
CHAPTER X 

DIFFERENTIAL EQUATIONS IN MORE THAN TWO VARIABLES 

109. Total differential equations. An equation of the form 

P (x, y, z) dx + Q (x, y9 z)dy + R (x, y, z) dz = 0, (1) 

involving the differentials of three variables is called a total differen­
tial equation. A similar equation in any number of variables would 
also be called total ; but the discussion here will be restricted to the 
case of three. If definite values be assigned to x, y, z, say a, b, c, the 
equation becomes 

Adx 4- Bdy + Cdz = A(x — a)-\- B(y — b) + (z - c) = 0, (2) 

where x, y, z are supposed to be restricted to values near α, b, c, and 
represents a small portion of a plane passing through (a, b, c). From 
the analogy to the lineal element (§ 85), such a portion of a plane may 
be called a planar élément. The differential equation therefore repre­
sents an infinite number of planar elements, one passing through each 
point of space. 

Now any family of surfaces F(x, y, z) = also represents an infinity 
of planar elements, namely, the portions of the tangent planes at every 
point of all the surfaces in the neighborhood of their respective points 
of tangency. In fact 

dF = F'xdx + Fydy + F'ßz = 0 (3) 

is an equation similar to (1). If the planar elements represented by 
(1) and (3) are to be the same, the equations cannot differ by more 
than a factor µ(x, y, z). Hence 

Fļ µP, F¿ = µQ, F'z=µR. 

If a function F(x, y, z) = can be found which satisfies these condi­
tions, it is said to be the integral of (1), and the factor µ (x, y, z) by 
which the equations (1) and (3) differ is called an integrating factor 
of (1). Compare § 91. 

I t may happen that µ = 1 and that (1) is thus an exact differential. 
In this case the conditions 
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which arise from F¦¿y = Fÿx, F'y'z = F'z'yì F"x = Fxz, must be satisfied. 
Moreover if these conditions are satisfied, the equation (1) will be 
an exact equation and the integral is given by 

I P(x,y,z)dx+ I Q(x0,y,z)dy+ j R(x0,y0,z)d» = C, 

where x0, y0, z0 may be chosen so as to render the integration as simple 
as possible. The proof of this is so similar to that given in the case of 
two variables (§ 92) as to be omitted. In many cases which arise in 
practice the equation, though not exact, may be made so by an obvious 
integrating factor. 

As an example take zxdy — yzdx + x2dz = 0. Here the conditions (4) are not 
fulfilled but the integrating factor l/x2z is suggested. Then 

xdy-ydz đz = ā/y \ 
x2 z \x I 

is at once perceived to be an exact differential and the integral is y/x + log z =  
It appears therefore that in this simple case neither the renewed application of the 
conditions (4) nor the general formula for the integral was necessary. It often 
happens that both the integrating factor and the integral can be recognized at once 
as above. 

If the equation does not suggest an integrating factor, the question 
arises, Is there any integrating factor ? In the case of two variables 
(§ 94) there always was an integrating factor. In the case of three 
variables there may be none. For 

P da Q I 

Q da R 
y z z y y y \ 

R „ µ P I 

If these equations be multiplied by R, P, Q and added and if the result 
be simplified, the condition 

/ ½ R\ ^IdR P\ ibP Q\ Λ 
p{τz-ĸ)^Q[Tχ-^)+R{ĸ-^) = 0 ^ 

is found to be imposed on P, Q, R if there is to be an integrating fac­
tor. This is called the condition of ίntegrability. For it may be shown 
conversely tha t if the condition (5) is satisfied, the equation may be 
integrated. 

Suppose an attempt to integrate (1) be made as follows : First assume 
that one of the variables is constant (naturally, that one which will 
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make the resulting equation simplest to integrate), say z. Then 
Pdx -ļ- Qdy = 0. Now integrate this simplified equation with an inte­
grating factor or otherwise, and let F (x, y, z) = φ(z) be the integral, 
where the constant is taken as a function φ of z. Next try to deter­
mine φ so that the integral F (x, , z) = φ(z) will satisfy (1). To do 
this, differentiate ; 

F'xdx + Fydy +• F dz = dφ. 
Compare this equation with (1). Then the equations* 

F¿ = λP, F; = λQ, (Fļ - λR) dz = dφ 

must hold. The third equation (Fz — λR) dz = dφ may be integrated 
provided the coefficient S = F'z — λR of dz is a function of z and ψ, 
that is, of z and F alone. This is so in case the condition (5) holds. It 
therefore appears that the integration of the equation (1) for which (5) 
holds reduces to the succession of two integrations of the type discussed 
in Chap. VIII. 

As an example take (2 x2 + 2 xy + 2 xz2 + 1) dx + dy + 2 zdz = 0. The condition 

(2x2 + 2xy + 2xz2 + 1)0 + l ( - åxz) + 2z(2x) = O 

of integrability is satisfied. The greatest simplification will be had by making x 
constant. Then dy + 2 zdz = 0 and y + z2 = φ (x). Compare 

dy + 2zdz = dφ and (2x2 + 2xy + 2xz2 + l)dx + dy + 2zdz = 0. 
Then λ = l, - (2x2 + 2xy + 2xz2 + l)dx = dφ; 

or -(2x2 + 1 + 2xφ)dx = dφ or dφ + 2xφdx = - (2x2 + 1)dx. 

This is the linear type with the integrating factor eχ2. Then 

e*\dφ + 2xφdx) = - ex\2x2 + 1)dx or eχ2φ =- f e**(2x2 + 1)dx +  

Hence y + z2 + e~χ2 Çeχ2(2x2 + l)dx = Ce-χl or eχ2(y + z2) + Ceχ2(2x2 +l)dx=C 

is the solution. I t may be noted that eχ2 is the integrating factor for the original 
equation : 

eχ2[(2 x2 + 2xy + 2xz2 + l)dx + dy + 2 zdz] = d ¦eχ2(y + z2) + feχ2(2 x2 + 1) dxì. 

To complete the proof that the equation (1) is integrable if (5) is satisfied, it is 
necessary to show that when the condition is satisfied the coefficient S = F'z — \R 
is a function of z and F alone. Let it be regarded as a function of x, F, z instead 
of x, y, z. I t is necessary to prove that the derivative of S by x when F and z are 
constant is zero. By the formulas for change of variable 

\ðx)y,z¯¯ \CX)F,Z \ F/ x ' \ y)x,z~ W/a¾« by ' 

* Here the factor λ is not an integrating factor of (1), but only of the reduced equation 
Pdx + Qdy = 0. 
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But F : = λ P a n d F ; = λQ, and hence Q(—) - P (~) =Q(—) • 

Now ( 1\ = A / ^ - X B \ = ^ - ^ = ^ _ ^ . 
\ x/ytS x\ z J z x x z x 

Hence = X ( ^ _ ^ W P ^ _ ^ , 
\ X/y,z \ Z X/ Z X 

and (M\ =xmmSļ._B^ 
\by/x,z \ z y) z by 

\wv,z W*,z L Ve« / \ay ez/J L ax e 

\ Z/F,Z I \ z x) \ey z) Vex 3ÿ/J 

L ČX ĈŽ/ J 

where a term has been added in the first bracket and subtracted in the second. 
Now as λ is an integrating factor for Pdx + Qdy, it follows that (\Q)'X = (λř% ; and 
only the first bracket remains. By the condition of integrability this, too, vanishes 
and hence S as a function of x, F , z does not contain x but is a function of F and 
z alone, as was to be proved. 

110. I t has been seen that if the equation (1) is integratile, there is 
an integrating factor and the condition (5) is satisfied ; also that con­
versely if the condition is satisfied the equation may be integrated. 
Geometrically this means that the infinity of planar elements defined 
by the equation can be grouped upon a family of surfaces F(x, y,z) =  
to which they are tangent. If the condition of integrability is not satis­
fied, the planar elements cannot be thus grouped into surfaces. Never­
theless if a surface G (x, y, z) = 0 be given, the planar element of (1) 
which passes through any point (x0, yQ, zQ) of the surface will cut the 
surface G = 0 in a certain lineal element of the surface. Thus upon the 
surface G (x, y, z) = 0 there will be an infinity of lineal elements, one 
through each point, which satisfy the given equation (1). And these 
elements may be grouped into curves lying upon the surface. If the 
equation (1) is integrable, these curves will of course be the intersections 
of the given surface G = 0 with the surfaces F = defined by the 
integral of (1). 

The method of obtaining the curves upon G (x, y, z) = 0 which are 
the integrals of (1), in case (5) does not possess an integral of the form 
F(x, y, z) = C, is as follows. Consider the two equations 

Pdx + Qdy + Rdz = 0, G'xdx + G¦ßy + G'zdz = 0, 

of which the first is the given differential equation and the second is 
the differential equation of the given surface. Erom these equations 
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one of t h e differentials , say dz, m a y be e l imina ted , a n d t h e correspond­

i n g var iab le z m a y also be e l imina ted b y s u b s t i t u t i n g i ts va lue ob ta ined 

by so lv ing G (x, y, z) = 0. T h u s t h e r e is ob ta ined a differential equa­

t ion Mdx -\- Ndy = 0 connec t ing t h e o the r t w o var iab les x a n d y. T h e 

in teg ra l of t h i s , F(x, ÿ) = C, consis ts of a fami ly of cy l inders wh ich cu t 

t h e g iven surface G = 0 in t h e curves wh ich sat isfy (1) . 

Consider the equation ydx -f- xdy — (x + y 4- z) dz = 0. This does not satisfy the 
condition (5) and hence is not completely integrable ; but a set of integral curves 
may be found on any assigned surface. If the surface be the plane z = x + y, then 

ydx 4- xdy — (x + + z) dz = 0 and dz = dx + dy 

give (x + z) dx + (y + z) dy = 0 or (2 x + y) ¿‰ + (2 2/ + x) ά¾/ = 0 

by eliminating dz and z. The resulting equation is exact. Hence 

x2 + xy + y2 = and z = x +  

give the curves which satisfy the equation and lie in the plane. 
If the equation (1) were integrable, the integral curves may be used to obtain 

the integral surfaces and thus to accomplish the complete integration of the equa­
tion by Mayer''s method. For suppose that F(x, y,z) = C were the integral surfaces 
and that F(x, y, z) = F(O, 0, z0) were that particular surface cutting the z-axis at z0. 
The family of planes y = Xx through the z-axis would cut the surface in a series 
of curves which would be integral curves, and the surface could be regarded as 
generated by these curves as the plane turned about the axis. To reverse these 
considerations let y = \x and dy — \dx ; by these relations eliminate dy and y from 
(1) and thus obtain the differential equation Mdx -f Ndz = 0 of the intersections 
of the planes with the solutions of (1). Integrate the equation as f(x, z, λ) = and 
determine the constant so that ƒ (x, z, λ) = / ( 0 , z0, λ). For any value of λ this gives 
the intersection of F(x, y, z) = F(O, 0, z0) with — \x. Now if λ be eliminated by 
the relation λ = y/x, the result will be the surface 

f(x,z,ţj=f(θ,z0,ţ^, equivalent to F(x, y, z) = F(O, 0, z0), 

which is the integral of (1) and passes through (0, 0, z0). As z0 is arbitrary, the 
solution contains an arbitrary constant and is the general solution. 

I t is clear that instead of using planes through the z-axis, planes through either 
of the other axes might have been used, or indeed planes or cylinders through any 
line parallel to any of the axes. Such modifications are frequently necessary owing 
to the fact that the substitution / ( 0 , z0, λ) introduces a division by 0 or a log 0 or 
some other impossibility. For instance consider 

y2dx + zdy — ydz = 0, = λx, dy — \dx, \2x2dx + \zdx — \xdz = 0. 
( Ύfì? 7 

Then λ¢Zx + = — — = 0, and \x-– =f(x, z, \). 
X2 X 

But here / (0 , z0, λ) is impossible and the solution is illusory. If the planes (y—ì) = \x 
passing through a line parallel to the z-axis and containing the point (0, 1, 0) had 
been used, the result would be 

dy = \dx, (1 + \x)2dx + \zdx — (1 + \x) dz = 0, 
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, , \zdx — (1 + \x)dz _ . z - / X V 
or dx + i—í——i— = 0, and x = ƒ(x, z, λ). 

(1 + λx)2 ' 1 + λx V ' ' ; 

Hence = — z or x = — zπ = C, 
1 + λx ° ° 

is the solution. The same result could have been obtained with x = λz or = λ (x — a). 
In the latter case, however, care should be taken to use/ (x , z, λ) = / ( α , z0, λ). 

EXERCISES 

1. Test these equations for exactness ; if exact, integrate ; if not exact, find an 
integrating factor by inspection and integrate : 

(a) (y + z)dx + (z + χ)dy + (x + y)dz = 0, (ß) y4x + zdy - yds = 0, 
(7) xdx + ¾ŵ - Vα2 - x2 - 2/2d2; = 0, (δ) 2 z (¿¢ - dy) + (x-y)dz = 0, 
(e) (2 x + ?/2 4- 2xz)dx + 2 X2/cft/ + æ2efc = 0, (f) zydx = zxtty + ž/2(ix, 
(77) x(2/ - 1) (z - l)dx + Ž/(Z - 1) (x - l)đy + z(x - 1) (y - l)dz = 0. 

2. Apply the test of integrability and integrate these : 

(a) (x2 - y2 - z2)đx 4- 2xydy 4- 2xzđz = 0, 
(ß) (x + 2 4- z2 4- l)í*e 4- 2ydy + 2zđz = 0, 
(7) ( + α)2dx 4- zc¾/ = (y + a) dz, 
(δ) (l-x2-2y2z)dz = 2xzdx + 2yz2dy, 
( e ) x2đx2 4- y2dy2 - z2dz2 + 2 a¾ŵđÿ = 0, 
(ξ) z(xdx 4- ydy + zdz)2 = (z2 — x2 — y2) (xdx 4- ydy 4- zdz)dz. 

3. If the equation is homogeneous, the substitution x — uz, — υz, frequently 
shortens the work. Show that if the given equation satisfies the condition of inte­
grability, the new equation will satisfy the corresponding condition in the new 
variables and may be rendered exact by an obvious integrating factor. Integrate : 

(a) (y2 4- yz) dx + (xz 4- z2) dy 4- (y2 - xy) dz = 0, 
(ß) (x2y - y* - y2z) dx 4- (xy2 - x2z - x3) dy 4- (xy2 4- x*y) dz = 0, 
(7) ( 2 + yz + z2)dx 4- (x2 + XZ + z2)dy 4- (x2 + xy 4- y2)dz = 0. 

4. Show that (5) does not hold ; integrate subject to the relation imposed : 

(a) ydx 4- xdy — (x 4- 4- z)dz — 0, x -\- -\- z — k or — kx, 
(ß) (xdy 4- ydy) 4- V l - α2x2 - b2y2dz = 0, α2x2 + b2y2 4- c2z2 = 1, 
(y) dz = aydx + bdy, — kx or x2 4- y2 4- z2 = 1 or =f(x). 

5. Show that if an equation is integrable, it remains integrable after any change 
of variables from x, y, z to ι¿, υ, w. 

6. Apply Mayer's method to sundry of Exs. 2 and 3. 

7. Find the conditions of exactness for an equation in f our variables and write 
the formula for the integration. Integrate with or without a factor : 

(a) (2 x 4- 2 4- 2 xz) dx 4- 2 a¾/đy 4- æ2đz + đu = 0, 
(ß) yzudx 4- xzudy 4. /ucřz 4- xyzdu =0 , 
(7) ( + 2 4- w)<‰ + (x + 2 4 M)đy 4- (x 4- 4- M)ÆS 4- (x + 2/ + z)đu = 0, 
(δ) w (y 4- 2) cfø 4- ( + z 4- 1) dy 4- wđz — (y 4- z)đi¿ = 0. 

8. If an equation in four variables is integrable, it must be so when any one of 
the variables is held constant. Hence the four conditions of integrability obtained 
by writing (5) for each set of three coefficients must hold. Show that the conditions 
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are satisfied in the following cases. Find the integrals by a generalization of the 
method in the text by letting one variable be constant and integrating'the three 
remaining terms and determining the constant of integration as a function of the 
fourth in such a way as to satisfy the equations. 

(a) z(y + z)dx + z(u — x)dy + y (x — u)dz + y(y + z)du = 0, 
(ß) uyzdx + uzx log xdy + uxy log xdz — xdu = 0. 

9. Try to extend the method of Mayer to such as the above in Ex. 8. 

10. If 6r(æ, y, z) = a and -EΓ(x, y, z) = b are two families of surfaces defining a 
family of curves as their intersections, show that the equation 

(G'yH'z - G π )ðx + (G'ZHX - G'xH'z)dy + (G'Ji; - GļĦx)dz = 0 

is the equation of the planar elements perpendicular to the curves at every point 
of the curves. Find the conditions on 6r and H that there shall be a family of sur­
faces which cut all these curves orthogonally. Determine whether the curves below 
have orthogonal trajectories (surfaces) ; and if they have, find the surfaces : 

(a) y = x + α, z = x + &, (ß) y = ax + 1, z = tø, 
(7) x2 + y2 = α2, z = 6, (δ) xy = α, xz = ò, 
(e) x2 + y2 + z2 = α2, xy = 5, (V) x2 + 2y2 + 3z2 = α, xy + z = b, 
(η) log xy = az, x + y + z = ò, (ŵ) 2/ = 2 ax + α2, z = 2bx + b2. 

11. Extend the work of proposition 3, § 94, and Ex. 11, p. 234, to find the normal 
derivative of the solution of equation (1) and to show that the singular solution may 
be looked for among the factors of µ~1 = 0. 

12. If F = P i + Qj + ß k be formed, show that (1) becomes F.đr = 0. Show 
that the condition of exactness is V×F = 0 by expanding V×F as the formal vector 
product of the operator V and the vector F (see § 78). Show further that the condi­
tion of integrability is F«(V×F) = 0 by similar formal expansion. 

13. In Ex. 10 consider VG and VH. Show these vectors are normal to the sur­
faces G = α, H = ò, and hence infer that (V6r)×(V-H“) is the direction of the inter­
section. Finally explain why dτ»(VG×'VH) = 0 is the differential equation of the 
orthogonal family if there be such a family. Show that this vector form of the family 
reduces to the form above given. 

111. Systems of simultaneous equations. The two equations 

dy „, dz ,  
— = f(x, y, z), — = g (x, y% z) (6) 

in the two dependent variables and z and the independent variable x 
constitute a set of simultaneous equations of the first order. It is more 
customary to write these equations in the form 

dx = dy = dz ^ 
X(x, y, z) Y(x, y, z) Z(x, y,z)' ^ } 

which is symmetric in the differentials and where X: Y: Z = 1 : ƒ : g. 
At any assigned point x0, y0, z0 of space the ratios dx:dy.dz of the 
differentials are determined by substitution in (7). Hence the equations 
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fix a definite direction at each point of space, that is, they determine a 
lineal element through each point. The problem of integration is to 
combine these lineal elements into a family of curves F(x, y, z) — Cχ, 
G(x, y, z) = C2, depending on two parameters Cλ and C2, one curve pass­
ing through each point of space and having at that point the direction 
determined by the equations. 

For the formal integration there are several allied methods of pro­
cedure. In the first place it may happen that two of 

dx __dy dy _ dz dx __ dz 
T ~ T ' Ύ~¯¯z' ¯X“¯¯Ž 

are of such a form as to contain only the variables whose differentials 
enter. In this case these two may be integrated and the two solutions 
taken together give the family of curves. Or it may happen that one 
and only one of these equations can be integrated. Let it be the first 
and suppose that F(x, y) = Çχ is the integral. By means of this inte­
gral the variable x may be eliminated from the second of the equations 
or the variable y from the third. In the respective cases there arises 
an equation which may be integrated in the form G (y, z, J = C2 or 
G(x, z, F) = C2, and this result taken with F(x, y) = Cλ will determine 
the family of curves. 

Consider the example — = —- = — Here the two equations 
yz xz  

xdx ydy Ί xdx 
— = —^– and = dz 

x z 
are integrable with the results x3 — ys = Cx, x2 — z2 = C2, and these two integrals 
constitute the solution. The solution might, of course, appear in very different 
form ; for there are an indefinite number of pairs of equations F(x, y, z, C\) = 0, 
G ( , ž/, z, C2) = 0 which will intersect in the curves of intersection of x8 — ys = , 
and x2 — z2 = C2. In fact (y3 + C )2 — (z2 + C2)2 is clearly a solution and could 
replace either of those found above. 

Consider the example = —— = Here 
x2-y2-z2 2xy 2xz 

ď dz 
— = —, with the integral = Cλz, 

z 
is the only equation the integral of which can be obtained directly. *Γf be elimi­
nated by means of this first integral, there results the equation 

^—. = — or 2xzđx + [(Cļ+ï)z*-x*¯\dz = O. 
x*-(C*+l)z* 2xz L U ; J 

This is homogeneous and may be integrated with a factor to give 

x* + (Cļ + l)z2 = C2z or x2 + y2 + z2 = C2z. 
Hence = Cxz, x2 + y2 + z2 = C2z 
is the solution, and represents a certain family of circles. 
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Another method of attack is to use composition and division. 

dx _ dy _ dz _ λdx -f- µdy + vdz 
Y ~ T ~ z “ ~ \x + µY + vZ (' 

Here λ, /χ, v may be chosen as any functions of (x, y, z). I t may be 
possible so to choose them that the last expression, taken with one of 
the first three, gives an equation which may be integrated. With this 
first integral a second may be obtained as before. Or it may be that 
two different choices of λ, /x, v can be made so as to give the two desired 
integrals. Or it may be possible so to select two sets of multipliers that 
the equation obtained by setting the two expressions equal may be 
solved for a first integral. Or it may be possible to choose λ, µ,, v so 
that the denominator XX -ļ- µ. Y -ļ- vZ = 0, and so that the numerator 
(which must vanish if the denominator does) shall give an equation 

λdx + µdy + vdz = 0 (9) 

which satisfies the condition (5) of integrability and may be integrated 
by the methods of § 109. 

Consider the equations = = Here take λ, µ, v 
x 4 f + yz x2 -\-y2 — xz (x + y)z 

as 1, — 1, — 1 ; then \X + µY + vZ = 0 and dx — dy — dz = 0 is integrable as 
x — y — z = Cx. This may be used to obtain another integral. But another choice 
of λ, µ, v as æ, ?/, 0, combined with the last expression, gives 

Xdx†ydz = dz o r l 0 g ( χ 2 + y 2 ) = l 0 ç 2 2 + C r 

(*2 + ž/2) (X + y) {X + y)Z &V ) * 2 

Hence x — y — z — Cx and x2 + y2 = C2z
2 

will serve as solutions. This is shorter than the method of elimination. 
It will be noted that these equations just solved are homogeneous. The substi­

tution x = uz, y = vz might be tried. Then 

udz + zdu _ vdz 4- zdv _ dz _ zdu _^ zdv 
u2 + v2 + v u2 + v2 — + v v2 — uv † v 2 — uv —  

du dv dz 
or — = — = — 

V2 — UV + V U2 — UV — U Z 

Now the first equations do not contain z and may be solved. This always happens 
in the homogeneous case and may be employed if no shorter method suggests itself. 

I t need hardly be mentioned that all these methods apply equally to 
the case where there are more than three equations. The geometric 
picture, however, fails, although the geometric language may be contin­
ued if one wishes to deal with higher dimensions than three. In some 
cases the introduction of a fourth variable, as 

dx dì/ dz dt dt , .Λ . 
x = T = ž = T 01' =7' (10) 
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is useful in solving a set of equations which originally contained only 
three variables. This is particularly true when X, Y, Z are linear with 
constant coefficients, in which case the methods of § 98 may be applied 
with † as independent variable. 

112. Simultaneous differential equations of higher order, as 

df ~ X [x> y> dt dt)' df ~ Y\x' y> dt dty 

d?r /dφ\2 , dr dφ\ 1 d I q dφ\ I , dr dφ\ 
If ¯ r\Tt)=R\r> *>Tt'Έ)' řďt^Tt) = φ[r> ψ' Ŵ1 Έ)' 

especially those of the second order like these, are of constant occur­
rence in mechanics ; for the acceleration requires second derivatives 
with respect to the time for its expression, and the forces are expressed 
in terms of the coordinates and velocities. The complete integration of 
such equations requires the expression of the dependent variables as 
functions of the independent variable, generally the time, with a num­
ber of constants of integration equal to the sum of the orders of the 
equations. Frequently even when the complete integrals cannot be 
found, it is possible to carry out some integrations and replace the 
given system of equations by fewer equations or equations of lower 
order containing some constants of integration. 

No special or general rules will be laid down for the integration of 
systems of higher order. In each case some particular combinations of 
the equations may suggest themselves which will enable an integration 
to be performed.* In problems in mechanics the principles of energy, 
momentum, and moment of momentum frequently suggest combinations 
leading to integrations. Thus if 

x" = Z, y" = Y, z" = Z, 

where accents denote differentiation with respect to the time, be multi­
plied by dx, dy, dz and added, the result 

x“dx + y“dy + z“dz = Xdx + Ydy + Zdz (11) 

contains an exact differential on the left ; then if the expression on the 
right is an exact differential, the integration 

i. (χn 4_ Ίf2 + zη = χdχ + γdy + zdz _|_ ( 

* It is possible to differentiate the given equations repeatedly and eliminate all the 
dependent variables except one. The resulting differential equation, say in x and t, may 
then be treated by the methods of previous chapters ; but this is rarely successful except 
when the equation is linear. 
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can be per formed . T h i s is the principle of energy in i ts s imples t form 

If two of t h e equa t ions are mul t ip l i ed by the chief var iable of the o ther 

a n d sub t rac ted , t h e resu l t is 

yx" - xy" = yX - x Y (12) 

a n d t h e express ion on t h e left is aga in a n exact differential ; if t h e 

r i g h t - h a n d s ide reduces to a cons t an t or a funct ion of t, t h e n 

yd _ xÿ =ƒƒ(*) + (12') 

is a n in t eg ra l of t h e equa t ions . T h i s is the principle of moment of 

momentum. I f t h e equa t ions can be mul t ip l i ed by cons tan t s as 

fa» + my» + z" =lχ + mY+ nZ, (13) 

so t h a t t h e express ion on t h e r i g h t reduces to a funct ion of t, a n in te­
g ra t ion m a y be per formed. T h i s is the principle of momentum. These 
t h r e e a re t h e mos t commonly usable devices . 

As an example : Let a particle move in a plane subject to forces attracting it 
toward the axes by an amount proportional to the mass and to the distance from 
the axes ; discuss the motion. Here the equations of motion are merely 

d2x , d2y , đ¾ , ð*y 
m — = — kmx, m —- = — kmy or —- = — kx, —- = — ky. 

dt2 ' db* dt2 ' dt* 

T h e n g + / ¿ = - M ^ + ŵ ) and ( D % ( ! ) • = _ ¢* + m c . 

AI d2x d2y dx dy 
Also y —- — x - 4 = 0 and y x— = C. 

dt2 dt2 dt dt 
In this case the two principles of energy and moment of momentum give two 
integrals and the equations are reduced to two of the first order. But as it happens, 
the original equations could be integrated directly as 

— dx=-kxdx, №)2 = -kx2 + C2, dx =dt 
dt2 \dt/ VC* - kx2 

%dy=-kydy, (g)' = - * + * • , -jΛ= = dt. 
dt2 \dt J VK2-ky2 

The constants C2 and K2 of integration have been written as squares because they 
are necessarily positive. The complete integration gives 

Vkx = Csin(Vkt + Cj, Vky = Ksm(Vkt + K2). 

As another example : A particle, attracted toward a point by a force equal to 
r/m2 + 2/ 3 per unit mass, where m is the mass and h is the double areal velocity 
and r is the distance from the point, is projected perpendicularly to the radius vec­
tor at the distance vrnft ; discuss the motion. In polar coordinates the equations 
of motion are 

Γd2r /dφ\2¯\ „ mr mh2 m d ,dφ\ ^ Λ 
m\—- — r ( — ) \ = R = , (r2 —- ļ = Φ = 0. 

Idt2 \dt J J m2 r3 r dt\ dt/ 
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The second integrates directly as r2dφ/dt = h where the constant of integration h 
is twice the areal velocity. Now substitute in the first to eliminate ψ. 

ċPr_h2____r^_h2 d2r___^ % Λ*Λ2__ r2 

^¡2~^-¯¯~2~^^ o r aV-~~m2 °l \ďt) ~¯^^2+ ' 

Now as the particle is projected perpendicularly to the radius, dr/dt = 0 at the 
start when r = Vmĥ. Hence the constant is ħ/m. Then 

dr ΊA _ r2dφ ΊΛ . Vmhdr — = = = dt and = dt give = = = dφ. 
> lĩ h “ r\L ί 
\m m2 \ hm 

Hence V Ä Λ f L = ø + C or ļ _ J _ = M ± Ώ ! . 
\r2 h r2 hm mh 

Now if it be assumed that φ = 0 at the start when r = VmΛ, we find (7 = 0. 

Hence r2 = is the orbit. 
l + Φ2 

To find the relation between φ and the time, 

r2dφ = hdt or ?̄ - = dt or ¿ = m tan-1«*, 

if the time be taken as t = 0 when ø = 0. Thus the orbit is found, the expression 
of φ as a function of the time is found, and the expression of r as a function of the 
time is obtainable. The problem is completely solved. I t will be noted that the 
constants of integration have been determined after each integration by the initial 
conditions. This simplifies the subsequent integrations which might in fact be 
impossible in terms of elementary functions without this simplification. 

EXERCISES 
1. Integrate these equations : 

, . dx dy dz in× dx dy dz 
yz xz xy y¿ x¿ xzy¿zλ 

dx _dy __dz . dx _dy _ dz 
xz yz xy' yz xz x + y' 

dx _dy _ dz . dx _ dy _ dz 
( e ) ¯¯Ί¡¯~~x~ l + z2' ( ^^ī~ Sy + áz~ 2y + òz' 

dx di/ dz 
2. Integrate the equations : (a) = = , 

bz — cy ex — az ay — ox 
dx _ dy _ dz . dx _ dy _ dz 

x2 + y2~ 2xy~ xz + yz' y + z xΛ-z x + y' 
dx _ dy _ dz dx _ dy _ dz 

y*x — 2x*~2y* — xsy yz(xs — y3) ' x{y — z) y{z — x) z(x — y)' 
dx _ dy _ dz dx _ — dy _ dz 

( f ) x(y2-z2) ~ y(z2-x2) ¯¯z(x2-y2) {V) x(y2-z2) ~ y(z2 + x2) ¯¯ z(x2 + y2) ' 

{θ)J*_ = Jy__Jţ_ = dt ( o - ^ = dy = dz =dt. 
y - z x + ÿ x + z y-z x + y + t x + z + t 
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3 . Show that the differential equations of the orthogonal trajectories (curves 
of the family of surfaces F(x, y,z) = are dx:dy \dz — F^:F¦^:F¡. Find the curves 
which cut the following families of surfaces orthogonally : 

(a) α2x2 + ò¾2 + c2z2 = C, (jS) xyz = C, (y) y2 = Cxz, 
(δ) = x tan(z + 0), (e) = x tan Cz, (ś*) = Cxy. 

4. Show that the solution of dx : dy : dz = X : Y : Z, where A", F, Z are linear 
expressions in x, /, , can always be found provided a certain cubic equation can 
be solved. 

5. Show that the solutions of the two equations 

^ + Γ(αx + by) = Γ t , 5 + Γ(α'x + Vy) = T2, 
at at 

where T, Γ1? Γ2 are functions of ¿, may be obtained by adding the equation as 

(x + ly) + λΓ(x + ly) =Tλ + l‰ 
dt 

after multiplying one by ï, and by determining λ as a root of 
*λ2 - (a + b') λ + ab' - α'ò = 0. 

6. Solve: (α) ¿— + 2(x - y) = í, Æ + x + = ¿2, 
đ¿ αí 

(j8) íđx = (í — 2x)đí, ¿đy = (tø + ty + 2x - t)dt, 
_ mđy _ ndz _ dt 

mn (y — z) nl (z — x) lm (x — y) t 

7. A particle moves in vacuo in a vertical plane under the force of gravity alone. 
Integrate. Determine the constants if the particle starts from the origin with a 
velocity V and at an angle of a degrees with the horizontal and at the time t = 0. 

8. Same problem as in Ex. 7 except that the particle moves in a medium which 
resists proportionately to the velocity of the particle. 

9. A particle moves in a plane about a center of force which attracts proportion­
ally to the distance from the center and to the mass of the particle. 

10. Same as Ex. 9 but with a repulsive force instead of an attracting force. 

11 . A particle is projected parallel to a line toward which it is attracted with 
a force proportional to the distance from the line. 

12. Same as Ex. 11 except that the force is inversely proportional to the square 
of the distance and only the path of the particle is wanted. 

13. A particle is attracted toward a center by a force proportional to the square 
of the distance. Find the orbit. 

14. A particle is placed at a point which repels with a constant force under 
which the particle moves away to a distance a where it strikes a peg and is 
deflected off at a right angle with undiminished velocity. Find the orbit of the 
subsequent motion. 

15. Show that equations (7) may be written in the form α*r×F = 0. Find the 
condition on F or on X , F , Z that the integral curves have orthogonal surfaces. 
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•113. Introduction to partial differential equations. An equation 
which contains a dependent variable, two or more independent varia­
bles, and one or more partial derivatives of the dependent variable 
with respect to the independent variables is called a partial differential 
equation. The equation 

Tw × z , Λ / × z n , 03 03 

is clearly a linear partial differential equation of the first order in one 
dependent and two independent variables. The discussion of this equa­
tion preliminary to its integration may be carried on by means of the 
concept of planar elements, and the discussion will immediately suggest 
the method of integration. 

When any point (xQi yQ9 zQ) of space is given, the coefficients P , Q, R 
in the equation take on definite values and the derivatives p and q 
are connected by a linear relation. Now any planar element through 
(x0, y0, 20) may be considered as specified by the two slopes p and q ;-for 
it is an infinitesimal portion of the plane z — z0 = p (x — xQ) + q (y — y0) 
in the neighborhood of the point. This plane contains the line or lineal 
element whose direction is 

dx:dy:dz = P:Q:R, (15) 

because the substitution of P , Q, R for dx = x — x0, dy = y — y0, 
dz = z — zQ in the plane gives the original equation Pp -f Qq = R. 
Hence it appears that the planar elements defined by (14), of which 
there are an infinity through each point of space, are so related that all 
which pass through a given point of space pass through a certain line 
through that point, namely the line (15). 

Now the problem of integrating the equation (14) is that of grouping 
the planar elements which satisfy it into surfaces. As at each point 
they are already grouped in a certain way by the lineal elements through 
which they pass, it is first advisable to group these lineal elements into 
curves by integrating the simultaneous equations (15). The integrals 
of these equations are the curves defined by two families of surfaces 
F(x, y, z) = Cχ and G (x, y, z) = C2. These curves are called the charac­
teristic curves or merely the characteristics of the equation (14). Through 
each lineal element of these curves there pass an infinity of the planar ele­
ments which satisfy (14). I t is therefore clear that if these curves be in 
any wise grouped into surfaces, the planar elements of the surfaces must 
satisfy (14) ; for through each point of the surfaces will pass one of the 
curves, and the planar element of the surface at that point must there­
fore pass through the lineal element of the curve and hence satisfy (14). 
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To group the curves F(x, y, z) = C\, G(x, y, z) = C2 which depend 
on two parameters Cv C2 into a surface, it is merely necessary to intro­
duce some functional relation C2=f(Cì) between the parameters so 
that when one of them, as Cv is given, the other is determined, and 
thus a particular curve of the family is fixed by one parameter alone 
and will sweep out a surface as the parameter varies. Hence to integrate 
(14), first integrate (15) and then write 

G(x, y, z) = Φ[F(x, y, *)] or Φ(F, G) = 0, (16) 

where Φ denotes any arbitrary function. This will be the integral of 
(14) and will contain an arbitrary function Φ. 

As an example, integrate (y — z)p + (z — x)q = x — y. Here the equations 

— z z — xx—  
as the two integrals. Hence the solution of the given equation is 

X + y + Z = Φ(X2 + y2 + Z2) OΓ φ ^ + ^ + z2, X + 2/ + z) = O, 
where Φ denotes an arbitrary function. The arbitrary function allows a solution 
to be determined which shall pass through any desired curve ; for if the curve be 
ƒ (x, y, z) = 0, g ( , , z) = 0, the elimination of x, y, z from the four simultaneous 
equations 

F(x, y, z) = Cv G (x, y, z) = C2, ƒ (x, y, z) = 0, g (x, y,z) = O 
will express the condition that the four surfaces meet in a point, that is, that the 
curve given by the first two will cut that given by the second two ; and this elimi­
nation will determine a relation between the two parameters Cx and C2 which will 
be precisely the relation to express the fact that the integral curves cut the given 
curve and that consequently the surface of integral curves passes through the given 
curve. Thus in the particular case here considered, suppose the solution were to 
pass through the curve y = x2, z = x ; then 

x2 + 2 + z2 = Cv x + y + z = C2, y = x2, z = x 
give 2x2 + x* = Cļ, x2 + 2x = C2, 
whence (Cf + 2 C2 - (¾2 + 8 C2 - 24 Cx - 16 CXC2 = 0. 

The substitution of Cx = x2 + y2 + z2 and C2 = x -f y -f z in this equation will 
give the solution of (y — z)p+ (z — x)q = x — y which passes through the parabola 
y = χ2, z = x. 

114. I t will be recalled that the integral of an ordinary differ­
ential equation f(x, y,y\ • • •, y(n)) = 0 of the nth order contains n con­
stants, and that conversely if a system of curves in the plane, say 
F(x, y, C, • • -, Cn)= 0, contains n constants, the constants may be 
eliminated from the equation and its first n derivatives with respect 
to x. I t has now been seen that the integral of a certain partial 
differential equation contains an arbitrary function, and it might be 
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inferred that the elimination of an arbitrary function would give 
rise to a partial differential equation of the first order. To show 
this, suppose F(x, y, z) = Φ[G(x, y, z)^]. Then 

+ KP = Φ' • ( ¾ + G p), F + F'zq = φ ' - {G'y + <¾) 

follow from partial differentiation with respect to x and ; and 

( - i ½ > + ( - F;<¾ q F o - F'XG 

is a partial differential equation arising from the elimination of Φ'. 
More generally, the elimination of n arbitrary functions will give rise 
to an equation of the nth. order; conversely it may be believed that 
the integration of such an equation would introduce n arbitrary func­
tions in the general solution. 

As an example, eliminate from z = Φ (xy) + Ψ (x + y) the two arbitrary func­
tions Φ and Ψ. The first differentiation gives 

p = Φ'. + ψ', q = Φ /. x + Y ' , p — q = (y — x)Φ'. 
2z 2z 2z 

Now differentiate again and let r = — , s = , t = Then 
x2 x y by2 

r — s = — Φ/ + (y — x) Φ" • I/, s — t = Φ/ + (y — x) Φ" • x. 
These two equations with p — q — (y — x) Φ' make three from which 

. , . , . x + y. 2z t t 82z t
 2z x + y/ z z\ 

χr-(x + y)s + yt= (p-q) or χ—--(χ + y) +y = _ _ ) 
x — y x2 x y y2 x — y\ x yj 

may be obtained as a partial differential equation of the second order free from 
Φ and Ψ. The general integral of this equation would be z = Φ (xy) + Ψ (x + y). 

A partial differential equation may represent a certain definite type 
of surface. For instance by definition a conoidal surface is a surface 
generated by a line which moves parallel to a given plane, the director 
plane, and cuts a given line, the directrix. If the director plane be taken 
as z = 0 and the directrix be the £-axis, the equations of any line of 
the surface are 

z = Cv y = C2x, with C1 = Φ(C2) 
as the relation which picks out a definite family of the lines to form a 
particular conoidal surface. Hence z = Φ (y/x) may be regarded as the 
general equation of a conoidal surface of which z = 0 is the director 
plane and the £-axis the directrix. The elimination of Φ gives JX -\-qy = O 
as the differential equation of any such conoidal surface. 

Partial differentiation maybe used not only to eliminate arbitrary func­
tions, but to eliminate constants. For if an equation ƒ (x, y, z, Cv C'2) = 0 
contained two constants, the equation and its first derivatives with respect 
to x and would yield three equations from which the constants could 
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be eliminated, leaving a partial differential equation F (x, y, z, p, q) = 0 
of the first order. If there had been five constants, the equation with 
its two first derivatives and its three second derivatives with respect 
to x and y would give a set of six equations from which the constants 
could be eliminated, leaving a differential equation of the second order. 
And so on. As the differential equation is obtained by eliminating the 
constants, the original equation will be a solution of the resulting dif­
ferential equation. 

For example, eliminate from z = Ax2 + 2 Bxy + Cy2 4- Dx + the five con­
stants. The two first and three second derivatives are 
p = 2Ax + 2By + Ώ, q = 2Bx + 2Cy + E, r = 2 A, s = 2 , t = 2C. 

Hence z = — ļ rx2 — ļ ty2 — sxy + px + qy 
is the differential equation of the family of surfaces. The family of surfaces do 
not constitute the general solution of the equation, for that would contain two 
arbitrary functions, but they give what is called a complete solution. If there had 
been only three or four constants, the elimination would have led to a differential 
equation of the second order which need have contained only one or two of the 
second derivatives instead of all three ; it would also have been possible to find three 
or two simultaneous partial differential equations by differentiating in different ways. 

115. If f(x, y, z, Cv C2) = 0 and F(x, y, z, p, q) = 0 (17) 

are two equations of which the second is obtained by the elimination of 
the two constants from the first, the first is said to be the complete solu­
tion of the second. That is, any equation which contains two distinct 
arbitrary constants and which satisfies a partial differential equation of 
the first order is said to be a complete solution of the differential equa­
tion. A complete solution has an interesting geometric interpretation. 
The differential equation F = 0 defines a series of planar elements 
through each point of space. So does f(x, y, z, Cv C2) = 0. For the 
tangent plane is given by 

¾ (*-*° )+S„ ( y^%)+¾„ (*^s° )=0 
10 « 10 10 

with f(x0, y0, s0, Cv C2) = 0 
as the condition that Cλ and C2 shall be so related that the surface 
passes through (x0, y0, zQ). As there is only this one relation between 
the two arbitrary constants, there is a whole series of planar elements 
through the point. As f(x, y, z, , C2) = 0 satisfies the differential equa­
tion, the planar elements defined by it are those defined by the differen­
tial equation. Thus a complete solution establishes an arrangement of 
the planar elements defined by the differential equation upon a family 
of surfaces dependent upon two arbitrary constants of integration. 
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From the idea of a solution of a partial differential equation of the 
first order as a surface pieced together from planar elements which 
satisfy the equation, it appears that the envelope (p. 140) of any family 
of solutions will itself be a solution ; for each point of the envelope is 
a point of tangency with some one of the solutions of the family, and 
the planar element of the envelope at that point is identical with the 
planar element of the solution and hence satisfies the differential equa­
tion. This observation allows the general solution to be determined from 
any complete solution. For if in ƒ ( , , , Cv C2) = 0 any relation 
C*2 = Φ(Cj) is introduced between the two arbitrary constants, there 
arises a family depending on one parameter, and the envelope of the 
family is found by eliminating Cχ from the three equations 

C.—VÙ, ¾ + ¾ = o, /=<>• ( 
As the relation C2 = Φ(Cχ) contains an arbitrary function Φ, the result 
of the elimination may be considered as containing an arbitrary func­
tion even though it is generally impossible to carry out the elimination 
except in the case where Φ has been assigned and is therefore no longer 
arbitrary. 

A family of surfaces ƒ (a?, y, z, Cv C2) = 0 depending on two param­
eters may also have an envelope (p. 139). This is found by eliminat­
ing Cx and C2 from the three equations 

fix, y, z, cv eg = o, Ķ = o, Ķ o. 
This surface is tangent to all the surfaces in the complete solution. 
This envelope is called the singular solution of the partial differential 
equation. As in the case of ordinary differential equations (§ 101), the 
singular solution may be obtained directly from the equation ; * it is 
merely necessary to eliminate p and q from the three equations 

F F 
F{x, y, s, p, q) = O, fy = °> -Ę = °-

The last two equations express the fact that F(p, q) = 0 regarded as 
a function of p and q should have a double point (§ 57). A reference 
to § 67 will bring out another point, namely, that not only are all the 
surfaces represented by the complete solution tangent to the singular 
solution, but so is any surface which is represented by the general 
solution. 

* It is hardly necessary to point out the fact that, as in the case of ordinary equations, 
extraneous factors may arise in the elimination, whether of L\, C2 or of p, q. 
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EXERCISES 
1. Integrate these linear equations: 

(a) xzp + yzq = xy, (ß) a (p + q) = z, (y) x2p + y2q = 22, 
(δ) -yp + xq + l + z2 = 0, (e) yp-xq-X2- y2, (f) (x + ¾)jp = ¿/, 
(η) x2p - x¿rø + Ž/2 = 0, (θ) {a -x)p + (b — y)q = c-z, 
(L) p t a n x -\- q tan?/ = tan z, ( ) ( /2 + 22 — x2)p — 2x?/(/ + 2xz = 0. 

2. Determine the integrals of the preceding equations to pass through the curves : 

for (a) x2 + y2 = \,z = 0, for (ß) y = O,x = z, 
for (y)y = 2x,z = l, for (e)x = z,y = z. 

3 . Show analytically that if F(x, y, z) = Cλ is a solution of (15), it is a solution 
of (14). State precisely what is meant by a solution of a partial differential equa­
tion, that is, by the statement that F(x, y, z) = Cx satisfies the equation. Show that 
the equations 

D z , Λ z D , r,ZF , r, F t „ F Λ -P — + Q — = -B and P h Q ļ -ß — = 0 
x y x by z 

are equivalent and state what this means. Show that if F= Cx and G = C2 are 
two solutions, then F = Φ(G) is a solution, and show conversely that a functional 
relation must exist between any two solutions (see § 62). 

4 . Generalize the work in the text along the analytic lines of Ex. 3 to estab­
lish the rules for integrating a linear equation in one dependent and four or n 
independent variables. In particular show that the integral of 

• z z dxλ dxn dz 
p ^ + - + p " ‰ = p - + 1 d e p e n d s o n i \=“- = p;=īw* 

and that it Fx = Cv • • -, Fn = Gn are n integrals of the simultaneous system, the 
integral of the partial differential equation is Φ (Fx, - - •, Fn) = 0. 

e -_ . . U U U 
5. Integrate : (a) x \- y \- z — = xyz, 

x y z 
(ß) { + z + u) ^ + (z + + x) ^ + (u + x + y) ^ = x + + z. 

x y z 

6. Interpret the general equation of the first order F(x, y, z, p, q) = 0 as deter­
mining at each point (x0, y0, z0) of space a series of planar elements tangent to a 
certain cone, namely, the cone found by eliminating p and q from the three simul­
taneous equations 

*4«o> » *o» P» ¢) = °» (x - ) + ( - ) ¢ = z - zo, 

(x - x0) — - (y - y0) — = 0. 

7. Eliminate the arbitrary functions : 

(a) x + ?/ + z = Φ (x2 + y2 + 2), (0) Φ (x2 + ?/2, z — xy) - 0, 
(7) = Φ (x + y) + Ý (x - y), (δ) z = (>4>Φ(x - y ) , 

(e) z = y2 + 2φ(¾-i + logy), ( 0 φ ( - , ^ , - ) = 0 . 
\2/ 2 x / 
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8. Find the differential equations of these types of surfaces : 

(a) cylinders with generators parallel to the line x = az, y = bz, 
(ß) conical surfaces with vertex at (α, ò, c), 
(7) surfaces of revolution about the line x:y :z = a:b:c. 

9. Eliminate the constants from these equations : 

(a) z = (x+ a) (y + 5), (ß) a(x2 + 2) + bz2 = 1, 
(7) (x - a)2 + ( - b)2 + (z- )2 = 1, (δ) (x - a)2 + (y - b)* + (z - c)2 = đ2, 

(e) Ax*.+ Bxy + Cy2 + Ώxz + ¾ = z2. 

10. Show geometrically and analytically that F(x, y, z) + aG(x, y, z) = b is a 
complete solution of the linear equation. 

11 . How many constants occur in the complete solution of the equation of the 
third, fourth, or nth order ? 

12. Discuss the complete, general, and singular solutions of an equation of the 
first order F(æ, ?/, z, ux, uy, a'z) = 0 with three independent variables. 

13. Show that the planes z = ax + by + (7, where a and b are connected by the 
relation F (a, b) = 0, are complete solutions of the equation F(p, q) = 0. Integrate : 

(a)pq = l, (ß)q=P2 + l, (7) P2 + q2 = ™2, 
( ) pq = k, (e) klogq+p = O, (ft 3p 2 - 2ç 2 = 4pç, 

and determine also the singular solutions. 

14. Note that a simple change of variable will often reduce an equation to the 
type of Ex. 13. Thus the equations 

r(2,ŷ = o, ‰ ) = o, *(?>f)=o, 
with z = ez', x = ex', z — ez'', x = ex', y = e,v', 

take a simpler form. Integrate and determine the singular solutions : 

(a) q = z+ px, (ß) x2p2 + y2q2 = z2, (7) z = pq, 
(δ) q = 2yp2, (e) (p - y)2 + (q- x)2 = 1, ( 0 z = p™q™. 

15. What is the obvious complete solution of the extended Clairaut equation 
z = xp + yq -\- f(p, q) ? Discuss the singular solution. Integrate the equations : 

(a) z = xp + yq + Vp2 + q2 + 1, (ß) z = xp + yq + (p + q)2, 
(7) z = xp + yq + pq, (δ) z=xp + yq-2 Vpq. 

116. Types of partial differential equations. In addition to the 
linear equation and the types of Exs. 13-15 above, there are several 
types which should be mentioned. Of these the first is the general 
equation of the first order. If F(x, yx », p, q) = 0 is the given equation 
and if a second equation Φ (x, y, z, ρ, q, a) = 0, which holds simultane- . 
ously with the first and contains an arbitrary constant can be found, 
the two equations may be solved together for the values of p and q, and 
the results may be substituted in the relation ãz = pdx -\- qdy to give a 

total differential equation of which the integral will contain the con­

stant a and a second constant of integration b. This integral will then 
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be a complete integral of the given equation ; the general integral may-
then be obtained by (18) of § 115. This is known as Charpit's method. 

To find a relation Φ = 0 differentiate the two equations 

F{x, y, Ä, p, q) = O, Φ (x, y, «, p, q,a)=O (19) 
with respect to x and y and use the relation that dz be exact. 

F' _i_ F'υ 4- F' — + F' — = 0. Φ'. 

•: + ŵ + »;l + »;Ŝ = o, -¾, 

Φ' + Φ'<7 4- Φ' ^ + Φ ' ^ = 0, - F\ 
y ^ zl ^ p d y ^ q dy ' ¢ ' 

dy dæ ' I q p q p 

Multiply by the quantities on the right and add. Then 

Φ Φ Φ φ Φ 
(K+PK)γp + iF'y+<iK)γq-Kγχ-K-^-(pK+iK)γz = o. (20) 
Now this is a linear equation for Φ and is equivalent to 

dp dq dx dy dz dΦ 
~F Λ-pF = F'y + qF'z = ≡F¯; = ≡F = - (jpF'p + qF ) = ¯Ō¯ ' ( } 

Any integral of this system containing p or q and a will do for Φ, and 
the simplest integral will naturally be chosen. 

As an example take zp(x + y) + p(q — p) — z2 = 0. Then Charpit's equa­
tions are 

dp _ dq _ dx 
— zp+p2(x + y) zp — 2zq+pq(x + y) 2p — q — z(x + y) 

_ dy _ dz 
— p 2p2 — 2pq — pz(x-{- y) 

How to combine these so as to get a solution is not very clear. Suppose the sub­
stitution z = ez', p = ez'p', q = ez'q' be made in the equation. Then 

p' {x + y)+ p' {q' — ņ') — 1 = 0 
is the new equation. For this Charpit's simultaneous system is 

dp' _ dq' _ dx _ dy _ dz 
p' p' 2p' -q' - (x + y) — p'~ 2p'2 — 2pq - p' (x + y) 

The first two equations give at once the solution dp' = dq' or q' = p' + a. Solving 
p' ( + ) + V' iff -p')-l = O and q' = p' + α, 
1 , 1 dx + dy J 

p' = , q — h α, dz = — + ady. 
a+x+y a+x+y a+x+y 
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Then z = log (a + x + y) + 1 + or logz = log (a + + ) + «2/ +  
is a complete solution of the given equation. This will determine the general 
integral by eliminating a between the three equations 

z = e«* + *(α + z + y), =f{a), 0 = (y +f'(a))(a + x + y) + 1, 
where /(a) denotes an arbitrary function. The rules for determining the singular 
solution give z = 0 ; but it is clear that the surfaces in the complete solution can­
not be tangent to the plane z = 0 and hence the result z = 0 must be not a singular 
solution but an extraneous factor. There is no singular solution. 

The method of solving a partial differential equation of higher order 
than the first is to reduce it first to an equation of the first order and 
then to complete the integration. Frequently the form of the equation 
will suggest some method easily applied. For instance, if the deriva­
tives of lower order corresponding to one of the independent variables 
are absent, an integration may be performed as if the equation were 
an ordinary equation with that variable constant, and the constant of 
integration may be taken as a function of that variable. Sometimes a 
change of variable or an interchange of one of the independent variables 
with the dependent variable will simplify the equation. In general the 
solver is left mainly to his own devices. Two special methods will be 
mentioned below. 

117. If the equation is linear with constant coefficients and all the 
derivatives are of the same order, the equation is 

(a0D¦ + V ¾ ~ 4 + - • - + an_ΎDxD^ + aj)ξ)z = R (x, y). (22) 

Methods like those of § 95 may be applied. Factor the equation. 

«*(¾ - «A)(A. - A ) • • • A - «A) * = R(x, ÿ). (22') 
Then the equation is reduced to a succession of equations 

D¿Í - aDyZ = R (x, y), 

each of which is linear of the first order (and with constant coefficients). 
Short cuts analogous to those previously given may be developed, but 
will not be given. If the derivatives are not all of the same order but 
the polynomial can be factored into linear factors, the same method will 
apply. For those interested, the several exercises given below will serve 
as a synopsis for dealing with these types of equation. 

There is one equation of the second order, * namely 

1 hi _ 2u 2u hc 

V2 ¯ f ¯¯ x¯2 + f + ā¡Γ 2 ' ( ) 
* This is one of the important differential equations of physics ; other important equa­

tions and methods of treating them are discussed in Chap. XX. 



2T6 D I F F E E E N T I A L EQUATIONS 

which occurs constantly in the discussion of waves and which has there­
fore the name of the wave equation. The solution may be written down 
by inspection. For try the form 

(;r, y, z, t) = F (ax + by + cz — Vt) + G (ax + by + cz + 17). (24) 

Substitution in the equation shows that this is a solution if the relation 
a2 -f b'2 -f c2 = 1 holds, no matter what functions F and G may be. Note 
that the equation 

ax + by + cz — Vt = O, a2 + b2 + (ř = l, 
is the equation of a plane at a perpendicular distance Vt from the origin 
along the direction whose cosines are a, b, c. If t denotes the time and 
if the plane moves away from the origin with a velocity V9 the function 
F (ax -f by + cz — Vt) = F(O) remains constant ; and if G = 0, the value 
of will remain constant. Thus = F represents a phenomenon which 
is constant over a plane and retreats with a velocity V, that is, a plane 
wave. In a similar manner = G represents a plane wave approaching 
the origin. The general solution of (23) therefore represents the super­
position of an advancing and a retreating plane wave. 

To Monge is due a method sometimes useful in treating differential equations 
of the second order linear in the derivatives r, s, t ; it is known as Mongers method. 
Let Rr + Ss + Tt = V (25) 
be the equation, where R, S, Γ, V are functions of the variables and the derivatives 
p and q. From the given equation and 

dp = rdx + sdy, dq = sdx + tdy, 
the elimination of r and t gives the equation 

8 (Rdy2 - Sdxdy + Tdx2) - (Rdydp + Tdxdq - Vdxdy) = 0, 
and this will surely be satisfied if the two equations 

Rdy2 - Sdxdy + Tdx2 = 0, Rdydp + Tdxdq - Vdxdy = 0 (25r) 
can be satisfied simultaneously. The first may be factored as 

dy-fx(x, , z,p, q)dx = O, dy-f2(x, y, z,p, q)dx O. (26) 
The problem then is reduced to integrating the system consisting of one of these fac­
tors with (25') and dz =pdx + qdy, that is, a system of three total differential equations. 

If two independent solutions of this system can be found, as 
Ml (‰ 2/, z, p, q) = Cx, u2 (x, y, z, p, q) = C2, 

then uλ = Φ (u2) is a first or intermediary integral of the given equation, the general 
integral of which may be found by integrating this equation of the first order. If 
the two factors are distinct, it may happen that the two systems which arise may 
both be integrated. Then two first integrals uλ = Φ (u2) and vλ = Ψ (v2) will be found, 
and instead of integrating one of these equations it may be better to solve both for 
p and q and to substitute in the expression dz = pdx + qdy and integrate. When, 
however, it is not possible to find even one first integral, Monge's method fails. 
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As an example take (x + y) (r — t) = — áp. The equations are 

(x + y) diß — {x + y) dx2 = 0 or dy — dx = 0, dy + dx — 0 

and (x + ?/) đ¿Ŵ — (x + ¿/) dxdq + ápdxdy = 0. (A) 

Now the equation dy — dx = 0 may be integrated at once to give i/ = x + C'ļ. The 
second equation (A) then takes the form 

2xdp + àpdx -2xdq-\- Ct(dp - dq) = 0 ; 

but as dz = pdx + qdy = (p + q)dx in this case, we have by combination 

2 ( x φ + jκfø) - 2(xđç + çđx) + {dp -dq) + 2dz = Q 

or (2æ+ C ļ ) ( p - ς f ) + 2z = C2 or (x + ÿ) (p - ç) + 2z = C2. 

Hence (x + y) (p - q) + 2 2 = Φ (y - ) (27) 

is a first integral. This is linear and may be integrated by 

dx dy dz -_ dx dz 
= = or x + y = RΛ. — = 

+ + Φ(y-x)-2z l Kχ φ(K^-2x)-2z 

This equation is an ordinary linear equation in z and x. The integration gives 

Kχze^= I eKiΦ{K^-2x)dx + K<¿. 
2x "/-» 2jc 

Hence (x + y)zeF + v— ļ 1 ( — 2x)dx = K2 = Ψ( ) = ψ(x + y) 

is the general integral of the given equation when Kλ has been replaced by x +  
after integration, — an integration which cannot be performed until Φ is given. 

The other method of solution would be to use also the second system containing 
dy + dx = 0 instead of dy — dx = 0. Thus in addition to the first integral (27) a 
second intermediary integral might be sought. The substitution of dy + dx = 0,  

-f x = Cļ in (A) gives Çλ (dp + dq) + ápdx = 0. This equation is not integrable, 
because dp + dq is a perfect differential and pdx is not. The combination with 
dz = pdx + qdy = (p — q)dx does not improve matters. Hence it is impossible to 
determine a second intermediary integral, and the method of completing the 
solution by integrating (27) is the only available method. 

Take the equationps— qr = 0. Here S =p, R =— q, T = V = 0. Then 

— qdy2 — pdxdy = 0 or dy = 0, pdx + qdy = 0 and — qdydp = 0 

are the equations to work with. The system dy = 0, qdydp = 0, dz = pdx + qdy, 
and the system pdx + qdy = 0, qdydp = 0, dz = pdx + qdy are not very satisfactory 
for obtaining an intermediary integral uχ = Φ(w2), although p = Φ(z) is an obvious 
solution of the first set. It is better to use a method adapted to this special 
equation. Note that 

*-(l) = PLZÎT, and U¢) = O gives 1 = f(y). 
cx \p/ p2 ex \pļ p 

By (11), p. 124, -=-{ψ); then ^=-f(y) 
P \ y/z y 

and x = - f/( ) dy + Ψ(z) = Φ (y) + Ψ (z). 
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EXERCISES 

1. Integrate these equations and discuss the singular solution: 

(a) p½ + q½ = 2 x, (ß) (p2 + q2) x = pz, (y) (p + q) (px + qy) = l, 
(δ) pq=px + qij, (e) p 2 + g2 = + ?/, (f) xp2 -2zp + xy = 0, 
(il) </2 = Z 2 (p -< / ) , (θ) q(p2Z + q2) = l, . (t) p (1 + q2) = q (z - c), 
( « ) (1 + ςf) = øz, (λ) 2/2 (p2 - 1) = x2p2, (/χ) z2 (p2 + q2 + 1) = c2, 
(ι/) p = (2 + yq)2, (o )pz = l + ç2, ( τ r ) z - p g : = 0 , (/o)ç = x p + p 2 . 

2. Show that the rule for the type of Ex. 13, p. 273, can be deduced by Charpit's 
method. How about the generalized Clairaut form of Ex. 15 ? 

3 . (a) For the solution of the type ft(x, p) = /2(?/, ç), the rule is : Set 

fι(B,P)=f2(Vι Q) = a, 
and solve forp and q a s p = ( , a), q = g2(y, a) ; the complete solution is 

z'= ƒ 9ι(xι a)te + ƒ S Ŵ a)dV + b-

(ß) For the type F(z, p,q) = 0 the rule is : Set X = x + Ö¾/, solve 

FÍz,—,α ļ for = ώ(z.a). and let I =f(z,a): 
\ ' đ X ' dx) dX ΨXì h J<Þ(z,a) v ' ' ' 

the complete solution is x + ay + ò =f(z, a). Discuss "these rules in the light of 
Charpit's method. Establish a rule for the type F(x + y, p , q) = 0. Is there any 
advantage in using the rules over the use of the general method ? Assort the exam­
ples of Ex. 1 according to these rules as far as possible. 

4 . What is obtainable for partial differential equations out of any characteristics 
of homogeneity that may be present ? 

5. By differentiating p = / (x , y, z, q) successively with respect to x and show 
that the expansion of the solution by Taylor's Formula about the point (x0, y0, z0) 
may be found if the successive derivatives with respect to alone, 

z_ ð¾ δ¾ ņz 
y' y2' y8' yn' 

are assigned arbitrary values at that "point. Note that this arbitrariness allows the 
solution to be passed through any curve through (x0, y0, z0) in the plane x = x0. 

6. Show that F(x, y, z, p , q) = 0 satisfies Charpit's equations 

du = J^=JV- = * = ŵ = fr , (28) 
-F -F -(pF; + qF¦) F^ + pF'z F'y + qF'z 

where is an auxiliary variable introduced for symmetry. Show that the first 
three equations are the differential equations of the lineal elements of the cones of 
Ex. 6, p. 272. The integrals of (28) therefore define a system of curves which have 
a planar element of the equation F = 0 passing through each of their lineal tan­
gential elements. If the equations be integrated and the results be solved for the 
variables, and if the constants be so determined as to specify one particular curve 
with the initial conditions x0 , yOÌ z0, p 0 , q0, then 

x = x(u, x0, øo,«o,j>o»¢o)» = y(-••)»« = «(•••)» P=P('“)i « = «(•••)• 
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Note that, along the curve, q =f(p) and that consequently the planar elements 
just mentioned must lie upon a developable surface containing the curve (§ 67). The 
curve and the planar elements along it are called a characteristic and a characteristic 
strip of the given differential equation. In the case of the linear equation the 
characteristic curves afforded the integration and any planar element through 
their lineal tangential elements satisfied the equation ; but here it is only those 
planar elements which constitute the characteristic strip that satisfy the equation. 
What the complete integral does is to piece the characteristic strips into a family 
of surfaces dependent on two parameters. 

7. By simple devices integrate the equations. Check the answers: 

x2 yn x y  
(δ) s+pf(x) = g(y), (e) ar = xy, (£)' xr = (n - l)p. 

8. Integrate these equations by the method of factoring: 
(α) (I¾ - α ¾ ) = 0, (ß) ( ¾ - D,)> z = 0, (y) ( ¾ D j - Ώ ) z = 0, 
(S) (1% + SDχD,,+ 2Iξ)z = x + y, (e) ( J ¾ - ¾ ¾ - β J ¾ ) * = ay; 

(f) ( 2 ¾ - J ¾ - 8 ¾ + 8 ¾ ) « = O, (,) ( ¾ - J ¾ + 2 ¾ + l ) β = e—. 
9. Prove the operational equations : 

(α) e«^y ø (y) = (1 + axΏy + ¾ ŵ ¾ + • • •) Φ (y) = Φ (y + ax), 

(?) TΛ 1 , ° = eaxDyķr° = e * ¾ ( ) = ( + ax), Ώx — aDy Dx 

( ) , 1 , E(x' ) = eaxDy Γ*e-“f¾ß(É, y)đ¢ = Γ ¾ ( ĥ y + α a î - α ö í « .  
— aDy J J 

10. Prove that if [ ( ¾ - <r12¾,)n,ι • • • ( ¾ - ¾ ¾ ) " * ] 2 = 0, then 

= Φu(y + ) + 12( / + ) + • • • + x»*-*Φim¿y + aλx) + •-• 
+ Φ*i(ž/ + ccj¿x) + xΦ½(i/ + <3r¾x) + • • • + x™k-ìΦkmi¿(y + (*&), 

where the Φ's are all arbitrary functions. This gives the solution of the reduced equa­
tion in the simplest case. What terms would correspond to {Dx — aΏy — ß)mz = 0 ? 

11 . Write the solutions of the equations (or equations reduced) of Ex. 8. 

12. State the rule of Ex. 9 (7) as : Integrate R(x, — ax) with respect to x and 
in the result change to + ax. Apply this to obtaining particular solutions of 
Ex. 8 (δ), (e), (η) with the aid of any short cuts that are analogous to those of 
Chap. VII I . 

13. Integrate the following equations: 
(a) ( 2 ¾ - ¾ + ¾ - l ) z = c o s ( a ; + 2ÿ) + ei', (ß) x*r2 + 2xys+y42 = x2 + y2, 
(7) (2¾ + ¾ + ¾ - l ) s = sm(3 + 2y), (5) r - t - 3p + Sq = e* + *v, 

(e) ( Z § - 2 ¾ Z ¾ + 2¾)z = x -2 , (ft r-t+p + 3q-2z = ex-v-x2y, 
(η) (Ißχ-ΏxOy-2Ißy + 2 ¾ + 2 ¾ ) 2 = e** + ** + si (2z + y) + xy, 

14. Try Monge's method on these equations of the second order : 

(a) q2r - 2pqs + P2t = 0, (ß) r - a4 = 0, (7) r + s = - p, 
(δ) q(l + q)r-(p + q + 2pq)s + p(l + p)t = 0, (e) x2r + 2æ¾/s + y4 = 0, 

(b + cç)2^ — 2 (δ + eg) (α + cp) s + (α + cp)4 = 0, (77) r + = 2 as. 
If any simpler method is available, state what it is and apply it also. 
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15. Show that an equation of the form Rr + Ss + Tt + U(rt — s2) .= V neces­
sarily arises from the elimination of the arbitrary function from 

ιιx(x, y, z, p , q) =f[u»{x, y, z, p , q)^]. 

Note that only such an equation can have an intermediary integral. 

16. Treat the more general equation of Ex. 15 by the methods of the text and 
thus show that an intermediary integral may be sought by solving one of the systems 

Udy + \ Tdx + λļ Udp - 0, Udx + \Rdy + \ Udq = 0, 
Udx + \Έtdy + \Udq = 0, Udy + \Tdx + \¿Udp = 0, 

dz = pdx + qdy, dz = pcfø + ç¢¾/, 

where λ t and λ2 are roots of the equation \2(ET + U T ) + \US + U2 = 0. 

17. Solve the equations : (a) s2 — r¿ = 0, (ß) s2 — rt = α2, 
(7) ar + bs + ct + e (rt — s2) = /1, (δ) xçr + ypt + x?/ (s2 — rt) = p</. 


