i ()

6Section VIIL4 of Advanced Real Analysis shows that the smooth vector fields are exactly the
sections of the tangent bundle that are smooth. We never need to use this fact.

"In Advanced Real Analysis the name was “differential,” and the notation was (dF),. The need
for a change may be seen in the case that F is a real-valued function, i.e., N = R. In this case,
(DF)) is a member of Homg (7, (M), Tr(p)(R)), and it is being called the “derivative.” The word
“differential” will acquire a different standard meaning later in this section in such a way that (d F),,
is a member of Homg (7}, (M), R). The two range spaces, Tr(p)(R) and R, are isomorphic, but
confusion easily arises when the isomorphism is not made explicit. Some authors use the term
“push-forward” in referring to what is being called the the derivative here.
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REMARKS. In other words the matrix in question is the usual derivative matrix
or Jacobian matrix of the set of coordinate functions of the function obtained
by referring F' to Euclidean space. Hence the derivative at a point is the object

for smooth manifolds that generalizes the multivariable derivative at a point for
Euclidean space. Accordingly, let us make the definition

[ d0F; ] . [ 0F;
ax]' p o 81/!]'
PROOF. Application of the definitions gives

oP([5] )00 = [55] wioP)

J J
d(yioFoa™)
= la— x1(p), > xa(P))
Uj
_ o
o 81/1’ (uy,..., um)=(xl(17) """" xm(p))‘

The formula in Proposition 1.5 allows us to express any member of T (,)(N) in
terms of its values on the local coordinate functions y;, and therefore

R (FARED N

Thus the matrix is as asserted. O

0
[a—] for 1 <j <m.
Ut =1 (D)o (p)) ~ VI 2P

Proposition 1.8 (chain rule). Let M, N, and R be smooth manifolds, and let
F:M — Nand G: N — R be smooth functions. If p is in M, then

(D(G o F)), = (DG)ppy o (DF),.
PROOF. If L is in T,(M) and & is in Cg(r(p)) (R), then the definitions give

(D(G o F)),(L)(h) = L(ho G o F)
= (DF),(L)(ho G) = (DG)Fp)(DF),(L)(h),

as asserted. O

Finally we discuss differential 1 forms and differentials. Still with M as smooth
manifold, for each p € M, let T,;"(M) be the dual vector space of 7,(M), i.e.,
the real vector space of all linear functionals on 7, (M). Members of Tp*(M ) are
called cotangent vectors at p. Consider the set 7*(M) of all pairs (p, £) such that
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pisin M and £isin T;(M). Aswith T'(M), the set T*(M) can be topologized and

given a smooth manifold structure in a natural way,® and then the pair consisting
of T*(M) together with the projection-to-the-first-component function is called
the cotangent bundle of M. Once again we do not need to know what the
topology and manifold structure are, and we shall ignore them. A differential
1 form on M is a function from M into T*(M) that selects a member of T;(M )
for each p in M; in other words, a differential 1 form is any right inverse to the
projection-to-the-first-component function under composition.”

To get some first examples of differential 1 forms, fix p € M and let f be
any member of C*°(M). Then f carries any germ L in C,(M) into the germ
(Df)p(L) in Cy () (R) by the formula

(Df)p(L)(g) = L(go f)  forallg € Crp)(R).

Let us take g to be the identity function go(¢) = # on R, no matter what f is. For
this choice of g, the formula reduces to (Df),(L)(go) = Lf forall L in T,,(M).
If we suppress g in this formula and write (df), (L) for the left side, the formula
becomes

df),(Ly=Lf  forall L € T,(M),

and we obtain a linear functional on 7}, (M). This linear functional (df), is called
the differential of f at p. As p varies, the result is a differential 1 form df on
M.

Let us look more closely at this construction for a moment. For f in C*(M),
we passed from (Df),, which is a member of Homg(7,(M), Tt (R)), to
(df)p, whichis amember of Homg (7, (M), R). We did so, in effect, by following
the member of Homg (7}, (M), Ty (IR)) by a particular isomorphism of T ,) (R)
with R.

We just saw that the differentials at p of members of C*°(M) are examples of
members of T' p* (M). The proposition below identifies all members of T; (M).

Proposition 1.9. Let M be a smooth manifold of dimension m, fix p in M,
and let (M, @) be a compatible chart about p with « = (xq,...,x,). Then

the differentials (dx1),, ..., (dx,), form the dual basis in T; (M) to the basis
[%]p, - [%]p of T,(M). Alsoif f : M — R is any smooth function on M,

then

df), = Z (g—i)p(dxi)p forall p € M,.

i=1

8The details appear in Section VIIL4 of Advanced Real Analysis.
°In the terminology of cotangent bundles, a differential 1 form is any section of the cotangent
bundle.
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PROOF. Taking f = x; and L = [%] in the formula (df),(L) = Lf, we
obtain (dx,),,([ax,]p) = (ngj)p = &;;. Hence (dx1)p, ... (dxy), indeed forms
the dual basis to the basis [%]p, A [%]p of T,(M).

To prove the displayed equality in the proposition, it is enough to prove that
equality is maintained when both sides are applied to each basis vector [aix,-]p of
T,(M). On the left side we have

2] =(2),

J

and on the right side we have

£ (), @0n((5),) = £ G0 = (),

i=1
These are equal, and the proof is complete. (]

According to Proposition 1.9, any differential 1 form w(p) on the smooth
manifold M expands as

o(p) = _ai(p)dx),
i=1

in each compatible chart (M, ®) with ¢ = (x1,...,x,). We say that the
differential 1 form w is smooth if all coefficient functions a; for all compatible
charts are smooth functions.!® Part of the content of Proposition 1.9 is that every
differential 1 form df with f € C*(M) is smooth.!!

2. Properties of Exterior Algebras

If one looks carefully at the classical integration theorems stated in the Introduc-
tion, one sees that minus signs play an important role in the theory. Why is it that
the right side of the Fundamental Theorem of Calculus reads F(b) — F(a) and
not F'(a) — F(b)? Why is it in Green’s Theorem that the region is to lie on the left
of the boundary curve as the curve is traced out? And what are these “important
questions of orientations” that need to be sorted out in the Divergence Theorem?

19Section VIIL4 of Advanced Real Analysis shows that the smooth sections of the cotangent
bundle are exactly the differential 1 forms that are smooth.

1Tt turns out that not every smooth differential form on a smooth manifold M need be given as
df for some smooth f. See Problem 8 at the end of the chapter for an example.
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It turns out that all such questions can be resolved by augmenting the heuristic
interpretation of dx that one is often taught. Instead of its being an element of
numerical length, it is to be a one dimensional vector element of length, with both a
magnitude (the usual notion of length) and direction (its sign). In two dimensions
similarly, dx dy is to be thought of as incorporating information about the angle
between the vector dx and the vector dy, thus akin to the area of the parallelogram
spanned by the two vectors in R?, namely the product of their magnitudes by the
sine of the angle between them. As soon as one makes this adjustment, one is led
to think of dx and dy not as commuting objects but as anticommuting objects.'?
This section takes up the algebraic preliminaries for dealing with a multiplication
that is anticommutative but is still associative.

Chapter VI of Basic Algebra defines the tensor algebra 7' (V) of a vector space
V over R to be the direct sum over n > 0 of the n-fold tensor product 7" (V') of
V with itself, the 0-fold tensor product being understood to consists just of the
scalars R. The operation of multiplication is written as ®. The space T"(V) is
a vector space with a universal mapping property relative to n-linear functions
on V. The full tensor algebra 7'(V) is an associative algebra with a universal
mapping property relative to any linear mapping of V into an associative algebra
A with identity: the linear map extends uniquely to an algebra homomorphism
of T (V) into A carrying 1 into 1. We take all this as known.

Chapter VI of Basic Algebra speaks also of multilinear forms that are
alternating in the sense that their value is O whenever two of the arguments
are equal. Alternating forms are skew symmetric in the sense that if two of
the arguments are interchanged, then the value of the form is multiplied by —1.
Alternating forms will play an important role in what follows.

We shall introduce “exterior algebras” over the field R. If E is a vector space
over R, the exterior algebra /\ (E) is to be an associative algebra, and the elements
of /\(E) are to include the members of R and all the members of E itself. The
algebra /\ (E) will be defined as a quotient of the tensor algebra 7'(E), with all
those members of 7' (E) mapped to O that are to represent O in the quotient. Its
product operation is written as A. To force skew symmetry (i.e., y Ax = —x A y)
for multiplication in the quotient of the embedded members of E, we require that
v ® v maps to 0 in /\(E) whenever v is in T'(E). To arrange that the quotient
algebra is as large as possible, we factor out nothing more than is necessary from
T (E). Thus we define the exterior algebra'® of E by the formula

NE) =T(E)/T,

h ja- two-sided ideal in T (E) generated
where ~ \ by all v ® v with v in T'(E) :

12With this thought in mind, we shall be writing dx A dy instead of dx dy. The notation with
the symbol A was already used in the Introduction.
13Sometimes known as Grassmann algebras for historical reasons.
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Then /\(E) is an associative algebra with identity.
It is clear that I is homogeneous in the sense that I’ = @), (I’ N T"(E)).
Consequently we can write

o0
/\(E) = @ T"(E)/(I' N T"(E)).
n=0
We write /\"(E) for the n™ summand on the right side, so that
iy n
N\E) =D N'(E).
n=0

Since I'NT°(E) =0, /\O(E ) consists of just the scalar multiples of the identity.
Since I' N T'(E) = 0, the map of E into first-order elements /\1(E ) is one-one
onto and is just a copy of E. The product operation in /\ (E) is called the exterior
product or wedge product and is denoted by A rather than ®. Thus the image in
/\"(E) of the element v; ® - - - ® v,, of T"(E) can be written as vy A --- A v,. If
aisin \"(E)and b isin \"(E), thena A b is in A" *"(E). Moreover, \" (E)
is generated by elements v; A - - - A v, with all v; in /\l (E) = E, since T"(E)
is generated by corresponding elements v; ® --- ® v,. The defining relations
for /\(E) force the condition of skew symmetry, v; A v; = —v; A v; for v; and
v; in A'(E). Writing members of /\(E) as linear combinations of monomials
and making repeated use of the skew symmetry of multiplication for members of
/\1 (E), we obtain the following result.

Proposition 1.10. If E is a vector space over R, then
anb=(-=1)"bAa fora e \"(E)and b € \"(E).

PROOF. By linearity in each variable in wedge product, it is enough the prove
the conclusion when a and b are monomials, say a = a; A -+ A a, and b =
by A -+ A b,. We induct on m, the base case for the induction being m = 1.
Witha € /\1 (E), the skew symmetry allows us to start from a A b and commute
a to the right one step at a time, until a is on the right side of b. Then we are
introducing n sign changes, and the base case is established. In the general case
we write a = a’ A a,, Witha' € /\m_l(E) and @, € /\I(E). Applying the base
case and then the induction hypothesis, we obtain

anb=d Nag Ab=(=1)"d AbAa, =(=D"(=D""D"p nd Aap,

anda A b = (—1)""b A a as required. ]
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Proposition 1.11. Let E be a real vector space.

(a) Lett be the n-multilinear function¢(vy, ..., v,) = VjA-- AV, Of EX- - - X E
into A\"(E). Then (/\"(E), t) has the following universal mapping property:
whenever [ is any alternating n-multilinear map of E X - - - X E into a vector space
U, then there exists a unique linear map L : /\"(E) — U such that the diagram

Ex~-~xE—l> U

I
NUE)

commutes.

(b) Let ¢ be the function that embeds E as /\l(E) € A(E). Then (A(E), )
has the following universal mapping property: whenever / is any linear map of
E into an associative algebra A with identity such that [(v)?> = 0 forallv € E,
then there exists a unique algebra homomorphism L : A(F) — Awith L(1) =1
such that the diagram

E — 5 a

|
NE)

commutes.

PROOF. In both cases uniqueness is trivial. For existence we use the universal
mapping properties of 7" (E) and T (E) to produce L on T"(E) or T (E). If we
can show that L annihilates the appropriate subspace so as to descend to /\" (E)
or /\(E), then the resulting map can be taken as L, and we are done. For (a), we
have L : T"(E) — U, and we are to show that Z(T"(E) N1’y =0, where I' is
generated by all v ® v with v in T'(E). A member of T"(E) N I’ is thus of the
form ) a; ® (v; @ v;) ® b; with each term in 7" (E). Each term here is a sum of
pure tensors

XIQ QX QUOUV Y ®---® Vs (%)

with r 4+ 2 + s = n. Since [ by assumption takes the value O on
Xp X oo X Xp XU XV XY X -+ X Vg,

L vanishes on (), and it follows that Z(T"(E) NIy =0. -

For (b) we are to show that L : T(E) — A vanishes on [ ’. Since ker L
is an ideal, it is enough to check that L vanishes on the generators of /. But
L(v ® v) = 1(v)l(v), and the right side is 0 by hypothesis. Thus L(I’) =0. O
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Corollary 1.12. If E and F are real vector spaces, then the vector space
Homg(/\"(E), F) of linear mappings from /\" (E) into F is canonically isomor-
phic (viarestriction to pure tensors) to the vector space of all F'-valued alternating
n-multilinear functionson £ X - -- X E.

PROOF. Restriction is linear and one-one. It is onto by Proposition 1.10a. [

Corollary 1.13. If E is areal vector space, then the vector space dual (/\" (E))’
of A\"(E) is canonically isomorphic (via restriction to pure tensors) to the real
vector space of alternating n-multilinear formson £ x --- x E.

PROOF. This is the special case F = R of Corollary 1.12. O

Up until now, it has been immaterial whether E is finite dimensional or infinite
dimensional. That circumstance now changes.

Proposition 1.14. Let E be a real vector space of finite dimension N, and let
n be an integer > 0. Then

(a) dim \"(E) = JZ forO0<n <Nand=0forn > N,

(b) for each integer n with 1 < n < N, there is a canonical linear mapping
L : NY(E) - A"(E) such that (fi A -+ A fi)(wy A ...w,) =
det{f;(wy)}} ;_, forall f; € E'and w; € E,

(c) whenever uy, ..., uy is a basis of E, then the monomials u;, A --- Au;,
with1 <i; <--- < i, < N form a basis of \"(E),

(d) thelinear mapping L : \"(E") — A\"(E)’ of (c) is an isomorphism onto,

(e) ifuy,...,uyisabasisof E and u, ..., uly is the dual basis of E’, then
the dual basis for /\"(E’) to the basis of monomials u;, A --- A u;, with
1 <ij <---<i, <N asin(b) is the basis of monomials u§l N /\u;n
withl <i; <---<i, <N.

REMARK. A version of some parts of this proposition remains valid even if E
is infinite dimensional, but we shall not pursue the details.

PROOF. Let uy,...,uy be abasis of E. Forn = 0, /\O(E) consists of the
scalar multiples of the identity, and dim /\O(E ) = 1. We may assume therefore
that n > 0. The monomials of degree n in the u;’s span T"(E), and the same
thing is therefore true of the quotient /\"(E). Any such monomial in A" (E)
with two equal factors is 0 by the alternating condition and can be disregarded.
For the remaining monomials we can permute the factors, using the identity
b AN a = —a A b valid for members of /\1 (E), to arrange that the indices on the
factors of the monomial are in increasing order. As aresult we see the monomials
of degree n in u;, ..., uxy whose indices are in strictly increasing order span
A" (E). If n > N, there are no such monomials, and \"(E) = 0. If0 <n < N,
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the number of such monomials in (1:[] ) Thus dim \"(E) < (IZ ) This gives part
of (a) and allows us to assume that 1 < n < N from now on. Also it proves that
the monomials in (c) form a spanning set for A" (E).

For (b), fix fi,..., fuin E',letwy, ..., w, bein E, and define

lfl,_,,f”(wl, e, W) = det{ﬁ(wj)},'-’,j:l.
Then Iy, ¢ is an alternating n-multilinear form on £ x --- x E and extends
by Proposition 1.10a to a linear functional Ly, : /A"(E) — R. Next we
let fi,..., fy vary, and the result is that [(fi,..., f,) = Ly, . s, defines an
alternating n-multilinear map of E’ x --- x E’ into /\"(E)'. Its linear extension
L given by Proposition 1.11a maps /\"(E’) into /\"(E)’. This proves (b).
Before proceeding with the remaining parts, let us prove the displayed formula
() below. Let {uy, ..., un}beabasisof E,and let {u}, ..., uy} be the dual basis
of E’. Suppose that two strictly increasing sets of n-element indices I = (iy)_,
and J = (j;);_, between 1 and N are given. The claim is that

1 ifik=jkf0r]§k§l’l,

det{u;Y ()5 =1 = { (%)

0 otherwise.

To see this, assume that iy # jj for some &, and let [ be the least such k. If i; < jj,
then i; # j; for all ¢ and it follows that u;l (u;,) =0for1 <t < n. The matrix
{uQY (u jt)}?,t: | has a row of zeros, and its determinant is 0. On the other hand, if
i/ > ji, then the matrix {u; (u;)}},_, has a column of zeros, and its determinant
is 0. The only other possibility is that iy = ji; for | < k < n. Then the matrix
{ugx (uj,)}§ = is the identity, and its determinant is 1. This proves ().

With the sets of indices I = (i;)_, and J = (j,)}_, as above, define

ro_ ’ 1 ner
Up=up Ao A A A as a member of /\"(E’),

Uy =uj A+ ANuj, A A, as a member of /\"(E).

What () says, in terms of the mapping L of conclusion (a), is that L(u)(u;) =
815. It follows from (x) that the set of all u, as I varies through n-element
sets of indices is linearly independent in /\"(E’) and that the set of all u, as J
varies through n-element set of indices is linearly independent in /\"(E). This
conclusion for /\"(E) completes the proof of (a) and (c), spanning having been
proved earlier.

In view of (c), the linear mapping in (d) carries a basis to a basis and is therefore
an isomorphism. This proves (d). Conclusion (e) is then immediate from (). [J

In our applications of this algebraic theory to manifolds, we shall be interested
in the case that E is a tangent space T,,(M) and its dual is the cotangent space
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Tp* (M). Let& and n be typical vector fields, so that &, and 7, are members of the
tangent space T,(M), and let w and o be typical differential 1 forms, so that w),
and o, are members of the cotangent space TI;"(M ). Then expressions like &, >
wp, (&) and n, — 0,(n,) are meaningful, and we can multiply them, obtaining
a bilinear form (§,, n,) = wp,(§,)0,(n,). How is the bilinear form (§,, n,) —
wp,(£,)0,(n,) related to the bilinear form (§,, n,) — (0, A 0,)(p, n,)? The
answer is given by the corollary of the following proposition, which strips away
the unnecessary information about manifolds. The corollary will be proved by
applying Proposition 1.15 below with V equal to the dual E’ of E.

Let V be a finite dimensional real vector space. On V x --- x V, let us define
an n-multilinear function with values in 7" (V') by

1
V1, ..os ) > = Z (sgnT)vr () ® - -+ @ Vi,
n: €6,

where &,, is the symmetric group on 7 letters, and let A : T"(E) — T"(E) be
its linear extension. We shall call :,4 the antisymmetrizer operator. The image

of Ain T" (V) will be denoted by /\’Z (V), and the members of this subspace will
be called antisymmetrized tensors.

Proposition 1.15. If V is a finite dimensional real vector space, then the
antisymmetrizer operator A satisfies A2 = A. The kernel of A on T"(E) is
exactly T"(E) N I’, where I’ is the two-sided ideal of T (V) generated by all
elements v ® v with v € T'(V). Therefore 7" (V) is the vector-space direct sum

"V)=N' (V)@ [T (V)N T,

REMARK In view of this proposition, the quotlent map T"(V) — N"(V)

carries /\ (V) one-one onto A" (V). Thus /\ (V) can be viewed as a copy of
/" (V) embedded as a direct summand of 7" (V).

PROOF. We have

Az(vl R -Quy) = Z (Sgnaf)var(l) R & Vo t(n)

N2
( ') 0,7€6,
1
- (n)? Z Z (sgnP)vp1) ® -+ @ Vp(m)
7 0e6, peb,,
(p=07)
= Z AW ® -+ ® vy)
peGn

:A(Ul®"'®vn)'
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Hence A> = A. Consequently 7"(E) is the direct sum of image A and ker A,
and we are left with identifying ker A as T"(V) N I'.
The subspace 7" (V) N I’ is spanned by elements

XNQ QX VU YI & -+ Q Vs

with r + 2 + s = n, and the antisymmetrizer A certainly vanishes on such
elements. Hence T"(V) NI’ € ker.A. Arguing by contradiction, suppose
that the inclusion is strict, say with ¢ in ker.A but # not in T"(V) N I'. Let g
be the quotient map 7"(V) — A"(V). The kernel of ¢ is T"(V) N I’, and
thus g(¢) # 0. From Proposition 1.14c the monomials 7' (V) in members of a
basis of V that have strictly increasing indices map onto a basis of /\(V). The
antisymmetrized version of each of these monomials has to map to a multiple
of the initial monomial, and that multiple has to be nonzero because Proposition
1.14d says that the basis maps to a basis. Consequently g carries /\n(V) =
image A onto /\"(V). Thus we can choose ¢’ € /\n(V) with ¢(t") = q(1).
Thent —tisinkerg = T"(V) NI’ C ker A. Since A(t) = 0, we see that
A(t") = 0. Consequently ¢’ is in ker A Nimage A = 0, and we obtain ¢’ = 0 and
q(t) = q(") = 0, contradiction. O

Corollary 1.16. Let E be a finite dimensional real vector space, and let E’ be
itsdual. If wy, ..., w, are members of £’ and vy, . .., v, are members of E, then

1
(@1 A Awp) (V1,05 V) = — Z (sgn 1)1 (Vr(1)) -+ - W (Ve (n))-
n: €S,

PROOF. Leto : T(E') — /\(E’) be the quotient mapping, let I” be the kernel,
and let A be the antisymmetrizer mapping of 7 (E’) into itself. If wy, ..., w, are
in E’, then Proposition 1.15 shows that w; ® -+ - @ w, — A(w; ® - - - ® w,) lies
inl’. Sinceo(w; ® - Q®w,) = w; A- -+ Aw, and since a similar equality holds
for each of the terms in A(w ® - - - ® w,), we obtain

1
WL Aoy = — Z (SgnT)wr (1) A -+ A Wr(n)-
n:/ee

Restricting to pure tensors, using the isomorphism of Corollary 1.13 with E = V’,
and making a change a variables in the sum, we can write this conclusion as

1
(@1 Ao Awp) (V1,5 V) = — Z (sgn T)we(1)(V1) - - - O () (V)
n'
€6,
1
=— D e Do (eq) -+ on(Ve),
€6,

as required. O
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EXAMPLES.

(1) Just before Proposition 1.15, this question was raised: If £ and n are vector
fields and w and o are differential 1 forms, how is the bilinear form (§,, n,) —
wp,(&,)0,(n,) related to the bilinear form (§,,71,) — (0, A 0,)(&p, 1p)?
Corollary 1.16 tells us that the formula is supposed to turn out to be

(@A 0)E ) =3(0@om) — 3(0ma(§)). ()
On the level of full tensors before passage to the quotient, the formula with & and
n suppressed is
o®c=Aw®o) + (error)
= %(w@o —0Qw)+ (%(w@o—}—o ®a)))
= %(a)@o -0 Qw)+ %((w+o)®(a)+a) —(@®w) — (0 ®0)),

and it is plain that the term called “error” above is in the ideal I’ and hence maps
to 0 under passage to the quotient. Thus passage to the quotient indeed yields (¥).

(2) This example elaborates on the heuristic interpretation near the beginning
of this section concerning expressions like dx. With M = R? and p equal to
(0, 0), let us use Corollary 1.16 to evaluate

((dx)(0,0) A dy(0,0))(a[%](0,0) + b[aiy](o,oy C[%](O,O) + d[aiy](0,0))'

The corollary says that this expression is % times the sum of two terms, separated
by a minus sign, namely that it is

= %<<(dx)(0,0) (a[%](0,0) + b[%](0,0)) X (dy(0,0))(c[%](o,O) + d[aa_y](o,O)))
- ((dx)(O,O)(C[%](o,O) + d[aiy](0,0)) X (dy(0,0))(a[%](0,0) + b[aiy](0,0)))'

Since (dx)(O,O)([%](o,O)) = (dy)(o,O)([a%](o,O)) =l and (dx)(o,O)([a%](o,O)) =
dy)0.0) ([%](0,0)) = 0, the expression reduces to

= 1(ad — bo).

Except for a sign and the factor %, this is just the area of the rectangle in R?

spanned by the vectors () and (2) The factor  means that the area is in fact
the area of the triangle spanned by the two vectors rather than the rectangle. Thus
the expression evaluates as the signed area of the spanned simplex.
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(3) This example notes the corresponding calculation for Example 2 when
done in R” for the point p equal to the origin 0. Here we are to evalaute

((dxl)() Ao A (dxn)())( Z:lalj[aixj]o, ey Z:lanj[aixj]o),
J=

J=

and a similar computation shows that the corollary gives % det{a;;}; ;_,,as willbe
shown in the proof of Proposition 1.17 below. Again the geometric significance
of the coefficient 1/n! is that n! is the ratio of the volume of the fundamental
parallelepiped to the volume of the fundamental simplex.

3. Differential Forms and Pullbacks

We introduce differential & forms by analogy with how we introduced differential
1 forms. Still with M as smooth manifold, for each p € M, let /\k(Tl;k (M))
be the k™ exterior power of the cotangent space T;(M) at p on M. In view of
Proposition 1.14d, we can regard this space as the vector space of all alternating
k-linear forms on the product of k copies of T,,(M) with itself. Let /\kT*(M )
be the set of all pairs (p, 1) such that p is in M and 5 is in /\k(T;(M)). As

with T(M) and T*(M), the set /\k T*(M) can be topologized and given a smooth
manifold structure in a natural way, and then the pair consisting of /\kT*(M )
together with the projection-to-the-first-component function is called the exterior
k bundle of M. Once again we do not need to know what this manifold structure
is, and we shall ignore it. For k > 0, a differential £ form on M is a function
from M into /\kT*(M ) that selects, for each p in M, a member of /\kT*(M )
with first component p; in other words, a differential k form is any right inverse to
the projection-to-the-first-component function under composition.'* The integer
k is called the degree of the differential form. The wedge product of any k
differential 1 forms is an example of a differential kK form. In any compatible
chart (M, o) with o = (x1, ..., x;), it follows from Propositions 1.9 and 1.14
that any differential £ form w has a unique local expansion

o(P)= Y @ i (P)Axi)p Ao A(dxy),.

1<ij<--<ix<m

The form'> is said to be smooth on M if all the coefficient functions p >
aj,....i, (p) in all such coordinate systems are smooth. As usual it is enough to

141n the terminology of vector bundles, a differential k form is any section of the exterior k bundle.
15The word form as a general matter refers to a scalar-valued function of several variables, always
multilinear in this book but sometimes quadratic or homogenous of some other kind elsewhere in
mathematics. In this book we shall follow the practice of freely using the word “form” as shorthand
for “differential form” when there is no chance of ambiguity.
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have smoothness relative to a family of compatible charts that covers M. We
write QF(M) for the real vector space of all smooth differential k forms on M.
The space QF(M) is a C*°(M) module.

We extend the definition to the case k = 0 by saying that a differential 0 form
on M is simply a real-valued function on M. The differential O form is smooth
if is smooth as a real-valued function. We write Q°(M) for the space C*°(M) of
all smooth differential O forms on M.

Referring to the unique local expansion that differential forms have, we see
that the wedge product of a member of Q%(M) and a member of Q(M) is a
member of QX! (M); in particular, the wedge product of two smooth differential
forms is smooth. Sometimes we shall consider differential forms of all degrees at
once, taking Q (M) = @km:o QK(M). The space (M) is a C*°(M) module and
an associative algebra. As a consequence of Proposition 1.10, wedge product in
(M) has the property that

WwANOT = (—1)“0 AW
whenever  is in Q¥(M) and o is in QY (M).

The theory of differential forms makes crucial use of “pullbacks” of differential
forms. The formulas for these are akin to, but more general than, certain change-
of-variables formulas in advanced calculus. If ® : M — N is a smooth function
between manifolds, we describe how ® associates to each k form w on N a certain
k form ®*w on M that is known as the pullback of w. In the case k = 0, a 0
form on N is nothing more than a real-valued function w on N, and the pullback
of the function w is just the composition ®*w = w o ®, which is a real-valued
function on M.

EXAMPLE 1. Let M be a smooth manifold of dimension m, and let
(M,, @) be a compatible chart. If (uy, ..., u,) are standard coordinates on R™,
then the coordinates (x1, ..., x,) on M, given by x; = u; o « have the property
that x; is the pullback of u;. In symbols, x; = a*(u;). Similarly just before

Proposition 1.5 we defined derivations [%]p of T,(M) by

for j=1,...,m.

Af 7 _foah
[ ), =

8xj Buj

(Wysees Um)=(x1(p);s--esXm (P))

In the present terminology, % is therefore defined as the partial derivative with
]

respect to the j variable of the pullback function f o a~!.

Pullback on O forms is R linear and carries smooth O forms to smooth O forms.
If w is a smooth 0 form and f is in C*°(M), then

P (fw) = (fw) o ® = f(wo ®) = f(P7w).
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Hence pullback on 0 forms is C*° (M) linear.

For k > 1, the notion of pullback involves the derivative of ®. We start with
the case k = 1. Let w be a 1 form on N. The derivative (D®), of ® at a
point p of M is a linear function carrying the tangent space T, (M) at p into the
tangent space T (p) (V) at the point ®(p) in N. Thus (D®),(X,) isin Ty (N)
whenever X, is in T),(M). If we apply to this the value wy,,, of the given I form
at ®(p), the result is a linear function from 7,(M) into R, hence a member of
T;(M). Letting p move, we thus obtain a 1 form ®*w on M from the definition

(q)*w)p(xp) = (w®(p))((Dq))p(Xp))-

We take ®*w as the pullback of the 1 form w from N to M.

Let us observe that the definition depends only on germs at p, specifically on
®(p) and (D®),, not otherwise on the behavior of ® in a neighborhood of p.
To underscore this point, we can introduce a more primitive notion of pullback
as the linear function CIDf, Ty (p)(N ) —> T;(M ) defined by

() (04 () (Xp) = (@g,) (DD),(X)).

Then the pullback ®*w of a differential form w on N is the differential form on
M given by
(D*w), = D) (Wg(,))-

The definition of ®* via ®* will play a role in Proposition 1.18 when we assemble
a list of properties of pullback.

EXAMPLE 2. Let ® be a smooth map from an open subset U of R” into an open
subset V of R”. Let us use the standard Euclidean coordinates (x, ..., X,,) in R”
and (yq, ..., y,) in R”, and let us write the entries of ® as (®y,..., d,). This
situation is an instance of the theory where M = U, N = V,and each of M and N
iscovered by asingle chart. We shall compute the pullback ®*(dy;) forl <i <n,
obtaining the result that ®*(dy;) = d®;. Since the set {(dyi)g, ..., (dy,)q}isa
basis of Tq*(V) for each ¢ in V, we will in essence have computed the pullback
of every differential 1 formon V.

By definition, ®*(dy;) is the 1 form given by

(P*(dyi)p(Xp) = (dy) o) ((DP),(X,)) forevery vector field X on U.
The right side is

= (o (D), (X (Xx)p[5r],) by Proposition 1.5
j=1

= @y ( Zl Xx)p(D®)([551,))
iz



24 1. Smooth Manifolds

m n
90 2 .
= (dyi)ob(p)(j:l kg (Xxj)p(ﬁ)p[a—yk]q)(p)) by Proposition 1.7
L 9®; - 9 _
= J; (Xxj)p(Tj)p since (dyi)Q(p)([W]q)(p)) = 8i
=X,P; by Proposition 1.6
= (dPi),(X)p) by definition of (d®;),.

Therefore (®*(dy;)), = (d®;), . In fact, the computation actually showed that
<1>f, (dy1) g(p) = (@P;),. Anyway, the final result is that *(dy;) = d ;.

EXAMPLE 3. Let ® : M — N be a smooth map from a smooth manifold
M of dimension m to a smooth manifold N of dimension n. Let p be in M,

and introduce local coordinates (yy, ..., y,) about ®(p) and (xy, ..., x,,) about
p. The understanding is that (Ng, B) is a compatible chart about ®(p) with
B = (1, ...,y and that (M, o) is a compatible chart about p with M, chosen

small enough so that ®(M,) € Ng. We compute the pullback ®*(dy;) to M, of
the 1 form dy; on Ng for1 <i <n.

In fact, once we define ®; = y; o ®, both the result ®*(dy;) = dP; and
the computation, step by step, are the same as in Example 2. We have only to
take into account the definitions of partial derivatives [%] and [di] that

. . . . . U p . }l (b(p)
were given in Proposition 1.6 and its remark. Observe that as in Example 2, the
computation is actually valid on the more primitive level of ®*; we shall use this

observation later in this section in connection with Proposition 1.17.

Let us extend the definition of ®* from 1 forms to k forms for all positive
integers k. We still assume that ® : M — N is a smooth map from a smooth
manifold M of dimension m to a smooth manifold N of dimension n. For fixed
p, the map

o> O (wg(,) = (Do),

is linear from T;f(p)(N ) into T;‘(M), and we can regard it as a linear function
£ from T;f( ) (N) into the associative algebra /\(le‘ (M)) with the property that
£(v)? = 0 for all v in T4,y (N). By Proposition 1.11b, £ extends uniquely to
an algebra homomorphism L : /\(Tg( nN) — /\(TI;"(M)) sending 1 into 1
such that the diagram in Proposition 1.11b commutes. The resulting algebra

homomorphism is the pullback QDZ on the full exterior algebra:
Y N(Tg ) (N) = N\(TF(M)).

By the nature of the construction, CDf, carries /\k(Tg(p)(N)) into /\k(Tp*(M))
for each integer k > 0. Letting p vary, we define (®*w), = @Z(wq)(p)) for
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w € /\k(T;g( ) (N)), and we see that ®* carries the space QF(N) of differential

k forms on N into the space Q(M) of differential k forms on M. For any
differential k form w on N, we call ®*w the pullback of w to a differential form
on M.

EXAMPLE 4. Let notation for a smooth map ® : M — N be as in Example 3.
As a consequence of Propositions 1.9 and 1.14, any differential £ form w on N
has a unique local expansion

o@P) = > i (P(P) @i A A dYi) -

1<ij<---<ix<n

The pullback operation ®* is an algebra homomorphism of exterior algebras, it
depends only on germs at p, it sends the function w o ® into w, and Example 3
shows that its value on (dy;), is (d®;),. Therefore

@) (P) = Y. (@i 0 P)(P)@Pi)p A A D).

1<ij<---<ix<n

This is a perfectly fine way to write the answer for many purposes. On the
other hand, if we want to involve the differentials (dx1)p, ..., (dx,), on the
right side, then we can substitute for each (d®;), and use the formula

do;) b = Zl [aat;’ ]p (dxj) p o expand out the result in terms of expressions
j:

(dx;j,), A+ - - A(dxj,). Finally we can simplify. As a general rule, this computation

is fairly messy. The following proposition isolates one important case in which

the result is tidy.

Proposition 1.17. If ® is a smooth map from M into N with dimM =
dim N = n,if pisin M, andif (xq, ..., x,)and (yy, ..., y,) are local coordinates
about p and ®(p), then

N 0d;
D*(dy, A --- /\dyn)q)(p) = det{ i, } L (dxl)P Ao A (dxn)p.
Jiplij=1,.., n
PROOF. Example 4 above shows that
O™ (dy, A Ndyn) gy = dP1), A A(dDy),, (%)
and Proposition 1.9 shows that
mor0d;
o), =3 ( ) (dx)), forall p e M,. (%)
j=130x; /p
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Successively we use Corollary 1.16 and () to calculate that

@), A~ A (d%),,([a%]p, o [ai]p)
1 9 9
= X G z)(dcbl),,([axr“)]p) - (dcb,,)p([axr(m]p)
= i » (sgn‘[)( 0P, )p...( 9Py, )p

n! &g, dxz(1) 90Xz (n)

oD,

:det: } . ()
9x; plij=1,..n

Since
iy nen i, ([52] o [] ) =
X Xn e =
Vrp PALox; dp 0x,dp

by Proposition 1.14e and since the space of alternating n-linear forms on 7, (M)
is 1 dimensional by Proposition 1.14a, we see from () that

0P;
(chl)p A A (ch")p = det {E P}i . ”(dxl)p A A (dx,,)p.
The proposition then follows from (). g

We conclude this section by giving another application of Example 4.

Proposition 1.18. If ® : M — N is a smooth map between smooth manifolds,
then pullbacks to M of differential forms on N have the following properties:

(a) for k > 0, ®*(w; + wp) = P*w; + ®*w, whenever w; and w, are
differential k forms on NV,

(b) fork > 0, ®*(cw) = cP*(w) whenever ¢ is in R and w is a differential
k formon N,

(c) for k > 0, ®*w is a smooth differential kX form on M whenever w is a
smooth differential £ form on N,

(d) fork > 0, ®*(fw) = fP*w whenever w is a differential k£ form on N
and f : M — R is areal-valued function, and fw is smooth if f and w
are both smooth,

(e) fork > 0and! > 0, ®*(w; A w2) = ®*w; A P*w, whenever w; is a
differential kK form on N and w, is a differential / form on N,

) (Vo d)'w = P*(V*w) whenever ¥ : N — R is another smooth map
between smooth manifolds and w is a differential form on R.
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PROOF. Conclusions (a), (b), and (e) are immediate consequences of the fact
that ®* can be defined in terms of ®*, which is an algebra homomorphism.
Conclusion (c) follows from the formula for pullback given in Example 4. In
(d), the equality ®*(fw) = f®*w reflects the linearity over R of ®* at each
point. The conclusion about smoothness follows from the formula in Example 4.
Conclusion (f) follows immediately by tracking down the definitions. ([l

4. Exterior Derivative

The exterior derivative is an extension of the operator d, which so far carries
smooth functions (i.e., O forms) into smooth 1 forms, to an operator sending
smooth forms of any degree into smooth forms of the next higher degree. The
original motivation for the definition of d on differential forms of degree > 1 was
from its appearance in Stokes’s Theorem.

Even though we do not yet have Stokes’s Theorem at hand, let us elaborate a
bit. Recall from elementary calculus that the Fundamental Theorem of Calculus,
saying that

1
/0 flx)ydx = f(1) — f(0),

can be motivated heuristically by the approximations
1 n n
f f@dx= Y L&~ Y & - 5D = 1) = £0).
0 k=1 k=1

Here the first & refers to the approximation of the Riemann integral by a Riemann
sum, the second ~ uses the Mean Value Theorem and the continuity of f’, and
the equality on the right takes into account the telescoping nature of the sum. The
equality of the Fundamental Theorem says that the aggregate of the infinitesimal
change of f over the interval equals the difference between the values of f at the
endpoints.

Nineteenth century mathematicians and physicists used this kind of reasoning
in three dimensions to compute the total “flux” of a fluid or radiant energy
across a given curve or surface, using an integral to express the aggregate of the
infinitesimal flux and an integral in one less dimension to express the total. The
infinitesimal changes were written in terms of the differential operators grad, curl,
and div. Later it was seen that all three operators were instances of one operator
that could be generalized to more dimensions. The relevant versions of Stokes’s
Theorem appear in the Introduction. The operator in question was the exterior
derivative d, and we shall see its relation to grad, curl, and div momentarily.

Because of this convoluted history it would be somewhat artificial to begin
with simple geometrically motivated axioms for the general operator d, derive
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what d must be, and then prove existence and uniqueness. Instead we shall start
with an explicit formula for d in the context of R™ and its open subsets, derive
certain properties of d, and then show how d can be defined on smooth manifolds.

Thus for now we work with the smooth manifold R”, which has an atlas
consisting of one chart (R™, 1), the mapping 1 being the identity mapping on R™.
We can safely ignore 1 for the time being. The coordinates are (x, ..., X,). We
saw in Section 3 for k > 0 that Q*(R™) consists exactly of all differential forms

o(p)= D a i (p)dxi)y A Adxi),

1<ij<---<ix<m

with all coefficients a;, .
way is unique.'® Let us abbreviate this expansion

w= E ardxy,
T

the sum running over all strictly increasing sequences / of k integers between 1
and m.
We define an R linear operator d : Qf(R™) — QF1(R™) by

d(ZaldXI) = Z (da[) Adxg.
1 1

This operator is called exterior differentiation. For the special case k = 0, the
operator d reduces to the passage from a smooth function f to its differential d f
as defined in Section 1.

The sum Q(R™) = P, Q¥ (R™) is the space of all smooth differential forms
on R™. It is an associative algebra over R and is also a C*°(R"™) module. When
it is convenient to do so, we can regard d as an R linear function from 2 (R™)
into itself.

i (p) in C*°(R™) and that the expansion of €2 in this
17 in obvious fashion as

EXAMPLE 1. InRR?, letus write (x, y) for the coordinates. The C*°(R?) module
QF(R?) is nonzero for k = 0, 1, 2, and a free basis in the three cases consists of
{1}, {dx, dy}, and {dx A dy}. On 0 forms, d acts by df = % dx + L dy, on
1 forms, d acts by

d(pdx +qdy) = (5% — ) (dx A dy),

and on 2 forms, d acts as 0.

16For k = 0, the only such increasing sequence (i1, ..., i) With 1 <ij] <--- < iy < misthe
empty sequence, and in this case the wedge product (dx; )p A - - - A (dxj,)p is understood to be the
identity element of Q2 (R™).

17The existence and uniqueness of this expansion means in the terminology of Section VIIL1 of
Basic Algebra, that QK (R™) is a free C*°(R™) module with free basis the various dx;.
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EXAMPLE 2. In R?, let us write (x, y, z) for the coordinates. The C™(R?)
module Q¥ (]R3) is nonzero for k = 0, 1, 2, 3, and a free basis in the four cases
consists of {1}, {dx, dy, dz}, {dy ndz,dz Nndx,dx Ady}, and {dx Ady A dz}.
On 0 forms, d acts by df = % dx + % dy+ % dz, and we can identify this with
the vector-valued function ) '

f
ax

grad f = &

dy
af
3z
On 1 forms, d acts by
d(pdx +qdy+rdz)

= (3 - %) dy Ad2) + (3£ — 3) (dz ndx) + (52 — ) (dx A dy),

and we can identify this with the vector-valued function

or _ 9

p ay ?Z
curl(q): g—é’—g—;
r 9 _ dp

dx dy

On 2 forms, d acts by
d(ady Adz+bdz Adx +cdx Ady) = (3 + 2 + 2)(dx Ady Ad2),

and we can identify this with the real-valued function

a
div| b za—a-i—%—l-%.
c ox dy 0z

Lemma 1.19. If ] is a strictly increasing tuple of k integers from 1 to m and
J is a strictly increasing tuple of / integers from 1 to m, then

0 if I and J have an integer in common
dx; Ndxy = . . )
edxg if I and J have no integer in common,

where ¢ = £1 and K is the union of / and J with the terms rearranged to be
strictly increasing.

PROOF. If any factor of dx; matches a factor of dx;, then dx; Adx; =0
by the alternating property. Otherwise we can interchange individual terms of
dx; A dx; repeatedly until the indices are in increasing order. Each interchange
introduces a minus sign. g
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Proposition 1.20. The operator d on 2 (R™) is an antiderivation in the sense
that if w is in QX(R™) and o is in Q' (R™), then

dwno)=do Ao+ (—Dfo A do.

PROOF. Since d is R linear and wedge product is R linear in each variable, we
may assume that w = f;dx; and 0 = gy dx;, where I is a strictly increasing
tuple of k integers from 1 to m and J is a a strictly increasing tuple of / integers
from 1 to m. By Lemma 1.19, dx; A dx; = edxk for some strictly increasing
(k + I)-tuple of integers, where ¢ is 0 or 1. Then we have

d(frdx; Ngydxy)
=d(frgsdx; ndxy)

=ed(frgsdxg) by Lemma 1.19
=ed(frgs) Ndxg by definition of d
=egydfi Ndxg +efrdgy Ndxk by the product rule

for derivatives
=grdfi Ndxy Ndxy+ frdgy ANdxp ANdxg

=(dfy Ndx;) ANgrdxy + (—l)kfl dx; Adgy Ndxy by Proposition 1.16
= d(frdxp) A(grdxy) + (=D frdx; Ad(gs A dx))). O

Lemma 1.21. For k > 1, whenever uy, ..., u; are members of C°°(R™), then
dlduy N --- ANdug) =0.

PROOF. We induct on k. For k = 1, the fact that u = ) y z?Tu dx; means that
J
we have

ax; 0x;

d(du) = 3 d(5¢ dxj) = 3 55 41 dxi Adx;.
J Jst

On the right side the terms with i = j are O since dx; A dx; = 0, and a term with
P%u 9%
dx;0x; — 0xjox;
—dx; A dx;. This proves the lemma for k = 1. Inductively assuming the result

for k = r — 1, we use Proposition 1.20 to write

i < j cancels a term with i > j since and since dx; A dx; =

dlduyN---ANduy) =d(duy A+ -duy ) ANdu, — (duy A -+ - ANdu,_1) Ad(du,).

The first term on the right side is O by the case k = r — 1 of the lemma, and the
second term on the right side is O by the case k = 1 of the lemma. This completes
the induction and the proof. O
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Theorem 1.22. The operator d on Q2 (R™) is independent of coordinates

in the following sense: Let (u1, ..., u,) be any other system of coordinates
on R™ related to (xg, ..., x,) by a diffecomorphism of R™. For each strictly
increasing sequence I = {iy, ..., i;} of k integers between 1 and m, let du; =

duj, A--- ANdu;,. If o = ), arduy is the expansion of a member w of Qk@®R™)
for k > 0 in terms of the forms du;, then dw is given by dw = ), da; A du;.

PROOF. We have
do =" d(adu)
1
= Zda, Aduj 4+ d(duy) by Proposition 1.20

1
= Zda, A dug by Lemma 1.21. O
1

The results we have just established for Q2 (R™) in Lemma 1.19 through
Theorem 1.22 remain valid for any nonempty subset U of R™ in place of R™
itself, and the proofs need no changes.

Of particular interest is what Theorem 1.22 is saying for the diffeomorphism
that arises between two open subsets of R” when two compatible charts of an
m dimensional smooth manifold M overlap. Thus let (M, o) and (Mg, B) be
compatible charts of M with M, N Mg # @. The compatibility condition is
that Boa™! : a(M, N Mg) — B(M, N Mg) is smooth and so is its inverse
aopB7l: B(M, N Mpg) — a(M, N Mg). Theorem 1.22 says that d takes the
same form in the coordinate systems of these two open sets. In other words, d
can be consistently defined on M, and Mg by the usual formula d ( > yardx 1) =
> ;(da; Adxy), and d becomes globally defined on M. In short, d extends to an
operator on the smooth manifold M, carrying QK (M) to QL (M) for all k > 0.
Let us summarize and collect the properties of d that follow at once.

Proposition 1.23. If M is a smooth manifold, then the exterior derivative
operator d is well defined on M and carries Q (M) into QK+ (M) for all integers
k > 0. It has the properties that

(@) d(w Ao) =dw Ao + (—D)*w A do whenever o is in Q%(M) and o is
in Q/(N),
(b) d(dw) = 0 whenever w is in QK(M).

PROOF. Conclusion (a) is an instance of Proposition 1.20. For conclusion (b),
it is enough to consider d? of a form f dx;. Conclusion (a) gives

d*(fdx;) =d(df ndx;) =d>f Andx; — f Ad(dx)).

The term d? f was shown to be 0 in the proof of Lemma 1.21, and the term d (dx;)
equals O by the conclusion of Lemma 1.21. O
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We shall need one further property of the exterior derivative.

Proposition 1.24. Exterior derivative commutes with pullback in the following
sense: if ® : M — N is a smooth map between smooth manifolds and if w is in
Qk(N) with k > 0, then

d(P*w) = d*(dw).

PROOF. Let (xy, ..., x,) and (y1, ..., y,) be local coordinates about p in M
and ®(p) in N. We begin with the case k = 0, for which w reduces to a member
f of C*°(N). Then

d(@* ), =d((f o D)), by definition of ®* on functions

— Z %ﬁg)(l’) (dx)), by Proposition 1.9
J

= %(Cb(p))%(p) (dx;j), by the chain rule
ijo
=Y (@) (@P), by Proposition 1.9

=> %{;(CD(p))dDﬁ((dyi)q)(m) by Example 2 in Section 3

i
= @} ( > g—fi(@(p))(dyi)q)(p)) by linearity of &/
= O ([df) o) by Proposition 1.9

= ®*(df), by definition of ®* on 1 forms
in terms of &7,

and the case k = 0 is proved. For general k > 1, let a member
w = Z ai] ik(q) (inl)q ARERA (d)’ik)q

,,,,,

I<iy<--<iy<n

be given in QX (N), and abbreviate it as w = 21: ai(q) (dyr)y. Then
d(®*w), = d( 21: a,(®(p)) (dP,),) by Example 4 in Section 3
= XI: (da;)opy A (dP;), by Proposition 1.23
= @*(2;(da1L,A(dy1hJ by definition of ®*

= d*(dw),. O
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5. Smooth Partitions of Unity

A partition of unity on a smooth manifold is a system of nonnegative real-valued
smooth functions with sum one such that each point has a neighborhood on which
only finitely many of the functions are not identically zero. The existence of this
neighborhood for each point is a condition that removes all questions about limits
from the construction.

Historically partitions of unity arose in an effort to make more flexible the
requirement that a topological space be decomposed into disjoint subsets for some
purpose. Triangulations of manifolds in the subject of topology were notable
examples. A different example from Basic Real Analysis is the rendering in
Section III.13 of an annulus as the union of four quarters of an annulus in order
to be able to apply Green’s Theorem. In any event a decomposition into disjoint
subsets is in effect a system of indicator functions'® with sum identically one.
By allowing the use of other functions with values between 0 and 1, we get less
precision in distinguishing the disjoint sets, but in compensation we are allowed
to insist that the functions be smooth and hence enjoy nicer analytic properties.

Theorem 1.25. Let M be a smooth manifold, let K be a nonempty compact
subset, and let {U; | 1 < i < r} be a finite open cover of K. Then there exist
functions f; in C*°(M) for 1 < i < r, taking values between 0 and 1 such that

"
each f; is identically O off a compact subset of U; and Y f; is identically 1 on K.
i=1
REMARK. The language that is used as shorthand for the conclusion of this
theorem is that the set { f;} of functions is a smooth partition of unity of M
subordinate to the finite open cover {U;} of K.

We shall use the following lemma, which was proved for R” as Lemma 3.15
of Basic Real Analysis but is valid in any locally compact separable metric space
with no essential change in proof.'°

Lemma 1.26. In a smooth manifold M,

(a) if L is a compact set and U is an open set with L C U, then there exists
an open set V with yel compactand L €V C vel c U,

(b) if K is a compact set and {Uy, ..., U,} is a finite open cover of K, then
there exists an open cover {V1, ..., V,} of K such that Vfl is a compact
subset of U; for each i.

18Indicator functions are real-valued functions taking only the values 0 and 1.
19A sufficiently large closed ball in the proof of Lemma 3.15 is to be replaced by a member of
the exhausting sequence that is sufficiently far along in the sequence.
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Lemma 1.27. Let M be a smooth manifold, K be a nonempty compact subset
of M, and let U be an open subset of M containing K and having compact closure
in M. Then there exists a function f in C°°(M) such that f is everywhere positive
on K and f vanishes off a compact subset of U.

PROOF. For each point p of K, choose a compatible chart (M, ,, o) about
p. Without loss of generality, we may assume that M, , € U for all p. Then
choose an open neighborhhood M,, , of p whose compact closure lies in My, .

As p varies in K, the sets M, , form an open cover of K. By compactness of
K,let{M ,,.... M, 1, beafinite subcover. Applying Lemma 1.3 to each chart

@p1r
M, ;, choose a member f; of C °°(M) that has values in [0, 1], that vanishes off a

compact subset of M, ,., and that is identically 1 on the compact subset (M, pj)d.
Then the sum f = f; 4 --- + f; is everywhere positive on the union of the sets
(M, pj)d, hence is everywhere positive on K. Each f; is O off a compact subset
of My, hence is O off a compact subset of U. Therefore f is O off a compact
subset of U. (]

Lemma 1.28. Let M be a smooth manifold, and let K, V, L, and U be distinct
nonempty subsets with K and L compact, V and U open,and K €V C L C U.
Then there exists a function g in C°°(M) such that g is identically O on K, is
everywhere positive on L — V, and is compactly supported in U.

PROOF. For each point p of L —V, choose a compatible chart (M, ,, ;) about
p. Since p is notin K, we may without loss of generality assume that M, , does
not meet K but is contained in U. Then choose an open neighborhhood M;, p of
p whose closure is compact and lies in M, ,. As p variesin L — V, the sets M, »
form an open cover of L — V. By compactness of L — V, let {Mt;’pl, el Mé,pl}
be a finite subcover.

Applying Lemma 1.3 to each of the charts (M, p,, @), choose a member g; of
C°°(M) that has values in [0, 1], that vanishes off a compact subset of M, p;»and
that is identically 1 on the compact set (M, m)“. Thenthesumg = g1 +---+ g

is everywhere positive on the union of the sets (M, pj)d, hence is everywhere
positive on L — V. Each g; is 0 off a compact subset of M, p,, and thus g is
identically O on K. Each g; is compactly supported in M, ;,, and therefore in U.
Thus g is compactly supported in U. O

PROOF OF THEOREM 1.25. Apply Lemma 1.26b to produce an open cover
{Wi, ..., W,} of K such that Wfl is compact and Wl?l C U; for each i with
1 <i <r. Then apply it a second time to produce an open cover {Vy, ..., V,} of
K such that Vl.Cl is compact and V,.Cl C W, foreachi. Put V=V, U-.--UYV, and
W =W U-..-UW,. Lemma 1.27 produces a function 4#; > 0 in C*°(M) that is
everywhere positive on ViCI and is supported in a compact subset S; of W;. Then

h =h;+---+h, is smooth on M, is everywhere positive on V and hence on K,
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is > 0 everywhere, and is identically O off the compact subset § = §; U --- U S,
of W.

Put L = W¢. Using an exhausting sequence for M, choose an open set
U containing L and having compact closure in M. Application of Lemma 1.28
produces a function g in C°°(M) that is identically O on K, is everywhere positive
on L — V, and is compactly supported in U. We wish to define

fi =

hi/(h+g)  onW
i ()

0 on S¢.

The denominator .2+ g is nowhere 0 on W since & is everywhere positive on V and
g is everywhere positive on the superset L — V of W — V. The two expressions
for f; in (x) are both smooth on their respective open domains W and S¢, and
they agree on the overlap W N S¢ because 4; is identically 0 off S. Finally f; is
defined on all of M by () because S € W. Therefore (x) makes f; into a well
defined member of C*°(M).

Plainly each f; is > 0 everywhere and is identically O off the compact subset

S; of W; C U;. The sum »_ f; equals h/(h + g) on W. Since W 2 K and since
i=1

;
g vanishes on K, Y f; is identically 1 on K. Thus the functions f; have the

i=1
required properties. O

Two more general results are possible, but they will not really be needed for our
purposes and we shall omit their proofs. They both construct smooth partitions
of unity relative to an open cover {U,} of a smooth manifold M with an index
set I whose typical member is written as «. The partitions of unity are to be
“locally finite” in the sense that each point p of M has an open neighborhood on
which only finitely many of the functions are not identically 0. The following
two situations are of interest:

(1) The functions in the partition of unity are indexed by the same set /, and
the function f, with index « has (closed) support contained in U,,.

(2) Each function in the partition of unity has compact support in some U,,,
but the index set for the functions is allowed to be larger than the set /.

The example of M = R with cover {R} shows that we cannot insist on maintaining
the same index set / for the members of the smooth of unity if we insist also on
compact support for the functions. But we can insist on either condition (1) or
condition (2). That is the combined conclusion of the two more general results.
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6. Orientation and Integration on Smooth Manifolds

Let M be a smooth manifold of dimension m; we emphasize that M need not
be connected. Our primary interest in this section will be in integrating smooth
differential forms of the top degree m on M, since the content of Stokes’s Theorem
in that two specific integrals of such differential forms are equal. For this purpose
we require an “orientation” on M. The orientation that is chosen can affect the
value of the integral. If M has an orientation, we say that M is orientable.

Orientation refers eventually to a left vs. right kind of decision, or to a number
of such decisions. For a smooth manifold M of dimension m > 0, the notion
of orientation can be defined in a number of equivalent ways,”® and we use a
definition that leads to integration as quickly as possible.

Before getting started, let us observe that any manifold is locally connected
because each point has arbitraily small neighborhoods that are homeomorphic
with open Euclidean balls, hence connected. Consequently the connected com-
ponents of a manifold are necessarily open. Charts about a point p are allowed to
meet more than one component, but it will often be helpful to think of each chart
as small enough so as to be connected and therefore to lie in a single connected
component of M.

Let us set aside the special case m = 0 for now, returning to it after some
examples, since some special remarks are appropriate for it. For M of dimension
m > 1, we say that M is oriented if an atlas {(M,, o)} of compatible charts
is given with the property that the m-by-m derivative matrix of each coordinate
change

Boa ':a(My N Mg) — B(M, N Mp)

has everywhere positive determinant. Proposition 1.30 below will show that
M can be oriented if and only if M admits a nowhere vanishing differential
m form. Once that proposition is in hand, an “orientation” will be defined to be
an equivalence class of such forms, two such being equivalent if the one is an
everywhere positive function times the other. But we do not need Proposition
1.30 and the definition of orientation yet.

A smooth manifold that is oriented by some atlas is said to be orientable,
otherwise not orientable. It is often easy to show that a certain manifold is
orientable. Showing that a manifold is not orientable tends to be harder. Below
we shall see examples of both situations.

200ur definition will be given after four examples below. A frequently used definition elsewhere
involves singling out an equivalence class of ordered bases of the tangent space 7,(M) at each
p, two such bases being equivalent if the one is carried to the other by a linear function with
positive determinant. Orientability means that this process can be carried out is a way that depends
continuously on p in M, and an orientation is any such choice of continuously varying equivalence
classes for all points of M.
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When an atlas {(M,, «)} exhibits M as oriented, a compatible chart (U, ¢) is
said to be positive relative to {(M,, «)} if the derivative matrix of ¢ o «~! has
everywhere positive determinant for all . We always have the option of adjoining
to the given atlas of charts for an oriented M any or all other compatible charts
(U, ¢) that are positive relative to all (M, «), and M will still be oriented.

EXAMPLE 1. M equal to R™. The standard atlas for R” has just one chartin it,
consisting of the open set R” and the identity mapping. The standard atlas makes
R™ oriented, and the orientation is called the standard orientation. A compatible
chart (U, ¢) consists of a nonempty open set U of R™ and a diffeomorphism ¢
of U onto an open subset of R™. The chart is positive in the sense of the above
definition if the Jacobian matrix {g—)‘fj’} has everywhere positive determinant.

EXAMPLE 2. M equal to the circle S; = {(cosf, sinf) € R?> | § € R}. The
two charts (M1, ¢1) and (M3, ¢,) form an atlas under the definitions

M; = {(cosf,sinf) e R? | - <0 < n}, o1(x,y) =0, ¢op(My) = (—m,m)
My = {(cos 8, sinb) € R? |0 <0 <2}, @x,y) =0, @(M)=(,2r).
With these definitions,

M, N My = {(cosf,sinf) e R | -t <6 <0 or 0<6 <},

( _1)(9) 6 +2m for —m <0 <0
O =
200 0 for 0<06 <2m.

The derivative matrix is everywhere the 1-by-1 matrix (1). Thus this atlas of
charts exhibits M as oriented.

EXAMPLE 3. M equal to a Mobius band or Mobius strip. This is a noncompact

2 dimensional manifold that can be visualized in R3. We start from a rectangle
of paper and start to bend it to be taped into the form of a cylinder, but before the
cylinder is taped, we twist one end through half a turn. More precisely the Mobius
band can be parametrized in R? by two parameters s and ¢ and the equations

x(s, 1) = (14 5cos §)coss

_ 1 :

y(s,t) = (1 + 5 cos 3)sins

z(s, 1) = §sin§.
Here s is to vary over a fixed half open interval [c, ¢ 4 2), and 7 is to vary over
the open interval (—1, 1). The equations are periodic in the ¢ variable but with a
twist:

(x(s+2m,t), y(s +2m, 1), z(s + 21, 1)) = (x(s, —1), y(s, —t), z(s, —1)).

Problem 29 at the end of the chapter shows how to define a smooth manifold by
means of two charts from this information, and Proposition 1.33 will lead from
there to a proof that the manifold is not orientable. See Figure 1.2.
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FIGURE 1.2. M6bius band.

EXAMPLE 4. The unit sphere M = S" in R"*!, This example was shown to
be a smooth manifold in Section 1. It is orientable for n > 1, as will be deduced
in Problem 15 at the end of the chapter. A general method applies for n > 2, and
a special argument is needed for n = 1.

This is a good time to return to discuss orientation of a manifold M of
dimension 0. In this case M is a discrete set of points, necessarily at most
countable because our manifolds are assumed to be separable. The convention is
that every smooth manifold of dimension O is orientable, being oriented by any
atlas, and an orientation on it is the assignment of the scalar +1 or —1 to each
of the points. This case is relevant in seeing how the general version of Stokes’s
Theorem reduces in one dimension to the Fundamental Theorem of Calculus, the
boundary of a finite closed interval of the line being a two-point set. Vacuously
every atlas exhibits a manifold of dimension O as oriented, and every chart is
automatically positive.

Let us turn now to integration on smooth manifolds. In the special case that
the manifold is a nonempty open subset U of Euclidean space R™, we introduce
a notion of integration of smooth m forms. Any such form w can be written as

ow=Fx,...,xp)dxg AN Ndx,,,
with F'(xy, ..., x,) equal to some smooth real-valued function of the m variables
on U. The integral of this m form, written as fU Flxp, ..., xpm)dxi A Adxy,

is defined simply to be the Lebesgue integral®!

/ F(, ..., xp)dxy---dx,
U

21 Alternatively one can use the Riemann integral if the open set U has a sufficiently well behaved
topological boundary. If the Lebesgue integral is used, there is no restriction on the topological
boundary of the open set U.
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with respect to Lebesgue measure. Notationally we just drop the signs A. This
integral raises some convergence questions, but we can avoid them either by
assuming that @ has compact supportin U or by working with the linear functional

f|—>/f(xl,...,xm)F(xl,_,,,xm)dx]...dxm
U

defined for f in Ccom(U).

When U = R™, what happens to this definition of integration of m forms on
R™ if the variables are written in a different order? For example, suppose that
the positions of x; and x; are interchanged. The coefficient F of w is unchanged,
but the alternating tensor becomes dx; A dx; A dx3 A --- A dx,,, which is the
negative of dx; A dx, Adxs A --- A dx,. Meanwhile the Lebesgue integral is
unchanged if we replace dx; dx, dxs - - - dx,, by dx, dxdx3 - - - dx,. So we are
off by a minus sign. The answer to this seeming contradiction is that orientation
is playing a role in the definition of integration of an m form, a role that does not
show up in the notation.??

Consider now any oriented smooth manifold M in the sense defined earlier
in this section. The theorem below defines a notion of integration of top-degree
differential forms that generalizes the one in open subsets of R”. After proving
the theorem, we shall relate its statement to the Riesz Representation Theorem.?

Theorem 1.29. If w is a smooth m form on the oriented smooth manifold M
of dimension m > 0, then there exists a unique linear functional f > f ufo
on the space C¢om(M) of continuous functions of compact support on M with
the property that whenever (M, @) is a positive compatible chart with local
coordinates o« = (xy, ..., x;;) and f is a member of C.om (M) supported in My,
then the value of the linear functional on any f that is compactly supported in
M, is

/fw:/ (Foa™ (1, .., xp)Fu(x1, ..., xp)dxy -+ dxy, (%)
M a(My)

where « is given in local coordinates by (x, ..., X,,) and the local expression for
w in the local coordinates of a(M,,) is

(@ Yo =Fy(x1,...,xm)dxi A+ Adxpy (%)

with F, : a(M,) — R smooth.?* The integral on the right side of (%) is
understood to be an ordinary Lebesgue integral with respect to Lebesgue measure.

22We shall use notation like [}, fw in this text, but notation like [, , fe that indicates an
orientation o along with M and the integrand fw, might serve as a better reminder that the orientation
affects the value.

BTheorem 11.1 of Basic Real Analysis.

24The notation (o l)*w is no mystery. It refers to the pullback of w under ¢, i.e., the “push
forward” of w from its domain M, to the open set «(M,) in Euclidean space. In other words, it is
indeed the “local expression for w in the local coordinates.”

1
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REMARKS.

(1) In other words the expression f v J @ is being defined by the right side of
(*). The content of the theorem is that the definition does not depend on the
choice of local coordinates.

(2) Theorem 1.29 remains true if “manifold” in the statement is replaced by
“manifold-with-boundary,” which is a notion to be defined in Chapter II, or by
“manifold-with-corners” or “Whitney manifold,” which are notions to be defined
in Chapter III. The proof requires no change other than an updating of the reference
to the existence of a partition of unity.

(3) Once again: In the definition of || 1 J o, the notation “M” includes both M
and its orientation. If the orientation is changed, then the value of the integral may
change. The orientation enters the statement of the theorem in the requirement
that (M,, @) be a positive compatible chart.

(4) For our purposes the main role of having f present in the formulais to relate
integration of differential m forms to Lebesgue integration in measure theory. We
shall have more to say about this point after the end of the proof of the theorem. In
the applications of this theorem after this section in this book, all the m forms that
are involved in integration will have compact support within the set of integration,
and then inclusion of f in the formula becomes a frill. Accordingly we shall tend
to drop f in applications of this formula after this section.

(5) With f dropped, the formula of the theorem can be written briefly as

/w:/ w:/ (¢ Yo
M M, a(My)

if w is compactly supported in M,,. Orientations are implicit throughout the three
members of this equation, the orientation on the right side being the standard
orientation on Euclidean space.

PROOF. Let us first dispose of the case m = 0. Then w is a 0 form, which is
a real-valued function on the points of the discrete space. The integral f yJois
to be interpreted as the sum over the points of the product of the value of f by
the value of w times the value of the orientation at the point, namely 1. This
factor &1 is what by convention F, (xy, ..., X,) dx; A- - - Adx,, reduces to when
m = 0.

For the remainder of the proof, assume that m > 0. Whenever f is compactly
supported in M, then f o a~! is compactly supported in a(M,) and the right
side of (%) is well defined. Thus let us define

/ fa)=/ (fOoF])(xl,...,xm)Fa(xl,...,xm)dxl---dxm.
M, a(My)

This definition satisfies a certain consistency condition. To see this, suppose that
f is compactly supported in an intersection M, N Mg. Then by our definition we
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have also
fwzf (FoB DO s Y5Oy ey Y dyr - dym. (1)
Mg B(Mp)

To see that the right sides of () and () are equal, we use the change of variables
formula for multiple integrals.?> The change of variables y = B o a~!(x) in (%)
expresses yi, ..., yn, as functions of x, ..., x,,, and (}) therefore is

=/ foﬁ’]oﬁoa*l(xl,...,xm)
a(MyNMp)

dy;
><Fﬂoﬂoa_l(xl,...,xm)‘det: y} |dx1-~-dxm.
8xj i,j=1

.....

The right side here will be equal to the right side of (x) if it is shown that

? -1 ayi
Fo 2 (FgoBoa )‘det o ‘ (1)
9xj }; =1
i,j=1,...m
Now
Fydxi A+ Ndxy = (@ Yo from (%)
=(Boa (B )w
= (Boa W (Fsdyi A--- Adyn) from ()
0y
= (FsoBoa"ydet] > dxi A - Adxp
axj i,j=1,...m
by Proposition 1.17.
Thus
_1 9y
Fy =(Fgofoa ")dety{— . ®
axj i =1
i,j=1,..., m
Since det { % } - is everywhere positive, equality in (1) follows from ().
i,j=1,...m
Therefore
[ o= to
My My

whenever f is compactly supported in M, N Mpg.

2 Theorem 6.32 of Basic Real Analysis.
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For future reference later in this section and also for use in the next chapter,
we rewrite (1) in terms of coordinates as

=1,...,

0y
Fa(yly---aym):Fﬂ(xh"'axm)det{ Y } . (ii)
i,j=1,...m

To define f y Jo for general f in Ceom(M), we select finitely many open
coordinate neighborhoods M,, that together cover the support of f, and we use
Theorem 1.25 to form a smooth partition of unity {,} subordinate to the finite
open cover {M,,} of the support of f. Then we can define

fM fo=3 fM o ©

Let us see that this definition is unchanged if the smooth partition of unity is
changed. Indeed, suppose that {Mp,} is a second finite open cover of the support
of f. Let {¢g,} be a smooth partition of unity subordinate to the finite open cover
{Mjp,} of the support of f. Linearity of the Lebesgue integral allows us to write

the right side of (§) as
DM e $9)
i ] Y My

If f4q,Pp; is not identically 0, it is supported in M,, and also in Mp,. The fact
that (x) equals (1), which we proved above, means that we get the same result
for [\, f s, ¢p; Whether we treat f as a function supported in My, or we treat it
as a function supported in M, B> i.e.,

/ (f b0 = f (f Vi 3.
My Mﬂj

Thus (§9) is

=22 f (fYadp)o =y / (fop)0,
Jjooi Mg; Y Mg

and this is the value of f w J @ we get by using the partition of unity {¢g,}. U

When w is fixed, it is apparent from (§) and the integral formula for
‘fMa- (Y, [ that the map f +— [, fw is a linear functional on Ceom(M). In

dimensionm > 1, we say that the m form w is everywhere positive relative to the
given atlas if each local expression (xx) has Fy(xy, ..., X;;) everywhere positive
on «(Uy). In dimension 0, a 0 form w is interpreted as everywhere positive if the
pointwise product of w and the orientation is everywhere positive.
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When o is everywhere positive, the linear functional f +— | y J o is positive
in the sense that f > 0 implies |, u fo = 0. By the Riesz Representation
Theorem,?® there exists a unique (regular’’) Borel measure d i, on M such that

/fw=/ ) dpe(x)
M M

for all f € Ceom(M). The next two propositions tell how to create and recognize
everywhere positive m forms w.

Proposition 1.30. If an m dimensional manifold M with m > 1 admits a
nowhere-vanishing m form w, then M can be oriented so that w is everywhere
positive. Conversely if M is oriented, then M admits a nowhere-vanishing m
form w.

REMARKS. This proposition will allow us to classify the possible ways of
orienting a smooth manifold m of dimension m > 1. An orientation of M
is an equivalence class of nowhere-vanishing m forms on M, two such being
equivalent if each is an everywhere positive function times the other. Indeed, the
constructions in the proof below show that any nowhere-vanishing m form yields
an atlas of compatible charts exhibiting M as oriented, that equivalent such forms
lead to the same atlas, and that inequivalent such forms lead to distinct atlases.
If a given orientation of M comes from a nowhere-vanishing m form wy, then
the orientation that corresponds to —ay is called the opposite orientation to the
given one. In Theorem 1.29, changing matters so that the oriented manifold M
has the opposite orientation has the effect of multiplying f vy Joby —1.

PROOF. Suppose that M admits a nowhere-vanishing m form w. Let {(M,,, o)}
be any atlas for M. The components of each M, are open and cover M,, and
there is no loss of generality in assuming that each M, is connected. For each
M,, let F, be the function in (*%) of Theorem 1.29 in the local expression for w
in «(M,). Specifically

(a_l)*(l) =F,(x1, ..., Xp)dxi N --- ANdx,,

with F, : a(My,) — R smooth. Since w is nowhere vanishing and M, is
connected, F, has constant sign on «(M,). If the sign is positive, we retain
(M, @) in the atlas. If the sign is negative, we redefine®® o by following it
with the map (x1, x2, ..., x) — (—x1, X2, ..., X»), and then the redefined F,
is everywhere positive; in this case we instead include the redefined (M,, ) in

26Theorem 11.1 of Basic Real Analysis.

270n any separable locally compact Hausdorff space, and in particular on any smooth manifold,
all Borel measures are regular.

28This redefinition is possible since m > 1.
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the atlas. In this way we can arrange that all F,, are everywhere positive on
their domains. Referring to (1f) in the proof of Theorem 1.29, we see that each
a
function det el is positive on its domain. Hence M is oriented. Since the F,
Xj
are all everywhere positive,  is everywhere positive relative to this orientation.

Conversely suppose that M is oriented. Let {(M,, o)} be an atlas that exhibits
M as oriented. For each «, define a smooth differential m form w, on M, by

Wy =a*(dxy A - ANdxp).
If the intersection M, N Mg is nonempty, then points in the intersection have also
wp =B dy1 A+ Adym)

= (Boa o) (dyr A Adyn)
=a*(Boa ) (dy A Adyn) by Proposition 1.18f

=a*(Boa” 1)det=a
0x;

} dxy A --- Ndx, by Proposition 1.17
J

ay;
:det: Y }ot*(dxl/\~~/\dxm)
Xj

dyi
—dt{ Y }a)a.
ax;

In other words,
wp(p) = Apa(P)wa(P) (%)

for all points p € M, N Mg and some everywhere-positive function Agg.
Let K be a compact subset of M to be specified. The various open sets M,
of charts cover K, we let {«, ..., ax} be a finite subcover, and we use Theorem

1.25 to choose a smooth partition of unity {1, | <i < k} of M subordinate to
k
the finite open cover {M,,, 1 <i <k} of K. Letw = Z Yy, Wo,. The m form

g, 1s nowhere-vanishing on M,,, being the pullback to M from «; (My,) of a
nowhere-vanishing differential form on o;; (M,,). We can extend its domaln to all
of M by setting it equal to O off M,,, and then the product v, @, is a smooth m
form on M. Hence the sum w is smooth on M.

Consider any point p in K. Since Y v, = is identically 1 and each v, is
> 0, some ¥, (p) is nonzero. Then also VY, e, (p) is nonzero. If any other
index j has ¥, (p) # 0, then () shows that ¥y, wq, (p) is a positive multiple of
%z, W, (P). Then it follows that w(p) is not zero. In other words, the m form w
is nowhere vanishing on K.
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If M were compact, we would be done at this point. In the general case we
begin with the following observation: if we had specified in advance an open set
U containing K, we could have arranged that @ vanishes at all points outside U
simply by multiplying w by a smooth function thatis 1 on K andis 0 off U; Lemma
1.27 provides such a function. That being so, let £y = @ C E; C E, C ---
be an exhausting sequence of compact subsets of M. Each set E; is contained in
the interior Ej” 1 of the next member of the sequence. For each j > 0, repeat the
above procedure for the compactset Ej; | — EJ" in place of K, obtaining a smooth
differential form w;, and arrange that the form w; vanishes off Ej” »- The form
wj is nowhere vanishing on E; | — EJ‘.’, and the coefficients of the forms all have
the same sign at all points where any of them is nonzero. Each point p has some
Jj for which p isin E;;; — E;, and then a neighborhood of p lies in /‘.’+2 - E;.
The points of that neighborhood are all outside Ey;1 — E} for k > j + 2 and
k +1 < j. Thus that neighborhood meets at most the three sets E; ., — E?

jtr
o0
Eji1 — E7,and E; — E7_, in the sequence. Consequently w = }_ w; is a well
Jj=0
defined smooth m form. The form w is nonvanishing at least at all points of
U;io(E j+1 — E7); in other words, @ is nowhere vanishing. O

Proposition 1.31. If a connected manifold M is oriented and if w is a nowhere-
vanishing smooth m form on M, then either w is everywhere positive or —w is
everywhere positive.

REMARKS. The proposition says that the problem of finding nowhere-vanishing
forms of the top degree m can be solved one connected component at a time: the
manifold M is orientable if and only if each connected component is orientable,
a connected component is orientable if and only if it has two equivalence classes
of nowhere-vanishing m forms rather than just one, and nonvanishing m forms
can be assembled for M one component at a time in arbitrary fashion.

PROOF. At each point p of M, all the functions F, representing w locally by
means of a positive compatible chart as in () of the statement of Theorem 1.29
have F, (a(p)) nonzero of the same sign because of ({%), the nowhere-vanishing
of w, and the fact that M is oriented. Let S be the subset of M where this
common sign is positive. Possibly replacing w by —w, we may assume that S is
nonempty. We show that S is open and closed. Let p be in S and let (M,,, o)
be a positive compatible chart about p. Then F,, (co(p)) > 0 since p is in S,
and hence F,(x(g)) is positive at all points ¢ in the neighborhood M,, of p
for the one value «y of . Since the sign is the same for the «’s of all positive
compatible charts, Fy(a(g)) > 0 for all o such that g is in M,, N M,. Hence S
is open. Let {p,} be a sequence in S converging to p in M, and let (M,,, p) be a
positive compatible chart about p. Then F, (cto(p,)) > 0 for large n, and hence
Fy, (ao(p)) = 0 by continuity. Since w is nowhere vanishing, F, (ao(p)) > 0.
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Since the sign is the same for all positive compatible charts, F,(x(p)) is > 0
for all . Therefore p is in §, and S is closed. Since M is connected and S is
nonempty open closed, S = M. (]

Propositions 1.30 and 1.31 together give us a better understanding of the notion
of positive chart that was defined just before the four examples in this section. If M
is connected and orientable, then there are exactly two possibilities for a nowhere-
vanishing form of top degree m up to equivalence, and these are negatives of each
other. If we fix the orientation, say in terms of the m form w, then the positive
compatible charts (M, ) are exactly the charts for which (e ~!)*w is a positive
function times dx; A - - - A dx,,. The set of such positive charts is an atlas.

Let us now examine the effect of mappings on orientation. Because orientation
is determined by a differential m form 5, we can check the effect of a mapping
® by examining the pullback ®*n. The situation is clearest in the case of a
diffeomorphism.

Let M and N be oriented smooth manifolds of dimension m, and let
® : M — N be a diffeomorphism. If n is a nowhere-vanishing m form on N,
then ®*n will be an m form on M, and Proposition 1.17 shows that it is nowhere
vanishing. In fact, we can argue locally, writing 1 in local coordinates as the
wedge product of m nowhere-vanishing 1 forms. Then Proposition 1.17 gives a
local expression for ®*1 as the wedge product of nowhere-vanishing 1 forms on
M. Consequently the globally defined m form ®*n is nowhere vanishing.

We say that @ is orientation preserving if whenever the nowhere-vanishing
m form n is everywhere positive, then the nowhere-vanishing m form ®*5 is
everywhere positive. Similarly @ is orientation reversing if whenever the
nowhere-vanishing m form 1 is everywhere positive, then the nowhere-vanishing
m form ®*7 is everywhere negative. If ® is orientation preserving, then for every
positive chart (M, ) in the atlas for M, the chart (®(M,), @ o ®~') is positive
relative to the atlas for N. Consequently the atlas of compatible charts for N canbe
taken to be {(® (M), «o®~1)}. Then the change of variables formula for multiple
integrals may be expressed using pullbacks as in the following proposition.

Proposition 1.32. Let M and N be oriented manifolds of dimension m, and
let® : M — N be an orientation-preserving diffeomorphism. If w is any smooth

m form on N, then
/ fw:/ (f o ®)P*w
N M
for every f € Ceom(N).

PROOF. Let the atlas for M be {(M,, @)}, and take the atlas for N to be
{(®(M,), a o ®~1)}. It is enough to prove the result for f compactly supported
in a particular ®(M,). For such f, Theorem 1.29 gives
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/fa):/ Fodoa (. s tm)Falrtsen s Xo)dxy - - - dm,
N ao®~1(d(M,))
(%)

where F, is the function with
(@o® N ™o=F,(xi,....xp)dx; A+ Adxy. (%)

The function f o & is compactly supported in M,, and Theorem 1.29 gives also

/ (fod®)P*w = foCDoa_l(xl, e X)) Fy (e, oo x) dxy oo dxy ()
M a(My)

since
(@ Y P*0o=((eo® N Vo= F,(x1,....,xn)dxi A+ Adxy,

by (k). The right sides of (%) and (}) are equal, and hence so are the left
sides. ]

The above discussion of diffeomorphisms and pullbacks extends to “immer-
sions” between two smooth manifolds of the same dimension. If M and N are
smooth manifolds, then an immersion & of M into N is a smooth function, not
necessarily one-one, of M into N such that the derivative D® (p) is one-one from
T,(M) into Tg () (N) for each point p in M. In this case when M and N have
the same dimension, then the same argument as above shows for each nowhere-
vanishing m form n on N that ®*n is a nowhere-vanishing m form on M. The
next proposition is a consequence.

Proposition 1.33. The Mobius band of Example 3 in this section is not
orientable.

PROOF. We assume that the Mobius band M has already been shown to be
a manifold; this step is carried out in Problem 29 at the end of the chapter. To
address orientability, we consider M as defined directly in terms of the parameters
(s, t) in Example 3, rather than as a parametrically defined subset of R3. In the
setup of the example, the subset R x (—1, 1) gets mapped onto M in such a way
that (s, ) maps to the same point of M as (s + 2w, —t), and hence also to the same
point as (s + 4w, t). We carry out this process in two stages. In the first stage
we pass from the manifold R x (—1, 1) to the manifold S' x (-1, 1) by taking
the remainder modulo 47 in the s variable. Representatives of members of the
image are the pairs (s, t) withO < s < 4w and —1 < ¢t < 1. In the second stage
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we identify any pair (s, #) with the pair (s +2m, —t). This carries S! x (—1, 1)
onto M and is a smooth 2-to-1 mapping that we call ®; it is an immersion.

If we write & for the function that interchanges each pair (s, ¢) in S s (—1,1)
with its mate (s + 27, —t), with s 4+ 27 understood to be adjusted by 4x if
necessary so that it lies in [0, 47), then A is a diffeomorphism of S I'sx (-1,
onto itself that satisfies h*(ds A dt) = —ds A dt. In other words, & is orientation
reversing. Moreover, we have ® = ® oh. Arguing by contradiction, suppose that
M is orientable. Then Proposition 1.30 supplies a nowhere-vanishing differential
2 form n on it. Passing to pullbacks from the equation ® = & o /&, we obtain

®*n = (Ph)* n = h*d*.

The 2 form ®*p, being nowhere vanishing, has to equal F ds A dt for some
nowhere-vanishing function F on S! x (—1, 1). Then we are led to

Fds ANdt = h*(Fds Adt) = h*(F)h*(ds Adt) = —(F o h)ds A dt,

which is a contradiction since F has constant sign. O

7. Problems

1. Show thatif K; C K, C K3 C --- is an exhausting sequence for a smooth
manifold M and if C is a compact subset of M, then there is some j such that
C CK;.

2. Thecircle S! = {(x, y) € R? | x2 4+ y?> = 1} was defined as a smooth manifold
of dimension 1 in Section 1 by means of two charts (Cy, ¢1) and (C», ¢2), where

y

Ci=S"—{0.+D} and ¢i(x.y) = ().
Co=8"'—{0.~D} and ¢2(x. ) = (1f5)-
In Example 2 in Section 6, it was defined by means of two charts

M; =S —{(=1,0)} and (cost,sint) =t for —7 <t < 7,

Mg:Sl—{(+1,0)} and ynp(cost,sint) =t for 0 <t < 2m.

What steps need to be carried out to show that these smooth manifolds are the
same? Carry out one such step.
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Set-theoretically, the real n dimensional projective space M = RP" can be
defined as the result of identifying each member x of the unit sphere S” in R"*!
with its antipodal point —x. Let [x] € RP" denote the class of x € S§". Do the
following:

(a) Show that d([x], [y]) = min{|x — y|, |x + y|} is well defined and makes
RP™ into metric space such that the function x +— [x] is continuous and
carries open sets to open sets.

(b) Foreach j with1 < j <n+ 1, define

X1 Xj—1 Xj+1 Xn+1
Qlxr, o xpe)] = (5, B T
Xj Xj Xj Xj
on the domain My, = {[(xl, cees Xnt )] | xXj # 0}. Show that the system

{(My;,@j)| 1 < j < n+ 1} is an atlas for RP" and that the function
x +— [x] from §” to RP" is smooth.

Prove that if p and g are two points in a connected smooth manifold, then there
exists a diffeomorphism of the manifold mapping p to g.

The product of two manifolds M and N with respective atlases {(M,, o)} and

{(Ng, B)}isthe set M x N with an atlas consisting of all charts (M, X Ng, a x B).

(a) Show that M x N is a smooth manifold and that the projections M x N — M
and M x N — N are smooth.

(b) Show thatif p isin M and g is in M, then the maps i, : N — M x N and
Jg: M — M x N givenby i,(n) = (p,n) and j,(m) = (m, q) are smooth
immersions.

Prove in R3 that if f is real-valued and F is vector-valued, then divcurl F = 0
and that curl grad f = 0.

Prove by induction on the dimension that if w is a smooth differential 1 form on
R" with dw = 0, then w = df for some smooth real-valued function f defined
on R”.

The proof in Problem 7 has to depend on special properties of R” as the domain

of w because of the following example: Let w be the 1 form on R? — {(0, 0)}
defined by
x4 ——
w= x
x24y2 x24y2

dy.
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Define a function 8 on R? — {(x, 0) | x > 0} by

arctan y/x ifx>0andy >0
m + arctan y/x ifx <0

O(x,y) =14 2m + arctany/x ifx>0andy <0
/2 ifx=0andy >0
3r/2 ifx=0andy <O,

where arctan is the inverse function on R to tan on (—x /2, 7 /2).

(a) Verify that dw = 0 on the domain of w.

(b) Verify that if f is smooth on the domain of 6 and if w = df there, then f
and 6 have respective first partial derivatives equal on the domain of 6.

(c) Observe that a function f asin (b) hastobe f = 6 4 constant on the domain
of 6 and cannot extend continuously to R? — {(0,0)}. Conclude that the
equation df = w has no smooth solution f on RZ — {(0, 0)}.

9. If E and F are disjoint compact subsets of a smooth manifold M, prove that there
exist functions f > 0and g > O in Cgf)’m(M ) such that f is identically 1 on E

and identifically O on F and such that g is identically O on E and identically 1
on F.

10. Let U be a nonempty connected open set in R™. Call a smooth £ form w on U
elementary if it can be written as

w=dpi A---ANdey

for some set of k functions in C*°(U).
(a) Prove that in this case, @ = dn for some smooth k — 1 form 7.
(b) Prove that any k form @ on U that can be written as

o = fi(x) fa(x2) - fiCxi) dxy A= A dxg

is elementary.

11. Let ® : R? — R3 be defined by &(r,s,t) = (r +s +t,rs + st + rt,rst).
Compute ®*(dx A dy) in terms of dr A ds, dr A dt,and ds A dt.

Problems 12-18 introduce the notion of “contraction” (also called “interior multipli-
cation”) of a smooth differential form by a smooth vector field and use it to analyze the
orientability of spheres. Let M be a smooth manifold and let X and X1, ..., X;_ be
smooth vector fields on M. If w is a smooth differential X form on M, i.e., a member
of Q¥ (M), then the contraction cy (@) of ® by X is defined pointwise on M by

CX(a))p((Xl)p7 cees (kal)p) = kwp((X)p’ (Xl)ps cees (kal)p)‘
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Under the hypotheses above, expand cx (w) and the smooth vector fields within
each chart by using the methods of Sections 1 and 3, and conclude that cx (w) is
smooth and therefore cx carries Q¥(M) into QF—1(M). Check also that cx ()
is C°°(M) linear in the X variable.

(a) Prove fork > 1 and for all wy, ..., w; in Q' (M) that

k .
ex(@i A Awg) =D (=D i (X) (@1 Ao AD A A ).
i=1

(b) Deduce as a consequence that
ex(@An) =cx(@) A+ (—=Dfo Aex(n)
if w is in QK(M) and 7 is in QL (M).

Show thatifi : S — M aone-one smooth immersion between manifolds and if @
is in Q¥ (M), then the member i * (w) of 2¥(S) can be regarded as the restriction of
w to S. (This problem will be applied shortly to the immersioni : §” — R"*1)

Show that if a connected smooth manifold M has an atlas with just two charts
and the charts have connected intersection, then M is orientable. Deduce that
the unit sphere S in R”*! is orientable if n > 2. A separate argument is needed
to see that S! is orientable. The next three problems will produce an explicit
nowhere-vanishing smooth n form on S”, which has to exist by Proposition 1.30.

Leti : S" — R""! be the inclusion mapping, which is a one-one smooth

immersion. For any point p = (x1, ..., X,41) in $” and its image i (p) in R"*!,

check in two ways that R"*! is the the direct sum of the tangent space to S at

p and the 1 dimensional space Rp:

(a) First check via inner products and linear algebra, using the naive geometric
interpretation of the tangent space as being geometrically tangent to the

sphere at p.
(b) Second check via the definitions in this chapter of notions related to ““ tangent
space.” Specifically let r = (r1, ..., r,+1) be any member of R"*+! such

that the dot product p - r equals 0. Define a smooth curve y;, in §” for [¢| < €
with € > 0 sufficiently small by

p+tr

lp+1r

Vr(t) =

Observe that f +— % S vy ()], _, defines a derivation of the space of germs
of smooth functions at p on S" and therefore is a member X, of T,,(S").
Show that the mapping r — X, is linear in r and is one-one, hence is onto
T,(S"™). By dimensionality, conclude that TP(R"“) = i(T,(S") ® RX,
n+1
where X = {X} is the vector field with X, = > xj% in TP(R”‘H).
]:1 J
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17.

18.

1. Smooth Manifolds

With i, p, and X as in the previous problem, let w = dx; A --- A dx,41 on
R™*!. Define a smooth n form 7 on " by n = i*(cx(w)). Using the results of
Problems 14 and 16, prove that the n form 1 on S” is nowhere vanishing.

With M = R"*! and @ = dx; A --- A dx,41, compute cx(w) for X =

n+l1
> x;(d/dxj), showing that

J=1 n+1

cx(w) = (—1)j71xjdx1/\~--/\d/x\jA-~-Adxn+1.
=1

J

(The differential form 7 of the previous problem involves also an application
of i*. Problem 14 observes that this application is just a matter of restricting
domains, and it is customary not to incorporate it into the explicit notation.)

Problems 19-23 treat in a more general setting the orientation question that
Proposition 1.33 settled for the Mobius band. Let M be a connected smooth manifold
of dimension m, and let & be a diffeomorphism of M onto itself such that > = 1 and
such that #(x) = x for no x.

19.

20.

21.

22.

(a) For x and y in M, define x ~ y if x = y or y = h(x). Show that ~ is an
equivalence relation.

(b) Write [x] for the equivalence class of x, and let N denote the set of
equivalence classes. If d(x, y) is a metric for M such that d(h(x), h(y)) =
d(x,y), prove that the formula do([x], [y]) = min{d(x, y),d(x, h(y))}
defines dp as a metric on N in such a way that the function x — [x] of
M onto N is continuous and open.

(c) Show how to define charts that make the metric space N into a smooth
manifold of dimension m for which that the quotient map h(x) = [x] of M
onto N is smooth and is an immersion.

Guided by the proof of Proposition 1.33, prove that if M is oriented and % is
orientation reversing, then N is not orientable.

Using the charts constructed in Problem 19c, prove that if M is oriented and 4 is
orientation preserving, then N is orientable.

The real projective space RP" is defined in Problem 3 and also arises from
Problem 19 when M is taken to be the sphere S” and # is taken to be the antipodal
map h(x) = —x.

(a) Show that the smooth structures defined on RP” by means of Problems 3
and 19c are the same.

(b) The sphere §" in R"*! is orientable for n > 1 by Problem 15, and Problems
17-18 exhibited a nowhere-vanishing n form on it. Show that the antipodal
map of h : §" — S§" is orientation reversing if n is even and is orientation
preserving if n is odd.
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23. Conclude from Problems 20-22 that R P" is orientable if #n is odd and > 1 and
that it is not orientable if n is even and > 2.

Problems 24-30 concern graphs, smooth immersions, ‘“submanifolds,” and
“embeddings.” A submanifold of a smooth manifold M is a subset S that has a
smooth manifold structure of its own for which the inclusioni : § — M is a one-
one immersion. A submanifold S of the manifold M is said to be embedded if the
inclusion is a homeomorphism of § onto its image in M, i.e., if the manifold topology
for § coincides with the subspace topology.

24. Let U be a nonempty open set in R”, and let f : U — R* be a continuous
function, not necessarily smooth. The graph of f, written Graph( f), is the subset
of R"** of all points (x, f(x)) forx in U. Make Graph( f) into a smooth manifold
with an atlas having just one chart, defined as (U, «) with a(x) = (x, f(x)).
(a) Verify that the mapping of U onto Graph( f) given by a(x) = (x, f(x)) is

a diffeomorphism of U onto Graph(f).

(b) Let/ : Graph(f) — U xR be the inclusion mapping, andlet p : U xR¥ —
R¥ be the projection to the second coordinate. Then the composition of the
maps

U —%— Graph(f) L, UxRF 2 R
is x — f(x), which need not be smooth. What is going on?

25. Let U be a nonempty open set in R”, and let f : U — R be a smooth function.
Define ¢ : U x R - U x R¥ by ¢(x, y) = (x,y — f(x)).
(a) Verify that ¢ is a diffeomorphism.
(b) Observe that ¢(Graph(f)) = {(u,v) € U x RK | v = 0}. In other words,
Graph(f) is exhibited as the level set for level v = 0 in R¥ of the smooth
function ¢.

26. Lety : (—m/2 — 31/2) — R? be the function given by y (1) = (sin2¢, cos?).
Its image looks something like the numeral 8 and is pictured in Figure 1.3. Show
that y is a one-one immersion, that its image is compact, and that it is not a
smooth embedding.

FIGURE 1.3. Numeral 8 from a one-one smooth immersion.
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27.

28.

29.

30.
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View S! as the set of elements in C of the form ¢'? for 6 in R, define the

2 dimensional torus T2 to be the product S! x $!. and fix an irrational real

number c. This problem observes that y (1) = (e*!, ¢™!) is a one-one

immersion from R into 72 but is not a smooth embedding. Its image is

therefore a submanifold of 72 but not an embedded submanifold.

(a) Check that indeed y (¢) is one-one and is an immersion.

(b) Show for each € > 0 that some nonzero integer k has |y (k) — y (0)| < €.

(c) Deduce that y(0) is a limit point of y(Z), and conclude that y is not
a homeomorphism with its image and therefore cannot be a smooth
embedding.

This problem gives a mechanism for defining a manifold parametrically, i.e.,
as the image of a vector—valued function of several variables.
(a) Let F be the smooth function from an interval of R into R? given by

F@) = (i ) Suppose that x’(z9) # 0. Prove that the set of points (;Cg; )
for ¢ near ¢y is the embedded graph of a smooth function and is therefore
an embedded submanifold in R? of dimension 1.

(b) Let U be a nonempty open subset of R”, let F : U — R¥ be a smooth
function with n < k, and let J (x) be the n-by-k Jacobian matrix of F at
x € U with entries 9 F;/dx;. Suppose for each x € U that the rank of
the matrix J(x) is n, i.e., that J(x) has n linearly independent columns.
Use the Inverse Function Theorem to show for each xg in U that the set
of points F(x) in R for x near xo is an embedded submanifold in R¥ of
dimension 7.

This problem constructs the Mobius band of Example 3 in Section 6 as a

smooth 2 dimensional manifold in R>. (See Figure 1.2 for a picture.)

(a) Example 3 of Section 6 explicitly defines three functions x, y, z as
functions of the pair (s, ¢) for —co < s < oo and —1 < ¢t < 1. Show
that the Jacobian matrix of the function (s, ) — (x, y, z) has rank two at
every point (s, 1), i.e., that the columns of the Jacobian matrix are linearly
independent for each pair (s, t).

(b) For fixed ¢, the functions x, y, z are periodic functions of period 47 in
the variable s. Explain why this means that the function (x, y, z) of (s, 1)
descends to a smooth function into R? with domain M = R/47Z x
(-1, 1.

(c) Conclude that the image of the smooth function in (b) is a smooth
manifold of dimension 2.

This problem gives a mechanism for defining a manifold implicitly, i.e., as
the 0 locus of a vector-valued function of several variables.



(a)

(b)
(c)
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The unit circle in R? is the set where x> 4+ y> = 1. Define F(x,y) =
x2 4+ y2 — 1, so that the circle is the set where F(x, y) = 0. The Jacobian
matrix of F is

oF OdF

T, y) = (E @) = @2x 2y).

Explain how the Implicit Function Theorem implies that near any point
(x0, y0) on the circle for which %(xo, yo) # 0, the intersection of the
circle with a suitable neighborhood of (xg, yo) is the graph of a smooth
function x = x(y). Why is this graph a smooth manifold?

Repeat (a) for the unit sphere $” in R"*!,

More generally let U be a nonempty open subset of R”, let F : U — R”
be a smooth function with n > k, and let J(x) be the n-by-k Jacobian
matrix of F atx € U, with entries 9 F; /0x;. Suppose for each x € U that
the rank of J(x) is k, i.e., that J(x) has k linearly independent columns.
Use the Implicit Function Theorem to show that the subset of points
x € U with F(x) = 0 is a smooth manifold of dimension n — k.



