the definition. We will prove that they are equal. Since, by hypothesis,

$$
\begin{array}{ll}
a a_{1}^{\prime}=0, & a+a_{1}^{\prime}=1, \\
a a_{2}^{\prime}=0, & a+a_{2}^{\prime}=1,
\end{array}
$$

we have

$$
a a_{1}^{\prime}=a a_{2}^{\prime}, \quad a+a_{1}^{\prime}=a+a_{2}^{\prime}
$$

whence we conclude, by the preceding lemma, that

$$
a_{1}^{\prime}=a_{2}^{\prime} .
$$

We can now speak of the negative of a term as of a unique and well-defined term.

The uniformity of the operation of negation may be expressed in the following manner:

If $a=b$, then also $a^{\prime}=b^{\prime}$. By this proposition, both members of an equaiity in the logical calculus may be "denied".
16. The Principles of Contradiction and of Excluded Middle.-By definition, a term and its negative verify the two formulas

$$
a a^{\prime}=0, \quad a+a^{\prime}=1
$$

which represent respectively the principle of contradiction and the principle of excluded middle. ${ }^{\text { }}$
C. I.: 1. The classes a and a^{\prime} have nothing in common; in other words, no element can be at the same time both a and not- a.
2. The classes a and a^{\prime} combined form the whole; in other words, every element is either a or not $-a$.

[^0]P. I.: I. The simultaneous affirmation of the propositions a and not- a is false; in other words, these two propositions cannot both be true at the same time.
2. The alternative affirmation of the propositions a and not- a is true; in other words, one of these two propositions must be true.

Two propositions are said to be contradictory when one is the negative of the other; they cannot both be true or false at the same time. If one is true the other is false; if one is false the other is true.

This is in agreement with the fact that the terms 0 and I are the negatives of each other; thus we have

$$
0 \times 1=0, \quad 0+1=1
$$

Generally speaking, we say that two terms are contradictory when one is the negative of the other.
17. Law of Double Negation.-Moreover this reciprocity is general: if a term b is the negative of the term a, then the term a is the negative of the term b. These two statements are expressed by the same formulas

$$
a b=0, \quad a+b=1
$$

and, while they unequivocally determine b in terms of a, they likewise determine a in terms of b. This is due to the symmetry of these relations, that is to say, to the commutativity of multiplication and addition. This reciprocity is expressed by the law of double negation

$$
\left(a^{\prime}\right)^{\prime}=a
$$

which may be formally proved as follows: a^{\prime} being by hypothesis the negative of a, we have

$$
a a^{\prime}=0, \quad a+a^{\prime}=\mathbf{1}
$$

On the other hand, let $a^{\prime \prime}$ be the negative of a^{\prime}; we have, in the same way,

$$
a^{\prime} a^{\prime \prime}=0, \quad a^{\prime}+a^{\prime \prime}=1
$$

But, by the preceding lemma, these four equalities involve the equality

$$
a=a^{\prime \prime} . \quad \text { Q. E. D. }
$$

[^0]: I As Mrs. Ladd-Franklin has truly remarked (Baldwin, Dictionary of Philosophy and Psychology, article "Laws of Thought"), the principle of contradiction is not sufficient to define contradictories; the principle of excluded middle must be added which equally deserves the name of principle of contradiction. This is why Mrs. Ladd-Franklin proposes to call them respectively the principle of exclusion and the principle of exhaustion, inasmuch as, according to the first, two contradictory terms are exclusive (the one of the other); and, according to the second, they are exhaustive (of the universe of discourse).

