
 

 

Chapter 12 

DISSECTION THEORY 

 

 
 

Oh, come with old Khayyám, and leave the Wise 

To talk, one thing is certain, that Life flies; 

One thing is certain, and the Rest is Lies; 

The flower that once has blown for ever dies. 

      — Omar Khayyam, Rubaiyat     

    (from the translation by Edward Fitzgerald) 

WHAT IS DISSECTION THEORY? 

 

 

Figure 12.1 Parallelogram 
 

In showing that the parallelogram in Figure 12.1 has the same area as a rectangle 

with the same base and height (altitude), we can easily cut the parallelogram into two pieces 

and rearrange them to form the rectangle in Figure 12.2. 

 
 

 

Figure 12.2 Equivalent by dissection to a rectangle 
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We say that two figures (F and G) are equivalent by dissection (F =d G) if one can 

be cut up into a finite number of pieces and the pieces rearranged to form the other. Some 

authors use the term “equidecomposable” instead of “equivalent by dissection”. 
 

QUESTION: If two planar polygons have the same area, are they equivalent by 

 dissection? 

ANSWER: Yes! For all (finite) polygons on either the plane, or on a sphere, or on a 

 hyperbolic  plane. 
 

You will prove these results about dissections in this chapter and the next and use 

them to look at the meaning of area. In this chapter you will show how to dissect any 

triangle or parallelogram into a rectangle with the same base. Then you will do analogous 

dissections on spheres and hyperbolic planes after first defining an appropriate analog of 

parallelograms and rectangles. After that you will show that two polygons on a sphere or 

on a hyperbolic plane that have the same area are equivalent by dissection to each other. 

The analogous result on the plane must wait until the next chapter. 

The proofs and solutions to all the problems can be done using “=d”, but if you wish 

you can use the weaker notion of “=s”: We say that two figures (F and G) are equivalent 

by subtraction (F =s G) if there are two other figures, S and S', such that S =d S' and FS =d 

GS', where F and S and G and S' intersect at most in their boundaries. Some authors use 

the term “of equal content” instead of “equivalent by subtraction”. Saying two figures are 

equivalent by subtraction means that they can be arrived at by removing equivalent parts 

from two initially equivalent figures, as in Figure 12.3. 
 

 

 

 
 

     =s 
 

 

 

 

 
Figure 12.3 Equivalent by subtraction 

 

If we cut out the two small squares as shown in Figure 12.3, we can see that the 

shaded portions of the rectangle and the parallelogram are equivalent by subtraction, but it 

is not at all obvious that one can be cut up and rearranged to form the other. 

Equivalence by dissection is generally preferable to equivalence by subtraction 

because it provides a direct way of seeing that two figures have the same area. However, 

sometimes it is easier to find a proof of equivalence by subtraction. Besides equivalence 

by subtraction has the advantage (as we will see) that in some situations equivalence by 

dissection is only true if one assumes the Archimedean Postulate (which we first met in 

Problem 10.3), while equivalence by subtraction does not need the Archimedean Postulate. 
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However, we would urge you to prove equivalence by dissection wherever you can. 

The Archimedean Postulate (in some books this is called the Axiom of Continuity), 

named after the Greek mathematician Archimedes (who lived in Sicily, 287?–212 B.C.), is 

as follows: 

 

AP: On a line, if the segment AB is less than (contained in) the segment AC, then 

 there is a finite (positive) integer, n, such that if we put n copies of AB end to 

 end (see Figure 10.5), then the nth  copy will contain the point C. 

 

The Archimedean Postulate can also be interpreted to rule out the existence of 

infinitesimal lengths. It is true that AP is needed to prove some results about equivalence 

by dissection; however, most people assume AP to be true on the plane, spheres, and 

hyperbolic planes. 

 

A DISSECTION PUZZLE FROM 250 B.C. SOLVED IN 2003 

 

 
 

Palimpset fragment (Wikimedia Commons) 

 

About 250 B.C., Archimedes wrote a treatise entitled Stomachion, which was lost, 

though from commentaries it was clear that the work discussed the puzzle pictured in 

Figure 12.4. This is a puzzle, similar to Tangrams, that consists of 14 pieces that fit into a 

square (all of the vertices lie on a 12  12 grid). However, Archimedes’ interest in the 

puzzle was not known. Then in 2003, Reviel Netz, a Stanford historian of science, 

deciphered parts of the Palimpsest, which consists of pieces of parchment that originally 

(about 1000 A.D.) contained several works of Archimedes, but in the 13th century the words 

of Archimedes were scraped off and the parchment used to write a prayer book. Netz 

uncovered the introduction to the Stomachion treatise and discovered that Archimedes 

asked the question How many different ways can these 14 pieces be rearranged to fit 

exactly in the square? Then, on November 17, 2003, it was announced 

(http://mathworld.wolfram.com/Stomachion.html) that Bill Cutler, a puzzle designer with a 

Ph.D. in mathematics from Cornell University (David was his thesis adviser), found using 

a computer that there were 17,152 distinct solutions (or only 536 if you counted as the same 

solutions that varied by rotation or reflection of the square or differed only in the 

interchange of the congruent pairs of pieces 7 and 14 or 6 and 13). The story was continued 

http://mathworld.wolfram.com/Stomachion.html
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on the front page of the New York Times, December 14, 2003, announcing that the 

University of California–San Diego mathematicians Ronald Graham and Fan Chung had 

independently solved the problem using combinatorics. 

See https://www.nytimes.com/2003/12/14/us/in-archimedes-puzzle-a-new-eureka-moment.html 

for more fascinating history of Archimedes’ Palimpsest and the Stomachion or explore it 

on your own http://www.archimedespalimpsest.org/ 

.   
 

Figure 12.4 Two solutions of Archimedes’ Stomachion puzzle 

 

HISTORY OF DISSECTIONS IN THE THEORY OF AREA 

Dissections have been the basis, through history, of many proofs for the 

Pythagorean Theorem, including in Ancient India and China; see also Chapter 13 and 

Problem 13.2. In the Plato’s Meno [AT: Plato] there is a Socratic dialogue in which is 

described the dissection proof that the diagonal of a square is the side of a square of twice 

the area. Euclid in his Elements implicitly used equivalence by dissection and equivalence 

by subtraction when he proved propositions about the area (he used the term “equal”) of 

polygons. Pythagorean theorem’s proof by dissection can be seen in popular tiling pattern. 

 

 
 

Proof of Pythagorean theorem in tiling pattern 

 

The use of dissection to find areas continued after Euclid, but it was not until 1902 

that David Hilbert [FO: Hilbert] developed Euclid’s Postulates and dissection theory into 

a rigorous theory of area. Hilbert discusses (in his Chapter IV) both equivalence by 

dissection (zerlegungsgleich) and equivalence by subtraction (ergänzungsgleich) and when 

the Archimedean Postulate was necessary. In a footnote, Hilbert gives credit for similar 

discussions of the theory of areas to M. Gérard (in 1895–1898), F. Schur (in 1898), and O. 

Stolz (in 1894). A recent detailed discussion of the dissection theory of area can be found 

in [TX: Hartshorne]. A recent history of dissections is contained in Chapter 13. 

https://www.nytimes.com/2003/12/14/us/in-archimedes-puzzle-a-new-eureka-moment.html
http://www.archimedespalimpsest.org/
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PROBLEM 12.1   DISSECT PLANE TRIANGLE AND     

       PARALLELOGRAM 

Some of the dissection problems ahead are very simple, while some are rather 

difficult. If you think that a particular problem was so easy to solve that you may have 

missed something, chances are you hit the nail right on the head. Most of the dissection 

proofs will consist of two parts: First show where to make the necessary cuts, and then 

prove that your construction works, that is, that all the pieces do in fact fit together as you 

say they do. 

 

a. Show that on the plane every triangle is equivalent by dissection to a 

parallelogram with the same base no matter which base of the triangle you 

pick. 

 

Part a is fairly straightforward, so don’t try anything complicated. You only have to 

prove it for the plane — a proof for spheres and hyperbolic planes will come in a later 

problem after we find out what to use in place of parallelograms. Make paper models, and 

make sure your method works for all possible triangles with any side taken as the base. In 

particular, make sure that your proof works for triangles whose heights are much longer 

than their bases. Also, you need to show that the resulting figure actually is a parallelogram. 

 

b. Show that, if you assume AP, then on a plane every parallelogram is 

equivalent by dissection to a rectangle with the same base and height. Show 

equivalence by subtraction without assuming AP. 
 

A partial proof of this was given in the introduction at the beginning of this chapter. 

But for this problem, your proof must also work for tall, skinny parallelograms, as shown 

in Figure 12.5, for which the given construction does not work. You may say that you can 

simply change the orientation of the parallelogram and use a long side as the base; but, as 

for part a, we want a proof that will work no matter which side you choose as the base. Be 

sure to note where you use AP. Again, do not try anything too complicated, and you only 

have to work on the plane. 
 

 
Figure 12.5 Tall, skinny parallelogram 
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DISSECTION THEORY ON SPHERES AND HYPERBOLIC PLANES 

The above statements take on a different flavor when working on spheres and 

hyperbolic planes because we cannot construct parallelograms and rectangles, as such, on 

these spaces. We can define two types of polygons on spheres and hyperbolic spaces and 

then restate the above two problems for these spaces. The two types of polygons are the 

Khayyam quadrilateral and the Khayyam parallelogram. These definitions were first put 

forth by the Persian geometer-poet Omar Khayyam (1048–1131) in the 11th century AD 

[AT: Khayyam 1958]. Through a bit of Western chauvinism, geometry books generally 

refer to these quadrilaterals as Saccheri quadrilaterals after the Italian priest and professor 

Gerolamo Saccheri (1667–1733), who translated into Latin and extended the works of 

Khayyam and others.  

A Khayyam  quadrilateral  (KQ)  is  a   quadrilateral   such  that AB  CD and 

BAD  ADC  /2. A Khayyam parallelogram (KP) is a quadrilateral such that AB  

CD and AB is a parallel transport of DC along AD. In both cases, BC is called the base and 

the angles at its ends are called the base angles. See Figure 12.6.  

 
 

Figure 12.6 Khayyam quadrilaterals and parallelograms 

 

PROBLEM 12.2 KHAYYAM QUADRILATERALS 

 

a. Prove that the base angles of a KQ are congruent. 

 

b. Prove that the perpendicular bisector of the top of a KQ is also the perpendicular 

bisector of the base. 

 

c. Show that the base angles are greater than a right angle on a sphere and less than a 

right angle on a hyperbolic plane. 

 

d. A KQ on the plane is a rectangle and a KP on the plane is a parallelogram. 
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To begin this problem, note that the definitions of KP and KQ make sense on the 

plane as well as on spheres and hyperbolic planes. The pictures in Figure 12.6 are 

deliberately drawn with a curved line for the base to emphasize the fact that, on spheres 

and hyperbolic planes, KPs and KQs do have the same properties as rectangles and 

parallelograms. You should think of these quadrilaterals and parallelograms in terms of 

parallel transport instead of parallel lines. Everything you have learned about parallel 

transport and triangles on spheres and hyperbolic planes can be helpful for this problem. 

Symmetry can also be useful. 

Now we are prepared to modify Problem 12.1 so that it will apply to spheres and 

hyperbolic planes. 
 

PROBLEM 12.3 DISSECT SPHERICAL AND HYPERBOLIC   

    TRIANGLES AND KHAYYAM PARALLELOGRAMS 

a. Show that every hyperbolic triangle, and every small spherical triangle, is 

equivalent by dissection to a Khayyam parallelogram with the same base as 

the triangle. 

Try your proof from Problem 12.1 as a first stab at this problem. You only need to 

look at a sphere. You should also look at the different proofs given for Problem 12.1. The 

only difference between the plane and spheres and hyperbolic planes as far as this problem 

is concerned is that you must be more careful on spheres and hyperbolic planes because 

there are no parallel lines; there is only parallel transport. Some of the proofs for Problem 

12.1 work well on a sphere or on a hyperbolic plane, and others do not. Remember that the 

base of a KP is the side opposite the given congruent angles. 
 

b. Prove that every Khayyam parallelogram is equivalent by dissection (if you 

assume AP), or equivalent by subtraction (without assuming AP), to a 

Khayyam quadrilateral with the same base. 

As with part a, start with your planar proof and work from there. As before, your 

method must work for tall, skinny KPs. Once you have come up with a construction, you 

must then show that the pieces actually fit together as you say they do and prove that the 

angles at the top are right angles. See Figure 12.7. 
 

 

 
Figure 12.7 Dissecting KP into KQ 
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PROBLEM 12.4   SPHERICAL POLYGONS DISSECT TO LUNES 

In the next chapter you will show (under the assumption of AP) that every polygon 

on the plane is equivalent by dissection to a square, and then we will use this and the 

Pythagorean Theorem to show that any two polygons with the same area are equivalent by 

dissection. This does not apply to spheres and hyperbolic planes because there are no 

squares on these surfaces. However, we have already shown in Problems 7.1 and 7.4 that 

two polygons (or triangles) on the same sphere have the same area if they have the same 

holonomy. Thus, every polygon on a sphere must have the same area as some lune with 

the same holonomy. Now we can show that not only do they have the same area, but they 

are also equivalent by dissection. 
 

Assuming AP, show that every simple (sides intersect only at the vertices) small 

 polygon on a sphere is equivalent by dissection to a lune with the same holonomy. 

 That is, the angle of the lune is equal to  

(½) (2 − sum of the exterior angles of the polygon). 

Consequently, two simple small polygons with the same area on the same sphere 

 are equivalent by dissection. 

 

OUTLINE OF PROOF 

The proof of this result can be completed by proving the following steps (or 

lemmas). (This proof was first suggested to David by his daughter Becky, now Rebecca 

Wynne.) 

1. Every simple small polygon can be dissected into a finite number of small triangles, 

such that the holonomy of the polygon is the sum of the holonomies of the triangles. 

See Problem 7.5, but what is needed here is easier than 7.5. 

2. Each small triangle is equivalent by dissection to a KQ with the same base and same 

holonomy. 

Check your solutions for Problems 12.2 and 12.3. 

3. Two KQs with the same base and the same holonomy (or base angles) are congruent. 

Match up the bases and see what you get. 

4. If two triangles have the same base and the same holonomy, then they are equivalent 

by dissection. 

Put together the previous steps. 

5. Any triangle ∆ is equivalent by dissection to a lune with H (∆) = H (lune) 

      = (twice the angle of the lune). 

Hint: A lune can also be considered as a triangle. 

6. Two simple small polygons on a sphere with the same area are equivalent by 

dissection to the same lune and therefore are equivalent by dissection to each other. 

What is the union of two lunes? 
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The first four steps above will also work (with essentially the same proofs) on a 

hyperbolic plane. But there is no clear replacement for the biangles (which do not exist on 

a hyperbolic plane). There is a proof of the following: 

THEOREM 12.4. On a hyperbolic space, two simple (the sides intersect only at the 

 vertices) polygons with the same area are equivalent by dissection. 

 

Two published proofs in English are in [TX: Millman & Parker], page 267, and [DI: 

Boltyanski 1978], page 62. These proofs are similar, and both use the first four steps above 

and use the completeness of the real numbers (in the form of a version of the Intermediate 

Value Theorem). You can check that Becky’s proof above does not use completeness. In 

addition, the proof of the same result on the plane (see the discussion between Problems 

13.2 and 13.3) also does not need the use of completeness axiom. 
 
 

 

Figure 12.8 Triangles with same base and same area 
 

 In the plane all the triangles with the same base and the same height have the same 

area and the vertices opposite the base of these triangles form a (straight) line not 

intersecting the line determined by the base. On a sphere, the situation is different. Your 

proof above should show that midpoints of the (non-base) edges lie on a great circle and 

the vertices opposite the base must lie on a curve equidistant from this great circle. See 

Figure 12.8. 

 

 




