Appendix

A.1 Several facts from probability theory

In this section, we gather several facts from probability theory that are necessary in this
monograph.

A.1.1 Convergence of probability measures

Let (S, d) be a metric space and B(S) the Borel o-algebra of S, i.e., the smallest o-
algebra on S containing all open sets of S. (In this monograph, S = R? or C in most
cases.) By a probability measure on S we mean a measure on (S , i)’(S)) with total
measure 1. For simplicity, put

P (S) := the set of all probability measures on S,
Cy(S) := the set of all bounded continuous functions of S to R.

Definition A.1 Letv, € £(S) (n > 1) and v € £(S). Then
v, — v weakly asn — oo
ﬁ / f(x)v,(dx) — / Ff(xX)v(dx) asn — oo for ¥ f € Cy(S).
ef Js s
In this case, we say that v, converges weakly to v as n — oo.

Claim A.1 Letv, € P(S) (n = 1) and v € P(S). The following conditions (i) ~ (iv)
are equivalent to each other:

(i) v, — v weakly as n — oo,

(ii) For every closed set F of S, lim v,(F) < v(F),
n—oo

(iii) For every open set O of S, lim v,(0) > v(0),

(iv) For every continuity set B of v, i.e., B € B(S) satisfying v(dB) = 0, lim v,(B) =
n—oo
v(B).

For the proof, cf. Kotani [20, Proposition 9.2], H. Sato [29, Theorem 11.2], Stroock
[31, Theorem 3.1.5].
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A.1.2 Characteristic functions
In this subsection, let S = R? or C4.

Definition A.2 (i) For v € 2(R%), put
ﬁ(g):/ eV TIEN  (dx), £ € RY.
R4

v : R — C is called the characteristic function of v. Here (£, x) is the inner product of £
and x,i.e., (§,x) = Zf;l & x; (& and x; are the ith component of £ and x, respectively).
(ii) For v € £(C%), put

D(w) :=/ eﬁ(w’Z)v(dz), we Ce.
cd

<)

: C? — C is called the characteristic function of v. Here, for w = (wy,...,wq),
= (21,...,24) € CY,

N

d

(w,z) := Y ((Rew;) - (Rezy) + (Imw;) - (Imz;)).

i=1
Claim A.2 Let S = R? or C%. Forv, € P(S)(n > 1) andv € P(S),
Vp — V weakly asn — oo (:ﬁ) Up — U pointwise asn — 00.
For the proof, cf. Kotani [20, Theorem 9.16], H. Sato [29, Theorem 13.2], Stroock
[31, Lemma 2.2.8].

Claim A.3 (Lévy’s continuity theorem) Let S = R? or C?. Letv, € P(S) (n > 1)
and ¢ : S — C. Suppose

® U, — @ pointwise asn — 0o, e @ is continuous at origin.

Then there exists a unique v € P(S) such that v, — v weakly as n — oo. (ThusV = ¢
by Claim A.2.)

For the proof, cf. Durrett [8, Theorem 3.3.6], Kotani [20, Theorem 9.16], H. Sato [29,
Theorem 13.3].

Definition A.3 For a function ¢ : R¢ — C,

@ 1s positive definite

n
= > 2iZpE —€) =0 for V& ... Vg e RYand Vzy. ... Yz, € C.
€
ij=1
Claim A.4 (Bochner’s theorem) Suppose ¢ : RY — C satisfies that
® ¢ is positive definite, o ¢ is continuous at§ =0, e ¢(0) = 1.

Then there exists a unique v € P(R?) such thatv = ¢.

For the proof, cf. 1t6 [15, Theorem 2.6.6], Kotani [20, Corollary 9.17], H. Sato [29,
Theorem 13.4].
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A.1.3 Kolmogorov’s extension theorem

In this subsection, let (S, d) be a complete separable metric space. Let T be a non-empty
set.

Definition A.4 For @ C Ay C A, C T, we define 7y, 4, : S22 — S21 by

Tanaz ((Xr)rens) 1= (¥p)renrs  (¥r)rens € S
Definition A.5 Given a probability measure pa on (S2, B(S?)) for each A C T with
1 <card A < oo, {p} is said to satisfy the consistency condition if, for any Ay C A,
with 1 <card A; <card A, < oo,
/"LAZ ° nxll,Az = /"LAI‘

Claim A.5 (Kolmogorov’s extension theorem) Suppose {ua; A C T is non-empty and finite}
satisfies the consistency condition. Then

P a probability measure on (ST, o(ny; f € T))
s.t. P O”I_\,IT = un, 8 S YA CT finite.
Here my = mypy 1, i€,
o ST — S
w w
(Xg)ger > Xy

and o (ry; f € T) is the smallest o-algebra on ST such that all 7y ’s are measurable.

For the proof, cf. Kotani [20, Theorem 4.22] (or Durrett [8, Theorem A.3.1] or Itd
[15, Theorem 2.9.1]).

A.1.4 Almost sure convergence theorem for independent random vari-
ables

Let (2, ¥, P) be a probability space.

Claim A.6 (Almost sure convergence theorem) Let {X,}°2, be a sequence of real ran-
dom variables defined on (2, ¥, P). Suppose that

o {X,;n=1,2,...} are independent,

e X, is square-integrable, i.e., E[X2] < oo (“n),

o0
o > Var(X,) < oo, where Var(X,) is the variance of Xy, i.e., Var(X,) = E[(Xn —

n=1
E[X,])?].
00 N
Then Y (Xn — E[X,,]) is convergent P-a.e., i.e., (X,, — E[Xn]) is convergent as
n=1 n=1

N — o0 P-a.e.

For the proof, cf. 1t6 [15, Theorem 4.2.1], H. Sato [29, Theorem 10.1], Stroock [31,
Theorem 1.4.2].
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A.1.5 Lindeberg’s central limit theorem

Similarly as above, let (2, ¥, P) be a probability space.
Claim A.7 (Lindeberg’s central limit theorem) Let {X,;;j = 1,....k,,n = 1,2,...}
be a triangular array of real random variables defined on (2, ¥, P). Suppose that

o {X,j;j =1,...,k,} are independent “n>1),

o X, is square-integrable and of mean zero (1 < v Jj < kn, Yn>1),

kn kn
. _ . . _ V
. nlin;oj; E[X?] = v €0,00) andnli)noloj; E[X2:|Xnj| = ] =0 (e > 0).
Then
i
the distribution of Z Xnj
ji=1

— the normal distribution N(0,v) weakly asn — oo.
Namely
E[eﬁszfilx"f'] — e_# asn — oo, VE € R.

For the proof, cf. Durrett [8, Theorem 3.4.5].

A.2 Gauss’s product formula of the gamma function

Definition A.6 We define the gamma function I'(-) by
o
I'(s) := f e *x*ldx, s eC withRes > 0.
0

Since |[e ™ x57!| = e *xRes~! and Res > 0, this integral is absolutely convergent on
{s € C;Res > O}.

Claim A.8 (i) T'(-) is holomorphic on {s € C;Res > 0}.
(i) T'(s + 1) = sT(s). In particular, T'(n) = (n — 1)! forn € N.

Proof. (i) Fors,h € C with0 < |h| < %Res,

S Th=1 _ ys—1

—x —xl ! s+th—1y/
= E/O(x ydt

1 1
:e_xﬁf xSV (log x)hdt
0

1
=e " logx/ x$Hh=14s,
0
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Taking the absolute value, we have
xs+h—1 _ xs—l

1
efxT < ex|logx|/ xRe(s+th)71dt
0

1
:e_x|10gx|/ xRes-i—tReh—ldl
0

= 1x>1e_x(10g)C))C%R”_1 + lo<x<1e™”] 10gx|x%R”_1
[© Res+tReh—1

< Res +1[h] 1 < 3Res — .
L >Res—t|h|—1> ;Res—1

3 4 1
3 Res+1-1 - 1 Res—1
5> Res+ 10<x<le X esx4 es

[ Since 0 <logy <y (y > 1), ]

<l x

Res _Res
| 0<logl = tlog(1) « < x4 for0<x <1

Thus, by Lebesgue’s convergence theorem

r W —T 00 s+h—1 _ ,s—1
lim LOAED =T / e TV
0

h—0 h h—0 h
oo
=/ e x"logxdx.
0
(i1) By integration by parts,
o o0
L.H.S. =/ e 't*dt =/ (—e ™) t*dt
0 0
o0
= [—e_’ts]go —I—/ e 'st*ldt
0

@ lime™'1s =0,

= R.H.S. N0 s . [}
lim e "¢ = lim 5 =0
t—00 t—o0 €

Lemma A.1 (i) Asn — oo,
n
s _s
I}:[l(l + z)e k

is uniformly convergent on every compact set of C. Thus the limit function is holomorphic
on C.

70, s € C\ (=N),

o
N s
(ii) (1 + —)e_F
]}:[1 k =0, s e —N.
Proof. For simplicity, put

arg(s) := <1 + %)e‘

byl
|
P
Il
S~
N
—~
)
+
>l =
—
mI
B>
N—
N
=~
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Taking the absolute value, we have

d[<|| [ gt g ISP w
— e t < Fe . (Al)
0

k2

|s]? s
acto < B [l

(i) Form >n > 1,

=

T1(+3)et =10+ 3)et

=1 k=1

n

><\v

n

]‘[(1 +ar) - [0+ ak(s))‘

k=1 k=1
]‘[ t+a)( ] (1+ak(s))_1)‘
k=1 k=n+1

n

[T0+aw)|| TT (+ae) -]

=1 k=n+1
n

1_“ +ak(s)|> 1—’,—2 Z akl(s)---akr(s)—l'

k=1 r=1 n+1<k|;<-<k,<m

(]

(1‘[1+|ak(s>|)(2 Y el o))
( )

(

r=1n+l1<k,<-<k,<m

Mo+me)(i+X ¥ lw®llaol-1)
k=1 r=1 n+1<k|<-<kr<m

10+ |ak(s)|))( I (+ o)) - 1)

k=1 k=n+1
( e'“k(s)l)( [] ¢ - 1) [O1+x<e* ("xeR)

k=1 k=n+1

eXi=1 |ak(s)|<ezT=n+1 x| _ 1)

m
< elk=1 Iak(S)|< Z |ak(s)|)eZ§<"=n+l lax (s)]

IA

k=n+1
[@ Forx >0,0<e¢*—1= f:(ey)’dy = foxeydy < xex]

m
( 3 |ak(s)|)ezz;l lai )|

k=n+1

m 2 Lsl
( 3 i—lzek') S e [0 @A)

k=n+1

m
5 sl Ly jspzelsiyom_ 1
< PES — k=17%2
< (|s|%e 2 e

k=n+1
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m
sl 1gp2glsl 1
|S|2en+le‘s‘ ;(2)( E k2)’

k=n+1

from which the assertion (i) follows.
(i1) Let C C C be a compact set such that C C C \ (—N). Take ¢ > 0 and R > 0 so that

|1+%|zs, s|<R (YseC, "k eN).

Then, since, fors € C, k € N,
) ‘ _ ‘1+ak(S)—ak(S) _ ‘1 _ak(s)
1+ a(s) 1+ a(s) 1+ a(s)
a(s)
1 + ak(s)
s fo (—ne~ i dr
1+ %)e_%

1
ki s . / (—1)et1=0qy
1

|S|2 / I5'(1 —t)
<14 dt
k2|1 zl

1 R
&
2 R

1
< ex2 e ¢

<1+ ek

s

we have

n

]_[(1+ )k

“_[ l—i—ak(S))‘ = 1_[|1 + ai(s)|

k=1 =
> ; o et
k=1
= i s
> o ekt@)
which implies that
inf ﬁ(l +2)e k| 2 e S g m
seCl Y k -
Claim A9 (i) On C\ {0,—1,-2,...},
nln® e r 1

lim = —.
n—00 §(s 4+ 1)--- (s + n) s [Teei(1+ $)ex
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Here y is Euler’s constant. Thus the limit function is holomorphic on C\ {0, —1,-2,...}.
(i1) ForRes > 0,

I . nln’

s) = lim .

() n—o0 §(s + 1)---(s +n)

Thus T'(:) is analytically continuable to a holomorphic function on C \ {0,—1,-2,...}
which is denoted by the same T'(-).

(iii) Foreachm € {0,1,2,...}, s = —m is a simple pole of T'(-), and the residue at this

point is (—nlgm

Proof. (i) First,fors € C\ {0,—1,-2,...} andn € N,
n'n®

s(s+1)---(s+n)
_1 1-2.+... n

T sGAEDE+2) (s +n)

slogn

1o..41
_ l eSA+3++3) e_s(1+%+-.~+5—1ogn)
s ks 245 nts
1 2 n
_ le—s(1+%+-~-+$—logn) !
P (1 + %)e—s . (1 + %)e—z ..... (1 + %)e_ﬁ
_ 1 s(Siai dtoen) : .
s [Ti=1 (1 + 7%
Since, as n — o0,
— —logn — y,
X g 12
k=1
n s o s
1+ _)e—% — (1 + —)e_%,
(1)t =TI+
k=1 k=1
we have
nin® e rs 1

3 -

n—o0 s(s 4+ 1)---(s + n) N Hzozl(l + %)e‘k

(i1) It suffices to show the identity for s > 0, whence the assertion (ii) follows by the
uniqueness theorem.
Fix s > 0. Forn € N, put

Lu(s) = /0n<1 — ;—C)nxs_ldx.

Since
0< l(g,n)(x)(l — i) Xs_l < l(O,n)(X)(e_%)nxs_l
n

[D0<1-y<e? (0<Yy <]
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= 1(0,,,)(36)6_)‘)65_1

< e x5! (Vn eN, "x > 0),
: x\" s—1 —x ,.s—1 v

lim l(o,n)(x)(l — —) X =ex ("x >0,

n—00 n
o

/ e *x* ldx = T'(s) < o0,

0

it follows from Lebesgue’s convergence theorem that lim I',,(s) = I'(s). On the other
n—->oo

hand, integration by parts yields that

T, (s) = /0(1 - ;_‘)"xs—ldx

1
= /0 (1 —y)"(ny)* 'ndy [@ change of variable: y = 7

1=
[E—

=n3/1(1—y)”ys‘1dy
—n / (- (XY ay
{[(1_ )ny /(1 yyr! de}
S+1
_n—/ (1= y)~ 1 S+1)dy

s+1 _
=ty 2] [ iy}

P2
Zg+1)[( e 2( +2)dy

s n(n—l)---2 s+n1 ’
_ns(s—l—l)---(s—l—n—Z)/( —y) S+n— ) Y

s n(n—l)---2 ys+n 1

1
= s(s+1)--~(s—|—n—2){[( _y)s—i—n 1]0

1 ! s+n—1
_ ~d
+s+n—1/0y y}

s n!
= s(s+1)---(s+n)

Therefore we have
n'n®

nlinc}o s(s+1)---(s + n) ().
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(iii) First note that fors € C \ {0,—1,-2,...},
(n+ Dln+1)°

I'(s)= 1
sT(s) ningoss(s—l—l)m(s—i—n—i—l)
, nl(n + 1)*!
= lim
nsoo(s+1)(s+1+1)---(s+1+4+n)
n!ns+1
= lim (
n—oo (s +1)(s+1+1)---(s+14+n)

=T(s+1).

From this identity it follows that form € N, s € C \ {0,—1,-2, ..

m—1

T'(s+m)= (H(s + i))l"(s).

i=0
For each m € N U {0},
I'(s +m)

li _(_ B = 1i =10 |
Jim, (s = Cm)T() = lim (s +m) s =2

1

1+
n

g

)S+1

[whenm = 0, we let ]_[l-_=10(s +1i) = 1]

1

= lim (s + m)['(s +m)
S—>—m

1
[0 (s — (m — 1))

= lim s'(s)
s—0

, 1
1

~ —)mm!

_

m!

’

which shows the assertion (iii).

=) (s +m+ (i —m))

R.H.S. in Claim A.9(i) is called Weierstrass’s formula of the gamma function and the
identity in Claim A.9(ii) is called Gauss’s product formula of the gamma function.

A3 Aproofof{(2) = %

To find the value of ¢(2) is historically known as the Basel problem. In 1735, L. Euler
solved this problem by showing that {(2) = %2. After Euler, there are many proofs of
this. In fact, from 2° in the proof of Theorem 4.3, we can immediately see it. In this
section, we introduce another proof of it due to Fujita ([7, 10]). This proof is simple, but
not elementary. In other words, it is a senior or junior level in college.
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2

o0
Claim A.10 ((2) = %' X_:% =

Proof. We divide the proof into three steps:
1° Let £, g : (0,00) — [0, 0c0) be Borel measurable, and

/(; fx)dx = /(O,oo) f(x)dx < o0, fo gx)dx = [O’w)g(x)dx < 00.
Define 4 : (0, 00) — [0, o] by

ho= [ rne(3) 5

By Fubini’s theorem, /(-) is Borel measurable and

x\ dx
/ h(x)dx = f(u)du / g(—)—
(0,00) (0,00) (0,00) u’s u

= f(u)du/ g()dv [© change of variable: v = X]

(0,00) (0,00)
< 0. (A.2)
Thus h(x) < oo a.e. Xx.
2° Take f(x) = g(x) = x2+1 Then

|

/°° f(x)dx = /oog(x)dx = [tan™" x]go =
0 0

Let us find the & above for these f, g: For x # 1,

1 1 du
h(x):/ —
(0,00) U +1( ) +1u

- /0 u? + 1)(u? + x2) u

1 [ 1
= _ — dv change of variable: v = u?
2 /0 v+ D(v + x?) [© g ]

_1/°°( 1 1 ) dv
T 2Jo Vo1 v4x2/x2-1
1 1 o0 v+1y\
= — 1 d
2x2—1/0 (Ogv+x2) v
1 1 [l v+1:|°°

= — 0
2x2—-1 gv—l—x20
1 1 (l -1 1)
= — ogl—1lo
221 g g
log x

x2—1

T1The series Y, n% is sometimes called the Euler series.
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By (A.2), we have

> log x 72
dx = —.
/0 21Ty

3° We compute the integral above in a different way:
o0

1

/‘ og x dx

0 X2 —1

! logx * logx

= > 5 dx

0o X°— 1 x?2—1

L logt 4
- /O lfifdx +/ l_y_y [© change of variable: y = %]

= 2/ (—log x) Zkadx (O Y i rk = = (Irl < D]
0 k=0

© 1
=2 Z / (—log x)x**dx [@ termwise integration theorem]
0

oo

1 o0
= 22 m/ e Yvdv [@ change of variable: v = —(2k + 1)10gx]
k=0 0

> 1

1
=2k2=(:)m [OTr@=TA+1)=1-IT(1)=1].

Thus
2

S
) —_ .
—(k+172 8

Finally, noting that

oo

1 1 1
@) = ZTZZ(szJFZ(zkH)Z -

21 1
];k_+z(2k+l)2
g 2k+1)2’

we have ¢(2) = ”?2. |

V\r‘ I
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A.4 The second mean value theorem for integrals

This theorem is used several times in the proof of Claim 6.2. Although this can be found
in textbooks of fundamental calculus (= differential and integral calculus), we here prove
it.

Claim A.11 (Second mean value theorem) Let —oo < a < b < oo, f : [a,b] — R

Riemann integrable and ¢ : [a, b] — R monotonic, i.e., nondecreasing or nonincreasing.
Then

b £ b
a<3¥<b st / fX)e(x)dx = (p(a)/ f(x)dx + go(b)/ f(x)dx.
a a 3
Proof. We give a proof due to Takagi [32]. Suppose ¢ € \, i.e., ¢ is nonincreasing. Let

Y(x) = @(x) —@(b). Clearly ¥ € \(, > 0 on [a, b]. For a partition A :a =ty < t; <
<o <ty = b, put

J
sj = Zf(fi—l)(fi —ti-1) 0=j=n).

i=1

Then

2 GV GG = 1) = Y S G0 = )Y ()
j=1 J=1
= Z(Sj — s )V (ti-1)
j=1
= Zsjwaj_l) - Zsj—llﬁ(fj—l)
Jj=1 Jj=1

n n—1
Y st =Y sv()
Jj=1 Jj=1

n—1

Sn¥ (th—1) + Zsj (V(tj—) — v (1))

Jj=1

Since, by ¥ (tn—1) = 0, ¥ (t;—1) =¥ (1) =0 (1 < j <n—1),

n—1
sn¥ (tam1) + Y85 (V1) — ¥ (1)
j=1
n—1
< (max ) (V) + (00 =¥ (1)) = (max 5,)v (o).
Eyp < e

n—1
(min 5;) (¥ (tam) + D (¥ (-0 = (1)) = (min )9 10).
j=1 T

I<j=n
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we see that

min (Z f(tz 1)(tl — i 1))1#(0) = Zf(tj l)llf(tj 1)(tj tj 1)

1<j<n
j=1

< max <Zf(l, Dt —ti- 1))1#((1)

1<j=<n

Now, since f is Riemann integrable on [a, b],

for any partition A :a =ty <t; <---<t, =b
with [A| = max (¢t; —t;—1) < 6,
v 3 1<i<n
e>0, 76 >0 s.t.

(s g it ) <o

i—1 [ti—1:ti] [ti-1.ti]

This implies that for j = 1,...,n,

(1) (6 — 1i-1) — / | = (Fltio) — F(O)ds

< Z/ £ = f@)]ds

<Z( sup f— inf f)(tl_tz 1)

[tl ltl] [tl L l

<Z( sup f — inf f)(tl—t, 1)

[ti—1.] [ti-1.ti]

A

&,

and thus

(m / Fydr —S)W(a)

< Z S @—1) —ti—1)

j=1

5( max/ f(t)dt>+s) (@), YA with |A| <.

a<x<b

Letting |[A| — 0, we have

min / F(0)dt )y (@) < / FOW )t

a<x

< max/ f(t)dt v(a).

a<x<b
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By the intermediate value theorem,

b 3
a<3¥E<b st / fOY@)dt = (/ f(z)dt)w(a).
Putting ¥ (-) = ¢(-) — ¢(b), we obtain
b £ b
[ rwewat =@ [ rwdr+ o) [ rwar
a a 3

Incase ¢ € /,1i.e., ¢ is nondecreasing, since —¢ € '\, it follows from the above that

a<3¥n<b

b n b
t —p(t))dt = (- dt + (—p(b dt.
st [ FO (—p0)dt = (~p(@)) / F(0)di + (—p(b) / F(t)di

Multiplying it by —1, we have

b n b
[ FOe)dt = p(a) / F()dt + g (b) f £y, n
a a n



