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CHAPTER XIV.

FActorIAL FUNCTIONS.

252. THE present chapter is concerned* with a generalisation of the
theory of rational functions and their integrals. As in that case, it is conve-
nient to consider the integrals and the functions together from the first. In
order, therefore, that the reader may be better able to follow the course of
the argument, it is desirable to explain, briefly, at starting, the results
obtained. All the functions and integrals considered have certain fixed
singularities, at places{ denoted by ¢;, ..., ¢x. A function or integral which
has no infinities except at these fixed singularities is described as everywhere
finite. The functions of this theory which replace the rational functions of
the simpler theory have, beside the fixed singularities, no infinities except
poles. But the functions differ from rational functions in that their values
are not the same at the two sides of any period loop; these values have a
ratio, described as the fuctor, which is constant along the loop ; and a system
of functions is characterised by the values of its factors. We consider two
sets of factors, and, correspondingly, two sets of factorial functions, those of
the primary system and those of the associated system ; their relations are
quite reciprocal. We have then a circumstance to which the theory of
rational functions offers no parallel; there may be everywhere finite factorial
Junctions}. The number of such functions of the primary system which are
linearly independent is denoted by ¢’+1; the number of the associated
system by o + 1. As in the case of algebraical integrals, we may have every-
where finite factorial integrals. The number of such integrals of the primary
system which are linearly independent is denoted by @, that of the associated
system by =’. The factorial integrals of the primary system are not integrals
of factorial functions of that system ; they are chosen so that the values u, v’

* The subject of the present chapter has been considered by Prym, Crelle, Lxx. (1869), p. 854;
Appell, Acta Mathematica, xiu1. (1890); Ritter, Math. dnnal. xuiv. (1894), pp. 261—374. In
these papers other references will be found. See also Hurwitz, Math. Annal. xu1. (1893), p. 434,
and, for a related theory, not considered in the present chapter, Hurwitz, Math, Annal. xxxIx.
(1891), p. 1. For the latter part of the chapter see the references given in §§ 273, 274, 279.

+ In particular the theory includes the case when k=0, and no such places enter.

1 This statement is made in view of the comparison instituted between the development of

the theory of rational functions and that of factorial functions. The factorial functions have
(unless k=0) fixed infinities.
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of such an integral on the two sides of a period loop are connected by an
equation of the form «' = Mu + u, where u is a constant and M is the factor of
the primary system of factorial functions which is associated with that period
loop. The primary and associated systems are so related that if F' be a
factorial function of either system, and ' a factorial integral of the other
system, Fd([dz is a rational function without assigned singularities. In the
case of the rational functions, the smallest number of arbitrary assigned poles
for which a function can always be constructed is p + 1. In the present
theory, as has been said, it may be possible to construct factorial functions of
the primary system without poles; but when that is impossible, or ¢’ +1 =0,
the smallest number of arbitrary poles for which a factorial function of the
primary system can always be constructed is =+ 1. Similarly when
o+ 1 =0, the smallest number of arbitrary poles for which a factorial func-
tion of the associated system can always be constructed is = +1. Of the
two numbers o+ 1, ¢’ + 1, at least one is always zero, except in one case,
when they are both unity. When ¢’ +1 is >0, the everywhere finite fac-
torial functions of the primary system can be expressed linearly in terms of
the everywhere finite factorial integrals of the same system. We can also
construct factorial integrals of the primary system, which, beside the fixed
singularities, have assigned poles; the least number of poles of arbitrary
position for which this can be done is o +2. And we can construct factorial
integrals of the primary system which have arbitrary logarithmic infinities;
the least number of such infinities of arbitrary position is ¢ + 2. For the
associated system of factors the corresponding numbers are ¢’ + 2.

It will be found that all the formulae of the general theory are not imme-
diately applicable to the ordinary theory of rational functions and their
integrals. The exceptions, and the reasons for them, are pointed out in
footnotes.

The deduction of these results occupies §§ 253—267 of this chapter. The
section of the chapter which occupies §§ 271—278, deals, by examples, with
the connection of the present theory with the theory of the Riemann theta
functions. With a more detailed theory of factorial functions this section
would be capable of very great development. The concluding section of the
chapter deals very briefly with the identification of the present theory with
the theory of automorphic functions.

253. Let ¢y, ..., ¢ be arbitrary fixed places of the Riemann surface,
which we suppose to be finite places and not branch places. In all the
investigations of this chapter these places are to be the same. They may be
called the essential singularities of the systems of factorial functions. We
require the surface to be dissected so that the places ¢, ..., ¢; are excluded
and the surface becomes simply connected. This may be effected in a manner
analogous to that adopted in § 180, the places ¢, ..., ¢ occurring instead of
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2y, ..., zx. But it is more convenient, in view of one development of the
theory, to suppose the loops of § 180 to be deformed until the cuts* between
the pairs of period loops become of infinitesimal length. Then the dissection
will be such as that represented in figure 9; and this dissection is sufficiently

Fig. 9.

well represented by figure 10. We call the sides of the loops (a,), (b,), upon
which the letters a,, b, are placed, the left-hand sides of these loops, and by
the left-hand sides of the cuts (y,), ..., (vx), to the places ¢, ..., ¢k, we mean

Fig. 10.

@ ©

the sides which are on the left when we pass from A to ¢, ..., ¢; respec-
tively. The consideration of the effect of an alteration in these conventions
is postponed till the theory of the transformation of the theta functions
has been considered.

* These cuts are those generally denoted by ¢;, ..., cp_;. Of. Forsyth, Theory of Functions,
§ 181,
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254. In connection with the surface thus dissected we take now a series
of 2p + k quantities

A'1: "')A'k’ hl,'")h‘p, G --<5 9p>

which we call the fundamental constants; we suppose no one of Ay, ..., Ax to
be a positive or negative integer, or zero; but we suppose A; + ... 4+ A; to be
an integer, or zero; and we consider functions

(1) which are uniform on the surface thus dissected, and have, thereon,
no infinities except poles,

(2) whose value on the left-hand side of the period loop (a;) is
e~ times the value on the right-hand side ; whose value on the left-hand
side of the period loop (b;) is €*™: times the value on the right-hand side,

(3) which¥, in the neighbourhood of the place c;, are expressible in the
form ¢~*¢;, where ¢ is the infinitesimal at ¢; and ¢; is uniform, finite, and not
zero in the neighbourhood of the place ¢;,

(4) which, therefore, have a value on the left-hand side of the cut «;
which is e~ times the value on the right-hand side.

Let a,, ..., a3, By, -+ be any places; consider the expression
1 M N y
x,a z, a z, a z,a . z,a z,a k z, @
fzdenﬁl,'mﬁ"-'+HBN,m_Ha,,m—---‘Huu,m-2‘”[(h1+H1)vl +...+ (hp+ Hp) vp ]—'zl)‘inci,m’
. i=

wherein A4 is independent of the place ,
k
N-M=3x, @),
i=1

S being an integer (or zero), m is an arbitrary place, and H,, ..., H, are
integers. It is clear that this expression represents a function which is
uniform on the dissected surface, which has poles at the places ay, ..., a;, and
zeros at the places B, ..., By, and that in the neighbourhood of the place ¢;
this function has the character required. For the period loop (a;) the
function has the factor e—2mi(*i+Hi = ¢=2mhi a5 desired; for the period loop
(b;) the function has the factor 2K, where

K_’UB"'"-I- +vﬂzv "‘_,Ugl,m_'“_ “u' _ z(h +Hr)'rr,z 7\1 Cpy M
and this factor is equal to ¢ if only

By, m B, a,, m @y, M C,., N
v e N = — =y 27\“’

—git Gt S (ot H)7riy (i),
r=1
G; being an integer.

* It is intended, as already stated, that the places c,, ..., c; should be in the finite part of the
surface and should not be branch places.
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It follows therefore that, subject to the conditions (i) and (ii), such a
function as has been described certainly exists.

Conversely it can be immediately proved that any such function must be
capable of being expressed in the form here given, and that the conditions
(1), (i) are necessary.

Unless the contrary be expressly stated, we suppose the quantities
My eees My Py ooy By, G4y oon, 9p 8lways the same, and express this fact by
calling the functions under consideration factorial functions of the primary
system. The quantities 2™, ..., e, g72miky . g=mikp g2miy | e*mdp are
called the factors. It will be convenient to consider with these functions
other functions of the same general character but with a different system of
fundamental constants,

Ay MG R LRy, g 9y,
connected with the original constants by the equations
N+A+1=0, hi+hi=0, gi+g/=0;

these functions will be said to be functions of the associated system. The fac-
tors associated therewith are the inverses of the factors of the primary system.

255. As has been remarked, the rational functions on the Riemann
surface are a particular case of the factorial functions, arising when the
factors are unity and no such places as ¢, ..., ¢ are introduced. From this
point of view the condition (i), which can be obtained as the condition that

fd log f, taken round the complete boundary of the dissected surface, is zero,

is a generalisation of the fact that the number of zeros and poles of a rational
function is the same, and the condition (ii) expresses a theorem generalising
Abel’s theorem for integrals of the first kind.

Now Riemann’s theory of rational functions is subsequent to the theory
of the integrals; these arise as functions which are uniform on the dissected
Riemann surface, but differ on the sides of a period loop by additive
constants. In what follows we consider the theory in the same order, and
enquire first of all as to the existence of functions whose differential coefficients
are factorial functions. For the sake of clearness such functions will be
called factorial integrals; and it will appear that just as rational functions
are expressible by Riemann integrals of the second kind, so factorial functions
are expressible by certain factorial integrals, provided the fundamental con-
stants of these latter are suitably chosen. We define then a factorial integral
of the primary system, H, as a function such that dH/dz is a factorial
function with the fundamental constants

MAL N Ry Ry, Ghy ey O
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thus dH/dz has the same factors as the factorial functions of the primary
system, but near the place ¢;, dH/dz is of the form ¢~A+) ¢, where ¢; is
uniform, finite and not zero in the neighbourhood of ¢;. Similarly we define
a factorial integral of the associated system, H’, to be such that dH’/dz
is a factorial function with the fundamental constants

ML LGN+ R, LR, g g,
or
=Ny e =N =Ry, e, =Ry — G e, — O

thus, if £ be any factorial function of the primary system, fdH’'/dz is a
rational function on the Riemann surface, for which the places ¢, ..., ¢
are pot in any way special. And similarly, if f* be any factorial function
of the associated system, and H any factorial integral of the primary
system, f'dH/dz is a rational function.

The values of a factorial integral of the primary system, H, at the two
sides of any period loop are connected by an equation of the form

H=pH+ 9,
where p is one of the factors e~*mitr, ¢*™9r and Q is a quantity which is
constant along the particular period loop. Near ¢;, H is of the form

A+t ¢, + C; IOg t,

where A; is a constant, ¢; is uniform, finite, and, in general, not zero in the
neighbourhood of ¢;, and C; is a constant, which is zero unless A;+1 be a
positive integer (other than zero), and may be zero even when A;+1 is a
positive integer. After a circuit round ¢;, H will be changed into

H= A; + et (b@ + 2miC; + C; lOg t;
thus, when C; =0,
H = He™™ % 4 A; (1 — et
and when C; is not zero, and, therefore, \; + 1 is a positive integer,

FI=H+2‘7T’I:CZ';

in either case we have

H=qyH+T,
where = ¢ and I is constant along the cut (y;).
Thus, in addition to the fundamental factors of the system, there arise,
for every factorial integral, 2p + & new constants, 2p of them such as that

here denoted by Q and %k of them such as that denoted by I. It will be
seen subsequently that these are not all independent.
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As has been stated we exclude from consideration the case in which any
one of A,, ..., At is an integer, or zero. Thus the constants C; will not enter;
neither will the corresponding constants for the associated system.

256. Consider now the problem of finding factorial integrals of the
primary system which shall be everywhere finite. Here, as elsewhere, when
we speak of the infinities or zeros of a function, we mean those which are not
at the places ¢, ..., ¢, or which fall at these places in addition to the poles
or zeros which are prescribed to fall there.

If V be such a factorial integral, dV/dz is only infinite when dz is zero
of the second order, namely 2p — 2 + 2n times, at the branch places of the
surface. And dV/dz is zero at =0, 2n times*. Thus, if N denote the num-
ber of zeros of dV/dx which are not due to the denominator dz, or, as we may
say (cf. § 21) the number of zeros of dV, we have by the condition (i) § 254,

k
N+2n=2p—-2+2n+ 3 (\+1),
=1

so that the number of zeros of dV is 2p — 2 + 3 (A; + 1).

Now let f, denote a factorial function with the primary system of
factors, but with behaviour at ¢; like ¢~®*? ¢;, where ¢; is uniform, finite,
and not zero at ¢;. Then, if an everywhere finite factorial integral V'
exists at all, Z, =f;dV/dz, will be a rational function on the Riemann
surface, infinite at the (say N,) zeros of f,, and 2n + 2p—2 times at the
branch places of the surface, and zero at the (say M,) poles of £, and 2n
times at # = o (beside being zero at the zeros of dV). Conversely a rational

function Z satisfying these conditions will be such that f Zf,dz is a function V.

Thus the number of existent functions V which are linearly independent 1s at
least

K
No+2n+2p—-2—-2n+ M) —p+1, =p—1+ 2 (\+1),
i=1
provided this be positive. We are therefore sure, when this is the case, that
functions V do exist. To find the exact number, let V, be one such; then

if V be any other, dV/dV, is a rational function with poles in the
2p — 2+ 3 (M + 1) zeros of dV,; and conversely if B be a rational function

whose poles are the zeros of d¥,, the integral f RdV, is a function V. Thust
the number of functions V, when any exust, is (§ 37, Chap. IIL)
w =p—1+ZA+1)+0o+1,

* These numbers may be modified by the existence of a branch place at infinity. But their
difference remains the same.

1 For the ordinary case of rational functions ¢+1, as here defined, is equal to unity, and,
therefore, omitting the term = (A +1), we have w=p.
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where o + 1 is the number of linearly independent differentials dv, of ordinary
integrals of the first kind, which vanish in the 2p — 2+ 3 (A + 1) zeros of the
differential dV, of any such function V,. Since dV/dV, is a rational
function, the number of differentials dv vanishing in the zeros of dV is the
same as the number vanishing in the zeros of dV. Since dv has 2p — 2 zeros,
o +1 vanishes when 3(A +1) > 0.

Ez. For the hyperelliptic surface
yP=(x—a)(@=b) (% 1)y,

the factorial integrals, V, having the same factors at the period loops as the root function
~(@ = a) (x—b), and no other factors, are given by

d
JVE=a@=h e, 2
and w=p—1. Here £=0; there are no places bl, ceesy e

257. The number o +1 is of great importance; when it is greater
than zero, which requires ¥ (A + 1) to be negative or zero, there are o + 1
Jactorial functions of the associated system which are nowhere infinite.

For if V be an everywhere finite factorial integral of the primary system,
and dv,, ..., dv.y, represent the linearly independent differentials of integrals
of the first kind which vanish in the zeros of dV, the functions

dv, dv, iy

av’ = dv >’
whose behaviour at a place ¢; is like that of 'tT}{ﬁ) ¢:, where @; is uniform,

finite and not zero in the neighbourhood of ¢;, namely of ¢=*/¢;, are clearly
factorial functions of the associated system, without poles. Conversely if K’
denote an everywhere-finite factorial function of the associated system, the

integral f K'dV is the integral of a rational function, and does not anywhere

become infinite. Denoting it by v, dv vanishes at the 2p -2+ X (A +1)
k

zeros of dV as well as at the 0 + 3 A/, = —3 (A + 1), zeros of K’ (cf. the
i=1

condition (i), § 254). Thus, to every factorial integral ¥ we obtain o+ 1
functions K’; and since, when o +1 >0, the quotient of two differentials
dV, dV, can* be expressed by the quotient of two differentials dv, dv,, we
cannot thus obtain more than o + 1 functions K’; while, conversely, to every
function K’ we obtain a differential dv which vanishes in the zeros of any
assigned function V'; and, as before, we cannot obtain any others by taking,
instead of V, another factorial integral V.

* Cf. Chap. VL § 98.
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258. The existence of these everywhere finite factorial functions, K, of
the associated system can also be investigated d priors from the fundamental
equations (i) and (ii) (§ 254). These give, in this case,

m vy M L3 Chy M
N AGE T I (WIS DIV (R SRR S : A S
r=1
=i, p (hp + Hp), (iii)
k
and N=—3 (M+1),
r=1

where Gy, ..., Gy, H,, ..., H, are integers.

Hence no functions K’ exist unless (M + 1) be a negative integer or be
zero; we consider these possibilities separately.

When 2 (M +1)=0, it is necessary, for the existence of such functions,
that the fundamental constants satisfy the conditions

k
zl(x,+1)v§"’”+g,-+hm,l+ ...... +hyTip=0, (1=1,2, ..., p);
-

conversely, when these conditions are fulfilled, taking suitable integers
H,, ..., Hy, it is clear that the function

Eo:Aeél(h,-+1)l'l:’_,am+21ri(hl+Hl)vl’“+ ...... +21ri(hp+Hp)v:’a,
wherein 4 is an arbitrary constant, and @, m are arbitrary places, is an
everywhere finite factorial function of the associated system, and it can be
immediately seen that every such function is a constant multiple of E,. If
then we denote the number of functions K’ by Z+1 (to be immediately
identified with o +1), we have, in this case, 2+ 1=1; and there are p

functions V, given by V= f E, ! dv, where dv is in turn the differential of

every one of the linearly independent integrals of the first kind ; it is easy to
see that every function ¥ can be thus expressed. Thus, in the zeros of a
differential dV there vanishes one differential dv, so that ¢+ 1=1. Hence
o +1=3+41, and the formula w =p—1+ 2 (A + 1) + o + 1 is verified.

When 3 (A +1) is negative and numerically greater than zero, and the
equations (iii) have any solutions, let ¢ denote the number of linearly in-
dependent differentials dv which vanish in the places of one and therefore of
every set, B, ..., 3,, which satisfies these equations; then* the number of
sets which satisfy these equations is oo *#+, where s=— % (A +1); thus the
quotient of two functions K’ is a rational function with 2+1, =s—p +t+1
arbitrary constants, one of these being additive. This is then the number of
linearly independent functions K'. If K’ be one of these functions, and

. * Cf. § 158, Chap. VIIL.; § 95, Chap. VL
B. 26
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dv,, ..., dv, denote the differentials vanishing in the zeros of K’, it is clear
that the functions
'd’Ul dvt

are finite factorial integrals of the primary system, that is, are functions V;
conversely if V be any finite factorial integral of the primary system, fK dv

is an integral, v, of the first kind such that dv vanishes in the zeros of K'.
Hence the number ¢, which expresses the number of differentials dv which
vanish in the zeros of K, is equal to the number, =, of functions V. But we
have proved that w =p — 1+ 3 (A +1)+0o+1, and, above, that t=p -1—s+3+1.
Hence o +1=3+1.

Thus we have the results*: The number, o +1, of everywhere finite
Jactorial functions, K', of the associated system is equal to the number of
differentials dv which vanish in the 2p — 2 + 3 (A + 1) zeros of any differential
dV; hence (§ 21, Chap. IL) o +1 is less than p, unless T(A+1)=—(2p—2).

Also, when o +1 > 0, the number, =, of everywhere finite factorial integrals,
V, of the primary system, ts equal to the number of differentials dv which
vanish in the s, =— 32 (A + 1), zeros of any function K'. The argument by
which this last result is obtained does not hold whent o +1=0. When
a+1>0, it follows that = is not greater than p.

Similarly when ¢/, =—3 (A +1), =3\, =—s—Fk, is > 0 we can prove, by
considering the primary system, that there are o'+ 1 everywhere finite
factorial functions K of the primary system, where o’ + 1 is the number of
differentials dv vanishing in the 2p —2 — 3\, =2p—2+s+ k. zeros of any
differential dV'; and that, when o'+ 1 >0, the number =’, of everywhere
finite factorial integrals, V', of the associated system is equal to the number
of differentials dv vanishing in the s zeros of any function XK. Hence
o'+ 1=0 when s > 0, and, then, no functions K exist. When s=0 we have
seen that there may or may not be functions K’; but there cannot be func-
tions K unless k= 0, since otherwise 2p —2+s+%k>2p — 2. And then the
existence of functions K depends on the condition whether the fundamental
coustants be such that

1 - omilla+ HY ol "o+ (ot Hy) 0 %)
£, ’

is a function of the primary system or not, H,, ..., H, being suitable integers,
namely whether there exist relations of the form

9i+Gi+(+H)m 1+ ...l + (hp+ Hp) 75, ,=0, (t=12,...,p),

* Which hold for the ordinary case of rational functions, ¢+ 1 being then unity.

+ In the case of the factorial functions which are square roots of rational functions of which
all the poles and zeros are of the second order, so that the places ¢;, ..., cx are not present, and
the numbers g, h are half integers, we have w=p-1, o +1=0.
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where G, ..., Gp are integers. In such case £, is a finite factorial function
of the associated system.

On the whole then the theory breaks up into four cases (i) o +1=0,
o +1=0, (ii)) 6 +1>0,0'+1=0, (ili)) s +1=0,0"+1>0, (iv) e+ 1 =1,
a’+1=1. Of these the cases (ii) and (iii) are reciprocal.

259. One remark remains to be made in this connection. ~When

5+ 1> 0 there are everywhere finite functions, K, of the associated system,
given (§ 257) by

av’ dv’ AV’
these have, at any one of the places ¢, ..., ¢k, a behaviour represented by

that of £*¢; hence the differential coefficients of these functions satisfy all
the conditions whereby the differential coefficients, dV"'/dz, of the everywhere
finite factorial integrals of the associated system, are defined. Therefore* the
functions K’ are expressible linearly in terms of the functions V', ..., Vg
by equations of the form

dv;
—av’
where the coefficients, A;, ;, A, are constants.

K/, = =N, Vi + ... +2, @V + A, (=12, ...,(¢+1)),

Hence also the difference @’ — (o + 1) is not negative. This is also
obvious otherwise. For when o +1>0,—3% (A +1), =s, is zero or positive,
and o +1 3 p (§ 258), and, therefore, @' —o,=p—(c+1)+o +1+k+s,
can only be as small as zero when k=0=s, and ¢+ 1=p; these are in-
compatible.

Similarly, when ¢’ +1 >0, the everywhere finite factorial functions of the
original system are linear functions of the factorial integrals V, ..., V.

It follows¥+ therefore that of the = periods of the functions Vi, ..., Vg,
at any definite period loop, only = — (¢’ + 1) can be regarded as linearly
independent; in fact, ¢’ + 1 of the functions V;, ..., V5 may be replaced
by linear functions of the remaining w — (¢’ +1), and of the functions
K, ..., Koy

260. A factorial integral is such that its values at the two sides of a period loop of
the first kind are connected by an equation of the form % =p;u + Q;, its values at the two
sides of a period loop of the second kind are connected by an equation of the form
' =p';u+Q';, and its values at the two sides of a loop (y;) are connected by an equation
of the form w'=y;u+T;, where] I;=4;(1—y;). Of the 2p+# periods @;, Q';, I'; thus

* It is clearly assumed that K’; is not a constant; thus the reasoning does not apply to the
ordinary case of rational functions.

+ In the ordinary case of rational fuuctlons this number = — (¢ + 1) must be replaced by p.
See the preceding note.
" 1 §255. The case where one of A, ..., Ax is zero or an integer is excluded.

26—2
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arising, two at least can be immediately excluded. For it is possible, by subtracting one
of the constants 4, ..., 4; from the factorial integral, to render one of the periods
Ty, ..., Ty zero; and by following the values of the factorial integral, which is single-
valued on the dissected surface, once completely round the sides of the loops, we find, in
virtue of y;y, ... yx=1, that

»
ifl [2:(1—p) =2/ A—p)]=T1+7Te+¥1¥2Ts+ - +y172 000 Ye-1Tke

Thus there are certainly not more than 2p—2+#% linearly independent periods of a
factorial integral.

Suppose now that V is any everywhere finite factorial integral of the original system,
and V; is any one of the corresponding integrals of the associated system. The integral

/ VdV/, taken once completely round the boundary of the surface which is constituted by

the sides of the period loops, is equal to zero. By expressing this fact we obtain an
equation which is linear in the periods of ¥ and linear in the periods of V. By taking ¢
in turn equal to 1, 2, ..., @', we thus obtain @’ linear equations for the periods of V,

wherein the coefficients are the periods of V', ..., V' As remarked above these coeffi-

cients are themselves connected by o +1 linear equations ; so that we thus obtain at most
@'— (o +1) linearly independent linear equations for the periods of V. If these are inde-
pendent of one another and independent of the two reductions mentioned above, it follows
that the 2p+k periods of V are linearly expressible by only

2 —2+k—[a@ —(c+1)]
periods, at most. Now we have
@ =p—14SA+1)+o+1,
@'=p-1-3SA\)+o'+1,
and therefore

T+@'=20-24+k+o+1+0'+1,
'so that

2 —-2+k—[@'—(o+1)]=m—(¢'+1).
Thus @ —(¢’+1) is the number of periods of a function V which appear to be linearly
independent ; and, taking account of the existence of the functions K, ..., Ko'+1, this is
the same as the number of independent linear combinations of the functions Vi, ..., Vg,
which are periodic*. But the conclusions of this article require more careful considera-
tion in particular cases; it is not shewn that the linear equations obtained are always
independent, nor that they are the only equations obtainable.

Ex.i. Obtain the lineo-linear relation connecting the periods of the everywhere finite
factorial integrals V, V', of the primary and associated system, which is obtained by

expressing that the contour integral [ Vd V'’ vanishes.
Ez. ii. In the case of the ordinary Riemann integrals of the first kind, the relation
:él [ -p) -0/ (1-p)]=T1+% Te+yyeTs+ .+ ¥z Ye-1 Tk
is identically satisfied, and further #=0. Thus the reasoning of the text does not hold +.
* We can therefore form linear combinations of the periodic functions ¥, for which the inde-
pendent periods shall be 1, 0, ..., 0; 0, 1, ..., 0; etc., as in the ordinary case.

1 In that case the numbers @’ — (s +1), 2p - 2+, are to be replaced respectively by p and 2p.
See the note + of § 259.
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261. We enquire now how many arbitrary constants enter into the
expression of a factorial function of the primary system which has M
poles of assigned position.

Supposing one such function to exist, denote it by F;; then the ratio F/F,,
of any other such function to ¥, F,, is a rational function with poles at the
zeros of F; conversely if B be any rational function with poles at the zeros
of F,, FyR is a factorial function of the primary system with poles at the
assigned poles of F;,. The function R contains

N-p+1+h+1

arbitrary constants, one of them additive, where IV is the number of zeros of

%
F,, so that N=M+ = A,, and h+1 is the number of differentials dv vanish-

r=1
ing in the zeros of F\.

But in fact the number of differentials dv vanishing in the zeros of F, is
the same as the number of differentials V"’ vanishing in the poles of F,, V*
being any everywhere finite factorial integral of the associated system.

For if dv vanish in the zeros of Fy, the integral f dv/F, is clearly a factorial

integral, V”, of the associated system without infinities, and such that dV”
vanishes in the poles of Fy; conversely if V’ be any factorial integral of the
associated system such that dV” vanishes in the poles of Fj;, the integral

f F,dV’ is an integral of the first kind, », such that dv vanishes in the zeros

of F,.

Thus, the number of arbitrary constants in a factorial function of the
primary system, with M given arbitrary poles, vs

k
M+ 3ZN—p+1+h+1,=N—p+1+h+l, =M—a'+h+1+d +1,
r=1
where N is the number of zeros of the function, and A+ 1 the number of

differentials d V" vanishing in the M poles*.
In particular, putting M =0, h+ 1 ==’ (cf. § 258), we have the formula,
already obtained,
%
d+1l=3N-p+1l+a.
r=1
We can of course also obtain these results by considering the fundamental
equations (1) and (ii), § 254.
262. Hence we can determine the smallest value of M for which a

factorial function of the primary system with M given poles always exists.

* Counting the additive constant in the expression of a rational function, the last formula
holds in the ordinary case.
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When M ="+ 1 it is not possible to determine a function V”, of the

form
V=A,V/+...... + AV o,

wherein 4,, ..., A_s are constants, to vanish in M arbitrary places; and
therefore h+1=0. Thus a factorial function of the primary system with -

=’ + 1 arbitrary poles will contain, in accordance with the formula of the
last Article,

. .
a+1+ 3 N—p+1, =d'+2,
r=1
arbitrary constants.

When ¢’ +1 =0, this number is 1,‘and the factorial function is entirely
determined save for an arbitrary constant multiplier. Hence we infer that
when ¢’ +1 =0 the smallest value of M is =’ + 1.

We consider in the next Article how to form the factorial function in ques-
tion from other functions of the system. Of the existence of such a function
we can be sure d priori by the formulae (i) (ii) of § 254. Such a function
will have N ==’ + 1 4 3\, =p, zeros. They can be determined to satisfy the
equations (ii). Then an expression of the function is given by the general
formula of § 254. o

When ¢'+ 1 >0, there are ¢'+1 everywhere finite factorial functions
K,, ..., K4, of the primary system, and the general factorial function with
=" +1 poles is of the form

F+X1K1+ ...... +K‘,J+1K,.'+l,
where A, ..., A4y are constants, and F is any factorial function with the
assigned poles. In this case also there exist no factorial functions with
arbitrary poles less than =’'+1 in number; the attempt to obtain such
functions leads* always to a linear aggregate of K, ..., Ky,

263. Suppose that ¢'+1=0; we consider the construction of the
factorial function of the primary system with =’ + 1 arbitrary poles.

Firstly let o + 1 >0, so that there are o +1 everywhere finite functions,
K’, of the associated system, and o+ 1 differentials dv vanish in the

K k
2p—2+ 2 (A, +1) zeros of any differential V. Hence s,=— = (A, +1),
r=1 r=1
is greater than zero or equal to zero. We take first the case when s> 0.

k
Then »'=p—1— % A, =p—1+s+k, and it is possible to determine a
r=1

rational function with poles at ='+1=p+s+k arbitrary places. This
function contains s+ k+ 1 arbitrary constants, one of these being additive.
It can therefore be chosen to vanish at the places ¢, ..., ¢, and will then

* For M=®"'—r, we shall have h+ 1=r, and, therefore, M- @' +h+1+¢' +1=0¢"+1.
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contain at least, and in general, s+ 1 arbitrary constants. Taking now any
everywhere finite factorial function K’ of the associated system, let the
rational function be further chosen to vanish in the s zeros of K’; then the
rational function is, in general, entirely determined save for an arbitrary
constant multiplier. Denote the rational function thus obtained by R.
Then R/K’ is a factorial function of the primary system with the =" +1
assigned poles, and is the function we desired to construct. And since the
ratio of two functions K’ is a rational function, it is immaterial what function
K’ is utilised to construct the function required.

This reasoning applies also to the case in which o +1 >0, s=0, unless
also k=0. Consider then the case’'in which ¢ +1>0, s=0 and k=0.
There is (§ 258) only one function K’, of the form

2mi[(h+ Hy) vy “+...... + (hp+H) 024
E0= Ae 1 » 2] %p

>

or c+1=1; and X, is a function of the primary system without poles.
Thus ¢’ + 1 =1, and the case does not fall under that now being considered,
for which ¢’ +1=0. The value of =’ is p, and the factorial function with
=’ + 1 arbitrary poles is of the form (¥ + C) E;, where F + C is the general
rational function with the given poles.

Nextly, let ¢+ 1 =0, as well as ¢’ +1=0. Then there exist no functions
K’ and the previous argument is inapplicable. But, provided =’ + 1 < 2, we
can apply another method, which could equally have been applied when
g+4+1>0. For if P be the factorial function of the primary system with
=’ +1 assigned poles, and V' be one of the =’ factorial integrals of the

’

associated system, and v be any integral of the first kind, P v is a rational

. dv
function whose poles are at the @’ + 1 poles of P and at the 2p — 2 zeros of
dv. Conversely, if B be any rational function with poles at these places

(c£.§37, Ex. ii. Chap. IIL.), and zeros at the 2p — 2 — S\ zeros of dV’, R / 4

dv
is the factorial function required. It contains at least

+1+20—-2—p+1—(2p—2-3r), =1,
arbitrary constant multiplier.

In case =’ +1 < 2, s0 that @ =0, SA =p — 1, there are no functions V’,
and we may fall back upon the fundamental equations of § 254. 1In this case
the least number of poles is 1.

264. Consider now the possibility of forming a factorial integral of the
primary system whose only infinities are poles. We shew that it is possible
to form such an integral with o + 2 arbitrary poles, and with no smaller
number.
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Suppose G to be such a factorial integral, with o + 2 poles, and, under the
hypothesis = > 0, let V be an everywhere finite factorial integral, also of the
primary system. Then dG/dV is a rational function, with poles at the
2p— 2+ 3 (A+1) zeros of dV, and poles at the poles of G'; near a pole
of G, say c, the form of dG/dV is given by

6 DV
a0 - o( +A+Bt+.. >.DCV.[1+tDV+ ]

where ¢ is the infinitesimal for the neighbourhood of the place ¢, the
quantities C, 4, B are constants, and D,V denotes a differentiation in regard
to the infinitesimal ; this is the same as

dG 1 1Dz2V
av = =FK [ i DV + terms which are finite when ¢ = 0:' R

where £ = — C/D,V. Thus d@/dV is infinite at a pole of G like a constant
multiple of

va DV 24
Vv =DJI;"— oy e
a being an arbitrary place.

Conversely if R denote a rational function which is infinite to the first
order at the zeros of dV, and infinite in the o + 2 assigned poles of G like

functions of the form of +, f RdV will be such a factorial integral as desired.
Now R is of the form (§ 20, Chap. II.)

A+ 4T +...... +A4,T7°+ B, [D_,,,r;;“ 2"51‘:{'+ ......
z,
D,V
s @ ZTo+2 z, a
+ By I:Dza-+2r':a-+2 D, +2VP ] ’
wherein a is an arbitrary place, €, ..., e, denote the zeros of dV, o, ..., z,,,

denote the assigned poles of @, and 4, 4,, ..., 4,, B,, ..., B,,, are constants;
the period of R, in this form, at a general period loop of the second kind, is
given by
40 D, v
Qie) + ...... + 4,0;(,) + B, [Dx‘&) (ml)—

zl

.Q (al)] ......

D; ..V
+ Ba+2 [Dxa._,_zﬂi (‘Ta'+2) - D:::: VQt (wo'+2):| ,
where Q,(z), ..., Q,(x) are as in § 18, Chap. II,, and this must vanish for
1=1,2,...,p. Now (§ 258) in the places e, ..., e, there vanish ¢ + 1 linear
functions of Q, (@), ..., Q;, (#). Thus, from the conditions expressing that the
periods of R are zero, we infer o + 1 linear equations involving only the
constants By, ..., B,y,, which, since the places ,, ..., ., are arbitrary, may
be assumed to be independent. From these o + 1 equations we can obtain
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the ratios By:B,:......: B,y,. There remain then, of the p equations
expressing that the periods of R are zero, p— (o + 1) independent equations
containing effectively »+ 1 unknown constants. Thus the number of the
constants 4,, ..., 4,, By, ..., By, left arbitrary is 7+ 1 —p + o + 1, which is
equal to 2p—2+3(A+1)+1—-p+o+1 or =, and the total number of
arbitrary constants in R is = + 1. Thus we infer that, on the whole, G is of
the form*

[G]l+CiVyi+...... +C,V,+C,

where [@] is a special function with the o+ 2 assigned poles, multiplied by
an arbitrary constant, and C,, ..., C, C are arbitrary constants. And this
result shews that o + 2 is the least number of poles that can be assigned for
G. The argument applies to the case when ¢ + 1 =0 provided that = > 0.

The proof just given supposes = >0; but this is not indispensable.
Let f; be a factorial function with the primary system of multipliers but
with a behaviour at the places ¢; like t~**) ¢; where ¢; is uniform, finite

and not zero in the neighbourhood of ¢;. Then if, instead of fRdV, we

consider an integral [ Rfidv, wherein dv is the differential of any Riemann

integral of the first kind, and R is a rational function which vanishes in the
(say M) poles of f,, and may become infinite in the zeros of dv and the
(say ) zeros of f, we shall obtain the same results. It is necessary to
take N > 1 (cf. § 87, Ex. ii. Chap. IIL).

265. Another method, holding whether & = 0 or not, provided o +1 > 0,
may be indicated. Let K’'(x) be one of the everywhere finite factorial func-
tions of the associated system. Consider the function of «,

1 a x, a
v =fK_'(E)“ A2+ ATIZ?,

a, ¢, v being any places and 4 a constant; when « is in the neighbourhood
of the place ¢ it is of the form

[ew| 7w ) 5+ 7] ®

where ¢ is the infinitesimal in the neighbourhood of the place c, and terms
which will lead only to positive powers of ¢ under the integral sign are
omitted ; this is the same as

1 1 DK'(e)]1
—/—f(t-i- 4 - ,()—dt;
K@)\ K'c) |t
* In the ordinary case of rational functions, where V is replaced by a Riemann normal inte-
gral v, the coefficients of B, ..., Be+2, in the expression for the general period of R, vanish for

one value of 7, namely when V'=v;. Thus o+1(=1) pole is sufficient to enable us to construct
the factorial integral; it is the ordinary integral of the second kind.




410 SIMPLIFICATION OF THE INTEGRAL [265

hence if 4 be DK'(c)/K'(c), the function + is infinite at ¢ like — % K—’l(uj
At the place y the function 4 is infinite like _I%yj log t,, where ¢, is
the infinitesimal in the neighbourhood of the place #.

,;5(;;) II; 7, consider the function

1 T, \ a z, a
G (z) =fmd {A,M;;,w,,+ ot Ao M, L+ Bot " + ..+ By }

Putting now M:,: = I‘f’“ +

where a, vy are arbitrary places and 4,,..., 4,42, B, ..., B, are constants,
subject to the conditions

(1) that
A, D M7+ ... + A, D, M7+ B Q)+ ...... + B,Q,()

Ta+2: Y
vanishes at each of the — 3 (A + 1) zeros of K'(2),
(i) that
DK () DK (zy43)
1 Kw + ‘‘‘‘‘‘ + Ao—+2 m

the first condition ensures that G(z) is finite at the zeros of K'(z), the
second condition ensures that G'(z) is finite at the place y. If we suppose*
CHA 'va;a to be those integrals of the first kind whose differentials
vanish at the zeros of K'(z) (§ 258), the conditions (i) will involve only the
constants 4,,..., A,4e, Bw41,..., By, and if these conditions be independent
these o + 2 + (p — =) coefficients will thereby be reduced to

c+2+p—w+EZ(A+1),=2;

thus, if the condition (ii) be independent of the conditions (i), the number
of constants finally remaining is = + 2 — 1 == + 1, and the form of G(x) is

[+ CVid ..+ OV + C

A =0;

as before.

Ex. Prove that, when s, = —3 (A+1), is positive, we have

z,a

I(’(x)[l)x‘ Mz:’y“+ D, M | =D, {If’(x) [1*:”+ ATy ’:l}.
3 1 (]

266. The factorial integral of the primary system with o + 2 arbitrary
poles can be simplified. If a,, ..., #,15 be the poles, its most general form
may be represented by ‘

EG (@, ..., #010) + EsVit ooco. + E_V_ +C,

* This is to simplify the explanation. In general it is w linear combinations of the normal
integrals, whose differentials vanish in the zeros of K'(z). The reduction corresponding to that of
the text is then obtained by taking = linear combinations of the conditions (i).
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where £, E,, ..., E_,, C are arbitrary constants. Near a place ¢,, one of the
singular places of the factorial system, the integral will have a form
represented by A+t ™¢; we may simplify the integral by subtracting
from it the constant A4,; the consequence is that the additive period
belonging to the loop (y,) is zero; further there is one other linear relation
connecting the additive periods of the integral, which is obtainable by
following the value of the integral once round the boundary of the dissected
surface (cf § 260). Thus the number of periods of the integral is at
most 2p — 2+ k. We suppose the additive periods of the functions
G (2. ..., Zgy2), Vi ..., V5, at the loop (v,), to be similarly reduced to zero;
then the constant C is zero. - The linear aggregate BV, + ...... +E_,V,
may be replaced by an aggregate of the non-periodic functions K, ..., K.,
and = — (¢’ +1) of the integrals V,,..., V, so that the integral under
consideration takes the form :

EG (), ..., %)+ O Vi+ ... + Co iy Va-@ay+ PG+ oo+ Foy Koo,

where Cy, ..., Co_(o+1), F1, ..., Fyr4q are constants. We can therefore, pre-
sumably, determine the constants Ci,..., Cx_(s41), S0 that = — (¢’ + 1) of
the additive periods of the integral vanish. The integral will then have
2p -2+ k—(w— o’ —1),== — (¢ +1), periods remaining, together with one
period which is a linear function of them. A particular case* is that of
Riemann’s normal integral of the second kind, for which there are p periods.
As in that case we suppose here that the period loops for which the additive
pertods of the factorial integral shall be reduced to zero are agreed wpon before-
hand. We thus obtain a function

F. Gl(-’lz'l,...,.’l‘a+2)+F1K1+ ...... +F,'+1K¢'+1,

wherein F, F,,..., F,.,, are arbitrary constants, and G, (i, ..., 2,+2) has
additive periods only at =’ — (o + 1) prescribed period loops, beside a period
which is a linear function of these. We may therefore further assign ¢’ + 1
zeros of the integral and choose F' so that the integral is infinite at
like the negative inverse of the infinitesimal. When the integral is so
determined we shall denote it by I' (@, ., ..., #,+2). The assigned zeros are
to be taken once for all, say at a,, ..., @o4:.

267. The factorial function of the primary system with @’ +1 assigned
arbitrary poles can be expressed in terms of the factorial integral of the
primary system with o + 2 assigned poles. Let #,, ..., z4; be the assigned
poles of the factorial function. Then we may choose the constants C, ...,
Ca—q, s0 that the = — (o + 1) linearly independent periods of the aggregate

O T (Zoray @1y oovy Tgpa) +ovvnen + Cagr—e D' (@gr i1, @1y ooy Zona)
are all zeros. The result is a factorial function with z,,..., 54, as poles,

* Of the result. The reasoning must be amended by the substitution of p, 2p for @' - (¢ +1)
and 2p — 2+ k respectively. Cf. the note + of § 260.
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which vanishes in the places @, ..., @ry,. Or, taking arbitrary places
dy, ..., ds4;, we may choose the constants X, ..., K, so that the =" —(c+1)
linearly independent periods of the aggregate

ET (2,0, ..., dos) + BT (@0, dy, oo, Qos) + oo + Baria T (@arsn, Ao, v, dass)

are all zero, and at the same time the aggregate does not become in-
finite at dy, ..., doya. Then the addition, to the result, of an aggregate
FK +..... + Fy Ky, wherein Fy, ..., Fy,, are arbitrary constants, leads
to the most general form of the factorial function with «,, ..., £z, as poles.
For the sake of definiteness we denote by ¥ (z; 2, ¢, ..., t5) the factorial
function with poles of the first order at z, ¢, ..., ¢z, which is chosen so that
it becomes infinite at z like the negative inverse of the infinitesimal, and
vanishes at the places a,, ..., @yy;. A more precise notation would be*
Y (@, 0y eee, Borgn; 2,8, ..., t5). This function contains no arbitrary constants.

Denoting this function now, temporarily, by +r, and any everywhere
finite factorial integral of the inverse system by V7, the value of the integral
fdV’, taken round the boundary of the dissected surface formed by the
sides of the period loops, is equal to the sum of its values round the poles
of Y. Since YdV’[dx is a rational function the value of the integral taken
round the boundary is zero. Near a pole of 4, at which £ is the infinitesimal,
the integral will have the form

f[i:+B+Ot+ ...... J [(DV)+t(D2V) + ...... ]dt,

where D denotes a differentiation. Thus the value obtained by taking the
integral round this pole is 4 (DV’). If then the values of A at the poles
I, ..., Ty be denoted by 4,, ..., 45, we have, remembering that the
value of 4 at z is — 1, the =’ equations

A, DV, +...... + Ay (DVY)y =DVY), ,

A, DV gh+...... + A (DV' ) = (DV ),
where V', ..., V', are the =’ everywhere finite factorial integrals of the
associated system, (DV7'), denotes the differential coefficient of V' at ¢,, and
(DVY), denotes the differential coefficient at 2. Thus, if o,.(z) denote, here,
the linear aggregate of the form

E DV )e+ ...... + E_ (DV' 3,

wherein the constants £, ..., B are chosen so that ,(¢,) =1 and w,(t;) =0
when t, is any one of the places ¢,, ..., t other than ¢,, we bave 4, =, (2).

Hence we infer by the previous article (§ 266) that r(z; 2,4, ..., t5) is
equal to

T(2,dy, .., dops) — 01 (2) T (try Gy ooy Baga) = cevere — w0 (2) T (b, Gty v o),
* Cf. § 122, Chap. VII. ete.



268] BY MEANS OF THE FUNDAMENTAL FACTORIAL INTEGRAL. 413

where d,, ..., d,, are arbitrary places. For these two functions are infinite
at the places 2,4, ..., t; in the same way and both vanish at the places
@, ey Aot

As in the case of the rational functions, the function ¥ (z; 2, t,, ..., t)
may be regarded as fundamental, and developments analogous to those given
on pages 181, 189 of the present volume may be investigated. We limit
ourselves to the expression of any factorial function of the primary system by
means of it. The most general factorial function with poles of the first
order at the places z,, ..., 2y may be expressed in the form

A (z; 2, b, ooy b)) + e +Ayv(x; 2y, b, oo, b))+ BIK + ...

+ By Ko,
where 4,, ..., A,, B,, ..., By, are constants. The condition that the
function represented by this expression may not be infinite at ¢, is

Ao () +...... + A,0,(2,) =0;

in case the =’ equations of this form, for =1, 2, ..., @’, be linearly indepen-
dent, the factorial function contains M+ ¢’ +1— =" arbitrary constants;
but if there be ~+1 linearly independent aggregates of differentials, of the
form

CdVi+...... + CodV'w,
which vanish in the M assigned poles, then the equations of the form
Ao, (2)+ ...... +4,0.(2,)=0

are equivalent to only @’ — (h + 1) equations, and the number of arbitrary
constants in the expression of the factorial function is M+ o'+ 1—="+h +1,
in accordance with § 261.

Ez.i. Prove that a factorial integral of the primary system can be constructed with
logarithmic infinities only in ¢ +2 places, but with no smaller number.
Ez. ii. If the factorial integral G (zy, 2y, ..., Zo44) become infinite of the place z; like
173‘ , Where ¢ is the infinitesimal at z;, prove, by considering the contour integral f GdK,/,
where K, is one of the o+ 1 everywhere finite factorial functions of the associated system,
and G denotes G (z, g, +eey Zo+g), the ¢+ 1 equations
o+2
3 Ri.DKTI (z‘.-)=0,
i=1

D denoting a differentiation. From these equations the ratio of the residues R, R,, ..
Rg 5 can be expressed.

"y

268. The theory of this chapter covers so many cases that any detailed
exhibition of examples of its application would occupy a great space. We
limit ourselves to examining the case p =0, for which explicit expressions can
be given, and, very briefly, two other cases (§§ 268—270).
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Consider the case p =0, k =3, there being three singular places such as
have so far in this chapter been denoted by c,, c,, ..., but which we shall
here denote by a, B, vy, the associated numbers* being A, =— 3/2, A, = — 3/2,
A,=—2. At these places the factorial functions of the associated system
behayve, respectively, like t74¢,, t7¥¢,, 775, and the difference between the
number of zeros and poles of such a function is N'—M' =—3Z A +1)=2.
Thus there exist factorial functions of the associated system with no

poles and two zeros. By the general formula of § 254, replacing II;; by

(x —cfa= c) , the general form of such a function is found to be

z— a—yg

: Ax*+ Bz +C
(@—v)(z-a)(z—B)}
and involves three arbitrary constants, so that ¢ +1=3. In what follows
K’ (x) will be used to denote the special function 1/(z— ) (z — a)t (z — B).
The difference between the number of zeros and poles of factorial functions
of the primary system is N — M =—5; hence M =0 is not possible, and
o’+1=0. Further

w,=p—14+3A+1)+o+1, =—1-2+3=0,

_

K' (2)=

o, =p—1-3A+d+1 ,=—1+5 =4,
and the factorial function of the primary system with fewest poles has
@'+ 1 =15 poles, as also follows from the formula N — M =—5. This function
is clearly given by
P(z)= (z—a} (z—B) (z— o)

(z—2) (2 — ) (& — 25) (x — @) (@ — @)
Putting

V(@) =(z—a)(@—-B)(z—y), f(#)=(2- ) (z —2) (¢ — 2,) (# — @) (z — 7),
¢ (@) = DE' (@)K’ () == [(z =)'+ §(z— ) + § (2 - B)7'],
and putting A; =+ (2;)/f (#;), where ¢ is in turn equal to 1, 2, 3, 4, 5 and
S’ (z) denotes the differential coefficient of f(2), it is immediately clear that
P (z) is infinite at z, like A, /(¢ —x,) K’ (2,) It can be verified that

5 5 5
§7\1=0; §w1X1=1: Z‘Z'17\'1¢(x1)=0: 2&‘127\4(#(2‘1):—2, 27\1‘#(-’1’1):0»
1 1 1 1 1

and these give
5 5
SMA+2¢ ()] =0, 2N [22 + 22 (21)] =0.
1 1

The factorial integral G, of the primary system, with o+ 2=4 poles,
T, € 1, ¢ is (§ 265) given by

G(r, &, §)=f1%(@d{%f11 [wiﬁ“”(?) Wﬁﬂ]&’

xr—c

* It was for convenience of exposition that, in the general theory, the case in which any of the
numbers \;, ..., A are integers, was excluded.
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where the sign of summation refers to 7, £, #, £ and the constants 4,, 4,,
4,, A, are to be chosen so that (i) the expression

A, (1) + A2 (§) + Ao (n) + 4 (D)

is zero, this being necessary in order that G (v, & 7, {) may not become
infinite at the place ¢, and (ii) the expression

_A[ )Z+¢()( T—x—i—c)}

vanishes to the fourth order when z is infinite; the expression always
vanishes to the second order when « is infinite ; the additional conditions are
required because K'(z) is zero to the second order when z is infinite.

Taking account of condition (i), we find, by expanding in powers of é, that
the condition (ii) is equivalent to the two

4 4

24, 1+7d(1)]=0, ZA,[2r+ ¢ (7)]=0.

1 1

Thus, ‘introducing the values of 4,, ..., 4, into the expression for
G (7, € 1, £), we find, by proper choice of a multiplicative constant,

E@Detnd=| —+22 @ @, © |

( —TP z-T

l -1 A

1+7¢(r), ., .,
27+ (r), ., .,

in which the second, third and fourth columns differ from the first only in
the substitution, respectively, of £, 5, ¢ in place of .

The factorial integral G(r, & 7, {) thus determined can in fact be
expressed without an integral sign. For we immediately verify that

fdx(w V)V (x —a) (@ — B, ’8)[(:317)2+¢(T)J

is equal, save for an additive constant, to
Ve @B | LTt g+ b o=y —F @+ ) ()]
+[ortrp@-trri@e B A+ @ iy @ d -3 (55 4]
x log {x - “i'is+ x/(m}
[a-ns@+1+ie-n( 1+ 1]
B9 e a9 C=B)

Voot

2
\/('r—-a)(-r—,d)

x log
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and, by the definition of ¢ («), the coefficient of the logarithm in the last line
of this expression is zero; if we substitute these values in the expression
found for G (7, &, n, §) we obviously have

G(r, & n )=V(@—a) (@—B) Y=, (&), (), (§) |+ constant,...(2),

T —T
é(), -, -,
1+7p(), ., .,
21+ (1), .,
where the second, third and fourth columns of the determinant differ from
the first only in the substitution, in place of T, respectively of £ 9, & We

proceed now to prove that this determinant is a certain constant multiple of
(z—a)(z— B)(z—p)/(z—7)(z— &) (z — 1) (z— ), where u is determined by

1 1 1 1 1 37 1 1
= e + =3 ( + .
y—u y—T7 y—& y—n v—§ 2\y—a y—B/
If we introduce constants, 4, B, €, 4’, B, (, depending only on a, 8, v,
defined by the identities

Cx? +Bx + A=

2
a—p

9 / ’r_ 4 G+B
Cxt+ Bzx+ A —m(m—y)<m— 2 >,

(@=B)(z—9)

we can immediately verify that

4¢ (@) + B[1 +a¢ ()] + C [2¢ + 2% (2)] = — — 7

z—a’

A'¢ @)+ B [1 +a¢ ()] + C' [22 + 2° ()] = — (?_‘Zﬁ—"_ﬁ),
and hence that
A+ @=2) A1¢ @)+ [B + (=0 BI[1+7¢ (7)]

+[C+ (z—a) C'][27 + 3¢ (7)]

~@-2) @B =L

thus
G¢rEnt)=@- @B} L F s O (), O]+ constan,
2 N (3)
1+7¢p(r), ., ., .

2r + 7% (1), ., .,
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now it is clear from the equation (2) that G (t, £ 7, {)/V(z— a) (z—B) is of
the form (2, 1),/(z — 1) (z — £) (x — n) (# — §), where («, 1), denotes an integral
cubic polynomial; and since 1/K’(z) vanishes when z =1, it follows from
the equation (1) that the differential coefficient of G (7, €, 9, ) vanishes
when # =+«. Hence we have

_;_ (@-af@=B) @—p)
G(r, &, §)—L(w_.,)(w—§)(w—n)(w—§)+M

where u is such that the differential coefficient of this expression vanishes
when z =1, and has therefore the value already specified, L is a constant
whose value can be obtained from the equation (3) by calculation, and M
is a constant which we have not assigned. In the neighbourhood of the
place a, G (, £, 7, §) has the form M + L(z—a)} A+ p (@ — )+ v (z — a)* +...],
and similarly in the neighbourhood of the place 8. In the neighbourhood
of the place v, G (7, &, 9, {) has the form

N+@—glN+u (z—g)+v(@—gl+...... 1,

where N is a constant, generally different from M.

In the general case of a factorial integral for p=0, £=3, the behaviour of the integral
at a, B, y is that of three expressions of the form
A+(@-a)  [P+Q(z-a)+...], B+@-p)*[P+@ (x-B)+..],
O+(@—y) ' [P'+Q (z—p+...],
provided no one of A+1, /.L+I,\v+1 be a positive integer; herein one of the constants

4, B, C may be taken arbitrarily and the others are thereby determined. The factorial
integral becomes a factorial function only in the case when all of 4, B, C are zero.

We have seen that the factorial function of the primary system with
fewest poles has 5 poles; let them be at =, 7, &, 9, {; then, taking G (7, £, 7, §)
in the form just found, the factorial function can be expressed in the form

P(&U) = CG (T’ E’ m, g) -+ OIG (Tl) E) n, é’) + D}
when the constants C, C;, D are suitably chosen.

For clearly D can be chosen so that the function P (z) divides identically
by (#z—a)f (@ — B)". It is then only necessary to choose the ratio C':C,,
if possible, so that the function P (z) divides identically by (z —v)%. This
requires only that

T—p T (E—v)
Ox—'r+O‘w—1',—p(w—7)(w—-rl)’

where p is a constant, or that the expression

Cx—p)(z—7)+0(z—7)(z—wm)
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divide by (z — )% Thus C: Ci=—(y —1)(y — ) : (y — p) (y — 71), and

2y—p—m 2Zy—m—T

(y-wy-m) (y—mw)y—7)’

or
1 1 1 1

Y=g Y=T Y= y—T

this condition is satisfied ; both these expressions are by definition equal to

y-& y-n v-¢ "\y—a y-=B8/
From the theoretical point of view it is however better to proceed as

follows—Let the poles of P (z) be at @, ..., ;. Then P (x) can be expressed
in the form

P(w)__- OIG (.%'1, E’ "]) C) + C2G (w:b E’ 77; g) + . + CﬁG ("rs» f} "7’ C) + C’

the constants C, C,, C,, ..., C; being suitably chosen. This equation requires,
by equation (1),

K@op-30.] 2+ 28 a0
+ 0, E, F, G
20,6 (@), $(8), $ (), ()
%o, [ +z@)], 1+E6(E), Ll+np@), 1+

%ormxrmﬁqb @)], 2U+ESE), 29+ 7). 26+

wherein A (€, 7, ) is the minor, in the determinant occurring in equation (1),
of the first element of the first row, and E=(z— £+ (§)(z— &),
F=(@z—n)7+¢(n)@—n)" F=@@—-0"2+¢()(z—*. If now we take
C,, ..., Csso that

30, (@) =0, 50 [1+2,6(2)]=0, 3C,[22, + 27 (@)] =0,
1 1

this leads to

A (-7/'1: Za, Ts)
A, 0)

and the solution can be completed as before.

DP = 04DG (‘Z‘l, w2, '7’13) .’l/‘.‘) + 05DG (xl; w?) ws; %‘5),

There are =’ =4 everywhere finite factorial integrals of the associated

system ; if V"’ be one of these, then by definition, % is a factorial function



269] BY A CASE IN WHICH THE DEFICIENCY IS ZERO. 419

which has at a the form (z— a)#¢, and similarly at B, and has at  the
form (z —v)2¢. Further dV’/dz is zero to the second order at z==

Hence we have
V= f (2, 1);dz
(z- )t (@—B)t (w— )’
and dV” has 2p — 2 — A =—2 + 5 = 3 zeros.

Thus V' can be written in the form

Rf dz L2+ Mz+ N
@—F @R @—y) (@) (@—af (@—BR’
=NK'(z)+ MK, (z) + LK, (z) + RV,

where N, M, L, R are constants, K’ (z), K, (), K, («) are particular, linearly
independent, everywhere finite factorial functions of the associated system,
and V,' is a particular everywhere finite factorial integral of the associated
system.

Ex. i In case of a factorial system given by p=0, k=2, \;,= —3, \,= — %, prove that
o+1=2, 0'+1=0, @=0, @’'=2; prove that the factorial function of the prmlary system
with' fewest poles is P (z)=(z— a)é (x—B)g/(x—xl) (z—2,) (x —3) ; obtain the form of the
factorial integral of the second kind of the primary system with fewest poles, and prove
that it can be expressed in the form 4P (z)+ B; and shew that the everywhere finite fac-
torial integrals of the associated system are expressible in the form (Az+B)N(z=a) (z—B),
their initial form being

Ve (Adz+B) dz
(-a)t (@-B)F
Ex. ii. When we take p=0 and %, =2r+2, places ¢, ..., Cyyo, and each A= —14,

prove that the original and the associated systems coincide, that ¢+ 1=0"+1=0, w=w'=n,
that the everywhere finite factorial integrals, and the integral with one pole are respec-

tively
(#, 1)n'_1d . f[ f(a f (a) dz
i@ r—ar "= 7y
where f(z)=(@—¢;) ..uuue (£—Cns9)- The factorial function with fewest poles is

NF(@)/(@, 1), ., express this in the form

@ Dn—

Vi@ _ fl@) L\ F (@)
—2=1 dx 4constant
(=, 1)n+1 1= f':('v az)z _at] s/f(x) ~/f(x) ’
@y, ..., ay4q being the zeros of (2, 1), ,, and determine the 2141 coefficients on the right-

hand side.

269. One of the simplest applications of the theory of this chapter is to
the case of the root functions already considered in the last chapter; such a
function can be expressed in the form e¥, where

. p il
Y=Tg"% +..... + Mg Yo — 2 % (h + Hy)yv3?,
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where B, ..., By are the zeros, &, ..., ay the poles, k; is a rational numerical
fraction, H; is an integer, and v is an arbitrary place. The singular places,
¢, ..., ¢ are entirely absent. The zeros and poles satisfy the equations
expressed by

F e +P =g+ G+ 7(h+H),

where G4, ..., G, are integers; and since, if m be the least common denomi-
nator of the 2p numbers g, h, the mth power of the function is a rational
function, there is no function of the system which is everywhere finite,
and the same is true of the associated system. Hence o +1=0=0¢"+1,
w=n"=p—1; thus the function of the system with fewest poles has
p poles, and every function of the system can be expressed as a linear
aggregate of such functions (§ 267. Cf. § 245, Chap. XIIL).

Ex.i. Prove that when the numbers g, 4 are any half-integers, the everywhere finite
integrals of the system are expressible in the form
dv P-1 RN
ry ? A Ve,
where » is an arbitrary integral of the first kind, ¢ is the corresponding ¢-polynomial,
and &®;, ¥; are ¢-polynomials with p—1 zeros each of the second order (cf. § 245,

Chap. XIIL). It is in fact possible to represent any half-integer characteristic as the
sum of two odd half-integer characteristics in 27-2(2r-1-1) ways.

V=

Ez.ii. In the hyperelliptic case, when the numbers g, % are any half-integers, prove
that the function of the system with @’+1=p poles is given by

Jﬁ{

» .
TENS Enes e g
where the places (2, ¥,), ... are the poles in question,
V@)=@-2)...(@~z), ¥ (2)=d¥ (2)/dz, u=(z—a) (z-D),
and a, b are two suitably chosen branch places*, and u;=(z;—a) (2;—b). Shew that in
o (u—v+w) JR—,
o (u—v)

the elliptic case this leads to the function

270. In the case in which the factors at the period loops are any
constants, the places ¢,, ..., ¢y being still absent, it remains true that the
number of zeros of any function of the system is equal to the number of
poles; but here there may be an everywhere finite function of the system,
and there will be such a function provided

Gi+ T it +7i,p hp=—[Gi+ 7, Hit.o.cood 1,5 Hp), =1,2, ..., p)
in which Gy, ..., H), are integers, the function being, in that case, expressed by
.2 Z, ¥y
E=e‘2”21:(hi+Hi)”i ;
* For the association of the proper pair of branch places a, b with the given values of the

numbers g, h, compare Chap. XI. § 208, Chap. XIII. § 245, and the remark at the conclusion of
Ex. i
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then E-! is an everywhere finite function of the associated system, and
c+1l=0d+1=1,w=w"=p. It is not necessary to consider this case, for
it is clear that every function of the system is of the form ZR, R being a
rational function.

When ¢ +1=0¢"+1=0 we have w=p —1=%". Then every function
of the system can be expressed linearly by means of functions of the system
having p poles. If z,, ..., z, be the poles of such a function and z, ..., 2, the
zeros, and the relations connecting these be given by

T SR +vo=g+G+7(h+H).

There is beside the expression originally given, a very convenient way of
expressing such a function, whose correctness is immediately verifiable,

namel
y O(u—g—G—th—7H) 2w ek
0 (v)

wherein
U= =T — — %™
and m, m,, ..., m, are related as in § 179, Chap. X. Omitting a constant
factor this is the same as
C) (’LL —9— Th) —omihu .
_—@_(’LL)‘ (4 ,—¢(u), say ;
since the difference between the values of the logarithm of ¢ (u) at the two
sides of any period loop is independent of u, and of =, it follows that

da log ¢ (v) is a rational function of z, and that 8 log<;b(u) is a periodic

function with 2p sets of simultaneous periods; thus the function ¢ (u)
satisfies linear equations of the form

Ty _ Yy _ =

aza—RZ/, m—szy; (7';]—1: 2: ---’P),
where R, R; are rational functions of &, and 2p-ply periodic functions of
given* by

R= g log$(w+ | 2 log g )]
R;= al-g%—] log ¢ (v) + [8%, log ¢ (u)} [E%, log ¢ (u)] .

Ex. The 2p constants a, A can be chosen so that
9 (ut
b ()= o
satisfies the equations ¢ (v +20)=A e (u), ¢ (v +20')=A4'¢p (1), where 4, A’ each represents
p given constants, and the notation is as in § 189, Chap. X.

* Cf. Halphen, Fonct. Ellipt., Prem. Part. (Paris 1886), p. 235, and Forsyth, Theory of Func-
tions, pp. 275, 285, for the case p=1. By further development of the results given in Chap. XI.
of this volume, and in the present chapter, it is clearly possible to formulate the corresponding
analytical results for greater values of p.
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271. We have seen (§ 261) that the number of arbitrary constants
entering into the expression of a factorial function of the primary system
with given poles is N—p+1+h+1, =R say, where N is the number of
zeros of the function, and 2+ 1 is the number of linearly independent
differentials, dv, of integrals of the first kind, which vanish in the zeros
of the function. When h+ 1 vanishes the assigning of the poles of the
function, and of R —1 of the zeros determines the other N — R +1, =p,
zeros; in any case the assigning of ‘the poles and of R—1 of the zeros
determines the other N — R+ 1, =p — (h+1), of the zeros. Denote the
poles by ay, ..., ay and the assigned zeros by 3,, ..., Bz—,; then the remaining
zeros By, ..., By are determined by the congruences

k
B, a Br-1 @ a, a Cprs & cr, @
v;  t...Fy; =V ... -3 AY; —(gi+h1n,1+...+hp7'i,p)
r=1
By @ By, @
= - ’Uin 4+ .eeeen +’Ui‘ ),

o being an arbitrary place. Now, let the form of the factorial function when
the poles are given be

C F (%) + ...... + CpFp (),

where C), ..., Cy are arbitrary constants, and F,(z), ..., Fr(«) are linearly
independent ; then, when the zeros 8, ..., B8, are assigned, the function is a
constant multiple of the definite function

A(a;)=1 Fi(z), ... , Fp(x) -

FB), oo Fa(B)

F,(Br), «.e... » Fr(Br—1)

the zeros of this function, other than B, ..., By, are perfectly definite, and
are determined by the congruences put down. Let H denote the quantities
given by

k
H;= rilhrvir'a+gi+hln,1 +oarenen + hpTi,p;
take any places vy, ..., yr41, of assigned position, and take a place m and p

dependent places my, ..., m, defined as in § 179, Chap. X,, and consider the
function of &
OO "=y — L. —o M ey e R
—pT Mt —v"r® — H);
if the function does not vanish identically, its zeros, ,, ..., @,, are (§ 179,
Chap. X.) given by the congruences denoted by
—pr ™ — VrH M + vﬁn L + Uﬂn_l. @ __ B

My e, d YT - SR T .
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or, what is the same thing, by

now, from what has been said, it follows, comparing these congruences with
those connecting the poles and zeros of A (), that if #, ..., 234, be taken at
Y1, --+s Va1, these congruences determine pys, ..., 2, uniquely as the places
Bg, ..., By. Thus the zeros of the theta function are the places «,, ..., Y

together with the zeros, other than 8,, ..., B, of the function A ().

We suppose now M to be as great as p—1,=r+p—1, say; as in § 184,
p. 269, we take ny, ..., n,, to be the zeros of a ¢-polynomial of which all the
zeros are of the second order, so that
—_ rvnp—l, mp—-1

My M g, My

isan odd half-period, equal to €,  say; and we take the poles a,,,...,a, at
Ny, ..., . Further*®, in this article, we denote

O vz 410, o) e by A (z, 2),
so that (§ 175, Chap. X.) A (=, 2) is also equal to e 3™ 6+ @ (v 2; Ls, Ls).
The function N (z, ) must not be confounded with the function A (&, u) of § 238.

Then in fact, denoting the arguments of the theta function by V, we
have the following important formula,

r h+1 k
A (2) I N(w, @) IT A (2, ) II [N (2, ¢)) ¥
eV @ (V) =4 Jj=1 i=1 j=1

R-1
H A (JL‘, B])
J=1

where 4 is a quantity independent of x. In order to prove this it is
sufficient to shew (i) that the right-hand side represents a single-valued
function of z on the Riemann surface dissected by the 2p period loops,
(ii) that the right-hand side has no poles and has only the zeros of ® (V),
and (iii) that the two sides of the equation have the same factor for every onc
of the 2p period loops.

Now the function A (#, z) has no poles; its zeros are the place z, and the
places n,, ..., n,. The places n,, ..., n,_, occur on the right hand

(a) as poles, each once in A (z), each (R —1) times in the product
RB-1
:_H A (.’l?, 'BJ) 5
=t ” k41
(B) as zeros, each r times in II A (=, a;), b + 1 times in II X (2, v;), and
j=1 j=1

* For the introduction of the function A (z, 2) see, beside the references given in chapter XIII.
(8 250), also Clebsch u. Gordan, 4bel. Functnen. pp. 251—256, and Riemann, Math. Werke (1876),
p. 134.
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E A; times in H [7\ (#, ¢))]¥; thus these places occur as zeros, on the right
j=1 J=

hand,
M-—(p-1)+h+1+37—R, =N—p+1+h+1-R,

times, that is, not at all.

Thus the expression on the right hand may be interpreted as a single-
valued function on the Riemann surface dissected by the 2p period loops—
for we have seen that the places n, ..., n,, do not really occur, and the
multiplicity, at ¢;, in the value of such a factor as [A(x, ¢;)]¥ is cancelled by
the assigned character of the factorial functions F(#) occurring in A (z).
Nextly, the zeros of the denominator of the right-hand side, other than at

Ny, ..., Np_y, are zeros of A (w), and the poles of A (), other than n,, ..., n,,
are zeros of the product H x(a: a;), so that the right-hand side remains

finite. The only remalmng zeros of the right-hand side consist of #, ..., ya4:
and the zeros of A (z) beside 8,, ..., Bz_,; and we have proved that these are
the zeros of ® (V). It remains then finally to examine the factors of the
two sides of the equation at the period loops. The factors of the left-hand

side at the ¢-th period loops respectively of the first and second kind are
(see § 175, Chap. X.)

o 2mi(=4s) g 2w ”’z;l(h#-ism) i~ 3w (Vi o),
the factor of the right-hand side at the ¢-th period loop of the first kind is
e¥, where

k
= — 2mih; + raisi + (h+ 1) wis + wis’ 2 X — (R —1) mesy’;
j=1

k
now R=N—p+1+h+1=r+2ZN+h+1; thus ¥ =—27ik; + wis/, and
i=1

¢V = ¢~ or the factors of the two sides of the equation to be proved, at
the ¢-th period loop of the first kind, are the same. Since the factor of
A (#, 2) at the 2-th period loop of the second kind is e* where

=—2mi [0+ ks AT b e+ ST p H 3T A TS T e 8T ),
=—2mi(v; "+ §si+ 47,0
it follows that the factor of the right-hand side at the ¢-th period loop of the

second kind 1s ex where

R-1
X = 2mig; — 2m [ $psy Ty Ex,v”f’°f— b3 vf’“’]
j=1

Jj= j=1

h
—’n"i[r+h+1+ ZXj—R+1](Tz’,i+3i),
i=1

» h+1 k R-1
= 27rig; — mi (8; + 75, ) — 20 [ Sop4 S e Sl - 3 af p":' ;

J=1 j=1 j=1 Jj=1
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now we have

z, m M , m, B, a Br_1,a @, My, s a, m
Vi=vy "= — = g gy e =
k
a, a.,a N, @ Np-1, @ cj, @
—’l)il —"...—'Uir —V; — ... =Y —.lejv,- ‘—gi_hl'ri,l—-'-—hp'ri,px
J:
and
i+ 8Tt ST p) =V — g — | — gl o1
thus
’ z, @ a, ¥ a, Y41 f1, @ Br 1, @
Vi— 3Gt/ Tirt e +8Tp) =0 +v 4 .40 "4y 440"
%
a, @ o, O < Cjy .
—V; .. =Y - 2:)\:,‘?),; ——gi—hl'ri,l—...—hpn'p,
j=1
further
%
z,a z, @ z, a Z, T, 0
0=—v"+(h+1)v," —(R=-Dv; "+rv; + ZNv; 5
j=1
hence
h+1 = r
z, Y. z, B, z, a.
Vi3 @i+ s/mia+ . 4+ sTi)= 20" "= 2o T+ o
i=1 i=1 i=1
3
Z, C,
+ .Elkjvi T gi— Iy — =y,
i=
or

P r a. h+1 . k e R-1 .
S (ha—38)Tu i+ Vis—gitgsi+ Sor 9+ S04+ 3 a5 S o f,

w=1 j=1 j=1 j=1 i=1

and thence the identity of the factors taken by the two sides of the equation
to be proved, at the ¢-th period loop of the second kind, is manifest.

And before passing on it is necessary to point out that if the functions
A (z, 2) be everywhere replaced by )'(L‘I”z) ,and A (z) be replaced by A (z),

v being any quantity whatever, the value of the right-hand side of the
equation is unaltered. For there are R factors A (#, z) occurring in the
numerator of the right-hand side of the equation beside A (z), and R—1
factors A (#, 2) occurring in the denominator of the right-hand side of the
equation. In particular 4» may be a function of .

272. We can now state the following result: Let @, @, ..., a, be any

assigned places; let n,, ny, ..., n,, be the zeros of a ¢-polynomial, or of
a differential, dv, of the first kind, of which all the zeros are of the second
order, and

Mp, M

Ny, M
'vl N —

Np-1, Mp-1
— —;

=%(8i+8i,1'1',1+ . +Spl1’i,p), (@'= 1, 2, ...,})),

m, m,, ..., my being such places as in § 179, Chap. X.; let A+ 1 be the
number of linearly independent differentials, dv, which vanish in the zeros of
a factorial function of the primary system having a,, ..., @, ny, ..., 0, as
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poles, or the number of differentials dV’, of everywhere finite factorial
integrals of the associated system, which vanish in the places n,, ..., 7y,

%
ooy &3 let gy, ..., ya be any assigned places; denote »+ ZNj+h+1
j=1
by R, and let* z,, ..., 2z be any assigned places; let the general factorial
function of the primary system having ay, ..., a,, %, ..., #p_; as poles be

CiF, (z)+ ...... + CrFy (o),
wherein O, ..., Oy are constants, and let

Az, ..., zp) = i F(z), ...... yFe(z) | (@), ..., ¥ (zp),

) F (z;), ...... , Fr(2) '
PN
F, (zg), -o-ee. , Fr(2y)
where Y () denotes any function whatever; let
R L h+1 k
Ui=S i "= S "= 3 o= 3 vafj’w,
j=1 j=1 j=1 i=1

which is independent of a, and let the row of p quantities
—3si+(h—38) T 14 .onnn +(hp—%8)Ti,p
be denotedt by g—4s+7(h—1%s); then if, modifying the definition of
A (z, 2), we put
O @+ %& s) emisv ¢
¥ (@) ¥ () ’

Az, 2)=
we have

Cosmith=3) LU=~ ~rh—39)] @ [U = (g — }8) — T (h —18)]

Az, @y, ooy & B
- et S ) T ) DG
I N (@i, ) =1
i<j
wherein €' is a quantity independent of ,, ..., 2z, which may depend on
Ciy eony Chy Ayy oeny Oy Y15 «o5 YVh+ta-

273. The formula just obtained is of great generality; before passing
to examples of its application it is desirable to explain the origin of a certain
function which may be used in place of the unassigned function yr ().

We have (§ 187, p. 274), in the notation of § 272,

O *+30, )0 (2 +310Q, ).
@(vx', + 30, ¢) O @ + 40, ¢)’

if the zeros of the rational function of «, (¢/ — @)/(#’ — z), be denoted by

n’;,z log

* These replace the z,, 8, ..., Bz, of § 271.
+ So that V=U- (g~ 4s) -7 {h—}+).
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&, &, ..., Tn—, n being the number of sheets of the fundamental Riemann
surface, and the poles of the same function be denoted by z, z, ..., z,_,, we
have, by Abel’s theorem,

-z |7 —.z)

1) LA | LA | 45 +log( =252,

@ —2)(Z—2)O @+ 30, ) O+ 50, )
(w 2)(7 —x2) O (¥ %+ 30, 5) O (¥ + 1O o)’
now let the places &', 2’ approach respectively indefinitely near to the places

#, z which, firstly, we suppose to be finite places and not branch places; then
the right-hand side of the equation just obtained becomes

| 1 e} ('IJ'”’ z4 %‘Qs, s’) (] (’b’”' Z - %Qs, s’)
€|~y X@X () ’

= log

where
X@=320:(30,). 05", X@)=£6:39,,). 00",
i=1
D denoting a differentiation, and « denoting an arbitrary place; but we have
(Chap. X. §175)
O (19 = § 0, ) = OO (7 4 10, ) = — O (15 4 10,);

thus, on the whole, when the square roots are properly interpreted, we
obtain

. 7 ’ —Hm".,z' @ 'Uz’ 2 1 QS §) "’ZS,UT, :
lim.y .z 2, \/“ (@ =a)(d —2)e = = ( ‘\/}%X )(Z;

Z, 2 Xy 2
{;Hm“zl+ ...... +§II¢H’ fet

@)
When the places #, z are finite branch places we obtain a similar result.

Denote the infinitesimals at these places by ¢, ¢,, and, when «/, 2’ are near to
01

=(x—2)e

, 2, respectively, suppose &’ =z + ¢+, 7’ =z +¢;'" ; then from the equation
given by Abel’s theorem we obtain, if ¢ denote an arbitrary place,

w w,
3 I:Hx, v log t] + 2 Ha:p,y %1 I:Hy, 2r 10g tl] + 2 H'y 2,

r=1 r=w,+1

w+1 2w, +1 i %
_ , t o =@+ 10, ). e
=—log (t¥) — log (t,") + log [_($ 2 X (2) X (2) )
where X (z), X (2) are of the same form as before, save that the differentia-

tions Du;” *, DvZ*“, are to be performed in regard to the infinitesimals ¢, ¢,.
If the limit of the first member of this equation, as a', 2’ respectively
approach to z, 2, be denoted by L, we therefore have

. o m®? @i+ 30, ). e N
l|m~x'=z, sz \/_ ttle Z,2 — ( '\/}-%(.%)’T)(Z‘)e = (.Z' bt Z) e%L. (11)
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The equations (i), (1i) are very noticeable; there vs no position of x for
which the expression ® (v 24 1 Q, o). em 7" ‘IVX (@) X (2) is tnfinite, and there
s only one position of x, namely when x vs at z, for which the expression
vanishes ; for (§ 188, p. 281) the expression ¥X (#) vanishes, to the first
order, only when « is at one of the places ny, ..., np—y, and O (v» 2+ {0, ;)
vanishes only when 2 is at one of the places z, n;, ..., n,;; there is mo
position of & for which ¥ X () is infinite. Putting

® (vx, z4 %Qs, s’) em’s’v‘”' Z
VX (@) X (2)

we have further =, (z, z) = — @, (2, «), and if ¢ denote the infinitesimal near
to z, we have, as x approaches to 2z, limit,_,[= (2, 2)/t]=1. For every
position of « and z on the dissected Riemann surface =, (%, ) has a perfectly
determinate value, save for an ambiguity of sign, and, as follows from
the equations (i), (i), this value is independent of the characteristic

(%8, §5).

There are various ways of dealing with the ambiguity in sign of the
function @, (#, 2z). For instance, let ¢ () be any ¢-polynomial vanishing in
an arbitrary place m, and in the places 4,, ..., 4,,_; (cf. § 244, Chap. XIIL),
and let Z(x) be that polynomial of the third degree in the p fundamental
linearly independent ¢-polynomials which vanishes to the second order in
4,,..., 4, and in the places m,, ..., m,. Further let ®(z) be that
¢-polynomial which vanishes to the second order in the places ny, ..., 7,_;.
Then we have shewn (§ 244) that the ratio ¥Z(x)/¢ () V® (z), save for an
initial determination of sign for an arbitrary position of z, is single-valued on
the dissected Riemann surface; hence instead of the function =, (2, 2) we
may use the function

= (2, 2) =

_VZ@)Z(2) O+ Q) e
$@P () VO (@) ® ()

which has the properties; (i) on the dissected Riemann surface it is a single-
valued function of # and of 2, (ii) E, (z, 2) =— E, (2, x), (iii) as a function of =
it has, beside the fized zeros m,, ..., m,, only the zero given by # =2, and it
has no infinities beside the fized infinity given by # =m, where it is infinite
to the first order. At the »-th period loops respectively of the first and
second kind it has the factors

E (z, 2)

1, e—21ri(vf'z+7}-r,.,,.).

But there can be no doubt, in view of the considerations advanced in
chapter XII of the present volume, as to the way in which the ambiguity of
the sign of =, (z, 2) ought to be dealt with. Suppose that the Riemann
surface now under consideration has arisen from the consideration of the
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functions there considered (§ 227) which are unaltered by the linear substitu-
tions of the group. Let the places in the region S of the ¢ plane which
correspond to the places z, z, #/, 2’ of the Riemann surface be denoted by
£ ¢ E,¢. Then by comparing the equation obtained in chapter XII. (§ 234),

. , ¢ (’Ué' (R %\Q’a s) efris‘v& <
lim.g_g ¢ \/ — (¢ - ! — g o = 2 5 =
Mg—g o=¢ E-85E-0e a do = (§ ),
dE df
with the equation here obtained,
. 2,7 O (vv? + Qs P em’s’w’”' =
llm.,;'=¢’ 2=z /\/‘— tt,e H’"‘ 2 = ( '\/X——_—(.j) X’(Z)) =, (J/', Z)a

and noticing that X (z) agree in being differential coefficients of an

’ 3?
integral of the first kind, which vanish to the second order at =, ..., n,,,
we deduce the equation

=@ 9)n/ 5 B =w e 1)

now we have shewn that = (§, &) is a single-valued function of £ and ¢; and
any one of the infinite number of values of £, which correspond to any value
of z, has a continuous and definite variation as « varies in a continuous way;

dt dt,
dE " dt’ which by

itself is of ambiguous sign, to destroy the original ambiguity while retaining
the essential character of the function =, (#, z). The modified function is
infinitely many-valued, but each branch is separable from the others by a
conformal representation. Thus the question of the ambiguity in the sign of
=, (¢, 2) is subsequent to the enquiry as to the function ¢ which will conform-
ably represent the Riemann surface upon a single ¢ plane in a maunner
analogous to that contemplated in chapter XII. §§ 227, 230*.

hence it is possible, dividing =, (2, z) by the factor

In what follows however we do not need to enter into the question of the
sign of =, (#, 2). It has been shewn in the preceding article that the final
formula obtained is independent of the form taken for the function there
denoted by 4 (#). It is therefore permissible, for any position of z, to take
for it the expression VX (z), with any assigned sign, without attempting to
give a law for the continuous variation of this expression. The advantage is
in the greater simplicity of =, (@, z); for example, when « is at any one

* Klein has proposed to deal with the function =, (z, z) by means of homogeneous variables.
The reader may compare Math. Annal. xxxvi. (1890) p. 12, and Ritter, Math. Annal. xr1v. (1894)
pp. 274—284. In the theory of automorphic functions the necessity for homogeneous variables
is well established. Cf. § 279 of the present chapter. For the theory of the function =, (z, z) in
the hyperelliptic case see Klein, and Burkhardt, Math. Annal. xxx11. (1888).



430 THE GENERAL FORMULA FOR ROOT-FUNCTIONS. (273

of the places ny, ..., np_,, the function A (z, 2), as defined in § 271, vanishes
independently of z; but this is not the case for =, (z, 2).

Ex.i. Prove that

0" *=log 21 (z, @) =, (, c)
e e w,y (2, c) @, (2 a) '

Ez. ii. Prove that any rational function of which the poles are at ay, ..., a, and the

zeros at By, ..., Ba, can be put into the form
@y (=, ﬁl) ----- @ | (.Z‘, 31) )‘1"/': e +)\P'vj;' “
@y (@ @) oo @ (7 a,,)

where 1y, ..., A, are constants, and « is a fixed place.

In what follows, as no misunderstanding is to be apprehended, we shall
omit the suffix in the expression =, (#, z), and denote it by = (2, z). The
function = (&, &) of chapter XII. does not recur in this chapter.

274. As an application of the formula of § 272 we take the case of the
root form ¥ X® (z)/® (#)VX (x), where X (2) is a cubic polynomial of the
differential coefficients of the integrals of the first kind, having 3 (p — 1) zeros,
each of the second order (cf. § 244, Chap. XIIL.). Then the poles aj, ..., a, are
the 2p —2 zeros of any given polynomial @ (#), which is linear in the
differential coefficients of integrals of the first kind. Thus r=2p—2,

% 2p=32
h+1=0,R=r+h+1+50=2p—24+0+0=2p—2; U= 5 %%, and,
1 1
taking for the function yr(x), the expression ¥ X (z), the formula becomes
2p-2
Ce2rilh=181U-g+ks=7(h- 101 @ [ pz V%% — (g —18) —7 (h—}5)]

VXP @) - VIP (@)

° ° 2p—2 2pﬁ:2
Jx(d) (%‘21, 2) . J‘X(p 2(wlp 2) i=1 j=1 = (.Zi, a])
4, j=12, ...,2p-2
H H w (56,; N wj) III (o] (wl) ...... (] (mgp_g)
Z<j 1=

Herein ® (z) is a given polynomial with zeros at a;, ..., 6, and the forms

v X{s’ (%), ..., N Xé:’_z(w) are any set of linearly independent forms, derived
as in § 245, Chap. XIIL, and having (— g, ...,— ki, ..., — bp) for characteristic.

From this formula* that of § 250, Chap. XIII is immediately obtainable.
The result is clearly capable of extension to the case of a function

VX e ()| D, (x) VX ().

* Cf. Weber, Theorie der Abel’schen Functionen vom Geschlecht 3, Berlin, 1876, § 24, p. 156;
Noether, Math. Annal. xxvin. (1887), p. 367; Klein, Math. Annal. xxxv1. (1890), p. 40. For the
introduction of ¢-polynomials as homogeneous variables cf. § 110—114, Chap. VI. of the present
volume. See also Stahl, Crelle, cxr. (1893), p. 106; Pick, Math. Annal. xx1x. *‘Zur Theorie der
Abel’schen Functionen.”
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275. A general application of the formula of § 272 to the case of rational
functions may be made by taking a;, ..., @, to be any places whatever, »
being greater than p —1. Then A +1=0 and R=7; and if the general

rational function with poles in ay, ..., @, ny, ..., 7, be
AF () +...... +4,,F,. ,(z)+ 4,,
where 4,, ..., A, are constants, and we take for the function y (z) the

expression ¥ X (), and modify the constant ¢' which depends in general upon
o, ..., a,, we obtain the result (cf. § 175, Chap. X.)

CO[S v ei; ks, }s], = Cemir L U+1stins] @ [3 oo i 4 Js + b))
1 1
F, (ml)) cees Fr—) (xl)) 1

roor
I1 = Zi, 0
N F@), e P (@), 1| 0 ®)
= A3 i1, o
11 w(z,2) I = (@)
i<j i<y

VX (@)...X () X ()... X (a,).

276. This formula includes many particular cases*. We proceed to
obtain a more special formula, deduced directly from the result of § 272.
Let ay, ..., a,=ny, ..., ;. Then the everywhere finite factorial integrals
of the associated system are the ordinary integrals of the first kind,
and the number, A+ 1, of dV’ which vanish in the places a, ..., a,,
M, ..., Np—,, that is, which vanish to the second order in the places
My, ooy Npy, i8 1. The number B, =r+3Zxj+h+1,=p.1+0+1,=p. The

J

general function having the poles 2?2, ..., n%_, is F (2) = ® (2)/X (z), where
X («) is the expression employed in § 273, and ® () denotes the differential
coefficient of the general integral of the first kind. Further

Y p-1 »-1
U=3v%0— 3 o0 —yno = 3 o%: % 4 9% Y,
1 1 1
v being an arbitrary place. Hence

U—-1%s— %73’:%1}”1""'1-—217”", =V say,
1
and
emis' (Utis+irs) @ (U+3is+ %’rs') = =S (V0. @ (V + QS’ )
is equal (§ 175, Chap. X.) to '
gmis V40, §)=2mis (Vi) @ (V), = gm0 (V+) @ (V), = — eV @ (V),

since s’ is an odd integer. Therefore taking for the function 4 (2) the
expression VX (z), \ (, 2) is w (, 2), and

A, ..., zp)=| O (z), . ,Dp(@) |+VX(2)... X(z),

Dy (2p), ., Dy
* Cf. Klein, Math. Annal. xxxvI. p. 38,
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where @ (z), ..., @, («) denote dvy “/dt, ..., dvy “/dt. Thus on the whole

Az, ..., » .
'i,j=l,(.--j;v 2) I_I [= (@i, m), ..., & (2, np) & (21, ¥)],
DI = (2, ;) =1

i<j

Cei7 @ (V) =

where C is a quantity which, beside the fixed constants of the surface, depends
only on the place 4. Let us denote the expression

@ (T, M)y -oenn. , @ (%, Np_y)

VX (z;) ’

which clearly has no zeros or poles, by u (z;); then we proceed to shew that
in fact C'=Ap(y), where 4 is a quantity depending only on the fixed
constants of the surface, so that we shall have the formula

' Dy (7)) . Dyp(m) i
Ae_ﬁs"V@(V):J D, (z,) . D, (z,) ‘”’(xl)’ ooy (@) & (31, ), oo T (T, 'Y),

%7=1, ...,

P
DI o (@, ) p(y)
1<j

where

)
V=205 m — v,
1

In this formula  only occurs in the factors

=1:r(x1,fy), ...... , @ (2, ).
¥ ) ’

herein the factor ¥X (y) occurs once in the denominator of each of = (w;, ),
and p times as a denominator in ux (7); thus this factor does not occur at all.
In determining the factors of ¥, as a function of v, it will therefore be suffi-
cient to-omit this factor. Thus the factor of ¥ at the ¢-th period loop of the

first kind is e (»=#=1 or ¢mi, At the i-th period loop of the second kind the
factor of ® (v 2 +31Q, ) e iy -2 +37)~mis  and therefore the
factor of ¥ is

e~ wis; — 2mi (’vy’xp+vn“z‘+ ...... +v"7"1’z”_1+<}1,-,i),

Consider now the expression

eV @(V) = gmis 07 " =" M ™ @@ m— v — ... — o )

at the 4-th period loop of the first kind, this function, regarded as depending
upon ¢, has the factor ¢7'; at the i-th period loop of the second kind it has
the factor

("Jl'i (Ti, 181+ +7;, pS‘p) —2mi (1’7' Mot — o ’mp+§-’-i, i) s
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but since

i (Si + 7, 1814+ . + 7, ,,s'p) = 2y (vmm T — L — -1, m”“),
it follows that

o (75,181 + .onenn + 7, p8p) — 2w (V™ — T — — v M)
is equal to |
— g, — 2mi (W T e T L + p™e-1 Ze-1)
thus, changing  into @, we have proved that the function of

: z, 3 s
emis (v Moyt L -o" ") (™ — g — — o0 )

has the same factors at the period loop as the function, of #, given by

(L, &) eenenn @ (%, 2p)/p (%) ;
it is clear that these functions have the same zeros, and no poles.

Hence the formula set down is completely established *.

277. We pass now to the particular case of the formula of § 272 which
arises when the fundamental Riemann surface is hyperelliptic, and associated
with the equation

=4 @)

Then the places n,, ..., ny,_, are branch places. We suppose also that p+1
of the places a,, ..., a, are branch places, say the place for which 2 =4, ...,
d.y., and that x4+ 1 of the places ,, ..., 2. are branch places, say those
at which #="5,,...,b,,. It is assumed that the branch places =, ...,
Ny, &y ooy Buir, by, oov, by are different from one another. We put
r—(u+1)=v; then the determinant of the functions F;(z;), (§ 272),
regarded as a function of ,, is a rational function with poles in n,, ..., n,,,
@, .o, &, d, ..., duy, and zero in @, ..., ,, by, ..., bupa. Provided v is not
less than u, such a function is of the form

(x—my)... (‘T1_’ﬂp-—1)(-731"d1) cee (‘%—duﬂ)(xl—b:) ces ('”x_buﬂ) (@1, Dymrpu+ Y1(21, 1o
(@ —ny)... (B = np_) (@ —dy) ... (B — D) (T1— 1) ... (71— at,)

where the degrees of (#;, 1),—1—p, (#1, 1),—4x are determined by the condition
that the function is not to become infinite when ; is infinite. When v = p,
the terms (2, 1),_,_, are to be absent. When v < p, the conditions assigned
do not determine the function; we shall suppose v= p. The 2v—1 ratios
of the coefficients in the numerator are to be determined by the conditions
that the numerator vanishes in ..., 2, and in the places conjugatet

* See the references given in the note *, § 274, and in particular Klein, Math. Annal. xxxv1.
p. 39.

t The place conjugate to (z, y) is (z, —y)
B 28
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to a;, ..., a,. Hence, save for a factor independent of &, the determinant
of the functions F; (z;) is given by
Vyr (@)
@—n)...(@,—dy)...(m,—ay)...
TN (@), e, VY (@), ZTENG (@), ..., V()

TN @), s NP @), 4TV, e VE @)

........................................................................

—alv_l—“‘\/\?_(a_l): ey _\/m), ar_H"'\/qlTal), cees ‘\/m
— NG (@), e — NP (@), VG (), s V()

..........................................................................

wherein Y (z) = (z — ny) ... (@ — npy) (2 — &) ... (& — duyy) (. — ). (2 — b)),
¢ (z) = y*/¥ (2), and the determinant has 2v rows and columns; denoting
this determinant by Dy, 4, the determinant of the functions F; (;) (§ 272) is
therefore equal to

D fI 1 (a;.b—'bl)(xz_ y-+l).
PV it (@i — o) (@i — @)V (@ = ) (@ — 1y ) V(@i — ) (@ — D)
Hence, from § 272, taking v () = V(z — n;) ... (& — ny_y), so that = (=, 2) will

denote

O (2430, o) e ?

V@ —n) (@ —np1) (2 —1) ... (2 —npy)

we have
v pt+l
o [2 v %+ X oo % L, %s]
1 1

.D¢’¢ ﬁ fI ‘w’(-Z'i, aj)
1=1j=1

=1j=

v ptl gy (.’L‘,;, d]) Xy~ bj
. . . . . Hi=1 v v >
i=1 j=1 @ (%, b)) @y —d; 63 T o (a1, ) .II 11 (i )
1<j =1 g=1
where C is independent of «;, ..., z,.
Now, if b, d be any two branch places, and a an assigned branch place,
w(z,d) 0O 35 4s) O *—0v29 §s )
w(z, b) O @b ks, 1s) O(vme—vhe; Ls 1s)
and hence, if

'v;i'a=%(8i +81/‘T,;’1 + ...... +8p’7'1:._p), (7:=1, 2: ""p)l
’I)?’ ‘= % B+ Bll"'i, 1+ et + Bp,Ti, p),
where B, ..., By, &, ..., 8, are integers, we have (§ 175, Chap. X.)

©(@d)_ 4 gy e O % 3= 8), 3 (s - 3]
= (z, b) B[ §(s=B), 3 =B
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where A is independent of 2. Thus the expression

o w(z, d) z—>b
w (x, b) z—d’

which clearly has no poles or zeros, is such that its factors at the period loops
are all +1. The square of this function is therefore a constant, and the
expression itself is a constant.

Therefore if
"gl L

1

g—miE—F)

’ 7
=31(ci+o T+ ..nn. + 0,75, )

where o, ..., o, are integers, it follows that the function

om0 At o) [ ' 2@ ) fei=lb
i=1 j=1 (@i, b)) @ —d;
is independent of #,, ..., #,. Further

O(w—-40—37d"; %5, 35 )=Bemiev @ [u; L (s—0), (s — o))
by § 175, Chap. X. Thus on the whole we have

00 |Em; 35— 0), 36 - o)

=Dy, IVI ﬁ = (2, aj)/l’]—hmvw(wi, z;) fI ﬁ (z; — o) b l"Im’vm- (#, o),
i=1j=1 i<i i=1j=1 i<

where C is independent of @, ..., #,. Hence we can infer that C is in fact
independent also of a, ..., a,. For when the sets ,, ..., 2,, ay, ..., a, are
interchanged, Dy, , is multiplied by (—)”***~#=(—1)*, and, since = (z, 2)
=—w (2, ), this is also the factor by which the whole right-hand side is
multiplied. The theta function on the left-hand side is also multiplied
by + 1. Thus the square of the ratio of the right-hand side to the theta
function on the left is unaltered by the interchange of the set «y, ..., #, with
the set a;, ..., a,. Thus C* is independent of z,, ..., 2, and unaltered when
@, ..., #, are changed into ay, ..., @,. Hence C' is an absolute constant.

It follows that the characteristic 3(s— o), #(s’—0o'), and the theta
functions, are even or odd according as u is even or odd.

In the notation of § 200, Chap. XI., the half-periods £, y are given by

be denoted by 4, the half-periods associated with the characteristic

3(s—o0), (s — &') are congruent to expressions given by

1Q+ vl R R TS T T S + Pt @ gl + vdut1s @,
28—2
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while 4, which is of degree p + 1 + 2p, is equal to
@—n)...@=np)(@—b) ... (@—=bup) (@ —d) ... (2 —dy11);
by means of the formula (§ 201, Chap. XI.)
Ut O A SRR S, + % ¢ 0% ¢ =0,

the half-periods associated with the characteristic 4(s — o), (s’ — ¢') can be
reduced to be congruent to expressions denoted by

FQ vt + VP2 O Y120 @

where ¢, ..., €y, are given by
p=4(=x—¢e)...... (@ — €pt1-a);

also, in taking all possible odd half-periods 4, », all possible sets of p —1
of the branch places will arise for the set n,, ..., n,,. Hence it follows that
the formula obtained includes as many results as there are ways of resolving
(%, 1)sp42 into two factors dpiious Vptr4ou, Of orders p+1 — 2u, p+ 1+ 2,
and (§ 201) that all possible half-integer characteristics arise, each associated
with such a resolution. We have in fact, corresponding to p=0, 1, 2, ...,

E (%—1—> , a number of resolutions given by

2 + 2 (2p+2) (2p+2)
1 = 9%
2(p+1>+ P43 + p+5 +o. , =27,

It has been shewn (§ 278) that the expression = (z, z) may be derived,
by proceeding to a limit, from the integral TI; ;. Hence the formula that
has been obtained furnishes a definition of the theta function in terms
of the algebraic functions and their integrals, and has been considered from
this point of view by Klein, to whom it is due. After the investigation
given above it is sufficient to refer* the reader, for further development, to
Klein, Math. Annal. xxX11. (1888), p. 351, and to the papers there quoted.

Ez.i. Prove that the function © [« ; 4(s—¢), 3 (s~ ¢')] vanishes to the uth order for
zero values of the arguments. :

Ez. ii. In the notation of § 200, Chap. XI., prove, from the result here obtained, that
each of the sums
4';3 o0 ”gz,uci,a’ o +4r§‘vc,~,a, 5 4 ‘2"37)ci,a
i=1 i=1 i=1 i=1
represents an odd half-period ; here ¢; is any one of the places ¢, ¢y, ..., ¢, @; is any one of
the places a,, ..., a,, @; is any one of the places a,, ..., a,, and = is an arbitrary integer

* See also Brill, Crelle, Lxv. (1866), p. 273; and the paper of Bolza, dmerican Journal, vol.
xviL., referred to § 221, note, where Klein’s formula is fundamental.

By means of the rule investigated on page 298, of the present volume, the characteristic
3 (s—0), §(s'—¢’) can be immediately calculated from the formula here (p. 436) given for it. Cf.,
also, Burkhardt, Math., Annal. xxx11., p. 426 ; Thompson, American Journal, xv. (1893), p. 91.
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whose least value is zero, and whose greatest value is given by the condition that ¢ cannot
be greater than p+1. Prove also that each of the sums

4r41 dr+1

C; (l C;. . :
S o3 e 43 o , v 3 M0
=1 i=1 =1 i=1

S

represents an even half-period. For a more general result cf. the examples of § 303 (Chap.
XVIL).

Ez. iii. By taking y=p+1, u=0, and the places b, d so that }Q, ,=9 finally
putting n, ..., n,_y, b, d for ay, ..., ap, ap4q, Obtain, from the formula, the result

O (vHe4oTuti 4 ... +v%p: %) J\p(.z') @ (7 ) z—a P (—2;) (2—ay) —nx o
O (Vv ..., +¥rw) VY (2) T a) z—ain (T—a) (z —x,) ’

@ (2, ;) @ (3 @)
@ (%, @) @ (3, %)’
@, Gy, ..., @, are, as in § 203, Chap. X1, such that the theta function in the numerator of
the left-hand side vanishes as a function of x at the places £, ..., &, conjugate to
2y, ..., Zp; and verify the result @ priori. By the substitution

where H:’ ? replaces log ¥ (#)=(x—a)...(x—a,), and the branch places

> @

(@-x)(z—a;) —TO**® o* # !
(=a) =m)®  TRHTC

this formula can be further simplified. Deduce the results

5z %5 1o W Y- Lo .. — TPy o (v - M L. .= vf"’i{)
@y, %y Zp, T ge(vz' T O _vzp’“p)e(v“’ra_vznal_ ..... __zfzpiap)’

=I‘x,sa$'l/clxl+ ot sa.z',, d.zp

Z; (u—v" N —Zi(u—v a) z,  Ou, Zp Bu dt ’

where u=v%1 U ...+ 2, Z; (u):e%log O (u), and (%1 ,+.» are as in § 123, Chap. VII.
(3

These results have already been given (Chap. X.).

278. It is immediately proved, by the formula (§ 187)

o) _ 9@ +30,)0 (" +30s,)
Pt TR+ 40, ) O (07 + 0 5)

that the general expression of a factorial function given in § 254 can be
written in the form

- , By
[@ (v Bit+3Q, ) e o ]
1
i &y M wis’ v % iso® % | N
- 927” % | [® (vx, %+ ‘%Qs, s’) 4 0 (vz, %+ %Q’s, s) € .
1
And, by the use of the expression = (, 2), this may be put into the form

e—21n§13 (hi+H) vy " ] o (z, B:) 1;[ l:w (z, ai)] 1;[ [m’ (z, Ci)]
1 -
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Ez.i. In the hyperelliptic case associated with an equation of the form

P=(2, Dgp+s)
if Z denote the place conjugate to the place #, it follows from the formula of § 273 that
: X, 2
@ (z, 2)=(w—2)e HE, zZ,
unless & or z is a branch place.
Ez. ii. In the hyperelliptic case, if %, £y, ..., #, denote branch places, and
¢ (@)=(2—k) (x—ky)...(x—ky)
and the equation associated with the surface be y2=7(z), where f(z)=¢ (2) ¥ (), and if
we take places &, &, ..., Zp, 2 2y, +..y Zp, Such that

k

o E”:’ , (=42 ...,p)

/”z ?P’ ka’U? k 2,k 2p, kp

k‘+ ...... +9; ) U e+

then it is easily seen that the rational function having Z, #,, ..., &, as zeros and 2, 2, ..., %
as poles, can be put into the form [/ ¢ () +yd (#/)]+[¥ ¢ (2)+35¢ ()], where &/, 3’ are the
variables and s is the value of 3 at the place z. Hence prove, by Abel’s theorem, that

A2 Ve @) V@)V () wi):e—%(n: P e +H:;fz,,).
’ 2 @@

Ex. iii. Suppose now that a, ay, ..., a, are the branch places used in chapter XI.
(§ 200), so that

JP7 oI5 @I B i D) @ (0P =T V... = P )
oA i Te(P i . — o Y © (o P B — o o)’

and suppose further that $Q,=4%(s+7¢), is an even half-period such that
Fod L +of ok Oy le Fohy +P =" %130,

and AL S +0P =0t %4 10
then deduce that
o (5 +30) "’ VE@ ¥ @ +Yh &) ¥ (@)
(9 2 (v—2)Nf (@) f(z)

The results of examples i, ii, iii are given by Klein.

=@ (,2)

Ex.iv. Prove that, if 2, ¢, ¢, ..., ¢, be arbitrary places, and y,, ..., y, be such that
the places ¢, y;, ..., ¥p are coresidual with the places z, ¢;, ..., ¢,, then

X, 2 Xy 2
CACY I eny., o T e ;
@ (2, 2) @ (¢, 2)

hence deduce, by means of the result given in Ex. iv., page 174, that
e%(n” Fovrnetm? 5 )

Ciy N1 Cp, Yp

VDN G 5 sy )

V(€5 20y onny Cp)=

@ (5 ()

where o is an arbitrary place.

279. The theory of the present chapter may be considered from another
point of view. We have already seen, in chapter XII., that the theory of
rational functions and their integrals may be derived with a fundamental
surface consisting of a portion of a single plane bounded by circles, and the
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change of independent variables involved justified itself by suggesting an
important function, = (§, v). We explain now*, as briefly as possible, a more
general case, in which the singular points, ¢, ..., ¢, of this chapter, are
brought into evidence.

Suppose that a function ¢ exists whereby the Riemann surface, dissected
as in § 253, can be conformally represented upon the inside of a closed
curvilinear polygon, in the plane of ¢ whose sides are arcs of circles+; to the
four sides, (a;), (ai’), (b;), (b), of a period-pair-loop are to correspond four sides
of the polygon, to the two sides of a cut (y) are to correspond two sides of
the polygon ; the polygon will therefore have 2 (2p + k) sides.

Fig. 11.

(@) (81)

& C

Then it is easily seen that if C' be the value of ¢ at the angular point C' of
the polygon, which corresponds to one of the singular points ¢, ..., ¢; on the
Riemann surface, and D be the value of & at the other intersection} of the
circular arcs which contain the sides of the polygon meeting in C, we can
pass from one of these sides to the other by a substitution of the form

Y—-¢ g (

0 A &
where 27/l is the angle C of the polygon, (I being supposed an integer other
than zero); as we pass from a point { of one of these sides to the corresponding
point of the other side, the argument of the function [({— C)/(¢ — D)} increases
by 27 ; if therefore ¢ be the infinitesimal at the corresponding singular point on

1

the Riemann surface, we may write, for small values of ¢, (¢ — C)/(¢ — D) = ¢,
1 1

so that {—C=¢t' (C—D)(1 —#')". Further if {, {' be corresponding points

* Klein, Math. Annal. xx1. (1883), “Neue Beitrige zur Riemann’schen Functionentheorie ”;
Ritter, Math. Annal. xu1. (1893), p. 4; Ritter, Math. Annal. xL1v. (1894), p. 342.

1 See Forsyth, Theory of Functions, chapter XXII., Poincaré, dcta Math. vols, .—v. We may
suppose that the polygon is such as gives rise to single-valued automorphic functions.

1 Supposed to be outside the curvilinear polygon.
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on the sides of the polygon which meet in C, we have for small values of ¢,
1. 1 1 ami(3- i (-
dt;=%(0—D)t1 L, d;‘:%(G—D)t‘ e el )

1
ultimately, the factor omitted being a power series in ¢ or (¢ — C)/(¢{— D),
whose first term is unity.

We shall suppose now that the numbers A,, ..., A of this chapter are
given by A\; = —m/l;, where m;, I; are positive integers. Then a function
whose behaviour near ¢; is that of an expression of the form ¢~ ¢, will, near
C;, behave like ({— C;)™ ¢, that is, will vanish a certain integral number of
times. Further, for a purpose to be afterwards explained, we shall adjoin to
the % singular points ¢, ..., ¢, m others, e, ..., én, for each of which the
numbers A are the same and equal to —e¢, so that, if ¢ be the infinitesimal
at any one of the places e, ..., e, the factorial functions considered behave
like #¢¢ at this place. These additional singular points, like the old, are
supposed to be taken out from the surface by means of cuts (), ..., (em);
and it is supposed that the corresponding curves in the curvilinear polygon
of the {-plane are also cuts passing to the interior of the polygon, as in the
figure, so that at the point Z, of the ¢-plane which corresponds to the place e,
of the Riemann surface, ¢ is of the form ¢ = E, + t$, where ¢ is finite and not
zero for small values of ¢, ¢ being the infinitesimal at e,.

Factorial functions having these new singular points as well as the
original singular points will be denoted by a bar placed over the top.

Let dv denote the differential of an ordinary Riemann integral of the
first kind which has p—1 zeros of the second order, at the places
T, ..., Np—. Consider the function

— k p-1 m

d -3 2 (1-p)mae- s e L3

= e “i=1 L; 1 e 2my .
d¢ ’

where a, ¢ are arbitrary places, and p is determined so that Z, is not

infinite at the place ¢, or

L 1
2(1—-[)+2p—2=p;
i=1 1

this function i1s nowhere infinite on the Riemann surface; it vanishes to the
first order only at {= o0 ; for each of the cuts (e), ..., (en) it has a factor
wip 1

e™; at a singular point ¢; it is expressible as a power series in &, or
(¢— O)/(§£ — D), whose first term is unity. The values of Z, at the two sides
of a period loop are such that Z,'/Z,=~d¢/d{ ; but since these two sides
correspond, on the ¢-plane, to arcs of circles which can be transformed into
one another by a substitution of the form ¢’=(af+ B)/(v¢+ 8), wherein we
suppose ad — By = 1, it follows that Z,/Z,=~¢+ 8. If then we also introduce

Z,
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the function Z,, = £{Z,, we have for the two sides of a period loop, equations of
the form
Z) =z, +8Z,, Z/=aZ + BZ,.
Consider now a function
=Kz,

where K is a factorial function with the &4 m singular points, and R=2me/p.
1
At a singular point c;, or C;, its behaviour is that of a power series in # or

(&— 0)/(¢ — D), multiplied by (&— C;)y™; at a singular point e;, or Ej, its
behaviour is that of a power series in the infinitesimal ¢ multiplied by

[ £\2me
o/ (@)

or unity; at a period loop it is multiplied by a factor of the form u (y§+ 8)~%,
where u is the factor of K. The function has therefore the properties of
functions expressible by series of the form*
ZR (&) (i + 8%,

wherein the notation is, that &;=(a;&+ 8:)/(yv:{+8;) is one of the finite
number of substitutions whereby the sides of the curvilinear polygon are
related in pairs and R({;) is a rational function of §. The equation
connecting the values f”, f, of the function f; at the two sides of a period
loop, may be put into the form

(v4u+ 3%) f' = p2 f
and we may regard Zy f, or K, as a homogeneous form in the variables
Z,, Z,, of dvmension R.

The difference between the number of zeros and poles of such a factorial
function K is (§ 254)

3h, =3 (=) —em, =3 (- ) bR, =3(=7) - R-1- 82 (1),
—2( 5) —~R(p—1)— LRk,

adding the proper corrections for the zeros of the automorphic form K at
the angular points C,, ..., C; (Forsyth, Theory of Functions, p. 645) we have,
for the excess of the number of zeros of the automorphic form over the
number of poles

27\_‘_27711 1._)2[2p—2+k+m+1—(2%+m+1)]

R 1
Elypoarg-st],

It

where g =k+m + 1, E:—":E%+ m+ 1.

We may identify this result with a known formula for automorphic

* Forsyth, Theory of Functions, p. 642. The quantity R is, in Forsyth, taken equal to — 2m.
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functions [Forsyth, Theory of Functions, p. 648; if in the formula
m (n -1-3 %) , there given, we substitute, by the formula of p. 608, § 293,

n=2N —1+gq, we obtain m (2N —24+q¢g-—32 %):I ; for each of the angular

points O, ..., Cx is a cycle by itself, each of the points E,, ..., Ey, is a cycle
by itself, and the remaining angular points together constitute one cycle

(cf. Forsyth, p. 596); the sum of the angles at the first £ cycles is 2#2%,

the sum of the angles at the second m cycles is 27rm, the sum of the angles
at the other cycle is 27 *.

There is a way in which the adjoint system of singular points e, ..., én
may be eliminated from consideration. Imagine a continuously varying
quantity, @,, which is zero to the first order at ¢, ..., €, and is never infinite,

and put @, = aw,; the expression Kz,~¢ may then be regarded as a homo-
geneous form in #;, #, on the Riemann surface, without singular points at
€, ..., em; and instead of the function Z, we may introduce the form

_L
& = Z,x, #*, which is then without factor for the cuts (g), ..., (em), Or, as we
may say, is unbranched at the places e, ..., e ; and may also put &= ¢,

Thus, (i), a factorial function, considered on the ¢-plane, is a homogeneous
automorphic form, (ii), introducing homogeneous variables on the Riemann
surface, the consideration of factorial functions may be replaced by the con-
sideration of homogeneous factorial forms.

Ez. Shew that the form

1 z, a l( z, a x.u A
m

Feeennn )+2)\, v,
Pz, 2)=ar f@)e *° e e AL

where @, ¢ are arbitrary places and A; ; are constants, is unbranched at e, ..., ¢,, that it
has no poles, and vanishes only at the place z. Here f(z) is to be chosen so that, when
approaches z, the ratio of P (z, z) to the infinitesimal at z is unity. At the ¢-th period
loop of the second kind the function has a factor (—)* where

2nt o

. 2w
M=2mir+ 2 (g =)= (05 b H0y™ )t 3 N 507 O,
Y

¢';— g denoting the number of circuits, made in passing from one side of the period loop to
the other, of x, about £,=0 other than those for which # encloses places ¢, ..., ,, and r
denoting the number of circuitst of # about 2.

* The formula is given by Ritter, Math. Annal. xLIv. p. 360 (at the top), the quantity there
denoted by g being here —4p. We do not enter into the conditions that the automorphie form
be single-valued.

+ The reader will compare the formula given by Ritter, Math. dnnal. xurv. p. 291. It may be
desirable to call attention to the fact that the notation ¢+1, ¢’ + 1, as here used, does not coincide
with that used by Ritter. The quantities denoted by him by o, ¢’ may, in a sense, be said to
correspond respectively to those denoted here, for the factorial system including the singular
points e;, ..., €y, by ¢’+1 and w’.



