
6 4 THE ALGEBRAIC THEORY OF MODULAR SYSTEMS [iV 

IV . T H E I N V E R S E S Y S T E M A N D 
M O D U L A R E Q U A T I O N S 

57. A considerable number of the properties proved in this 
section are to be found in (M) ; but the introduction of the inverse 
system is new. 

Definitions. The array of the coefficients of a complete linearly 
independent set of members of a module M of degree ^ t arranged 
under the power products <ol9 O>2, ..., ŵ  of degree %t is called the 
dialytic array of the module 'M for degree t. 

The linear homogeneous equations of which this array is the array 
of the coefficients are called the dialytic equations of M for degree t. 

Thus the dialytic equations of M for degree t are represented by 
equating all members of M of degree ^ t to zero and regarding the 
power products of symbols for the unknowns. 

The array inverse (§ 54) to the dialytic array of M for degree t is 
called the inverse array of ili~for degree t. 

The linear homogeneous equations of which this array is the array 
of the coefficients are called the modular equations of M for degree t. 

The modular equations for degree t are the equations which are 
identically satisfied by the coefficients of each and every member of M 
of degree ^ t. They may not be independent for members of degree < t 
and they do not apply to members of degree > t (see § 59). 

The sum of the products of the elements in any row of the inverse 
array for degree t with the inverse power products c^-1, <o2-\ ..., o^-1 

is called an inverse function of il/for degree t. 
Thus the modular equations of M for degree t are represented by 

equating all the inverse functions of M for degree t to zero, taking-
each negative power product (#1

2>1 wf2 ... ^ / , l ) _ 1 as a symbol for " the 
coefficient of the general member of M of degree t." 

We shall also say that a polynomial F=^aPum„tPna)1
p^ . . .# /« and 

a finite or infinite negative power series E=1ciLu_i(Ln(x1
q^ ... x^n)-1 

are inverse to one another if the constant term of the product FE 
vanishes, i.e. if 2aA>lhi „,sVn cPl, P2t...,Vn = 0. Thus any member of M of 
degree ^ t and any inverse function of M for degree t are inverse to 
one another. 
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Any inverse function of M for degree t can be continued so as to 
become an inverse function of M for any higher degree (§ 59), and when 
continued indefinitely becomes an inverse function of M without 
limitation in respect to degree. If all coefficients after a certain stage 
become zero the inverse function terminates and is a finite negative 
power series. In the case of an iJT-module the inverse functions are 
homogeneous (§ 59) and therefore finite. 

In order that a function may be an inverse function of M it is 
necessary and sufficient that it should be inverse to all members 
of M; hence if M contains M' any inverse function of M' is an inverse,, 
function of M. The whole system of inverse functions of M can there­
fore be resolved into primary systems corresponding to the primary 
modules of M. The inverse functions of a Noetherian primary module 
are all finite (§ 65) but not in general homogeneous. The inverse 
functions of a non-Noetherian primary module are all infinite power 
series (§ 65). 

We shall regard inverse function and modular equation as con­
vertible terms, and use that term in each case which seems best suited 
to the context. 

A module is completely determined by its system of modular 
equations no less than by its system of members. The two systems 
are alternative representations of the module. Also the properties of 
the modular equations are very remarkable, and it is necessary to 
consider them in order to give a complete theory of modular systems. 

As there is a one-one correspondence between the members of a 
module M of degree ^ t and the members of the equivalent iZ-module 
of degree t, so there is a one-one correspondence between the modular 
equations of Mfor degree t and the modular equations of the members 
of the equivalent ^-module of degree t. These last are called the 
modular equations of the ^-module of (absolute) degree t. 

58. Theorem. The number of independent modular equations 
of degree t of an H-module (F1} F2, •••, Fr) of rank r is the coefficient 
of xt in 

(1 - x1) (1 - xh) ... (1 - xlr) (1 - x)'n, 

where lu l2, •••, lr are the degrees of F1} F2, •••, Fr. 
Since the whole number of linearly independent polynomials of 

degree t is the number of power products of degree t, or the coefficient 
of x* in (l-x)-n, the theorem will be proved if it is shown that the 

M. 5 
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number N(r, t) of linearly independent members of (Flf F2) • -., Fr) 
of degree t is the coefficient of xt in 

{1 - (1 - xh) (1 - xh)... (1 - xlr)} (1 - x)-n. 

This is easily seen to be true when r= 1. 
Since any member of (i^, j ^ , •••, i^r) is & linear combination of 

elementary members, we have 

where p is the number of polynomials ^Fr, u2Fr, ..., o>pî . of degree t 
of which no linear combination is a member of (Fu F2, ..., -Fr-i), or the 
number of power products <o1} a)2, ..., wp of degree t-lr of which no 
linear combination is a member of (Fu F2, ..., i^_i)> § 48. Hence 

p + N(r - 1, £ — 4) = number of power products of degree t — 4 
- coefficient of x in # r (1 - ^)~91; 

and 
i\7(r, 0 = # ( r - 1 , 0 - ^ ( r - 1 , £ - /r) + coefficient of x in xlr (1 - #)-n. 
Hence, assuming the theorem for N(r- 1, t), it follows that N(r, t) 
is the coefficient of xt in 

{i - (i - ^ ) . . . (i - x1"-1)} (i - ^)~?i (i - ah)+#p (i - %y\ 
or in { ! - ( ! - x h ) ... (1 -a^- 1 ) (1 - x r ) } (1 - ^ )~ 5 \ 
which proves the theorem. 

This result is independent of the coefficients of Fu F2, ..., Fr; 
hence it follows that any member of (F1} F2, ..., Fr) is expressible in 
one way only in the form 

X^F, + X^F2 + ... + JF-VFr, 
where X(i) (as in §§ 6, 7) is a polynomial in which osu x2, ..., Xi occur 
only to powers as high as x^~Y, • •, xft-1, the variables having been 
subjected to a substitution beforehand. 

The theorem can be applied to any module (Fly F2, .., Fr) of 
rank r if ( i^ , F2, • ••, i^) is an ^T-basis, i.e. if the iZ-module deter­
mined by the terms of highest degree in Fly F2, ..., Fr is of rank r 
(§ 49). In this case the number of independent modular equations for 
degree t is the coefficient of xt in (1 -#&) ... (1 —xlr) (1 -x)-11-1. An 
important particular case is the following : 

The number of independent modular equations of a module 
{Fu F2, -.., Fn) of rank n such that the resultant of the terms of 
highest degree in Fu F2, ..., Fn does not vanish is hl2 ...ln-l for 
degree I— 1, and lYl2... ln for any degree ^ / , where 

l=lL + l2 + ... +ln-n. 
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This is also true for any //-module (F1} F2, ..., Fn) of rank n ; 
but the number of modular equations for degree t will be the sum of 
the numbers of modular equations of all degrees ^ t, so that there is 
one modular equation of degree / and none of any degree > I. 

59. Any inverse function of M for any degree can be continued 
so as to give an inverse function of M for any higher degree. 

By carrying the continuation on indefinitely we obtain a power 
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series (finite or infinite) which is an inverse function of M for all 
degrees without limit. 

Let (Fl9 F2, ..., Fk) be an iST-basis of M. Then any member F 
of M is a linear combination of elementary members ^Fj no one of 
which is of higher degree than F. Let / be the lowest degree of any 
member of M. Write down the dialytic array of M for degree /, 
viz. the array of the coefficients of such members of the //"-basis as are 

5—2 
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of degree /. Their terms of degree I (corresponding to the compart­
ment I of the diagram) are linearly independent, for if not there would 
be a member of M of degree < /, which is not the case. Next write 
down the rows of the array representing such members of the basis as 
are of degree I + 1, and members obtained by multiplying members of 
degree I by xY, x2, ..., %n> so as to obtain a complete set of members 
of degree I +1 linearly independent as regards their terms of 
degree l+l, these terms corresponding to the compartment l+l of 
the diagram. Proceeding in the same way we can obtain the whole 
clialytic array for any degree. 

To obtain the inverse array for the same degree first write down 
square compartments 0, 1, 2, ..., l—l with arbitrary elements corre­
sponding to degrees 0, 1, 2, ..., 1—1, and then a compartment / inverse 
to the compartment I of the dialytic array. Each row of the com­
partments 0, 1, 2, . . . , / - 1 can be continued so as to be inverse to the 
dialytic array for degree /, since the determinants of the compartment 
/ do not all vanish. This completes the inverse array for degree /. All 
its rows can be continued so as to be inverse to the dialytic array for 
degree l+l, and a compartment 1 + 1 of new rows can be added inverse 
to the compartment l+l oi the dialytic array. This completes the 
inverse array for degree l + l; and we can proceed in a similar way to 
obtain the inverse array for any degree. 

This diagram or scheme for the dialytic and inverse arrays of a 
given module M will be often referred to. The ease with which it can 
be conceived mentally is due to the fact that it is obtained by working 
with an iT-basis of M. Each pair of corresponding compartments 
l + i form inverse arrays, and in combination form a square array, 
showing that the combined complete arrays for any degree have the 
same number of rows as columns. In the case of a module of rank n 
the compartments of the dialytic array eventually become square and 
the total number of rows of the inverse array is finite. To a square 
compartment in either array corresponds no compartment or rows of 
the other array. In the case of an :#-module the compartments are 
the only parts of the arrays whose elements do not vanish, i.e. the 
inverse functions are homogeneous. 

Definition. The negative power series represented by the rows of 
the inverse array continued indefinitely will be called the members of 
the inverse system, and Eu E2, JE3, ... will be used to denote them, just 
as Fly F2, F-iy ... denote members of the module. 
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The system inverse to (1) has no member. The system inverse to 
(#!, x2, •••, ®n) has only one member E=l ; and the modular equation 
1 = 0 signifies that the module contains the origin. 

60. Properties of the Inverse System. Before attempting 
to show in what ways the inverse system may be simplified we consider 
its general properties. 

00 

Definition. If E= S c ^ ^ Pw (xPl x2
2... xPn)-x is a negative 

power series (no pi negative), and A any polynomial, the part of the 
expanded product AE which consists of a negative power series will 
be denoted by A.E said called the A-derivate of E. Thus 

X\. \X\X2j — \x2) , X2 * \X\X2j — yj. 

00 

A negative power series E= %cp P2t„mtP (xPv x2'
2... x^1)'1 is or is 

not an inverse function of a module M according as every member 

F=%cLp'p..tV%^%t2,'"Mnn of M, or not every member of M, 
is inverse to it, i.e. according as every 2aPvP2$...tPn cPl?P2 Pn = 0 or 
not. Suppose E an inverse function and F any member of M. Then 

xY
1 x2

2- •. xn
n F=2aPliP2t...,Pn xPl+l ... xjn+ n is a member inverse to E; 

hence every 2aPl> P2,..., Pn cPl+h Pn+in = 0, and 

In , , (rPlrP2 r Pn)~1 

or x1
1x2

2... xn
n. i?, is a member of the inverse system. Hence if E 

is a member of the inverse system of Mso also is x1
1x2

2... xn
n. E, and 

if E2, E2l ..., Eh are members so also is A1.E1 + A2. E2+ ... + Ah. Eh 

a member, where Alt A2i .., Ah are arbitrary polynomials. 
In a slightly modified sense which will be explained later (§82) 

the inverse system of any module M has a finite basis [Elf E2, ..., Eh] 
such that any member of the inverse system is of the form 

X±. E± + X2. E2 + ... + Xh. Eh, 

where X1} X2, ..., Xh are polynomials. 
This theorem is evidently true in the important case in which the 

total number of linearly independent members of the inverse system 
is finite, viz. in the case of a module of rank n and in the case of 
a module of rank r when treated as a module in r variables only, or, 
in other words, in the case of a module which resolves into simple 
modules. 
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Regarding the inverse system as representing the modular equations 
of M we shall write M= [El9F2,..., E\] as well as M = (Fu F2,...,Fk). 
Here M is the L.C.M. of [E±], [E2], ..., [Eh] and the G.C.M. of 
(FO, (F2), ..., (Fk). 

Definition. A module M will be called a principal system \i its 
inverse system has a basis consisting of a single member, i.e. if 
M= [E]. 

A module of the principal class is a principal system (§ 72), but 
a principal system is not necessarily of the principal class. A 
principal system is however the residual of a module (F) with respect 
to any module of the principal class which contains, and is of the same 
rank as, the principal system (cf. § 62). 

61. The system inverse to M=(Fl9 F2, ..., Fk) is the system whose 
Ft-derivates (i = l, 2, ..., k) vanish identically. 

In other words, in order that E may be a member of the inverse 
system of ilf it is necessary and sufficient that Fi.E (i=l, 2, ..., k) 

00 

should vanish identically. For if ^=2c3 l > 32 gw (^9l«2
32 • • • 45*1)"1 is 

any member of the inverse system, and Fi = %ap Pnt_tP x*xx£* ...x*n, 

then Fi.E=% a^%p p 2c^q p+q (a*1®*2'-- ^Y1 

p q 

= 2, {x1 x2 ... xn ) 2,aPvp2t...,PncPl+qv...,P +q = 0, 
q . . p 

since every laPv...,Pncp+q ...lPn+Q)t vanishes (a*1... xn
QnFt being inverse 

v 
to E). Conversely if Fi.E=01 then 5 ^ ..fP c^+<z . . i P + g =0, 

i.e. x1
qi.,.xn

qnFi is inverse to E, and every member of M is inverse 
to E, i.e. E is a member of the inverse system. 

Similarly if M = [i?!, i£2, ••-, Eh] the necessary and sufficient con­
dition that F may be a member of M is that F. Ej (j= 1, 2, ..., h) 
vanishes identically. 

62. The modular equations of M/(FU F2, ..., Fk) are the Frderi-
vates of the modular equations of 31, i.e. 

[Eu Et, .., EJKFu F, ..., Fk) = [..., F.Ej, ...]. 

For the necessary and sufficient condition that F may be a member 
of the residual module is 

FFt = 0 mod M (i = l, 2, ..., A) 
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or FFi.E3=0 (i = l, 2, . . . ,* ; j=l, 2, ..., h) 

or F.(Fi.Ej) = 0. 

Hence [..., Ft.Ej, ...J is the residual module (§ 61). 

63 . A system of negative power series with a finite basis 
[El9 E2, ..., Fh] of such a nature that all derivates of Eu E2, ..., Eh 

belong to the system is an inverse system of a module if Et 

(i=l, 2, ..., h) has an Fi-derivate which vanishes identically. 

For there are polynomials F such that the i^-derivate of each of 
Eu E2, ..., Eh vanishes identically, the product F1F2...Fll being one 
such polynomial. Also the whole aggregate of such polynomials F 
constitutes a module M; for if F belongs to the aggregate so does A F. 
Consider the dialytic and inverse arrays of M obtained as in § 59. 
Since every member of M is inverse to every member of [Ex ,E2,..., Eh] 
all members of the latter are represented in the inverse array. If any 
other power series are represented, viz. if there is a row of the inverse 
array which does not represent a member of [Elt E2, ..., Eh], let it 
begin in the compartment l + i. Then if we omit this row we can 
add a row to the dialytic array representing a polynomial of degree 
l+i inverse to all members of [Eu E2i ..., Eh] but not a member of M, 
This is contrary to the fact that M is the whole aggregate of such 
polynomials. Hence the system inverse to Mis [Ely E2i ..., Eh]. 

QO 

Thus in order that E= 2cp1>P2> ...,Pn(%^][%£2'...a?/71)-1 may represent 
a modular equation of a module it is necessary and sufficient that 
Gvv. P2,...,pn should be a recurrent function of pl9 p2, ...,pn, that is, 
a function satisfying some recurrent relation 

^aP1,p2,...,pn
GP1+i1,...,Pn+in

=Q 
v 

for all positive integral values of ll9 h, ..., 4 , where the aPl>p ...,p are 
a set of fixed quantities finite in number. It may be that cp p t_iP 

satisfies several such recurrent relations not deducible from one another; 
but it is sufficient if it satisfies one. 

64. Transformation of the inverse system corresponding to a 
linear transformation of the modular system. 

If the variables in the modular system M are subjected to a linear 
non-homogeneous substitution with non-vanishing determinant by 
which M is transformed to M' it is required to find how the inverse 
system [El9 E2, ..., Eh] is to be transformed so as to be inverse to M\ 
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In other words, if the negative power series E is inverse to the 
polynomial F it is required to find a power series E' inverse to the 
transformed polynomial F'. It will be shown that an E' exists which 
can be derived from E in a way depending only on the substitution 
and not on the polynomial F. 

Let F=3aPl,m..tPnxl
Pl...a;n

Pn, F'= S«V». ^ q i - ^ \ 

and let the coefficients cPv P2,...,p of E be represented symbolically 

by c^c!\..c^\ Then we have" E = 2 cp\.. cn
Pn (xpK.. x^1)-1; and 

2/y rPlr1?2 r P n - 0 

since E, F are inverse to one another. Let the inverse substitution 

be x( = a'nCc-L + ... + ainxn + al (a = 1, 2, ..., n). 

Then 2a'qit.m.tqn(a'11x1 + ...)Ql... (a,
nlx1+ ...fn = 2aPp .,., Pnx

Pl...xn
Pn, 

and we have 

{coeff. of xPl...xn
Pn in 2,a'qi...qn(a'na1 + ...)3l...(fl'H1#1 + ...)%} = 0> 

i.e. Sa,
fll...gn(a'11(j1+ ...f

1... (a'„ic1+ . . 0 ^ = 0, 

i.e. the powTer series J5"= 2 (amc1+ ...f1.., (anYcY + ...)Qn(a*1... Xn11)'1 

is inverse to the polynomial i^'= Sa'^, ...%qn%i1..- an
qn» 

Hence the coefficient of {xx
 1 Z71)"1 in the transformed power 

series E' is 

H,«2, ...,flR = («'nCi + ...)ril(a'aiCi + ...>2 ••• (a'wiCi + ...)**> 

where, after expanding the right-hand side, cficg*.... *?/» is to be put 

equal to cPi, P2>... f Pn, the coefficient of (#/i xg*... so^)"1 in i£ For such 

a transformation of 2^ and i?, when not inverse to one another, 

^ap!,P2> -,Pn
cPi>P2> •••> % *s a n aDS°lu^e invariant. 

The most important transformation is that corresponding to a 
change of origin only. In this case, if 

F=^aPi^Pnx1
Pl-'^nPn and E= %<p...tf\x?K..x*»)-\ 

and the new origin is the point (-aly ~a2, ..., —an), 

then F' = %aPl... Pn {xl - a$h ...(xn- anf
n 

and E' = 2 (c, + <0P l . . . (c* + anf
n (xPl...xn

Pn)~\ 

It is to be noticed that if E is a finite power series it nevertheless 
transforms into an infinite power series E\ In particular if E- 1 
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then E' = 2aP l . . . an
Pn {xihx2

2• • • « /̂n)~1> the inverse function of 
\Xi cci, . . . , ^ — an). 

For homogeneous substitutions another way of considering corre­
sponding transformations of F and E can be given, which however 
excludes a change of origin. Represent E by 

2 r ^ lUo2...Unn 

instead of 2cp1>Poi ...,pn(#iPl--. ^ / ? i )~ \ and let the new i? be defined 
as inverse (or conjugate) to F^^a^ v ^^x^... Xn% when the 
same relation 2aWi .. „ c« ?, =0 holds as before. Then for contra-
greclient substitutions of xli x2, ..., xn and uiy u2, •••, ww the poly­
nomial i^and power series E will always remain inverse (or conjugate) 
to one another if they are so originally. Also the members E of the 
inverse (or conjugate) system of a module 31, when expressed in the 
new form above, are the power series with respect to which the 
members (of the basis) of the module M are apolar (§ 61). 

65. The Noetherian Equations of a Module. The 
modular equations %cPlfP2i.,.il)n(x1

Plx2
P2...xn

Pn)~1 = Q of a module M 
for degree t are finite because they are only applicable to members 
of degree ^t, and the coefficients {xPlx2

2... x^71)'1 in the general 
member of degree t vanish when px+ ... + pn> t. A modular 
equation may however be finite in itself, i.e. every cPltV ..., Pn for 
which Pi+p2+ ••• +pn exceeds a certain fixed number I may vanish. 
If such an equation is applied to a polynomial of degree > / it only 
affects the coefficients of terms of degree ^ /. 

Definition. The Noetherian equations of a module are the 
modular equations which are finite in themselves. 

There are no Noetherian equations if the module does not contain 
the origin. For if E= 0 is a Noetherian equation of absolute degree I, 
and w_1 a power product of absolute degree I which is present in E, 
the derivate equation o>. E = 0 is 1=0 , showing that the module 
contains the origin. Every Noetherian equation has the equation 
1=0 as a derivate. 

On the other hand Noetherian equations always exist if the 
module contains the origin, for the equation 1 = 0 exists, and so 
does the equation a>_1 = 0, where o> is any power product of less 
degree than any term which occurs in any member of the module. 



74 THE ALGEBRAIC THEORY OF MODULAR SYSTEMS [IV 

The whole system of Noetherian equations of a non-Noetherian 
module iHf forms only a part of the whole system of modular equations, 
and is exhibited by a scheme similar to but different from that of § 59, 
with which it should be compared. In this new scheme the rows of the 
dialytic array represent the members of the module arranged in order 
according to their underdegree (or degree of their lowest terms) 
instead of their degree (or degree of their highest terms). The first 
set of rows represents a complete set of members of underdegree h 
which are linearly independent as regards their terms of degree ll9 

VA-
-•i,+y 

-L,+2 

l,+ 3. 

% 

|ZFi~ 
b̂  
— -.i+i" 

7 J . O . _ 
-Cy-rz: -

::4+3"---:--| 

where lL is the lowest underdegree of any member of M. These are 
obtained from any basis of M, which need not be an i?-basis. The 
next set of rows represents a complete set of members of under­
degree lY + 1 which are linearly independent as regards their terms 
of degree /i+ 1, obtained partly from the basis of M and partly from 
the set of members of underdegree lx by multiplying them by 

; and similarly for succeeding sets. The compartments 
h, 4 + l j ••• correspond to the terms of lowest degree in the suc­
cessive sets. 
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To obtain the corresponding inverse (or Noetherian) array first 
insert square compartments 0, 1, 2, ..., k — 1 with arbitrary elements 
(or with elements 1 in the diagonal and the remaining elements zero) 
corresponding to degrees 0, 1, 2, ..., h—l; and then a compartment lx 

inverse to the compartment l± of the dialytic array. This completes 
the array for degree lY; all its rows are inverse to all members of M 
and represent Noetherian equations. Next insert a compa-rtment lx + 1 
inverse to the compartment lx + 1 of the dialytic array, and continue 
its rows backwards so as to be inverse to the first set of rows of the 
dialytic array. This completes the array for degree h + 1 ; and we 
can proceed similarly to find in theory the whole of the Noetherian 
array. 

The object of the diagram is merely to exhibit the whole system of 
Noetherian equations, which it evidently does. If F is a polynomial 
for which all the Noetherian equations for degree t are satisfied, then, 
up to and inclusive of its terms of degree t, F is a linear combination 
of members of the module of underdegree ^ t, i.e. F is expressible 
as far as degree t in the form X1F1 + X2F2 + ... + XkFk, where 
X1} X2, ••-, Xk are polynomials, and F= 0 mod (M, Ot+1). Conse­
quently if F satisfies the whole system of Noetherian equations 
it is of the form P^ + P2F2 + ... + PkFk, where Pl9 P2 , ..., Pk are 
power series. Hence FF0 = 0 mod M9 where F0 has a non-vanishing 
constant term (§ 56); and, if ilfis a Noetherian module, F= 0 mod M. 
Hence the whole system of modular equations of a Noetherian modide 
can be expressed as a system of Noetherian equations. 

66. Modular Equations of Simple Modules. If in the 
last article the rows of the compartment l± + i of the dialytic array 
should be equal in number to the power products of degree h + i 
there will be no Noetherian equations of absolute degree > lx + i. 
In this case the Noetherian equations are finite in number and 
can be actually determined (at any rate in numerical examples). 
This can only happen when the module contains the origin as an 
isolated point, and the Noetherian equations are then the modular 
equations of the simple Noetherian module contained in the given 
module. The simple module itself is (M, Ol^+i) and lx + i is its 
characteristic number. 

Thus the simple modules at isolated points of a given module M 
can all be found by moving the origin to each point in succession and 
finding its Noetherian equations and characteristic number. 



76 THE ALGEBRAIC THEORY OF MODULAR SYSTEMS [iV 

Let M have a simple module at the point (al9 a2, .., an). Move 
the origin to the point and find the Noetherian equations. They will 
be represented by finite negative power series 

^ = ^ = . . . = ^ = 0 
and all derivates of the same. Also any such system represents 
a simple module at the origin ; the fact that the coefficients of 
El9 E29 ..., Eh are recurrent functions (§ 63) placing no restriction 
on them when finite in number. Let Ei = ^cPlt p ..., p (xPlx2'

2 • •. x^Y1 

be of absolute degree y*- l . Moving the origin back to its original 
position, that is, to the point (—al9 — a29 •.., — #w), the equation Ei = 0 
becomes (§ 64) 

2 fa + thf1 (c8 + a 2)2?2... (cn + a*)** (^? V 2 . . . a?/")-1 - 0, 
where, after expanding (cx + a^ 1 ... (cn + an)

Pn, each c/1... cn
Qn is to 

be put equal to the known constant cq q ...tQn which it represents. 

Also %, <z2,.... qn = 0 if ^i + 2̂ + • • • + g» > yo Thus 

(* + aj* (c2 + aa)
Pa • • • (*» + ^ = ( l + - V 1 . • • ( 1 + - T afW2 • • • an

p» 
\ QJ\J \ Cln J 

-le a lhnP'2 a Pn 

~~ V\,V^t •••> Vn
 l 2 * * " n ' 

where k^p ...tP is a whole function of pl9 p29 •••, £>n of degree yz-— 1. 
Hence the modular equations of any simple module at the 

point (al9 a29 ..., an) are represented by power series 

^,kp1)1y2, ...,2^n^i <%2 '"dn ( # 1 X2~...Xn J = 0 

and their derivates, where #Pll2>2,...,Pn is a whole function ofpl9p2,..-,pn-
Conversely any system of equations (finite in number) of this type 
with all their derivates is a system of modular equations of a simple 
module at the point (al9 a29 ..., av). 

The following is a consequence of the above. The general solution 
for the recurrent function cPltP ...tPn (§ 63) satisfying a set of re­
current equations S av p ..., v cPl+Z]L,..., Pn+in = 0 for all posi t ive 

p 

integral values of ll9 l29 ..., 4, when the corresponding polynomials 
^avvv2, ~.,pn®ihx22-- ®nn bave only a finite number of points 
(al9 a29 ..., #9l) in common, is ^Aa^a*2... an

Pn
9 where A is a whole 

function of pl9 p29 ..., pn dependent on the point (al9 a2, ..., an) and 
involving linear parameters. When the polynomials have an infinite 
number of points in common there can scarcely be said to be a general 
solution for c^p ...tP . 


