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iV. THE INVERSE SYSTEM AND
MODULAR EQUATIONS

57. A considerable number of the properties proved in this
section are to be found in (M) ; but the introduction of the inverse
system is new.

Definitions. 'The array of the coefficients of a complete linearly
independent set of members of a module M of degree <¢ arranged
under the power products o, w,, ..., w, of degree <¢ is called the
dialytic array of the module M for degree ¢. '

The linear homogeneous equations of which this array is the array
of the coefficients are called the dialytic equations of M for degree ¢.

Thus the dialytic equations of M for degree ¢ are represented by
equating all members of M of degree <¢ to zero and regarding the
power products of 21, 2, ..., 2, as symbols for the unknowns.

The array inverse (§ 54) to the dialytic array of M for degree ¢ is
called the inverse array of M for degree ¢.

The linear homogeneous equations of which this array is the array
of the coefficients are called the modular equations of M for degree ¢.

The modular equations for degree ¢ are the equations which are
identically satisfied by the coefficients of each and every member of M
of degree <¢. They may not be independent for members of degree < ¢
and they do not apply to members of degree > ¢ (see § 59).

The sum of the products of the elements in any row of the inverse
array for degree ¢ with the inverse power products o, w,7, ..., 0,
is called an inverse function of M for degree ¢.

Thus the modular equations of M for degree ¢ are represented by
equating all the inverse functions of M for degree ¢ to zero, taking
each negative power product (2" 2,

coefficient of 2" 22 ... 2,7’ in the general member of M of degree ¢.”

We shall also say that a polynomial #'=3a, .2 ... 2P and
a finite or infinite negative power series £'=3c, _ .. (&% ... 2,7)
are inverse to one another if the constant term of the product FH
vanishes, 1.e. if Zdp,, p,, ..., pn Cpr, poy oy pw =0 Thus any member of M of
degree <¢and any inverse function of A/ for degree ¢ are inverse to
one another.

Lk M)~ as a symbol for ¢ the
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Any inverse function of M for degree ¢ can be continued so as to
become an inverse function of M for any higher degree (§59), and when
continued indefinitely becomes an inverse function of M without
limitation in respect to degree. If all coefficients after a certain stage
become zero the inverse function terminates and is a finite negative
power series. In the case of an H-module the inverse functions are
homogeneous (§ 59) and therefore finite.

In order that a function may be an inverse function of M it is
necessary and sufficient that it should be inverse to all members
of M; hence if M contains M’ any inverse function of M’ is an inverse.
function of M. The whole system of inverse functions of M can there-
fore be resolved into primary systems corresponding to the primary
modules of M. The inverse functions of a Noetherian primary module
are all finite (§65) but not in general homogeneous. The inverse
functions of a non-Noetherian primary module are all infinite power
series (§ 65).

We shall regard inverse function and modular equation as con-
vertible terms, and use that term in each case which seems best suited
to the context.

A module is completely determined by its system of modular
equations no less than by its system of members. The two systems
are alternative representations of the module. Also the properties of
the modular equations are very remarkable, and it is necessary to
consider them in order to give a complete theory of modular systems.

As there is a one-one correspondence between the members of a
module M of degree < ¢ and the members of the equivalent H-module
of degree ¢, so there is a one-one correspondence between the modular
equations of M for degree ¢ and the modular equations of the members
of the equivalent H-module of degree ¢ These last are called the
modular equations of the H-module of (absolute) degree ¢.

58. Theorem. 7he number of independent modular equations
of degree ¢ of an H-module (Fy, Fs, ..., F.) of rank r is the coefficient
of & in

(1-aM(1-2a" ... - 1-a)m
where 1y, by, ..., I, are the degrees of Ky, Iy, ..., F,.

Since the whole number of linearly independent polynomials of
degree ¢ is the number of power products of degree ¢, or the coefficient
of 2/ in (1-a)™" the theorem will be proved if it is shown that the

M. 5
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number &V (r, ¢) of linearly independent members of (#, £, ..., F})
of degree ¢ is the coefficient of ' in

{1—(1-2"(1—-a®)...(A—a")} (1 —2)™
This is easily seen to be true when »=1.

Since any member of (#y, F,, ..., F,) is a linear combination of

elementary members, we have

ZV(T’ t) = ZV(r -1, t) +p,
where p is the number of polynomials o, #., w,F,, ..., 0, F, of degree ¢
of which no linear combination is a member of (#}, #,, ..., F,_,), or the
number of power products w,, w,, ..., w, of degree ¢~ /. of which no
linear combination is a member of (£}, F,, ..., F,_), § 48. Hence

p+ N (r -1, t—1,)=number of power products of degree ¢ — 1.

= coefficient of 2* in 2 (1 - 2)~";
and .
N(r,#)=DN(r—1,t)—N(r—1,¢- 1)+ coefficient of 2° in 2" (1 - z)~".
Hence, assuming the theorem for N (»— 1, ¢), it follows that N (r, #)
is the coefficient of 2* in

1-(1=-a" . (=" A - (1 =) + 2" (1 - 2)™,

or in (1-(1-2" ... (=" (1 -1 -2)
which proves the theorem.

This result is independent of the coefficients of F}, Fy, ..., I, ;
hence it follows that any member of (#, £, ..., F,) is expressible in
one way only in the form

XOR + XOR, + ...+ X0-0f
where X@ (asin §§ 6, 7) is a polynomial in which 2, a,, ..., #; occur
only to powers as high as "7, ..., 2/, the variables having been
subjected to a substitution beforehand. '

The theorem can be applied to any module (#), £, ..., F,) of
rank 7 if (F, Fy, ..., F,) is an H-basis, i.e. if the A-module deter-
mined by the terms of highest degree in F), F, ..., F. is of rank #
(§49). In this case the number of independent modular equations for
degree t is the coefficient of o' in (1—2h)...(1—a")(1-2)"' An
important particular case is the following :

The number of independent modular equations of a module
(I, Foy ..., By of rank n such that the resultant of the terms of
kighest degree in Iy, I, ..., I, does not vanish is by ...l,—1 for
degree 1—1, and 0, 1,... 1, for any degree >1, where

I=L+bL+...+1l,—n
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This is also true for any H-module (¥, F, ..., I;) of rank n ;
but the number of modular equations for degree # will be the sum of
the numbers of modular equations of all degrees < ¢, so that there is
one modular equation of degree / and none of any degree > /.

59. Any inverse function of M jor any degree can be continued
s0 as to give an iwverse function of M for any higher degree.
By carrying the continuation on indefinitely we obtain a power

N
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series (finite or infinite) which is an inverse function of A/ for all
degrees without limit.

Let (£, Fs, ..., Fy) be an H-basis of M. Then any member /7
of M is a linear combination of elementary members w#; no one of
which is of higher degree than F. Let [ be the lowest degree of any
member of M. Write down the dialytic array of M for degree /,
viz. the array of the coefficients of such members of the /-basis as are

5—2
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of degree /. Their terms of degree / (corresponding to the compart-
ment / of the diagram) are linearly independent, for if not there would
be a member of M of degree </, which is not the case. Next write
down the rows of the array representing such members of the basis as
are of degree [ + 1, and members obtained by multiplying members of
degree I by i, s, ..., Za, S0 as to obtain a complete set of members
of degree /+1 linearly independent as regards their terms of
degree [+1, these terms corresponding to the compartment /+1 of
the diagram. Proceeding in the same way we can obtain the whole
dialytic array for any degree.

To obtain the inverse array for the same degree first write down
square compartments 0, 1, 2, ..., /—1 with arbitrary elements corre-
sponding to degrees 0, 1, 2, ..., /— 1, and then a compartment / inverse
to the compartment [ of the dialytic array. Each row of the com-
partments 0, 1, 2, ..., {—1 can be continued so as to be inverse to the
dialytic array for degree /, since the determinants of the compartment
! do not all vanish. This completes the inverse array for degree /. All
its rows can be continued so as to be inverse to the dialytic array for
degree [ + 1, and a compartment [+ 1 of new rows can be added inverse
to the compartment [+1 of the dialytic array. This completes the
inverse array for degree /+1; and we can proceed in a similar way to
obtain the inverse array for any degree.

This diagram or scheme for the dialytic and inverse arrays of a
given module M will be often referred to. The ease with which it can
be conceived mentally is due to the fact that it is obtained by working
with an H-basis of M. Each pair of corresponding compartments -
l+1% form inverse arrays, and in combination form a square array,
showing that the combined complete arrays for any degree have the
same number of rows as columns. In the case of a module of rank »
the compartments of the dialytic array eventually become square and
the total number of rows of the inverse array is finite. To a square
compartment in either array corresponds no compartment or rows of
the other array. In the case of an H-module the compartments are
the only parts of the arrays whose elements do not vanish, i.e. the
inverse functions are homogeneous.

Definition. The negative power series represented by the rows of
the inverse array continued indefinitely will be called the members of
the inverse system, and Ky, K,, B;, ... will be used to denote them, just
as Iy, I, F;, ... denote members of the module.
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The system inverse to (1) has no member. The system inverse to
(21, @s, ..., ) has only one member #=1; and the modular equation
1 =0 signifies that the module contains the origin.

60. Properties of the Inverse System. Before attempting
to show in what ways the inverse system may be simplified we consider
its general properties.

0
Definition.  If E=3c,, . ...p, (@@ .. 2" is a negative
power series (no p; negative), and A any polynomial, the part of the
expanded product 4 which consists of a negative power seriés will
be denoted by A.E and called the A-derivate of K. 'Thus

2 ()7 = (2)7Y, @t (ay) ™ =0,

)

. . D, 2, . .

A negative power series £= 3¢, ,, ..,p, (@ @, ... 2,") is or is
not an inverse function of a module M according as every member

D >

F:an,l,pz,n_,,,nxllef...mnp" of M, or not every member of 2/
is inverse to it, i.e. according as every 2@, p,.,...p, o). pg vy =0 OF
not. Suppose /£ an inverse function and /' any member of . Then

l l; 12 D1+l Dptly .
2@ty F=3ap p, . @ .- @y © " is a member inverse to £

hence every 2a,, y,. ..., », Coyty, e py+1, = 0, and

< P V2 Dy

26]’1'”1' ey Pptly, (xl 13}2 2o o n) 1,

y o1 Z . . .
or x'ayt... @,". F, is a member of the inverse system. Hence if K
. . . l l I
s a member of the inverse system of M so also is @, @y ... 2,". K, and
if By, E,, ..., B, are members so alsois A,. E\+ A,. Ky + ...+ A;,. B,
a member, where A, A, ..., 4, are arbitrary polynomials.
* In a slightly modified sense which will be explained later (§$2)

the inverse system of any module M has a finite basis [ B, B, ..., E;]
such that any member of the inverse system is of the form

X, B+ X, B+ ...+ X3 B,

where X, X, ..., X are polynomials.

This theorem is evidently true in the important case in which the
total number of linearly independent members of the inverse system
is finite, viz. in the case of a module of rank » and in the case of
a module of rank » when treated as a module in 7 variables only, or,
in other words, in the case of a module which resolves into simple
modules.
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Regarding the inverse system as representing the modular equations
of M we shall write M=[K,, B, ..., E,] as wellas M = (F,, F,, ..., F}).
Here M is the n.c.m. of [#], [E.], ..., [F] and the e.c.m. of
(E)’ (ﬁ12)> tery (Fk)

Definition. A module M will be called a principal system if its
inverse system has a basis consisting of a single member, ie. if
M=[E].

A module of the principal class is a principal system (§ 72), but
a principal system is- not necessarily of the principal class. A
principal system is however the residual of a module (#) with respect
to any module of the principal class which contains, and is of the same
rank as, the principal system (cf. § 62).

61. The system inverse to M =(Fy, Fy, ..., F}) is the system whose
Fi-derivates (i =1, 2, ..., k) vanish identically.

In other words, in order that £ may be a member of the inverse
system of M it is necessary and sufficient that /. £ (i=1, 2, ..., k)

o]
. . . . q .
should vanish identically. For if H=3c, g .. 4, (@" 2,2 . 2,") is
any. member of the inverse system, and F;=3a, ,, . pnxlp e

- 2 A, T2 In\—1
then K. E= f“pl, Doy Py f%ﬁql,..-, (T @ 2y ")

_ a1 ,, I Up\—1 ) _

= 3 (@ @ ) f’“ﬁl,pz, s PR CP1H 0y s Py, = 05

. . q q . .

since every 2ay,, .. p,Coiray .. py+a, VaNIshes (21 ... 2, " F; being inverse
p

to K). Conversely if F;,. E=0, then fapP s 2uCoyttys s oy, = 05

. q . . . .

ie. :™ ... 2, F,is inverse to K, and every member of M is inverse

to K, ie. K is a member of the inverse system.

Similarly iof M=[E,, E,, ..., ) the necessary and swfficient con-
dition that I may be @ member of M is that F. E; (j=1,2, ..., k)
vanishes identically.

62. The modular equations of M|(Fy, Fy, ..., ) are the Fi-deri-
vates of the modular equations of M, i.e.
[y By ooy B)|(Fs, By ooy ) = [y B By ..

For the necessary and sufficient condition that #' may be a member
of the residual module is

FF,=0mod M (i=1,2, ..., k)
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or FF,. E=0 (i=1,2,-.,k; j=1,2, ..., k)
or F.(F;. E)=0.
Hence [..., F}. E;, ...] is the residual module (§ 61).

63. A system of mnegative power Sseries with a finite basis
[y, By, ..., E) of such a nature that oll derivates of Ey, s, ..., B,
belong to the system s an inverse system of o module of K,
(i=1,2, ..., ) has an Fi-derivate which vanishes identically.

For there are polynomials ' such that the F'derivate of each of
E,, E,, ..., E, vanishes identically, the product F,F%... F} being one
such polynomial. Also the whole aggregate of such polynomials #
constitutes a module M ; for if /' belongs to the aggregate so does 4 F.
Consider the dialytic and inverse arrays of M obtained as in §59.
Since every member of M is inverse to every member of [ £, £, ..., K]
all members of the latter are represented in the inverse array. If any
other power series are represented, viz. if there is a row of the inverse
array which does not represent a member of [£:, B, ..., B,], let it
begin in the compartment /+¢. Then if we omit this row we can
add a row to the dialytic array representing a polynomial of degree
{ + 4 inverse to all members of [ £}, £, ..., £;,] but not a member of M.
This is contrary to the fact that M is the whole aggregate of such
polynomials. Hence the system inverse to M is [\, K., ..., E,].

o
Thus in order that £= 3¢, p,, ..., (@ @3 % ... 2,"")™" may represent
a modular equation of a module it is necessary and sufficient that
Cpy, por . p, Should be a recurrent function of py, ps, ..., pu, that is,

a function satisfying some recurrent relation
Say, P TR U
P

for all positive integral values of 4, L, ..., /., where the @, , .., are

a set of fixed quantities finite in number. It may be that ¢, ,, ..,

satisfies several such recurrent relations not deducible from one another ;
but it is sufficient if it satisfies one.

64. Transformation of the inverse system corresponding to a
linear transformation of the modular system.

If the variables in the modular system A are subjected to a linear
non-homogeneous substitution with non-vanishing determinant by
which M is transformed to M’ it is required to find how the inverse
system [E, K, ..., £,] is to be transformed so as to be inverse to /",
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In other words, if the negative power series /£ is inverse to the
polynomial F' it is required to find a power series £’ inverse to the
transformed polynomial /. It will be shown that an ' exists which
can be derived from £ in a way depending only on the substitution
and not on the polynomial 7.

Let F=3a,,  p&’..« F'=3dq . q@"% ="
and let the coefficients ¢, ,, ..., of £ be represented symbolically
by ¢¢,”...c.,’”. Then we have E=3¢™...¢"(2™...2,")"; and

Sty s 1y €100 "= 0,
since %, F' are inverse to one another. Let the inverse substitution
be v =dpo+ ... +dpw,+al ((=1,2, ..., n)
Then 30,,...q, (@na + I (& + .. D= Say, .. ,1,”&1 Ll
and we have
Se ..ol x
{coeff. of #"... 2, in 3y, ..o, (@nwy+ )0 (@i + ..)" =0,

ie. Sdy,..q(@no+ ) (@ e+ ) =0,
i.e. the power series £’ =3 (a'wei+ ...)% . (@ ey + .. )" (2" ... 2,7
is inverse to the polynomial #''= 3y, ... qnwlql e @

Hence the coefficient of (2, 2, ... 2,"")~" in the transformed power
series B’ is

oy agroray= (@it )0 (@ e+ )2 (@ 6+ 0™

where, after expanding the right-hand side, ¢/P1c2... ¢,/ is to be put
equal t0 ¢y, 5, ..., »,, the coefficient of (@122 ... z,7»)= in E. Forsuch
a transformation of /' and £, when not inverse to one another,
S @p,, py, o, pyCopr g, oo vy, 15 @1 ADSOlUtE Invariant.

The most important transformation is that corresponding to a
change of origin only. In this case, if

F=3a, , o™ 2" and E=3c¢".. ¢ (@™ . .27,
and the new origin is the point (—ay, —ds, ..., —a,),
then F'=Zay . ., (20— @) (@, —a)™
and E =3 (c;+a)™ ... (cot ) (@t ™)

It is to be noticed that if £ is a finite power series it nevertheless
transforms into an infinite power series £’. In particular if F=1
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then £’ =3a...a)" (@2 >...2,™)", the inverse function of
(21— @y, -y Ty — ay).

For homogeneous substitutions another way of considering corre-
sponding transformations of # and £ can be given, which however
excludes a change of origin.  Represent F by

]

P P, P,
Uy s 2 Uy

EC 1 2
D1 Das -

wey Py e
Yol el !
instead of S, p,, ...y, (@ .o @ ™)™, and let the new & be defined

. . e ).
as nverse (or conjugate) to F'=3a, , .. I,nxl“... 2, when the

same relation Sa, .. , ¢, .., =0 holds as before. Then for contra-
D1 ooes P O01s o

gredient substitutions of 2y, @, ..., 4, and w,, %, ..., %, the poly-
~ nomial /" and power series /£ will always remain inverse (or conjugate)
to one another if they are so originally. Also the members £ of the
inverse (or conjugate) system of a module M, when expressed in the
new form above, are the power series with respect to which the
members (of the basis) of the module A/ are apolar (§ 61).

65. The Noetherian Equations of a Module. The
modular equations 3¢, p, ... p, (@72 ... 2,"")7'=0 of a module M
for degree ¢ are finite because they are only applicable to members
of degree <t#, and the coefficients ("2, 2...2,")' in the general
member of degree ¢ vanish when p, + ...+ p,>¢ A modular
equation may however be finite in itself, ie. every ¢, ,, ..., for

which p, +p,+ ... + p, exceeds a certain fixed number / may vanish.
If such an equation is applied to a polynomial of degree > it only
affects the coefficients of terms of degree <1

Definition. The Noetheriun equations of a module are the
modular equations which are finite in themselves.

There are no Noetherian equations if the module does not contain
the origin. For if £=0 is a Noetherian equation of absolute degree /,
and o~!' a power product of absolute degree I which is present in £,
the derivate equation o.£ =0 is 1=0, showing that the module
contains the origin. Every Noetherian equation has the equation
1=0 as a derivate.

On the other hand Noetherian equations always exist if the
module contains the origin, for the equation 1=0 exists, and so
does the equation w=!'=0, where o is any power product of less
degree than any term which occurs in any member of the module.
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The whole system of Noetherian equations of a non-Noetherian
module M forms only a part of the whole system of modular equations,
and is exhibited by a scheme similar to but different from that of § 59,
with which it should be compared. In this new scheme the rows of the
dialytic array represent the members of the module arranged in order
according to their wnderdegree (or degree of their lowest terms)
instead of their degree (or degree of their highest terms). The first
set of rows represents a complete set of members of underdegree £
which are linearly independent as regards their terms of degree /i,

where /, is the lowest underdegree of any member of M. These are
obtained from any basis of M, which need not be an H-basis. The
next set of rows represents a complete set of members of under-
degree /, + 1 which are linearly independent as regards their terms
of degree [, + 1, obtained partly from the basis of M and partly from
the set of members of underdegree /, by multiplying them by
&1, Zay ..., &y; and similarly for succeeding sets. The compartments
L, hi+1, ... correspond to the terms of lowest degree in the suc-
cessive sets.



IV] THE INVERSE SYSTEM AND MODULAR EQUATIONS 75

To obtain the corresponding inverse (or Noetherian) array first
insert square compartments 0, 1, 2, ..., 4, — 1 with arbitrary elements
(or with elements 1 in the diagonal and the remaining elements zero)
corresponding to degrees 0, 1, 2, ..., ;- 1; and then a compartment /,
inverse to the compartment /; of the dialytic array. This completes
the array for degree /;; all its rows are inverse to all members of M
and represent Noetherian equations. Next insert a compartment /, + 1
inverse to the compartment /, + 1 of the dialytic array, and continue
its rows backwards so as to be inverse to the first set of rows of the
dialytic array. This completes the array for degree [, +1; and we
can proceed similarly to find in theory the whole of the Noetherian
array.

The object of the diagram is merely to exhibit the whole system of
Noetherian equations, which it evidently does. If #'is a polynomial
for which all the Noetherian equations for degree ¢ are satisfied, then,
up to and inclusive of its terms of degree ¢, F is a linear combination
of members of the module of underdegree <¢, ie. /' is expressible
as far as degree ¢ in the form X, F\+ X, F,+...+ X, F}, where
X, X, ..., X} are polynomials, and #=0mod (M, O**). Conse-
quently if F satisfies the whole system of Noetherian equations
it is of the form P, F, + P, Fy+ ... + P, I, where Py, P,, ..., P, are
power series, Hence F'F,=0mod M, where ¥}, has a non-vanishing
constant term (§56) ; and, if M is a Noetherian module, #'=0 mod 2.
Hence the whole system of modular equations of a Noetherian module
can be expressed as a system of Noetherian equations.

66. Modular Equations of Simple Modules. If in the
last article the rows of the compartment 4 +¢ of the dialytic array
should be equal in number to the power products of degree  ++¢
‘there will be no Noetherian equations of absolute degree >/ +7.
In this case the Noetherian equations are finite in number and
can be actually determined (at any rate in numerical examples).
This can only happen when the module contains the origin as an
isolated point, and the Noetherian equations are then the modular
equations of the simple Noetherian module contained in the given
module. The simple module itself is (M, O4*%) and [ +1¢ is its
characteristic number.

Thus the simple modules at isolated points of a given module M
can all be found by moving the origin to each point in succession and
JSinding its Noetherian equations and characteristic number.
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Let M have a smple module at the point (a9 @, .., &). Move
the origin to the point and find the Noetherian equations. They will
be represented by finite negative power series

N=nz=_ =N =0
and all derivates of the same. Also any such system represents
a smple module at the origin; the fact that the coefficients of
Eg Ex .., En are recurrent functions (8 63) placing no restriction
on them when finitein number. Let Ei =Cpyp wp (X2 oo, XY
be of absolute degree y*-I. Moving the origin back to its original
position, that is, to the point (—ayg —a» .., —#,), the equation Ei =0
becomes (8 64)
2 fa +thf* (G +a)°™.. (co+a)** (M?V2... a2")-t-

where, after expanding (c,+a”® ... (ch+a,)™ each c/t... c,?is to
be put equal to the known constant ¢y q ...on Which it represents.

Alo %, <Z,.. (= 0 if N +"2+eee +» >y0 Thus

(* +a* (c2+aa)Pa-"(*>>+" _(|+ Vl."(l"' T afW? eeoeaP»
QU \ Gy

—Ie althZ a Pn
~ WVAVAL ey,

where k%, ...,p isawhole function of pig Pg £> of degree v— L
Hence the modular equations of any smple module at the
point (a9 a ..., a,) are represented by power series

NKpytYz 2N <%2 "d, (#1 X~ Xn J =0

and their derivates, where #7>5,....;n iISawhole function ofpop2,..-,Pn-
Conversdly any system of equations (finite in number) of this type
with all their derivates is a system of modular equations of a smple
module at the point (a9 ax ..., a,).

The following is a consequence of the above. The genera solution
for the recurrent function cCpp ...pn (8 63) satisfying a set of re-
current equations Say p .y cp,+z]L, .ptin =0 for all positive

P
integral values of lig Iy ..., 4, when the corresponding polynomials
Vo, ~.,pn®ihX22-- ®n" bave only a finite number of points
(a9 @y ..., #y) in common, is "Aatar?.. a, "9 where A is a whole
function of pg Py ..., pn dependent on the point (ag ay, ..., a,) and
involving linear parameters. When the polynomials have an infinite
number of points in common there can scarcely be said to be a general
solution for ¢, ..p .



