A.1 Several facts from probability theory

In this section, we gather several facts from probability theory that are necessary in this monograph.

A.1.1 Convergence of probability measures

Let (S, d) be a metric space and $\mathcal{B}(S)$ the Borel σ -algebra of S, i.e., the smallest σ -algebra on S containing all open sets of S. (In this monograph, $S = \mathbb{R}^d$ or \mathbb{C} in most cases.) By a *probability measure* on S we mean a measure on $(S, \mathcal{B}(S))$ with total measure 1. For simplicity, put

 $\mathcal{P}(S) :=$ the set of all probability measures on S,

 $C_b(S) :=$ the set of all bounded continuous functions of S to \mathbb{R} .

Definition A.1 Let $\nu_n \in \mathcal{P}(S)$ $(n \ge 1)$ and $\nu \in \mathcal{P}(S)$. Then

$$u_n \to \nu \text{ weakly as } n \to \infty$$

$$\iff \int_S f(x) \nu_n(dx) \to \int_S f(x) \nu(dx) \quad \text{as } n \to \infty \quad \text{for } \forall f \in C_b(S).$$

In this case, we say that v_n converges weakly to v as $n \to \infty$.

Claim A.1 Let $v_n \in \mathcal{P}(S)$ $(n \ge 1)$ and $v \in \mathcal{P}(S)$. The following conditions (i) \sim (iv) are equivalent to each other:

- (i) $v_n \to v$ weakly as $n \to \infty$,
- (ii) For every closed set F of S, $\overline{\lim}_{n\to\infty} \nu_n(F) \le \nu(F)$,
- (iii) For every open set O of S, $\lim_{n\to\infty} \nu_n(O) \ge \nu(O)$,
- (iv) For every continuity set B of v, i.e., $B \in \mathcal{B}(S)$ satisfying $v(\partial B) = 0$, $\lim_{n \to \infty} v_n(B) = v(B)$.

For the proof, cf. Kotani [20, Proposition 9.2], H. Sato [29, Theorem 11.2], Stroock [31, Theorem 3.1.5].

A.1.2 Characteristic functions

In this subsection, let $S = \mathbb{R}^d$ or \mathbb{C}^d .

Definition A.2 (i) For $\nu \in \mathcal{P}(\mathbb{R}^d)$, put

$$\widehat{\nu}(\xi) := \int_{\mathbb{R}^d} e^{\sqrt{-1}\langle \xi, x \rangle} \nu(dx), \quad \xi \in \mathbb{R}^d.$$

 $\widehat{v}: \mathbb{R}^d \to \mathbb{C}$ is called the *characteristic function* of v. Here $\langle \xi, x \rangle$ is the inner product of ξ and x, i.e., $\langle \xi, x \rangle = \sum_{i=1}^d \xi_i x_i$ (ξ_i and x_i are the ith component of ξ and x, respectively). (ii) For $v \in \mathcal{P}(\mathbb{C}^d)$, put

$$\widehat{v}(w) := \int_{\mathbb{C}^d} e^{\sqrt{-1} \langle w, z \rangle} v(dz), \quad w \in \mathbb{C}^d.$$

 $\widehat{\nu}: \mathbb{C}^d \to \mathbb{C}$ is called the characteristic function of ν . Here, for $w=(w_1,\ldots,w_d)$, $z=(z_1,\ldots,z_d)\in\mathbb{C}^d$,

$$\langle w, z \rangle := \sum_{i=1}^{d} ((\operatorname{Re} w_i) \cdot (\operatorname{Re} z_i) + (\operatorname{Im} w_i) \cdot (\operatorname{Im} z_i)).$$

Claim A.2 Let $S = \mathbb{R}^d$ or \mathbb{C}^d . For $v_n \in \mathcal{P}(S)$ $(n \ge 1)$ and $v \in \mathcal{P}(S)$,

$$v_n \to v$$
 weakly as $n \to \infty \iff \widehat{v_n} \to \widehat{v}$ pointwise as $n \to \infty$.

For the proof, cf. Kotani [20, Theorem 9.16], H. Sato [29, Theorem 13.2], Stroock [31, Lemma 2.2.8].

Claim A.3 (Lévy's continuity theorem) Let $S = \mathbb{R}^d$ or \mathbb{C}^d . Let $v_n \in \mathcal{P}(S)$ $(n \ge 1)$ and $\varphi : S \to \mathbb{C}$. Suppose

• $\widehat{v_n} \to \varphi$ pointwise as $n \to \infty$, • φ is continuous at origin.

Then there exists a unique $v \in \mathcal{P}(S)$ such that $v_n \to v$ weakly as $n \to \infty$. (Thus $\widehat{v} = \varphi$ by Claim A.2.)

For the proof, cf. Durrett [8, Theorem 3.3.6], Kotani [20, Theorem 9.16], H. Sato [29, Theorem 13.3].

Definition A.3 For a function $\varphi : \mathbb{R}^d \to \mathbb{C}$,

 φ is positive definite

$$\iff \sum_{i,j=1}^n z_i \overline{z_j} \varphi(\xi_i - \xi_j) \ge 0 \text{ for } {}^{\forall} \xi_1, \dots, {}^{\forall} \xi_n \in \mathbb{R}^d \text{ and } {}^{\forall} z_1, \dots, {}^{\forall} z_n \in \mathbb{C}.$$

Claim A.4 (Bochner's theorem) *Suppose* $\varphi : \mathbb{R}^d \to \mathbb{C}$ *satisfies that*

• φ is positive definite, • φ is continuous at $\xi = 0$, • $\varphi(0) = 1$.

Then there exists a unique $v \in \mathcal{P}(\mathbb{R}^d)$ such that $\widehat{v} = \varphi$.

For the proof, cf. Itô [15, Theorem 2.6.6], Kotani [20, Corollary 9.17], H. Sato [29, Theorem 13.4].

A.1.3 Kolmogorov's extension theorem

In this subsection, let (S, d) be a complete separable metric space. Let T be a non-empty set.

Definition A.4 For $\emptyset \subsetneq \Lambda_1 \subset \Lambda_2 \subset T$, we define $\pi_{\Lambda_1,\Lambda_2} : S^{\Lambda_2} \to S^{\Lambda_1}$ by

$$\pi_{\Lambda_1,\Lambda_2}((x_f)_{f\in\Lambda_2}) := (x_f)_{f\in\Lambda_1}, \quad (x_f)_{f\in\Lambda_2} \in S^{\Lambda_2}.$$

Definition A.5 Given a probability measure μ_{Λ} on $(S^{\Lambda}, \mathcal{B}(S^{\Lambda}))$ for each $\Lambda \subset T$ with $1 \leq \operatorname{card} \Lambda < \infty$, $\{\mu_{\Lambda}\}$ is said to satisfy the *consistency condition* if, for any $\Lambda_1 \subset \Lambda_2$ with $1 \leq \operatorname{card} \Lambda_1 \leq \operatorname{card} \Lambda_2 < \infty$,

$$\mu_{\Lambda_2} \circ \pi_{\Lambda_1,\Lambda_2}^{-1} = \mu_{\Lambda_1}.$$

Claim A.5 (Kolmogorov's extension theorem) *Suppose* $\{\mu_{\Lambda}; \Lambda \subset T \text{ is non-empty and finite}\}$ satisfies the consistency condition. Then

³¹**P**: a probability measure on
$$(S^T, \sigma(\pi_f; f \in T))$$

s.t. $\mathbf{P} \circ \pi_{\Lambda}^{-1} = \mu_{\Lambda}, \emptyset \subsetneq {}^{\forall} \Lambda \subset T$ finite.

Here $\pi_f = \pi_{\{f\},T}$, i.e.,

and $\sigma(\pi_f; f \in T)$ is the smallest σ -algebra on S^T such that all π_f 's are measurable.

For the proof, cf. Kotani [20, Theorem 4.22] (or Durrett [8, Theorem A.3.1] or Itô [15, Theorem 2.9.1]).

A.1.4 Almost sure convergence theorem for independent random variables

Let (Ω, \mathcal{F}, P) be a probability space.

Claim A.6 (Almost sure convergence theorem) Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of real random variables defined on (Ω, \mathcal{F}, P) . Suppose that

- $\{X_n; n = 1, 2, \ldots\}$ are independent,
- X_n is square-integrable, i.e., $E[X_n^2] < \infty (\forall n)$,
- $\sum_{n=1}^{\infty} Var(X_n) < \infty$, where $Var(X_n)$ is the variance of X_n , i.e., $Var(X_n) = E[(X_n E[X_n])^2]$.

Then
$$\sum_{n=1}^{\infty} (X_n - E[X_n])$$
 is convergent P-a.e., i.e., $\sum_{n=1}^{N} (X_n - E[X_n])$ is convergent as $N \to \infty$ P-a.e.

For the proof, cf. Itô [15, Theorem 4.2.1], H. Sato [29, Theorem 10.1], Stroock [31, Theorem 1.4.2].

A.1.5 Lindeberg's central limit theorem

Similarly as above, let (Ω, \mathcal{F}, P) be a probability space.

Claim A.7 (Lindeberg's central limit theorem) Let $\{X_{nj}; j = 1, ..., k_n, n = 1, 2, ...\}$ be a triangular array of real random variables defined on (Ω, \mathcal{F}, P) . Suppose that

- $\{X_{nj}; j=1,\ldots,k_n\}$ are independent $(\forall n \geq 1)$,
- X_{nj} is square-integrable and of mean zero $(1 \leq {}^{\forall} j \leq k_n, {}^{\forall} n \geq 1)$,

•
$$\lim_{n\to\infty}\sum_{j=1}^{k_n}E\left[X_{nj}^2\right]=v\in[0,\infty)$$
 and $\lim_{n\to\infty}\sum_{j=1}^{k_n}E\left[X_{nj}^2;|X_{nj}|\geq\varepsilon\right]=0\ (\forall\varepsilon>0).$

Then

the distribution of
$$\sum_{j=1}^{k_n} X_{nj}$$

 \rightarrow the normal distribution N(0, v) weakly as $n \rightarrow \infty$.

Namely

$$E\left[e^{\sqrt{-1}\xi\sum_{j=1}^{k_n}X_{nj}}\right]\to e^{-\frac{v\xi^2}{2}}\quad as\ n\to\infty,\ \ ^{\forall}\xi\in\mathbb{R}.$$

For the proof, cf. Durrett [8, Theorem 3.4.5].

A.2 Gauss's product formula of the gamma function

Definition A.6 We define the *gamma function* $\Gamma(\cdot)$ by

$$\Gamma(s) := \int_0^\infty e^{-x} x^{s-1} dx, \quad s \in \mathbb{C} \text{ with } \operatorname{Re} s > 0.$$

Since $|e^{-x}x^{s-1}| = e^{-x}x^{\operatorname{Re} s-1}$ and $\operatorname{Re} s > 0$, this integral is absolutely convergent on $\{s \in \mathbb{C}; \operatorname{Re} s > 0\}$.

Claim A.8 (i) $\Gamma(\cdot)$ is holomorphic on $\{s \in \mathbb{C}; \operatorname{Re} s > 0\}$. (ii) $\Gamma(s+1) = s\Gamma(s)$. In particular, $\Gamma(n) = (n-1)!$ for $n \in \mathbb{N}$.

Proof. (i) For $s, h \in \mathbb{C}$ with $0 < |h| < \frac{1}{2} \operatorname{Re} s$,

$$e^{-x} \frac{x^{s+h-1} - x^{s-1}}{h} = e^{-x} \frac{1}{h} \int_0^1 (x^{s+th-1})' dt$$
$$= e^{-x} \frac{1}{h} \int_0^1 x^{s+th-1} (\log x) h dt$$
$$= e^{-x} \log x \int_0^1 x^{s+th-1} dt.$$

Taking the absolute value, we have

$$\begin{split} \left| e^{-x} \frac{x^{s+h-1} - x^{s-1}}{h} \right| &\leq e^{-x} |\log x| \int_0^1 x^{\operatorname{Re}(s+th)-1} dt \\ &= e^{-x} |\log x| \int_0^1 x^{\operatorname{Re}s+t\operatorname{Re}h-1} dt \\ &\leq \mathbf{1}_{x>1} e^{-x} (\log x) x^{\frac{3}{2}\operatorname{Re}s-1} + \mathbf{1}_{0 < x < 1} e^{-x} |\log x| x^{\frac{1}{2}\operatorname{Re}s-1} \\ & \left[\begin{array}{c} \odot \operatorname{Re}s + t\operatorname{Re}h - 1 \\ \left\{ \leq \operatorname{Re}s + t|h| - 1 < \frac{3}{2}\operatorname{Re}s - 1 \right\} \\ \geq \operatorname{Re}s - t|h| - 1 > \frac{1}{2}\operatorname{Re}s - 1 \end{array} \right] \\ &\leq \mathbf{1}_{x>1} e^{-x} x^{\frac{3}{2}\operatorname{Re}s+1-1} + \mathbf{1}_{0 < x < 1} e^{-x} \frac{4}{\operatorname{Re}s} x^{\frac{1}{4}\operatorname{Re}s-1} \\ & \left[\begin{array}{c} \odot \operatorname{Since} 0 \leq \log y < y \ (y \geq 1), \\ 0 \leq \log \frac{1}{x} = \frac{4}{\operatorname{Re}s} \log(\frac{1}{x})^{\frac{\operatorname{Re}s}{4}} < \frac{4}{\operatorname{Re}s} x^{-\frac{\operatorname{Re}s}{4}} \operatorname{for} 0 < x \leq 1 \end{array} \right]. \end{split}$$

Thus, by Lebesgue's convergence theorem

$$\lim_{h \to 0} \frac{\Gamma(s+h) - \Gamma(s)}{h} = \lim_{h \to 0} \int_0^\infty e^{-x} \frac{x^{s+h-1} - x^{s-1}}{h} dx$$
$$= \int_0^\infty e^{-x} x^{s-1} \log x dx.$$

(ii) By integration by parts,

L.H.S.
$$=\int_0^\infty e^{-t}t^s dt = \int_0^\infty (-e^{-t})'t^s dt$$

 $= \left[-e^{-t}t^s\right]_0^\infty + \int_0^\infty e^{-t}st^{s-1}dt$
 $= \text{R.H.S.} \quad \begin{bmatrix} \odot & \lim_{t \to \infty} e^{-t}t^s = 0, \\ & \lim_{t \to \infty} e^{-t}t^s = \lim_{t \to \infty} \frac{t^s}{e^t} = 0 \end{bmatrix}.$

Lemma A.1 (i) $As n \to \infty$,

$$\prod_{k=1}^{n} \left(1 + \frac{s}{k}\right) e^{-\frac{s}{k}}$$

is uniformly convergent on every compact set of \mathbb{C} . Thus the limit function is holomorphic on \mathbb{C} .

(ii)
$$\prod_{k=1}^{\infty} \left(1 + \frac{s}{k}\right) e^{-\frac{s}{k}} \begin{cases} \neq 0, & s \in \mathbb{C} \setminus (-\mathbb{N}), \\ = 0, & s \in -\mathbb{N}. \end{cases}$$

Proof. For simplicity, put

$$a_k(s) := \left(1 + \frac{s}{k}\right)e^{-\frac{s}{k}} - 1 = \int_0^1 \left(\left(1 + \frac{ts}{k}\right)e^{-\frac{ts}{k}}\right)' dt$$
$$= \frac{s^2}{k^2} \int_0^1 (-t)e^{-\frac{ts}{k}} dt.$$

Taking the absolute value, we have

$$|a_k(s)| \le \frac{|s|^2}{k^2} \int_0^1 t \left| e^{-\frac{ts}{k}} \right| dt \le \frac{|s|^2}{k^2} \int_0^1 t e^{\frac{t|s|}{k}} dt \le \frac{|s|^2}{k^2} e^{\frac{|s|}{k}}. \tag{A.1}$$

(i) For $m > n \ge 1$,

$$\begin{split} & \left| \prod_{k=1}^{m} \left(1 + \frac{s}{k} \right) e^{-\frac{s}{k}} - \prod_{k=1}^{n} \left(1 + \frac{s}{k} \right) e^{-\frac{s}{k}} \right| \\ & = \left| \prod_{k=1}^{m} \left(1 + a_k(s) \right) - \prod_{k=1}^{n} \left(1 + a_k(s) \right) \right| \\ & = \left| \prod_{k=1}^{n} \left(1 + a_k(s) \right) \left(\prod_{k=n+1}^{m} \left(1 + a_k(s) \right) - 1 \right) \right| \\ & = \left| \prod_{k=1}^{n} \left(1 + a_k(s) \right) \right| \prod_{k=n+1}^{m} \left(1 + a_k(s) \right) - 1 \right| \\ & = \left(\prod_{k=1}^{n} \left| 1 + a_k(s) \right| \right) \left| 1 + \sum_{r=1}^{m-n} \sum_{n+1 \le k_1 < \dots < k_r \le m} a_{k_1}(s) \dots a_{k_r}(s) - 1 \right| \\ & \leq \left(\prod_{k=1}^{n} \left(1 + |a_k(s)| \right) \right) \left(\sum_{r=1}^{m-n} \sum_{n+1 \le k_1 < \dots < k_r \le m} |a_{k_1}(s)| \dots |a_{k_r}(s)| \right) \\ & = \left(\prod_{k=1}^{n} \left(1 + |a_k(s)| \right) \right) \left(\prod_{k=n+1}^{m-n} \sum_{n+1 \le k_1 < \dots < k_r \le m} |a_{k_1}(s)| \dots |a_{k_r}(s)| - 1 \right) \\ & = \left(\prod_{k=1}^{n} \left(1 + |a_k(s)| \right) \right) \left(\prod_{k=n+1}^{m} \left(1 + |a_k(s)| \right) - 1 \right) \\ & \leq \left(\prod_{k=1}^{n} |a_k(s)| \left(e^{\sum_{k=n+1}^{m} |a_k(s)|} - 1 \right) \right. \left[\underbrace{\odot} \left(1 + \sum_{k=n+1}^{n} |a_k(s)| \left(e^{\sum_{k=n+1}^{m} |a_k(s)|} \right) \right] \\ & = e^{\sum_{k=1}^{n} |a_k(s)|} \left(e^{\sum_{k=n+1}^{m} |a_k(s)|} \right) e^{\sum_{k=n+1}^{m} |a_k(s)|} \\ & = \left(\sum_{k=n+1}^{m} |a_k(s)| \right) e^{\sum_{k=1}^{m} |a_k(s)|} \\ & \leq \left(\sum_{k=n+1}^{m} \frac{|s|^2}{k^2} e^{\frac{|s|}{k}} \right) e^{\sum_{k=1}^{m} \frac{|s|^2}{k^2}} e^{\frac{|s|}{k}} \left[\underbrace{\odot} \left(A.1 \right) \right] \\ & \leq \left(|s|^2 e^{\frac{|s|}{n+1}} \sum_{k=n+1}^{m} \frac{1}{k^2} \right) e^{|s|^2 e^{|s|} \sum_{k=n+1}^{m} \frac{1}{k^2}} \end{aligned}$$

$$\leq |s|^2 e^{\frac{|s|}{n+1}} e^{|s|^2 e^{|s|} \zeta(2)} \Big(\sum_{k=n+1}^m \frac{1}{k^2} \Big),$$

from which the assertion (i) follows.

(ii) Let $C \subset \mathbb{C}$ be a compact set such that $C \subset \mathbb{C} \setminus (-\mathbb{N})$. Take $\varepsilon > 0$ and R > 0 so that

$$\left|1 + \frac{s}{k}\right| \ge \varepsilon, \ |s| \le R \ (\forall s \in C, \forall k \in \mathbb{N}).$$

Then, since, for $s \in C$, $k \in \mathbb{N}$,

$$\left| \frac{1}{1 + a_k(s)} \right| = \left| \frac{1 + a_k(s) - a_k(s)}{1 + a_k(s)} \right| = \left| 1 - \frac{a_k(s)}{1 + a_k(s)} \right|$$

$$\leq 1 + \left| \frac{a_k(s)}{1 + a_k(s)} \right|$$

$$= 1 + \left| \frac{\frac{s^2}{k^2} \int_0^1 (-t) e^{-\frac{ts}{k}} dt}{(1 + \frac{s}{k}) e^{-\frac{s}{k}}} \right|$$

$$= 1 + \left| \frac{1}{k^2} \frac{s^2}{1 + \frac{s}{k}} \int_0^1 (-t) e^{\frac{s}{k}(1 - t)} dt \right|$$

$$\leq 1 + \frac{1}{k^2} \frac{|s|^2}{|1 + \frac{s}{k}|} \int_0^1 t e^{\frac{|s|}{k}(1 - t)} dt$$

$$\leq 1 + \frac{1}{k^2} \frac{R^2}{\varepsilon} e^{\frac{R}{k}}$$

$$\leq e^{\frac{1}{k^2} \frac{R^2}{\varepsilon} e^R}.$$

we have

$$\left| \prod_{k=1}^{n} \left(1 + \frac{s}{k} \right) e^{-\frac{s}{k}} \right| = \left| \prod_{k=1}^{n} \left(1 + a_k(s) \right) \right| = \prod_{k=1}^{n} \left| 1 + a_k(s) \right|$$

$$\geq \prod_{k=1}^{n} e^{-\frac{1}{k^2} \frac{R^2}{\varepsilon} e^R}$$

$$= e^{-\frac{R^2}{\varepsilon} e^R \sum_{k=1}^{n} \frac{1}{k^2}}$$

$$\geq e^{-\frac{R^2}{\varepsilon} e^R \xi(2)}.$$

which implies that

$$\inf_{s \in C} \left| \prod_{k=1}^{\infty} \left(1 + \frac{s}{k} \right) e^{-\frac{s}{k}} \right| \ge e^{-\frac{R^2}{\varepsilon}} e^{R \zeta(2)} > 0.$$

Claim A.9 (i) $On \mathbb{C} \setminus \{0, -1, -2, ...\}$,

$$\lim_{n\to\infty} \frac{n!n^s}{s(s+1)\cdots(s+n)} = \frac{e^{-\gamma s}}{s} \frac{1}{\prod_{k=1}^{\infty} \left(1 + \frac{s}{k}\right)e^{-\frac{s}{k}}}.$$

Here γ is Euler's constant. Thus the limit function is holomorphic on $\mathbb{C} \setminus \{0, -1, -2, \ldots\}$. (ii) For Re s > 0,

$$\Gamma(s) = \lim_{n \to \infty} \frac{n! n^s}{s(s+1)\cdots(s+n)}.$$

Thus $\Gamma(\cdot)$ is analytically continuable to a holomorphic function on $\mathbb{C}\setminus\{0,-1,-2,\ldots\}$ which is denoted by the same $\Gamma(\cdot)$.

(iii) For each $m \in \{0, 1, 2, ...\}$, s = -m is a simple pole of $\Gamma(\cdot)$, and the residue at this point is $\frac{(-1)^m}{m!}$.

Proof. (i) First, for $s \in \mathbb{C} \setminus \{0, -1, -2, ...\}$ and $n \in \mathbb{N}$,

$$\frac{n!n^{s}}{s(s+1)\cdots(s+n)} = \frac{1}{s} \frac{1 \cdot 2 \cdot \dots \cdot n}{(s+1)(s+2)\cdots(s+n)} e^{s\log n} \\
= \frac{1}{s} \frac{e^{s(1+\frac{1}{2}+\dots+\frac{1}{n})}}{\frac{1+s}{1} \cdot \frac{2+s}{2} \cdot \dots \cdot \frac{n+s}{n}} e^{-s(1+\frac{1}{2}+\dots+\frac{1}{n}-\log n)} \\
= \frac{1}{s} e^{-s(1+\frac{1}{2}+\dots+\frac{1}{n}-\log n)} \frac{1}{(1+\frac{s}{1})e^{-s} \cdot (1+\frac{s}{2})e^{-\frac{s}{2}} \cdot \dots \cdot (1+\frac{s}{n})e^{-\frac{s}{n}}} \\
= \frac{1}{s} e^{-s\left(\sum_{k=1}^{n} \frac{1}{k}-\log n\right)} \frac{1}{\prod_{k=1}^{n} (1+\frac{s}{k})e^{-\frac{s}{k}}}.$$

Since, as $n \to \infty$,

$$\sum_{k=1}^{n} \frac{1}{k} - \log n \to \gamma,$$

$$\prod_{k=1}^{n} \left(1 + \frac{s}{k}\right) e^{-\frac{s}{k}} \to \prod_{k=1}^{\infty} \left(1 + \frac{s}{k}\right) e^{-\frac{s}{k}},$$

we have

$$\lim_{n\to\infty} \frac{n!n^s}{s(s+1)\cdots(s+n)} = \frac{e^{-\gamma s}}{s} \frac{1}{\prod_{k=1}^{\infty} (1+\frac{s}{k})e^{-\frac{s}{k}}}.$$

(ii) It suffices to show the identity for s > 0, whence the assertion (ii) follows by the uniqueness theorem.

Fix s > 0. For $n \in \mathbb{N}$, put

$$\Gamma_n(s) := \int_0^n \left(1 - \frac{x}{n}\right)^n x^{s-1} dx.$$

Since

$$0 \le \mathbf{1}_{(0,n)}(x) \left(1 - \frac{x}{n}\right)^n x^{s-1} \le \mathbf{1}_{(0,n)}(x) \left(e^{-\frac{x}{n}}\right)^n x^{s-1}$$
$$\left[\bigcirc 0 \le 1 - y \le e^{-y} \ (0 \le {}^{\forall} y \le 1) \right]$$

$$= \mathbf{1}_{(0,n)}(x)e^{-x}x^{s-1}$$

$$\leq e^{-x}x^{s-1} \quad (\forall n \in \mathbb{N}, \ \forall x > 0),$$

$$\lim_{n \to \infty} \mathbf{1}_{(0,n)}(x)\left(1 - \frac{x}{n}\right)^n x^{s-1} = e^{-x}x^{s-1} \quad (\forall x > 0),$$

$$\int_0^\infty e^{-x}x^{s-1} dx = \Gamma(s) < \infty,$$

it follows from Lebesgue's convergence theorem that $\lim_{n\to\infty} \Gamma_n(s) = \Gamma(s)$. On the other hand, integration by parts yields that

$$\Gamma_{n}(s) = \int_{0}^{n} \left(1 - \frac{x}{n}\right)^{n} x^{s-1} dx$$

$$= \int_{0}^{1} (1 - y)^{n} (ny)^{s-1} n dy \quad [\odot \text{ change of variable: } y = \frac{x}{n}]$$

$$= n^{s} \int_{0}^{1} (1 - y)^{n} y^{s-1} dy$$

$$= n^{s} \int_{0}^{1} (1 - y)^{n} \left(\frac{y^{s}}{s}\right)' dy$$

$$= n^{s} \left\{ \left[(1 - y)^{n} \frac{y^{s}}{s} \right]_{0}^{1} + \frac{n}{s} \int_{0}^{1} (1 - y)^{n-1} y^{s} dy \right\}$$

$$= n^{s} \frac{n}{s} \int_{0}^{1} (1 - y)^{n-1} \left(\frac{y^{s+1}}{s+1}\right)' dy$$

$$= n^{s} \frac{n}{s} \left\{ \left[(1 - y)^{n-1} \frac{y^{s+1}}{s+1} \right]_{0}^{1} + \frac{n-1}{s+1} \int_{0}^{1} (1 - y)^{n-2} y^{s+1} dy \right\}$$

$$= n^{s} \frac{n(n-1)}{s(s+1)} \int_{0}^{1} (1 - y)^{n-2} \left(\frac{y^{s+2}}{s+2}\right)' dy$$

$$\vdots$$

$$= n^{s} \frac{n(n-1) \cdots 2}{s(s+1) \cdots (s+n-2)} \int_{0}^{1} (1 - y) \left(\frac{y^{s+n-1}}{s+n-1}\right)' dy$$

$$= n^{s} \frac{n(n-1) \cdots 2}{s(s+1) \cdots (s+n-2)} \left\{ \left[(1 - y) \frac{y^{s+n-1}}{s+n-1} \right]_{0}^{1} + \frac{1}{s+n-1} \int_{0}^{1} y^{s+n-1} dy \right\}$$

$$= n^{s} \frac{n!}{s(s+1) \cdots (s+n)}.$$

Therefore we have

$$\lim_{n\to\infty} \frac{n!n^s}{s(s+1)\cdots(s+n)} = \Gamma(s).$$

(iii) First note that for $s \in \mathbb{C} \setminus \{0, -1, -2, \ldots\}$

$$s\Gamma(s) = \lim_{n \to \infty} s \frac{(n+1)!(n+1)^s}{s(s+1)\cdots(s+n+1)}$$

$$= \lim_{n \to \infty} \frac{n!(n+1)^{s+1}}{(s+1)(s+1+1)\cdots(s+1+n)}$$

$$= \lim_{n \to \infty} \frac{n!n^{s+1}}{(s+1)(s+1+1)\cdots(s+1+n)} \left(1 + \frac{1}{n}\right)^{s+1}$$

$$= \Gamma(s+1).$$

From this identity it follows that for $m \in \mathbb{N}$, $s \in \mathbb{C} \setminus \{0, -1, -2, \ldots\}$,

$$\Gamma(s+m) = \left(\prod_{i=0}^{m-1} (s+i)\right) \Gamma(s).$$

For each $m \in \mathbb{N} \cup \{0\}$,

$$\lim_{s \to -m} (s - (-m)) \Gamma(s) = \lim_{s \to -m} (s + m) \frac{\Gamma(s + m)}{\prod_{i=0}^{m-1} (s + i)}$$
[when $m = 0$, we let $\prod_{i=0}^{-1} (s + i) = 1$]
$$= \lim_{s \to -m} (s + m) \Gamma(s + m) \frac{1}{\prod_{i=0}^{m-1} (s + m + (i - m))}$$

$$= \lim_{s \to 0} s \Gamma(s) \frac{1}{\prod_{i=0}^{m-1} (s - (m - i))}$$

$$= \lim_{s \to 0} \Gamma(s + 1) \frac{1}{\prod_{j=1}^{m} (s - j)}$$

$$= \frac{1}{(-1)^m m!}$$

$$= \frac{(-1)^m}{m!},$$

which shows the assertion (iii).

R.H.S. in Claim A.9(i) is called *Weierstrass's formula* of the gamma function and the identity in Claim A.9(ii) is called *Gauss's product formula* of the gamma function.

A.3 A proof of $\zeta(2) = \frac{\pi^2}{6}$

To find the value of $\zeta(2)$ is historically known as the *Basel problem*. In 1735, L. Euler solved this problem by showing that $\zeta(2) = \frac{\pi^2}{6}$. After Euler, there are many proofs of this. In fact, from 2° in the proof of Theorem 4.3, we can immediately see it. In this section, we introduce another proof of it due to Fujita ([7, 10]). This proof is simple, but not elementary. In other words, it is a senior or junior level in college.

Claim A.10
$$\zeta(2) = \frac{\pi^2}{6}$$
, i.e., $\sum_{n=1}^{\infty} \frac{1}{n^2} \dot{}^{-1} = \frac{\pi^2}{6}$.

Proof. We divide the proof into three steps:

 $\underline{1}^{\circ}$ Let $f, g: (0, \infty) \to [0, \infty)$ be Borel measurable, and

$$\int_0^\infty f(x)dx = \int_{(0,\infty)} f(x)dx < \infty, \quad \int_0^\infty g(x)dx = \int_{(0,\infty)} g(x)dx < \infty.$$

Define $h:(0,\infty)\to [0,\infty]$ by

$$h(x) := \int_{(0,\infty)} f(u)g\left(\frac{x}{u}\right) \frac{du}{u}.$$

By Fubini's theorem, $h(\cdot)$ is Borel measurable and

$$\int_{(0,\infty)} h(x)dx = \int_{(0,\infty)} f(u)du \int_{(0,\infty)} g\left(\frac{x}{u}\right) \frac{dx}{u}$$

$$= \int_{(0,\infty)} f(u)du \int_{(0,\infty)} g(v)dv \quad \left[\bigcirc \text{ change of variable: } v = \frac{x}{u} \right]$$

$$< \infty. \tag{A.2}$$

Thus $h(x) < \infty$ a.e. x.

 $\underline{2^{\circ}}$ Take $f(x) = g(x) = \frac{1}{x^2 + 1}$. Then

$$\int_0^\infty f(x)dx = \int_0^\infty g(x)dx = \left[\tan^{-1} x\right]_0^\infty = \frac{\pi}{2}.$$

Let us find the h above for these f, g: For $x \neq 1$,

$$h(x) = \int_{(0,\infty)}^{\infty} \frac{1}{u^2 + 1} \frac{1}{\left(\frac{x}{u}\right)^2 + 1} \frac{du}{u}$$

$$= \int_0^{\infty} \frac{u}{(u^2 + 1)(u^2 + x^2)} du$$

$$= \frac{1}{2} \int_0^{\infty} \frac{1}{(v + 1)(v + x^2)} dv \quad [\odot \text{ change of variable: } v = u^2]$$

$$= \frac{1}{2} \int_0^{\infty} \left(\frac{1}{v + 1} - \frac{1}{v + x^2}\right) \frac{dv}{x^2 - 1}$$

$$= \frac{1}{2} \frac{1}{x^2 - 1} \int_0^{\infty} \left(\log \frac{v + 1}{v + x^2}\right)' dv$$

$$= \frac{1}{2} \frac{1}{x^2 - 1} \left[\log \frac{v + 1}{v + x^2}\right]_0^{\infty}$$

$$= \frac{1}{2} \frac{1}{x^2 - 1} \left(\log 1 - \log \frac{1}{x^2}\right)$$

$$= \frac{\log x}{x^2 - 1}.$$
†1 The series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is sometimes called the *Euler series*.

By (A.2), we have

$$\int_0^\infty \frac{\log x}{x^2 - 1} dx = \frac{\pi^2}{4}.$$

3° We compute the integral above in a different way:

$$\begin{split} &\int_{0}^{\infty} \frac{\log x}{x^{2}-1} dx \\ &= \int_{0}^{1} \frac{\log x}{x^{2}-1} dx + \int_{1}^{\infty} \frac{\log x}{x^{2}-1} dx \\ &= \int_{0}^{1} \frac{-\log x}{1-x^{2}} dx + \int_{0}^{1} \frac{\log \frac{1}{y}}{\frac{1}{y^{2}}-1} \frac{dy}{y^{2}} \quad \left[\odot \text{ change of variable: } y = \frac{1}{x} \right] \\ &= 2 \int_{0}^{1} \frac{-\log x}{1-x^{2}} dx \\ &= 2 \int_{0}^{1} (-\log x) \sum_{k=0}^{\infty} x^{2k} dx \quad \left[\odot \sum_{k=0}^{\infty} r^{k} = \frac{1}{1-r} \left(|r| < 1 \right) \right] \\ &= 2 \sum_{k=0}^{\infty} \int_{0}^{1} (-\log x) x^{2k} dx \quad \left[\odot \text{ termwise integration theorem} \right] \\ &= 2 \sum_{k=0}^{\infty} \frac{1}{(2k+1)^{2}} \int_{0}^{\infty} e^{-v} v dv \quad \left[\odot \text{ change of variable: } v = -(2k+1) \log x \right] \\ &= 2 \Gamma(2) \sum_{k=0}^{\infty} \frac{1}{(2k+1)^{2}} \\ &= 2 \sum_{k=0}^{\infty} \frac{1}{(2k+1)^{2}} \quad \left[\odot \Gamma(2) = \Gamma(1+1) = 1 \cdot \Gamma(1) = 1 \right]. \end{split}$$

Thus

$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}.$$

Finally, noting that

$$\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{k=1}^{\infty} \frac{1}{(2k)^2} + \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = \frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{k^2} + \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2}$$
$$= \frac{\zeta(2)}{4} + \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2},$$

we have $\zeta(2) = \frac{\pi^2}{6}$.

A.4 The second mean value theorem for integrals

This theorem is used several times in the proof of Claim 6.2. Although this can be found in textbooks of fundamental calculus (= differential and integral calculus), we here prove it.

Claim A.11 (Second mean value theorem) Let $-\infty < a < b < \infty$, $f:[a,b] \to \mathbb{R}$ Riemann integrable and $\varphi:[a,b] \to \mathbb{R}$ monotonic, i.e., nondecreasing or nonincreasing. Then

$$a \leq \exists \xi \leq b \text{ s.t. } \int_a^b f(x)\varphi(x)dx = \varphi(a) \int_a^{\xi} f(x)dx + \varphi(b) \int_{\xi}^b f(x)dx.$$

Proof. We give a proof due to Takagi [32]. Suppose $\varphi \in \mathcal{A}$, i.e., φ is nonincreasing. Let $\psi(x) := \varphi(x) - \varphi(b)$. Clearly $\psi \in \mathcal{A}$, ≥ 0 on [a,b]. For a partition $\Delta : a = t_0 < t_1 < \cdots < t_n = b$, put

$$s_j = \sum_{i=1}^j f(t_{i-1})(t_i - t_{i-1}) \quad (0 \le j \le n).$$

Then

$$\sum_{j=1}^{n} f(t_{j-1})\psi(t_{j-1})(t_{j} - t_{j-1}) = \sum_{j=1}^{n} f(t_{j-1})(t_{j} - t_{j-1})\psi(t_{j-1})$$

$$= \sum_{j=1}^{n} (s_{j} - s_{j-1})\psi(t_{j-1})$$

$$= \sum_{j=1}^{n} s_{j}\psi(t_{j-1}) - \sum_{j=1}^{n} s_{j-1}\psi(t_{j-1})$$

$$= \sum_{j=1}^{n} s_{j}\psi(t_{j-1}) - \sum_{j=1}^{n-1} s_{j}\psi(t_{j})$$

$$= s_{n}\psi(t_{n-1}) + \sum_{j=1}^{n-1} s_{j}(\psi(t_{j-1}) - \psi(t_{j})).$$

Since, by $\psi(t_{n-1}) \ge 0$, $\psi(t_{j-1}) - \psi(t_j) \ge 0$ $(1 \le j \le n-1)$,

$$s_{n}\psi(t_{n-1}) + \sum_{j=1}^{n-1} s_{j} (\psi(t_{j-1}) - \psi(t_{j}))$$

$$\begin{cases} \leq (\max_{1 \leq j \leq n} s_{j}) (\psi(t_{n-1}) + \sum_{j=1}^{n-1} (\psi(t_{j-1}) - \psi(t_{j}))) = (\max_{1 \leq j \leq n} s_{j}) \psi(t_{0}), \\ \geq (\min_{1 \leq j \leq n} s_{j}) (\psi(t_{n-1}) + \sum_{j=1}^{n-1} (\psi(t_{j-1}) - \psi(t_{j}))) = (\min_{1 \leq j \leq n} s_{j}) \psi(t_{0}), \end{cases}$$

we see that

$$\min_{1 \le j \le n} \left(\sum_{i=1}^{j} f(t_{i-1})(t_i - t_{i-1}) \right) \psi(a) \le \sum_{j=1}^{n} f(t_{j-1}) \psi(t_{j-1})(t_j - t_{j-1}) \\
\le \max_{1 \le j \le n} \left(\sum_{i=1}^{j} f(t_{i-1})(t_i - t_{i-1}) \right) \psi(a).$$

Now, since f is Riemann integrable on [a, b],

$$\forall \varepsilon > 0, \ \exists \delta > 0 \text{ s.t.} \begin{cases} \text{for any partition } \Delta : a = t_0 < t_1 < \dots < t_n = b \\ \text{with } |\Delta| = \max_{1 \le i \le n} (t_i - t_{i-1}) < \delta, \\ \sum_{i=1}^n \left(\sup_{[t_{i-1}, t_i]} f - \inf_{[t_{i-1}, t_i]} f \right) (t_i - t_{i-1}) < \varepsilon. \end{cases}$$

This implies that for j = 1, ..., n,

$$\left| \sum_{i=1}^{j} f(t_{i-1})(t_{i} - t_{i-1}) - \int_{a}^{t_{j}} f(t)dt \right| = \left| \sum_{i=1}^{j} \int_{t_{i-1}}^{t_{i}} \left(f(t_{i-1}) - f(t) \right) dt \right|$$

$$\leq \sum_{i=1}^{j} \int_{t_{i-1}}^{t_{i}} \left| f(t_{i-1}) - f(t) \right| dt$$

$$\leq \sum_{i=1}^{j} \left(\sup_{[t_{i-1}, t_{i}]} f - \inf_{[t_{i-1}, t_{i}]} f \right) (t_{i} - t_{i-1})$$

$$\leq \sum_{i=1}^{n} \left(\sup_{[t_{i-1}, t_{i}]} f - \inf_{[t_{i-1}, t_{i}]} f \right) (t_{i} - t_{i-1})$$

$$\leq \varepsilon.$$

and thus

$$\begin{split} & \left(\left(\min_{a \leq x \leq b} \int_{a}^{x} f(t) dt \right) - \varepsilon \right) \psi(a) \\ & \leq \sum_{j=1}^{n} f(t_{j-1}) \psi(t_{j-1}) (t_{j} - t_{j-1}) \\ & \leq \left(\left(\max_{a \leq x \leq b} \int_{a}^{x} f(t) dt \right) + \varepsilon \right) \psi(a), \quad \forall \Delta \text{ with } |\Delta| < \delta. \end{split}$$

Letting $|\Delta| \to 0$, we have

$$\left(\min_{a \le x \le b} \int_{a}^{x} f(t)dt\right) \psi(a) \le \int_{a}^{b} f(t) \psi(t)dt$$
$$\le \left(\max_{a \le x \le b} \int_{a}^{x} f(t)dt\right) \psi(a).$$

By the intermediate value theorem,

$$a \leq {}^{\exists} \xi \leq b$$
 s.t. $\int_a^b f(t)\psi(t)dt = \Big(\int_a^{\xi} f(t)dt\Big)\psi(a).$

Putting $\psi(\cdot) = \varphi(\cdot) - \varphi(b)$, we obtain

$$\int_{a}^{b} f(t)\varphi(t)dt = \varphi(a) \int_{a}^{\xi} f(t)dt + \varphi(b) \int_{\xi}^{b} f(t)dt.$$

In case $\varphi \in \mathcal{I}$, i.e., φ is nondecreasing, since $-\varphi \in \mathcal{I}$, it follows from the above that

$$a \le \exists \eta \le b$$

s.t. $\int_a^b f(t) (-\varphi(t)) dt = (-\varphi(a)) \int_a^{\eta} f(t) dt + (-\varphi(b)) \int_a^b f(t) dt$.

Multiplying it by -1, we have

$$\int_{a}^{b} f(t)\varphi(t)dt = \varphi(a)\int_{a}^{\eta} f(t)dt + \varphi(b)\int_{\eta}^{b} f(t)dt.$$