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Abstract. In this paper we study projective (or spin) irreducible representations
and their characters of generalized symmetric groups G(m, 1,n), and spin charac-
ters of their inductive limit groups G(m, 1, 00) = lim,,_,oc G(m, 1,n). The groups
G(m,1,n) form a subcategory of complex reflection groups G(m,p,n), p|m, and
the present study has a fundamental importance for such studies for general
G(m,p,n)’s. Schur multipliers Z = H? (G(m, 1,n),CX) are isomorphic to
Z3 = Tl1cies(zi), 22 =€, for n > 4 and m > 2 even, and similarly for n = occ.
Here, acco;dgng to the semidirect product structure G(m,1,n) = D,, x &,, with
D, = Z, z corresponds to the double covering group én of &,, and 2z to the
double covering En of D,,, and z3 to the twisted action of én on En In this case,
any such representations and such characters have their own central characters
X € Z with (B1, B2, 03), Bi = x(z;) = £1, called (spin) type. Our study here is
for two types (—1,—1,—1) and (—1,—1, 1), and gives (1) classification and con-
struction of all spin irreducible representations of G(m,1,n), (2) calculation of
their characters, (3) calculation of limits of normalized irreducible characters as
n — oo, and (4) explicit determination of all the spin characters of G(m, 1, c0)
of these types.”

0 Introduction

1. We have nowadays many works on projective (or spin) representations of

finite groups (see e.g. [Kar|), in particular for symmetric and alternating groups,
after Schur’s trilogy [Sch1]-[Sch3]|, restarting from Morris [Mor| and resulting to
a book [HoHu2| by Hoffmann-Humphreys and the one [Kle| by Kleshchev, and so
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on. Also, for the spin theory of the infinite symmetric group G = lim,, .o G,
we have a concise and beautiful paper [Naz| by Nazarov.

For the spin theory of the generalized symmetric groups (introduced by Osima
[Osi]), we have also several works such as Read |[Rea2|, Hoffmann-Humphreys
[HoHul|, Stembridge [Stem], and Morris and Jones [MoJo].

Starting from |[HHH2|, we are studying spin representations and spin charac-
ters of complex reflection groups G(m, p,n) and of their inductive limits

G(m,p,o0) == nh_)nolo G(m,p,n), plm.
Our methods are quite different from theirs, and elementary and apply fully the
semidirect product structure of certain central extensions of G(m,p,n),4 <n <
00, such as G! and G 4 < n < oo, in (0.1)~(0.2) below. Our methods are
explained later in §3 in detail.

As is explained in our previous paper [HHH3|, which we quote as [I] in the fol-
lowing, the case of generalized symmetric groups G(m, 1,n) and G(m, 1, c0) (case
of p = 1) is decisive, and we call them mother groups among G(m,p,n), n < co.
We treat here these groups in case m is even. (The case of m odd is much sim-
pler, modulo the theory of spin representations for &,, and 2,,. Cf. Theorem 2.2
below or [I, Theorem 3.2].)

2. Schur multiplier Z = H? (G(m, 1,n), Cx) has been given by Davies-Morris
|[DaMo)|. For 4 < n < oo, it is isomorphic to Zy = (21), 2 = e, if m > 1 odd,
and to Z5 = [[,c;<5(2i), 22 = €, if m > 2 even, and we see that it is also similar
for n = oo. o

In the case of G(m,1,n), m even, any spin irreducible (or factor) repre-
sentations and their characters have their own central characters y € 7 with
(01, B2, B3), Bi = x(z;) = %1, called (spin) type. Our study here is for a pair of
sister cases: CASE I, Type (—1,—1,—1), and CASE II, Type (—1,—1, 1), and
accomplishes

(1) to classify and construct all spin irreducible representations of G(m, 1,n),

(2) to calculate their characters and give general spin character formulas,

(3) to calculate limits of normalized such characters as n — oo, and

(4) to determine explicitly all the spin characters of G(m, 1, 00), of these types.
The simultaneous treatment of CASEs I and IT in this paper is very good for com-
paring the difference and the coincidence between two cases and thus clarifying
the situations of spin representations in more details.

3. The representation group R(G(m, 1,n)) is a special central extension
of G(m,1,n) by the Schur multiplier Z = (z1, 29, 23). Here, according to the
semidirect product structure G(m,1,n) = D,, x &,, with D,, = Z " the central
element z; gives the double covering group én of &,, and 2, gives the double
covering D,, of D,,, and z3 gives a twisted action of &,, on D,, (cf. Theorem 2.3).
As in the previous paper, we choose from two representation groups ¥, and ¥/,
of &, in [Sch3], the group T, and denote it by S,.

Every spin representation of G(m,1,n) can be linearized if it is lifted up to
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R(G(m, 1,n)). By this, as in the previous paper [I|, we divide spin IRs and
spin characters of generalized symmetric groups G(m, 1,n) and G(m, 1, c0) into
8 cases according to the central character x € 7 or Type (b1, 52, F3). Here CASE
VIII, Type (1, 1, 1), is the non-spin case of G(m,1,n) and G(m,1,00), which
has been studied in detail in [HH1|. With these results in non-spin cases as a
background, we have studied in Part IT of [I| the spin CASE VII, Type (1, 1,—1),
a sister case of CASE VIII.

In the present paper, for the sister CASEs I and II, we introduce the quotient
groups of the representation group R(G(m, 1, n)), 4 <n<oo,as

Gl:=R(G(m,1,n))/(22")  in CASET;

(0.1) ~
Gl = R(G(m,1,n))/(zs) in CASE II.

Then they can be expressed as semidirect products as

(0.2) GY =D, X G, (Y=L 1),

n

where l~)n denotes the double cover of the canonical normal subgroup D,, and ;
means that the action of &,, on D, is considered in CASE Y. Then, in each CASE
Y (Y=L, II), our study on R(G(m, 1, n)) is moved principally to that on G,Y. We
utilize fully the above semidirect structure of the groups, in particular, we use
the classical induced representation method (Theorem 4.1 in [E|) (a classic of
Mackey type method) to construct all the spin IRs and calculate their characters
(spin characters).

4. For the case of inductive limit groups é}; = lim, oo GY

., we calculate

pointwise limits of normalized spin irreducible characters of éff as n — oo for
each of Y =1, II. Then we obtain character formula by this limiting process as
follows. Denote by FY the set of all such limit functions on G Y obtained here,
then it consists of normalized central spin positive definite functions. Actually
they give exactly the set of normalized characters of GY in CASE Y (see §14 in
[I] for general aspects of limiting process and Vershik-Kerov’s ergodic method).

We note that Dudko and Nessonov calculated spin characters of R(G(m, 1, oo))
in [DuNe| by a completely different method (cf. §25).

In CASE I, as is proved in Part I in |I] and is quoted in Table 4.2 below, the
criterion (EF) holds for GL (cf. §3) which says

“a normalized central positive definite function f on éio 15 extremal

(i.e., is a character) if and only if it is factorizable.”
Using this criterion, we can prove the completeness of the set F! that is, F'is ex-
actly equal to the set E' (Ggo) of all spin characters of G of Type (—1,—1,—1).
Thus we obtain a general formula and a parametrization of spin characters of
G , similarly as in [HH1], for the non-spin case of G(m, 1,0).

In CASE II, we see, with the explicit form of these limit functions, f € FU
is not factorizable in general, and so the criterion (EF) does not hold. For the
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group G we prove the completeness of F' or FII = En(ég), by using that
of F1, and give explicitly a surjective (in general 2-1) map from El(éio) onto
Ell(ég) This is similar to the situation studied in Part II of [I], where the
completeness for CASE VII, Type (1, 1,—1), is deduced from that for CASE
VIII, the non-spin case of G(m, 1, 00).

The relations of our results on spin characters of G(m, 1, 00) with those in the
work [DuNe]| is given in §25 after reviewing it briefly, and the parametrization of
spin characters in CASEs I, IT and VII is recaptured.

Part 1
Preparatory results

1 Generality for projective representations

1.1. Projective representations. Schur [Schl, 1904| introduced the no-
tion of projective representation of a group under the name “Darstellung durch
gebrochene lineare Substitutionen”. After him, we define a projective represen-
tation p of a group G, as a map G > g — p(g), from G to the set of invertible
linear operators on a vector space V satisfying

(1.1) p(g)p(h) =rgnp(gh) (g.h € G),
ron € C™ :={z € C;z # 0}.

The function r,;, on G x G is called the factor set of p.
Replace p(g) by p'(g) := X\, p(g) (A, € C™), then the factor set changes as

AgAn
(1.2) (Tg.n)ghec (T;,h)g»heG’ )\;’h - ;h '
g

Agh-

Defining that r, j, and r;,h are mutually equivalent, we have the cohomology group
H?(G, C*) of factor sets modulo equivalence. For finite groups G, he proved the
following.

(1) Any projective representation p can be lifted up to a linear representation
of a representation group of G.

(2) For any finite group G, there exists a finite number of non-isomorphic
representation groups, which are certain central extensions of G.

(3) A representation group of a finite group G is characterized as follows:

Theorem 1.1 (cf. [Sch2, Introduction|). A group G* is a representation
group of a finite group G if and only if there exists a central subgroup Z of G*
such that

126
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(i) Z C|G*, G |NZ(G*), Z(G*):= the center of G*,
(ii) l1— 72— G — G—1 (exact).
(i)  |Z]=|H*G,.C).

(4) The central subgroup Z is unique: Z = H?*(G,C”), which is called
Schur multiplier of G.

(5) The theory of projective representations is mutually equivalent for any
representation group of G.

So we take one of representation groups and denote it by R(G), and even
though it is not unique, we can call it as a universal covering group of G. In
the following we call projective representations also spin representations (cf. 1.3
below).

1.2. Representation groups %,,% of &,,. For symmetric groups S
and &3, their Schur multipliers are trivial, and so their representation groups are
themselves. For n-th symmetric groups &,, with n > 4, Schur [Sch3, 1911] gave
two representation groups ¥,, and ¥/ of n-th symmetric group S,, for n > 4,
which are mutually isomorphic only when n = 6. The first one ¥, is used
for the study of projective representations in [Sch3]|, [Mor| and so on, and also
Too 1= lim,, oo T, is used in [Naz3|. However we prefer to use the second one ¥,

and denote it by R(S,,) or &,, hereafter. This is given as follows:
Theorem 1.2 (|Sch3|). Forn >4, define groups <., (=: én) by giving
e generators:  {z1,71,72, ..., Tho1};
e fundamental relations :

zfze,zlri:rizl, 1<i<n—-1;

r?=e, 1<i<n-—1;
(ririg1)® = e, 1<i<n-—2;
v = 21757, 1<i,5<n—1,|i—j| > 2;

1—7Z=(n)—% 2o 5, — 1 (exact),

where e denotes the identity element, and the canonical homomorphism is given
by ¢s: % >r;— s, = (i i+1) € &,,. Then, T is a representation group of
S, .

Here the generator of the central subgroup Z = H*(&,,,C*) & Z, is denoted
by z; in accordance with the notation in Theorems 2.2 and 2.3 below.

Schur [Sch3] constructed so called “Hauptdarstellung” A,, of ¥, and used it
as the fundamental ingredient to construct all the spin irreducible representations
(=IRs) of ¥,. It plays a similar role as the trivial IR 1g, of &,, in Frobenius’
construction of all IRs of &,, in [Frobl, 1900].
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Remark 1.1. (1) Another representation group ¥, is given by the set of

generators {zy,77,...,7._;} and the set of fundamental relations 2?2 =e, 27, =
/ . . 12 . 1.0 3 _ . . I
rizn (i € Ina); v = 21 (i € Ina), (rriy)’ = 210 (1 € Inp); v =

zariry (4,5 € Iy, |i—j > 2); with I, = {1,2,...,n} (cf. Theorem 1.1 in
[E]).

(2) The reason of our preference of ¥, than T, is principally because

(a) ¥/ is generated by elements of order 2, whereas by elements of order 4
for ,, and (b) the braid relation (r;7;11)® = e appears directly, whereas it
appears in T, in its ‘spin form’, and further (c¢) the Schur multiplier of &3 is
trivial and so its representation group is &3 itself, and for any 1 <7 < n—1, the
subgroup &® = (r;, r;;1) generated by r;, r;41 is nothing but the representation
group R(6) = 60 = & itself.

These facts for T facilitate manipulation of fundamental relations in calcu-
lations, and give more symmetry or cyclic property in many formulas obtained
(for the property of 7;’s see Lemmas 1.3 ~ 1.7 below, and cf. also §8 and §15).

(3) Let T be a representation of ¥/ such that T'(z;) = —I, where I denotes
the identity operator. Put T"(r}) := v/=1T(r;) (j € I,—1). Then this gives a
representation of ¥, satisfying 7"(z1) = —I, because it satisfies the fundamental
relations for ¥,,. The correspondence T to T" is bijective.

1.3. Conjugacy relations in én . The following facts will be necessary
in the calculation of characters. First we give a definition as in [I]:

Definition 1.1. Put 7,11 :=17;, and fori+1 < jin I, ={1,2,...,n},

(1.3) Tij =TTl s Tj_oT 1T - TigTi,  Tji = rij_l =i

Then rl-]? =e and s;; = @e;érij) is a transposition (i j) € &,. We put
ri; = e for convenience. For o' € &,,, put L(¢') := L(0), 0 = ®g(0’), the length
of o with respect to simple reflections s; (j € I,—1). Then L(r;;) = L(s;;) =
2 —i| — 1.

Lemma 1.3. (i) Suppose supp(ry) := {k,k + 1} is disjoint with {i,j}.
Then

-1
TETT, — = 21745

(i) Fori+1<j, { T"‘lnjriil C e T Till i
ijlrijrj—l = T’i’jfl, Tjrij'rj = ri,j+1-
Proof. These are proved by calculations (cf. Proof for [I, Lemma 7.1 (i)]).
i) Hi+1<j—1,
Ti+17“z‘j7‘i+_11 = Tip1(TiTig1 =+ Tj—1 =+ Tip1Ti)Tig
= (7"1'+17"z'7“i+1) ER A B (Ti+17’i7“i+1)
= (7”1'7“z'+17"i) e Ty1 (ririJrlri) = =2
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(ii) Using the following identities, the calculations are similar as (i) above:

Tj1Tj—olj1Tj—oTj—1 = Tj_2, TjTj_1Tj = Tj_17Tj1. =

Lemma 1.4. (i) Leti,j,k,¢ € I, be different. Then r;jTee = 217keTi; -
(i) Let j,k, 0 € I, be mutually different. Then

-1 _k—j—-1_  _ _ (L(rjp)-1)/2
TikTkeT 1, = 21 Tie = 21 Tje -

Proof. (i) Suppose i < j, k < (. In case i < k < j < ¢, by Lemma 1.3,
T TiTke =

~—

s T (Tka+1 crTe—2T¢—1T¢—2 " * 'Tk+17”k)
j—1—k
TETk41 " Ty—2Tp—1T¢—2 " TjTj-1) 2 rij‘(rjfl'rj s Te—2Te—1T¢—2 "+ 7’k+17”k)

(
(TkaH s Tp—2Teg—1T¢—2 - 'Tj) T2 _1_]67”1',]'71 : (7“3' crTe—9Tp—1T¢—2 - '7’k+17"k)
(
(

- (TkaH cc o Tp—2Tp—1T¢—2 " TE4+1Tk

~—

o

j—1—k
TET k41 '7‘]‘—27“]'—1) T 21 21T -1 (Tj—17”j—2 T Tk;+17"k)
j—1—k
TETk41 'Tj—Q) 2] 21Ti5 (Tj—2 S TE4ATE)
__j-1-k j—1-k
= Zq R1%q Tij = Z17T45-

For other cases, the calculations are similar and omitted here.

(ii) Suppose j < k < ¢. Then

TikTkeT i1
= (1§71 The2Tho1Th—2 " T5175) * The * (747541 The2Th1Th—2 "+ Tj4175)
_ k—1—j
= (rjrj+1 . 'rk727"k71) Al Tke - (kalrk72 s 7°j+17“j)

= (rjrget e Tha) A e (reey ) = e
~1—j

=2 Tje
The other cases can be reduced to the above case. |
Let 0 € &, be a cycle (k1 k2 ... k) and let {(0) :=  be the length of

the cycle. Then L(o) = {(o) (mod 2). We have two preimages o’ € S,, of 0 as
o = ®g(0’), one of which is

I
(1'4) O = Tky, kg Tha ks =" The_1, k-

To fix a choice of the preimage if necessary, we may assume that ki is the

smallest among {kq,...,k¢}. In fact, even though o can be expressed also
as (k2 ks ... k¢ k1) on the level of the base group &, its two preimages
o’ = Thaks 7 Theoy ke Theoka and o' = Tg ko Tho ks *° The_y ke 1D the covering

group &,, are not usually equal to each other, as is shown in the next lemma.

_ . X
Lemma 1.5. 74y by = Thy o ky Thekr = 21 Thike Thooks * " Tho 1, ke »

with X = % 22§p§g_1 (L(Tk:p,k‘pﬂ) - 1)’

-1
PTOOf. o' o' = (Tkz,klrkz—l,kz o 'Tk27k3)(7“k1,k27“k27k3 o 'rkz—h’w)

(L(Tkg, k3)—1)/2

= Thy, ky (rszhke T 7n/<33,k4) 21 Tk1, k3 (Tk37k4 T Tk’efl,ke)

_ X _ X
S =Tk ki BT Thike = A1
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with X = %((L(Tkz,k3> - 1) +eoet (L(rkz—hkz) - 1)) -

For 0 € &, put supp(o) :={p € I,,; o(p) # p} and supp(c’) := supp(c) for
any preimage o’ of 0. Then, for the cycle o above, supp(o) = {k1, ko, , ke}.

Put ) =mrirg---1riq € én, then ®g(1)) = (1 2 3 ... ¢) € G,. An arbitrary
cycle 0 = Tk, gy Tho ks *** They. k, 10 (1.4) of length £ is conjugate to 7, under S,
modulo a multiple of powers of z;, that is, 70’7’ ' = 2 for some 7' € S,. We

show in the next lemma that the exponent Y is computable in two steps.

Lemma 1.6. (i) Let I,\supp(c’) = {u1,...,u,}, supp(c’)\Iy = {v1,...,v,}.
Put 7' =7y, v 0 Tup,v,- Then o't s zY-multiple of the element obtained
from o’ by replacing v; by u; for 1 <i <p, withY = p(€—2)+21§i§p(vi—ui—l),
and supp(r'o’t’ ) = I,.

(i) Suppose supp(c’) = Iy. Pult 7" = ry k, (resp. ™ = ri,_,.1,). Then
T'o'T' is z)-times the element obtained from the expression (1.4) of o' by

exchanging ki and ko (resp. ke—1 and k), where
Y=k —ki+/¢ (vesp. Y =k, —k,_1+{) (mod 2).

Put 7' = Ty 4, (2 <i <L —2). Then 70’7 is z/-times the element
obtained from the expression (1.4) of U/be exchanging k; and k; 1.

(iii) For o' in (1.4), take a 7 € &, such that ToT™' = 818951 =
(12 ...0) for o = ®s(0’), 7 = (7). Then 70’7 " = 2 riry-- 1oy,
and there exists a process to determine the exponent Y by means of (i) and (ii)
above.

Proof. (i) Tu,,v,0'Tu, v, gives zi-factor with exponent (¢ —2) + (v, —u, — 1)
by Lemma 1.4, and so on.

(ii) Fori =1ori =0 —1, T k. 0Tk, k, gives z-factor with exponent
(kivi —ki— 1)+ —3) = ki1 — ki + L.

For2 <i <{0—2, rp 3y 0Tk sy gives zi-factor with exponent 2(kiyq — ki —
4+ (—4)=¢ O

Lemma 1.7. Form,=riry 111 € S,

(1.5) ()= =Y with v =Y 2W£ A-1)

If ¢ =0,1,2,3 (mod 8), then (1)) = e and 7, is of order (.
If { = 4,5,6,7 (mod 8), then (1)) = 2z and 7, is of order 2(.

Proof. By calculation, we have

(Té)Q = (7"2 e 'W—l)(ﬁrﬂ”g . -rg_2)
( o (’["1 e Tﬂ—l)ri = Zle_3ri+1(r1 e Tf—l)a 'L S g _ 2) 7

(1) = 21273(7”2 gy (rarars o Te3) ;
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()% = 2 D2 (g 3 (rrarg - riy)

(Té)eil — 21(6—3)~1+(Z—4)-2+"‘+1'(€—3)( —2

7“2"'7“e—1) 1,

(Té)g _ Zl(f—3)~1+(€—4)~2+~"+1'(f—?))( ﬁ_l.

To«-- 70[_1)

Continuing this process, we obtain (1.5). The details are omitted. O

1.4. Terminology. Here we fix our terminology in the following. We call
projective representations of a group G also spin representations of G similarly
as Morris did for the symmetric groups G,,, and as one did for the rotation group
SO(3) etc. classically.

A projective representation of G is a linear representations of a certain cov-
ering group G of GG. The relation between the levels of G and G can be visually
expressed as in the following diagram, vertically written.

Diagram 1.1. covering group level G seeing from upper level |

l

base (ground) level G seeing from lower level T

We call characters of spin representations as spin characters of GG although it
is a function on G. Our understanding for terminology hereafter is as follows.

The general adjective “projective” for representations is used when we see
them from the base level G upwards towards the covering group level G. Tn this
sense, the use of the adjective “projective” is unilateral.

However, in some cases, we would like to convert the direction of our eyes and
see from the level of G’ downwards to the base level of G (which should be well
settled). In those cases, it is convenient to call a linear representation 7 of G a
“spin” representation of G when it can not be reduced to a linear representation
of G. This mode of using adjective “spin” is bilateral.

Moreover the adjective use of the word ‘spin’ goes well for functions on the
groups: for instance, if a central positive definite function on G (e.g. a character)
cannot be reduced to GG, we call f a ‘spin’ function on G (and also a ‘spin’ function
on G). We prefer the word ‘spin’ character better than ‘projective’ character.

This kind of terminology is similar, in a sense, to that of Schur in Note 1.1 (1)

below for &, (and &,,). See also §6, in particular Definition 6.1, and Theorems
13.6 and 13.7.

Note 1.1. (1) Schur called a character x of &, “Charakter erster Art (of
the first kind)” or “zweiter Art (of the second kind)” depending on x(z10”) =
x(0’) or x(z10") = —x(0') (¢ € &,,) [Sch3, §13]. He also called a representation

p of &, “Darstellung erster Art” or “zweiter Art” depending on p(z10") = p(0”)
or p(z0') = —p(o’) for o’ € &, [Sch3, §27].
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(2) Projective representations can also be called as double-valued rep-
resentations for G = &,,S0(n) and SOy(3,1) (with G = &,, Spin(n) and
SL(2, C’)), and in general as multiple-valued representations of G.

(3) In the book [HoHu2|, Hoffman and Humphreys introduced the termi-
nology positive and negative for representations (and also for modules and
characters) of groups in a certain category which contains covering groups of G,, .

2 G(m,p,n) and their representation groups

2.1 Definition of complex reflection groups G(m,p,n)

2.1.1. Constructive definition. First we give a constructive definition
of complex reflection groups G(m,p,n). For a set I, denote by &; the group
of finite permutations on /. For [ = I, = {1,2,...,n} or I = I, := N, the
suffices I are usually replaced by n or oo respectively: &y, =6, 6y = G.
Take a finite abelian group 7" and define the wreath product groups &;(T) as
follows:

!/
(2.1) &,(T)=D/T)x6&;, D(T)=][T;, T;:=T (eI,
jel
where J]' denotes the restricted direct product if I is infinite, and &; acts on

D;(T) naturally by permuting the components. For a subgroup S of T', we have
a canonical normal subgroup of &;(7") given as

(2.2) &(T)° := Di(T)° x &;, Di(T)°:={de Dy(T); P(d) € S},

where P(d) := ], ti for d = (t;);er € Dr(T). Later on, the index I is replaced
by n or co according to [ =1, or I =1, = N.

Now let T" = Z,,, understood as a multiplicative group. Then the groups
S, (Zy) = Dn(Z,,) x &,, were introduced in [Osi| and called generalized sym-
metric groups, and we put G(m,1,n) := 6,(Z,,). Any subgroup of T'= Z,, is
given as

(2.3) Sp)={tr;teT} =2, for a divisor p of m,
and we put G(m,p,n) = &,(Z,,)°" for n finite and also for n = co. Then,

(2.4) G(m,p,o0) := lim G(m,p,n) for p|m.

In [HH1], we have studied the characters of G (T) and of & (T)* for any
finite abelian group 7" and its subgroup S. This serves as a basic ingredient in
our present study.

2.1.2. Generators and fundamental relations. Let us give a presen-
tation of generalized symmetric groups G(m,1,n), called in [I| mother groups
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among G(m,p,n), by giving a set of generators and a set of fundamental rela-
tions. This presentation is convenient to treat their representation groups.

Proposition 2.1. (i) The generalized symmetric group G(m,1,n) = &,(Z,,),
n > 3, 1s presented by

e set of generators:  {S1,S89,. .., Sn—1, Y1, Y2, Yn} ,
where y; corresponds to a generator y of T' = Z,, =T; ;

e set of fundamental relations:

(2.5) sf=e (1<i<n-—1), (sis31)>=¢e (1<i<n-—2),
' Sisj = SjSi (|Z —j| Z 2)

y"=e (1<j<n),

o — . Lk
(2.6) yiye =y (G # k),

si¥isi L = Yir1, S¥ir1s; =y (1<i<n—1),
siyjs; =y (JA4i+1).

(ii) The inductive limit G(m,1,00) is presented by giving the set of gen-
erators {si, y;j (1,5 € Ioo)} and the set of fundamental relations above but
without the restrictive conditions containing n on the suffices i and j.

2.2 Representation groups of generalized symmetric groups

For a generalized symmetric group G = G(m, 1,n) = 6,(Z,,), Davies and Morris
[DaMo| gave its Schur multiplier H*(G,C™) and also one of its representation
groups. Thus we have the following depending on the parity of m (cf. Theorems
3.2 and 3.3 in [I]).

Theorem 2.2 (Case m odd). (i) Suppose n > 4 and m is odd. For
G(m,1,n) = 6,(Z,), a representation group R(G(m,1,n)) is given as

{e} — Z — R(G(m,1,n)) = G(m,1,n) — {e} (exact),

e set of generators : {zl, ri(1<i<n-—-1),1n1<;5< n)} ;
O(r))=s(1<i<n-—1), ®(n;) =y; (1 <j<n);

e set of fundamental relations :

(i) z2%2=e, 2 central element:;
{ ri=e (1<i<n-—-1), (rimn)’=e (1<i<n-—1),

riry =z ([0 — 7] > 2),
(iii) " =e (1<j<n),
(iv)  mme =men; (G # k),
(v) { 7"2‘771‘7‘@-:11 = Ni+1, 747;7?i+17j@'_‘1 =n (1<i<n-1),
rangre =0 (A Gi+1);
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Z =H?*(G(m,1,n),C*) = (z1) & Z>.

(ii) Forn = oo, a representation group R(G(m, 1, oo)) is defined as the in-
ductive limit lim,, . R(G(m, 1, n)) Then it is presented by a set of generators
{7“2-, n; (i,j € IOO)} and a set of fundamental relations above but without the
restrictive conditions containing n on the suffices i and j.

Theorem 2.3 (Case m even). (i) Suppose n > 4 and m is even. Then,
for Gim,1,n) = 6,(Z,,), a representation group R(G(m, 1,n)) is given as

{e} — Z — R(G(m,1,n)) 2, G(m,1,n) — {e} (exact),

e set of generators : {21,2’2,23, ri(1<i<n-—1),n(1<;j< n)} ;
(r)=s(1<i<n—1), ®(n) =y; (1 <j<n);

e set of fundamental relations :

i) 2%=e (1<i<3), 2z central element;

(i) 2=e¢ (1<i<n—1), (rry1)P=c (1<i<n-—1),
TZTJ =z (J0—J] > 2),
(ii) (1<j<n),

(iv) 77ﬂ7k = zmn; (J # k),

T =1, rimiar; =m0 (1<i<n—1),
(V) =1 ‘ . .. .
TiNT = 230); (j #1,i+1);

Z =H*(G(m,1,n),C") = (21,20,23) = Z.

(ii) Forn = oo, a representation group R(G(m, 1, oo)) s defined as the in-
ductive limit lim,, .. R(G(m, 1, n)) Then it is presented by a set of generators
{ri, n; (i,j € Ioo)} and a set of fundamental relations above but without the
restrictive conditions containing n on the suffices i and j.

This structure theorem is the starting point of our whole study. We can
reconfirm it admitting only th fact that |H?*(G(m,1,n))| = 2°. In fact, denote
by G* the group given in Theorem 2.3, then we see by Proposition 2.1 that
G*/Z =2 G, G = G(m,1,n), with Z = (21, 22, 2z3). Moreover the commutators
are given as [r,72] = 21, [n1,m2] = 22, [m1,72] = 23, and so Z C [G*, G*|NZ(G*).
Then, by Theorem 1.1, we see that G* is a representation group of G.

Remark 2.1. In [I], the groups G(m,p,n), p|m, p > 1, are called child
groups of the mother group G(m,1,n), and their representation groups are given
in [I, §3] after [Real]. Our present studies on mother groups are decisive for their
children (loc.cit.).

Notation 2.1. For a ¢ = (d,0) € G(m,1,n) = D,(Z,,) x &,, put
supp(g) = supp(d) U supp(o) C I, supp(d) = {p € I.;t, # er} for d =
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(tp)per, sty € T, = T, and supp(o) = {i € I,; 0(i) # i}, where er denotes
the identity element of 7. For any covering group é(m,l,n) of G(m,1,n)
with the canonical homomorphism ® : G(m,1,n) — G(m,1,n), we put for
g € G(m,1,n), supp(g') := supp(g) with g := ®(¢') € G(m,1,n).

2.3 CASEI, Type (—1,—1,—1); CASE II, Type (—1,—1, 1)

Let m be even. In this paper, projective representation of generalized symmetric
groups G(m,1,n) for 4 < n < oo, or linear representations of R(G(m, l,n)),
and their characters are studied. In particular, we study spin irreducible rep-
resentations (= IRs) and their characters, called also spin, for n < oo, and
spin characters for n = oo which correspond to factor representations of finite
type. A representation 7 of such kind has its own (spin) type x € Z defined
as m(z) = x(2)I (2 € Z), where I denotes the identity operator. Since m
is assumed to be even, we have Z = (z1, 29, 23), and the type x is given by
B = (B, B2, 33), Bi = x(2:) = 1.

In the previous work [I], we have classified the cases depending on the type /3
(cf. Tables 8.1 and 9.1 in [I]), and studied fully CASE VII, Type (1, 1,—1), in
comparison with the non-spin case, CASE VIII, Type (1, 1, 1). In this paper,
we study another pair of sister cases, CASE I, Type (—1,—1,—1), and CASE
IT, Type (—1,—1, 1), in parallel.

Since m is even, we see from Theorem 1.3 that representation group R(G(m, 1,
n)),4 < n < oo, is a covering group of G(m,1,n) of 23 (= 8)-fold. To go into
detailed study, it is convenient for us to reduce R(G(m, 1, n)) to 4-fold covering
groups as

(2.7) G'(m,1,n) == R(G(m,1,n)) /(202 Y)  in CASE I;
(2.8) G"(m,1,n) = R(G(m,1,n))/(zs) in CASE II.

The groups CNJI(m, 1,n) and CNJH(m, 1,n) are presented just as in Theorem 1.3
but replacing 23 by z3, and replacing z3 by e, respectively.

Diagram 2.1. R(G(m,1,n))
Covering groups oY | double covering
GY(m,1,n) (Y=L II)

Oy | 4-fold covering, Ker = 7 = (21, 22)

G(m,1,n)

We put inside R(G(m, 1,n)), 4<n < o0,

(2.9) D(m,n) = (n; (j € I,)), S, :=(r; (i eI,)),

where we understand I,, 1 = I, for n = oco. Then they are both canonically
imbedded into G (m,1,n) (Y =1, II) respectively, and &,, acts on D(m,n) in
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the following two different ways

mir = iar t=m (1<i<n-—1
(Iv) {Tﬁrl Nist, Tiisar; =1 (1<i<n—1), (in CASE 1)

rgr =z (5 # 40+ 1);

1 1 .
T = Nig1s Tiir; =10 (1<t <n-—1), )
(ILv) {r”r My Ty = (LSESn=D, ooy

gy =mn; (G AGLi+1);

Proposition 2.4. There holds the following semidirect product expression :

~ ~ I ~
(2.10) GY(m,1,n) = D(m,n) x &, in CASE I;
~ ~ I~
(2.11) G(m,1,n) = D(m,n) x &, in CASE 11,
where the numbers 1 and 11 over the symbol ‘X’ means that the action is un-

derstood according to (I-v) and (I1I-v) respectively, keeping other fundamental
relations (i) (without z3) and (ii) - (iv) in Theorem 1.3 in common.

Remark 2.2. In §10 in [I], we defined G (m, 1, 00):= R(G(m, 1, 00)) /Ker(x).
This definition differs slightly from the above one. In this paper we prefer the
above one because it is more convenient to treat the above sister cases parallel
as far as possible.

In CASE I, for the convenience of later calculations, we introduce new gen-
erators for D(m,n) = (m,...,n,) as

(2.12) =2 (j €T,

Then the above relation (I-v) takes the following form:

ol = zonly, Tt =20m (1<i<n—1),
(V') { LT 2741 Tit1"i M (10 ) (in CASE 1).

rgry b=z (G AL+ 1);

_ Theorem 2.5. Suppose n > 4 and m is even. The covering group
Gl(m,1,n) of CASE I, Type (—1,—1,—1), is given, with respect to the new
generators 1);’s and the central subgroup Z = (z1, z2) as

{e} — Z — G'(m,1,n) 2L G(m,1,n) — {e} (exact),
e set of generators :  {z1,2, ri(1<i<n—1), nj(1<j<n)};
Pr(r)) =s; (1<i<n—1), &1(n;) =y; (1 <j<n);

e set of fundamental relations :

(i) (without z3), (ii), and
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(i) 7" =e (1<j<n),

(') e = 2 (G # k),
(I-v')  as above.

~ ~ I ~
Lemma 2.6. (i) In the group G'(m,1,n) = D(m,n) x &,, of CASE 1,

=2 (s ) =

zo(nimy - ml,) for n=2n' even,
nnh -, forn=2n"+1 odd.

T (77177§ e '77:1)7%

2 (i) =

_ ~ o~
(ii) In the group G"(m,1,n) = D(m,n) x &,, of CASE II,

i (771772 T ﬁn)ri_l =M i1 iMNiv2 - T = 22 (771772 )

Note 2.1. For the sake of simplicity, we may denote ®y simply by ® if there
is no danger of misunderstanding.

2.4 Representation group R(2,,) of the alternating group

For the alternating group 2, its Schur multiplier is given in [Sch3, §4| as
Z for n >4, n#6,7
2 X\ 2 = = s by
H(Q["’C)_{ZG for n=6,7.

Its representation group 9B, := R(2,) is unique and, in the regular cases of
n # 6,7, is realized in R(&,) as the commutator group B, = [R(&,), R(G,)]
with presentation given as follows.

Theorem 2.7 (cf. [Sch3, §5]). Let n > 4, and put v; := z1ripiry (1 <0 <
n — 2). Then they generate a double covering group A, := <I>g1 (an) of AU,,
inside R(S,) = &,,. Moreover it is defined as an abstract group as follows:

generators : {vi;1<i<n-2},
(0 =21, (vfeh)® = 21,
Vi) 2=z 3<i<n-—2
fundamental (/; _) ! (2 o 2)
relations : Vi A (2= Z‘ <n-2),
vl )P =2 (2<i<n-3),
v = zvjv; (2<4,5 <n—2, |i—j[>2).

\

Here there follows automatically the fact that the element zy is central and
2
z =e.

In case n > 4,%# 6,7, the group A, gives a representation group R(2,)
(denoted in [loc. cit.] by B,,).
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3 Method of our study in this paper

Our study in this paper go along the following line.

e The first step, STEP 1, is for constructing spin IRs of generalized symmetric
groups G(m, 1,n), mother groups of all complex reflection groups G(m, p,n), of
Types (—1,—1,—1) and (—1,—1, 1), and calculating their characters.

e The second step, STEP 2, is for limiting process of irreducible characters
as n — oo and for studying characters of infinite G(m, 1, 00) of the above (spin)

types.

For construction of spin IRs, referring Theorems 3.1 and 4.1 in [E|, we explain
briefly a generality. Let G be a finite group and a semidirect product of a normal
subgroup U and a subgroup S as G = U x 5. Take an IR p of U and consider
its equivalence class [p] in the dual U of U. Take a stationary subgroup S([p]) in
S of [p], and put H := U x S([p]). For each s € S([p]) we determine explicitly
an intertwining operator J,(s) such that

(3.1) p(s(w) = Jy(s) plu) J,(s) " (we U),

where s(u) denotes the action of s on u. Then J,(s) is determined up to a scalar
multiple, and the map S([p]) 2 s — J,(s) gives a projective representation of
S([p])- Let as; be its factor set given as

To(8)7,(6) = age Jy(st)  (s,t € S(()).

For s +— A(s)J,(s), A(s) € C™, its factor set is o, , = a; - A(5)A(L)/A(st).

Taking an appropriate {J,(s); s € S([p])} among them, we have a certain
covering group (a central extension) S([p])~ of S([p]) such that J, can be lifted
up to a linear representation J, of S([p])~. Put, for H := U x S([p])™ with
s'(u) :==s(u), s € S([p])~, s = Ps(s'),

(3.2) 7 ((u,5)) = plu) - J(s) (ue U, s € S((o])),

then 7° is an IR of H which we denote by p - .J,. Here ®g : S([p])~ — S([p])
is the canonical homomorphism. Take an IR 7r1 of S([p])~ and consider it as
a representation of H through the homomorph1sm H — S(p])~ = H/U, and
consider the inner tensor product 7 := 7’ [ 7! as an IR of H. Let the factor set
of !, viewed as a spin representation of the base group S([p]), be 3, then that
of mis By sy If J, is replaced by A(+)J,(-), then its effect may be resolved by
replacing 7! by x - 7! with a character y of S([p])~.

Suppose for simplicity that there exists a covering group S of S such that
S([p])~ is embedded into S canonically so that H is embedded into the covering
group G :=U x S of G with S-action on U through S — 8. Then, for any IR

7! of S([p])™, we obtain an IR II of G by inducing it up as I := Indg
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If B0 = as? = the inverse of a,, then 7 can be viewed as a representation
of H =U % S([p]), and accordingly II is a linear representation of G = U x S,
which we denote by (7, 7!).

STEP1 (Case of n finite). Let 4 <n < oco. We construct all IRs of

Y ~

(3.3) GY(m,1,n) = D(m,n) x &,

for Y =1, II, using their semidirect product structures. So, our task is as follows.

(f-1) Construct all the spin IRs of the normal subgroup D(m,n).

(f-2) Determine all the orbit in the spin dual (the set of all equivalence
classes of spin IRs) of D(m,n) under the action of &, = &, /(z,), and determine
an appropriate complete set {p} of representatives of these orbits.

(f-3) Calculate the stationary subgroup &,([p]) in &,, of the equivalence
class [p].

(f-4) Determine intertwining operators J,(o) for o € &,,(]p]) explicitly, and
examine (possibly spin) representation o — J,(0) of &, ([p]).

(f-5) 1If the representation J, is spin (or double-valued), then it comes from
a linear representation :7;, of a double covering group &,([p])~, which may be
contained in &, (this should be checked). If so, we have an IR 70 := p - jp of

HY := D(m,n) x S.([p])™ for Y=I, II respectively.

(f-6) In case J, is spin, we should take a non-spin IR 7' of &,([p]) and
consider it as an IR of HY through the quotient map &,([g])~ — S.([p]), and
take the tensor product 7 := 7° D' as an IR of HY. Induce it up to GY :=
éY(m, 1,n), Y =1, II, then we get a spin IR of é,}/ as

(3.4) (7", 7') = Indg’z (7°Or').

(f-5') + (f-6') If J, is non-spin, then put 7°:=p - J, as an IR of HY :=

Y
D(m,n) x &,([p]). In this case, we should take a spin IR 7' of &,,([p]) which is
a linear TR of &,,([p])~, not reduced onto &,([p]). Then 7 := 7’7" is again an
IR of HY, and we get by (3.4) a spin IR II(7°, 7!) of G Y.

By these processes, we get all the spin IRs of é:{ for each of Y=I and II,
modulo equivalence.

To calculate the characters of IRs II thus constructed, a difficult task is the
next one, since .J,(0) can be given for only some generating subset {c} of &, ([p]).

(f7) Calculate the character yno of 70 = p-.J, of HY if J, is spin, and that
of @ =p-J, of HY if J, is non-spin.

(f-8) Calculate the character of y,1 of ' too, then the character x, is the
product o - Xx1.

(f-9) At last, we calculate the induced character xp from y, by the usual
method.
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This process gives us all the spin irreducible characters of G Y(m,1,n) for
CASE Y=I, Type (—1,—1,—1), and CASE Y=II, Type (-1, -1, 1).

STEP2 (Case of n = 00).
Different from the previous paper [I], we proceed as follows.

(inf-1) For each Y=I, II, examine the limiting process of spin irreducible
characters of CNJ,X as n — oo, and collect all the ‘good’ limits.

(inf-2) Let f be a ‘good’ limit. It is necessarily an central, positive definite
function on GY. = GY(m, 1,00) of the same spin type, and we should check if it
is extremal or not in K, (GY).

Here K;(G) for a topological group G is the set of continuous central (or
invariant) positive definite functions f normalized as f(e) = 1 at the identity

element e € G. By definition, a character of G is an extremal element of K;(G)
(cf. §6 in [I]), and denote by E(G) the set of all characters of G.

Definition 3.1. A function f on G = é;g is called factorizable if
(35)  g.,9" € G, supp(g’) Nsupp(g”) =0 = [f(d'q") = f(g")f(g").

In CASE I, we have the criterion that
(EF) an fe K, (éio) is extremal if and only if it is factorizable.

But, in CASE II, this criterion does not hold (cf. §11 and Table 13.1 in [I],
and Table 4.2 in this paper). However we know from Theorem 3.2 in [HoHH]|

that any spin character of G(m, 1, 00) is obtained as this kind of pointwise limit
as n — oo (cf. Theorem 21.2 below), and so our final task will be the following,.

(inf-3) Prove that the set of ‘ good ” limits of spin irreducible characters of GY
as n — 00, obtained in (inf-1) covers all characters of Gl of Type (—1,—-1,-1)
in CASE I, and also of GI of Type (—1,—1, 1) in CASE IL

At the same time, thus we will have a unified explicit character formula for
such spin characters in each case.

4 Spin characters of G(m,1,n) and G(m, 1,0)

We quote from |[I, Part I] some necessary informations on spin characters of
G(m,1,n) and G(m,1,00), in CASE I, Type (—1,—1,—1), and in CASE II,
Type (—1,-1, 1).

Let Y=Torll. Takea ¢’ € CNJY(le, n), then it is expressed as ¢’ = d’-o’ with
d = 2P [Ler, np” € D(m,n), o' € &,,, where b=10,1; 0<a, <m (peI,).
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Put g = &y (¢') =
g=(d,o
gq:

(4.1)
9j =

= 5‘]15112 o

(dj,o05), supp(d;) C supp(o;) =
dj = (I)Y(HpEKj 771’ )

.5%" glg?
(tlﬂ (Q)), tq = (I)Y("?qaq) = yq € T = Zm

- K

20

= HpGKj Yp "
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(d,0) € G(m,1,n) and let its standard decomposition be

- gs, d=Py(d), 0 = dy(d'),
(0<a,<m-—1),

Note that the groups D(m,n) and &, are both contained canonically in

GY :=GY(m,1,n),Y=

L 11, and ®y(d) =

p(d) (d € 5(m,n)) and $y(o’)

ds(0’) (0! € S,) both for Y =1 and II, where ®p : D(m,n) — D(m,n) is the
canonical homomorphism (cf. Lemma 5.1).

We quote, as Tables 4.1 and 4.2 below, from Tables 9.1 and 13.1 in [I, Part
I] respectively, their parts corresponding to CASEs I and II, together with the
parts of CASE VII worked out in [I, Part II], for references.

4.1.

Case of finite éY(m, 1,n), 4<n<oo0, Y=I,II

In Table 4.1 below, the support of a character f(¢'), ¢’ € éY(m, 1,n),Y=1I,

IT (resp. ¢’ € R(G(m,1,n)) in CASE VII) of type (51,32, 35) (x(2:)

i < 3) is evaluated modulo Z (resp. modulo Z) by using data of g = ®yv(g') €
G(m,1,n) as follows:

Table 4.1. For finite group éY(m, I,n), Y=I, II (and VII),
4<n<oo, m=2m:
1 — Z = {(z,2) — GY(m,1,n) 2y, G(m,1,n) — 1 (exact):
(B1,082,083) | f(¢') #0 = Condition for g = ®y(¢') = (d,0)
(spin) type =& 80,91 Gss §g = (tqu (@), g 9j = (djvaj)
CASE| of projec. ord(d) + L(o) =0 (mod 2) ord(d) + ( ) =1 (mod 2)
Y represen- ord(d) =0 ord(d) =1 ord(d) = ord(d) =1
tation L(o)=0 L(o) =1 L(o) = 1 L(o)=0
(-1,-1,-1) [supp(¢')| =n
I | seed repre. ord(§,) =0 (1<i<r) ord(§g,) =1(1<i<r)
in [ThYo], ord(d;) + L(o;) =0 (1 < j < s) ord(d;) =1(1<j<5s)
in [DaMo|
lsupp(g’)| = n [supp(g’)| = n
(-1,-1,1) | L(o) =0 r+s odd r+ s odd
11 ord(&g,) =0 (Vi) | ord(&y,) =1 (Vi) o] ord(&g,) =1 (Vi)
seed repre. | ord(d;) + L(oj) | ord(d;) = 1(Vy) ord(d;) =1 (¥§)
in [DaMo]| =0(Vj) | Lo)=1 L(oj) =0 (V)
0 L1) | C2A (1) n even, upp(g) =7 | [supp(g)]>n—1
VII r=0, s odd,
seed repre. | No other ord(d;) = ord(d) (V) L(oj) =0 (V)
in [ThYo| conditions L(o ) =1(Vj), g=9192- - gs
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Notation : L(o;) = {(0;) — 1, L(o) = 3 ;< L(0;) (mod 2),
ord(d) := Y oy ap, SQ2)={t}teT}y=Z,p, T=2Z,,
A, (7)) .= {(d,0) € 6,(T) ; 0 €A, P(d) € S(2)}.

New comments: In CASE I, the condition in the 3rd column and the one
in the 4th column correspond respectively to (Conditions I-00) and to (Condition
I-11) in §§16 and 19. In CASE II, the conditions in the 3rd column, in the 4th
column and in the 6th column correspond respectively to (Conditions II-00),
(Condition II-11) in §§17 and 20, and (Condition U-11s) in §20.3.3.

4.2. Case of infinite GY(m,1,00), Y =1, IL.

In Table 4.2 below, we give for a character f(¢'), ¢ € GY(m,1,00), Y=1, 1I
(resp. ¢’ € R(G(m,1,00)) in CASE VII) the following:

e in the second column, (spin) type of factor representation or of spin charac-
ters, and the information on the basic representations given in [IhYo| or [DaMo]
which are called here as seed representation;

e in the 3rd column, information on finite-dimensional representations of
GY(m,1,00);

e in the 4th column, information on the validity of the criterion (EF);

e in the 5th column, (Condition Y) to define O(Y) for which supp(f) C
O(Y).

Table 4.2. For infinite group éY(m, l,00), Y=I, IT (and VII):
GY(m,1,00) 3 ¢ 2y, g€ G(m,1,00) = 6(Z) = D(m,o0) ¥ S

. /
CASE (B1, B2, B3) Existence of spin extremal supp(f) + fl )zé 0 :,> .
o . & Condition Y: g = &v(¢') =
Type of factor | finite-dimensional ) B
Y epresentatio irred. represen. 7 factori- | (d,0) = &g, -+ &q.91 " s,
represetation ' ' zable g; = (dj,04)
(—-1,-1,-1) ord(&,,) = 0 (mod 2) (Vi)
I seed represen. -3 (not exist) 7 YES |ie., &, = (tg,(q)) tq, € S(2),
[ThYo], [DaMo] ord(d;) + L(oj) = 0 (V5)
SO
IT seed represen. —-dr NO™) or - o) =5 an
in [DaMo] Ord(§Qi) =0 (VZ),
ord(d;) + L(o;) = 0 (V)
i | e o @, e
VII seed represen. .77 P ’ NO ord(d) = 0,
] 27Ck —
in [IhYo| (0 <k < m/2) L(c)=0

(*) This will be proved in Part V, Corollary 23.8, of the present paper
(cf. Lemma 17.3 and Note 17.1 for n < 00)

In this paper we will apply the following notation for simplicity.



Notation 4.1. For o’ € &, and d' € D(m,n), we put, with o = ®(¢"), d =
®(d') € D(m,n), as

sgn(o’) :=sgn(o), L(o'):=L(o), o' (k) :=0c(k) (k€ I,);
ord(d’) := ord(d), supp(c’) :=supp(o);
0" =07 = (Vo110 Vo1 -+ Yoim) forv=(11,.. ), % € I .

Part II

Spin irreducible representations
of R(G(m, 1,n)), n < oo, of Types
(—1,—1,—1) and (—1,—1, 1)

5 Covering group E(m,n) and Clifford algebra

5.1 Non-spin and spin IRs of D(m,n)

Let 4 < n < oco. Put D(m,n) := D,(Z,,) = (y; (j € I,,)) inside G(m,1,n).
Then we have the following.

Lemma 5.1. The non-abelian group lN)(m,n) 15 a central extension of the
abelian group D(m,n) as

(5.1) {e} — Zy = (2) — D(m,n) 2o, D(m,n) — {e} (exact),
where ®p(22) =e, Pp(n;) =vy; (4 €1,).

We call an IR p of D(m,n) spin or non-spin according as p(z) = —I or
p(z2) = I. The commutator group of D(m, n) is nothing but the central subgroup
Zy := (z) = Z,, and the quotient group D(m,n)/Z, is isomorphic to D(m,n).
Hence the set of non-spin IRs of lN)(m, n) consists of one-dimensional characters

of D(m,n).
To look for spin IRs, we take a bigger central normal subgroup
(5.2) D°(m,n) := <7]j2 (jel,)) C D(m,n) = (20, m; (j € I,,)),

and consider the quotient group D(m,n)/D°(m,n).
On the other hand, consider a Clifford algebra C,, = (f1, f2, ..., fu)c over C
associated with a quadratic form Q(x) =z + s +--- + 22, i.e.,

= +x + -t xnfn, T=(T1,T2,...,Zp),
53) { 11+ 22 f (w1, 2 )

x-x=Q)f,

143



144 T. HirAI, A. HORA AND E. HIRAI

where fy is the identity element, and take a finite group F,! = (f1, f2, ..., [n)
contained in C, .

Lemma 5.2. The order |F]| of the group F, is 2", and it is presented as
an abstract group F, as follows:

set of generators: {22, f1s far s fu}s

27 = fo, 2o central element,
fj2:f0 (]EIn>:
fifv ==nffi (G#Fk).

set of fundamental
relations:

Lemma 5.3. The quotient group ﬁ(m,n)/ﬁo(m,n) is canonically iso-

morphic to F,, . The group D(m,n) is a central extension of F,, as
(5.4) {e} — D°(m,n) — D(m,n) — F, — {e} (exact),

where the canonical homomorphism ¥ is given as V(n;) = f; (j € I,,).

5.2 Regular representations £ and R of F,

Let us consider the left (resp. right) regular representation £ (resp. R) of F,,
acting on the space (?(F,). Moreover we consider ‘double’ regular representation
L - R given as

(5.5) (L-R)(g0,91)¢(9) == (g0 '991) (9,90, 91 € Fus ¢ € C(F)) -

A representation p of F, is called ‘spin’ if p(z09) = —p(g) (¢ € F,). Let
Vi C £*(F,) be the subspaces of functions ¢ on F, such that ¢(229) = +¢(g).
Then V_ carries spin representations of F,, and

(5.6) FF)=V,eV., dimV, =dimV_ =2".

We calculate the trace of the restriction 7 := (£L-R)|y. of L-R onto V_. The
subsets of F,, consisting of elements of the form z,°f," f,**--- f,%» for k =0, 1,

are denoted respectively by F*. Then F, = F° U F!. An orthogonal basis of
V_ is given by the set {6} ; h € F°} of equal length /2 with

1 for g=h,
(5.7) d(g) =< —1 for g==zh,
0 for any other g € F,,,

and 7 is written with respect to it as

8, if b= gohg € FP,

5.8 Op =
(5.8) (90 91)0h { —8, if B = zgohg " € FD.
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A basis element d; which contributes to tr(ﬂ(go,gl)) should satisfy gohg, ' =
25°h, and the contribution from it is =1 corresponding to x = 0, 1.

Note that, for a general element h = f; fi, -+ f;,, 71 < Jjo < ... < jp, We
have h™' = f; --- f;, f;,, and so obtain hgih™! = z,°g;. Hence we see that

(5.9) tr(7m(g0,91)) =0 if go # 25°g1 for any kK =0, 1.
So, let us calculate tr(ﬂ(go,gl)) in case gg = gi.

Lemma 5.4. Let go = g1 = fifo--- fn. Then
0 if nis even,
tr(ﬂ(go,gl)) - { 2" if n is odd.

Proof. Let h = f" f,*--- f,%. Then

gohglfl _ Zém+a2+~~~+an)(n—1)g0glflh — Zéal+a2+”'+an)("—1)h
e : _Jai+tay+---+a,, if niseven,
= &"h with Ch—{ 0 if n is odd.
. o 0 if n is even,
. tI‘('ﬁ(gO,gl)) = ZO(_l) h= 201(_1) P= { on if nis odd. O
heFy) a; =Y,
(i€ln)

Now let go = g1 = fifo--- fy with 1 < N < n, and put kK =n — N. For

h:f1a1f2a2,.. A’;N(fNill...fnbk), a; =0,1; bj:()’l,

z§a1+a2+"'+aN)(N_1) Z§b1+~-~+bk)Ngogl—1h

N-1 bi+-+bg)N
Zéaﬁ-az-i- +an)( )Zé vt Ny 2 h

90h91_1 =

. a1+ as +---+ay, if N is even,
with cp =

b+ -+ by, if N is odd.
tr(m(go, 1)) = Z (1) = Z (=)™ = 0.
heF0 a;=0,1;b;=0,1

(i€ln,jElk)

Lemma 5.5. The character of m = (L - R)lv_ 1 given as follows:

Xx(90,91) = tr(ﬂ(go,gl)) =
(=1)52" if gy = 2z g1 and gy = 2 fo,

= (=1)F2" if gg = 2y°g; and go = z25f1f2 <+ fn, modd,
0 otherwise,

where “otherwise” means either go # 25°g1, or
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0 if n s even,

go = 22”91 and OI"d(go) 75 { 0.n Zf n s odd
with ord(g) == ay+ - +a, forg=20f"" - f2, «a;=0,1,6=0,1.

Theorem 5.6. Let 1 = (L - R)‘v; be the restriction of of L - R onto
V.o C(F,).
(i) If n is even, then F, has only one equivalence class of spin IR p,, and
m 1s irreducible and
™= pn @ Pp

(i) If n is odd, then F, has two equivalence classes of spin IRs p, +, and
m 1is decomposed as

T2 (pny @ nt) P (on- @ n).

Proof. Using the above explicit form of the character y,, we obtain

1 9 1 9 1 if nis even
- - — = ’ (]
T < 7 EFZI Xl9)l = S E;f a9l { 2 if nis odd.
g nXJn g nXJIn

Lemma 5.7. The irreducible decomposition of the spin part £|V7 of the left
reqular representation L is given as

N [20/21] . p,, if n is even,
[22) - (ps B pn—)  if nis odd;

v =
and the spin part j—“;spm of the dual j:; of F, s given as

—spin { o] }, dim p,, = 22, if n is even,
5100 F= . e
{[pn,Jr]a [pn,,]}, dim P+ = 2(n )/ ) if nis Odd,

where [2[”/2}]- denotes the multiplicity of IRs, and [p,] the equivalence class of
Pn -
Proof. If n is even, dim p, = 1/dim V_ = 2%/2,
If n is odd, let d be dim p,, + = dim p,, 4, then,
I+ d>=dimV_=2" . d=v2rl=20"02 O

The following result is more or less known in the theory of Clifford algebras.

Theorem 5.8. Let F,, = (29, f1, fa, ..., fn) be the finite group in Lemma
5.2, isomorphic to F! in the Clifford algebra C,,. An IR p of F, is called ‘spin’
IR if p(229) = —p(g) (9 € Fy).

In the case where n is even, spin IRs have unique equivalence class [p,], and
their dimensions are equal to 2"/2.

In the case where n is odd, spin IRs have two equivalence classes [pp +], [pn.—],
and their dimensions are 2"~D/2,
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5.3 Construction of spin IRs of 7, , and their characters

The result in this subsection is essentially contained in [Sch3| (cf. also [Fruc],
[ThYo] and [DaMo]). Take a triplet of hermitian matrices of trace zero as

(5.11) a:= (? (1)) b= (S _ol) T (é —01>

which are called Pauli matrices (cf. §1.2.2 in [E]). Then we have

a’> = b* = * = ¢ (identity matrix), abc = ic;
(5.12) ab = —ba = ic, bc= —cb=1ta, ca= —ac=1b;
la,b] = 2ic, [b,c|] = 2ia, [c,a] = 2ib.

Note that, putting A; = ia, Ay = —ib, Az = ic (i = /—1), as in [E, (1.7)], we
have a canonical basis of the Lie algebra su(2) with the commutation relations
[A;, Aj] =24, for cyclically permuted (i j k) of (12 3).

Let n = 2n’ even, or n = 2n’ + 1 odd. Put in GL(2",C) = GL(2™? C),

Vi = aQc®e® - QeR@e®e =a® @M1
((n' — 1)-times tensor product of ¢),
Yo :b®€®€®---®g®g®5:b®5®(n'—1)7
Vi =cRa®e®e® - -Qe@e=c@a®e®2),
Vi =cbQe®e®--Qe®e=cQb® W2

Yaoiii = ¢®¢® - ®c®a®e® - ®c =200 gqw M1

(5.13) (@, i-th component),
Yoy = c®c® - 0c@bRe®- Qe =0 gpg M0

(b, i-th component),

Yo—1 = c®c® - Qc@c®a=c®""1Dgaqa,
Yo = c®c® - @c@c@b=c2""Dgh,
YQn’—l—l = C®C®"‘®C®C®c:c®(”/_1)®C7

n’-times

where £®% denotes i-times tensor product of € and so on. Then the set {Yl, Yo,. ..,
Yo}, 20/ = 2[n/2], generates the algebra M (2", C) over C and the group
GL(2",C), and gives them special fine structures.

Lemma 5.9. (i) The set of generators {Y1,Ya,..., Yo} of M(2",C)
satisfies the following set of fundamental relations: with the identity matrix
E=FE,,

(5.11) (=5 el

VY = -NY; (5 #K).
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Conversely, as an abstract algebra over C, take the set of symbols {Yl, Yo, ...,
an/} as generators, and fundamental relations (5.14) above, where E is replaced

by the neutral element e, then they give an algebra isomorphic to M (2", C).
(i) If we take the redundant set {Yl, Yo, ... ,YQn/,Y2n/+1} as the set of gen-
erators, then the set of fundamental relations turns out to be

Y? = E (j € T i1),
(5.15) ViVe = =YY, (#k),
ViYp- Yoy = iVE,

Conversely, as an abstract algebra over C, they give, similarly as above, an
algebra isomorphic to M (2", C).

Note that the set of fundamental relations (5.14) is symmetric under permu-
tations of Y; (j € I, ) under &y, and that the one (5.15) is ‘skew-symmetric’
under Gs,r11. These facts will induce spin representations of G, and Goryq
naturally as is seen in [Sch3] (cf. also §6 in [E]).

Lemma 5.10. (i) The set of the monomial products Y, Y,** - - - Y, 7*"' | a; =
0,1 (1 <j < 2n') gives a linear basis of the algebra M (2", C), where, in case
a; = 0 for all j, the product means the identity matriz E = Fy..

(ii) Any non-trivial monomial product Y; Y, --- Y, j1 < j2 < ... < jp <
21/, has trace 0. A monomial product Y;,Y;, - - Y Yo, n<ja<...<jp <
2n', containing Yo, 11, has non-zero trace only when it is Y1Ys - Yo, Yo 1. In
other words,

(5.16) tr(V;, Y}, Y, Yawq1) =0 for jy <jo<...<j, <20,
whenever one of Y;,j < 2n' is absent.

Now we give explicit realizations of p,, p, + in Theorems 5.6 and 5.8 as follows.
Pre-assuming this, we may use the same notation.

Definition 5.1. Put, in case n = 2n/ even,
(5.17) pulfy) =Y (1<j<2n' =),
and in case n = 2n' + 1 odd,

{ Prr(f5) =Y, (I<j<2’=n-1),

5.18
( ) pn,n(an’-i-l) = ’iYQn’-s-l, K=

We see from the next theorem that the above definition actually gives a
realization of IRs p,, pp 4.

Theorem 5.11. (i) CASE n = 2n' EVEN: The set of operators {p,(f;),j €
In} gives a spin IR p, of F,,. Every spin IR of F, is equivalent to p,,.



[II] 5 Covering group D(m,n) and Clifford algebra 149

The character of p, s given by

(_1)1)211/2 g:'Zva b:O717

(5.19) Xpa(9) = tr(pnl9)) = { .
0 otherwise.

(ii) CASE n=2n'+1 oDD: For each choice of k = £, the set of operators
{pnﬁ(fj),j € In} gwes a spin IR p, . of F, respectively. Every spin IR of F,
is equivalent to one of p, 1 and p, .

The character of py ., k= %, is given by

(_1)b 2[n/2] g = ZQb7 b= Oa 17
(5.20)  Xp,.(9) = tr(pun(g)) = & wil@ . (=1)220/2 g=2lfifse - fo,
0 otherwise.

Proof. CASE n EVEN: At first p, is irreducible. Moreover dim p, = 2[*/?
and so (dim p,)? = 2" = |F,|/2. This proves that any spin IR is equivalent to

Pn.-
Another proof for the irreducibility is given by explicit form of characters as

Z ‘Xpn(9)|2 =2.2"=|F,| .. ||Xan2 =1 in 2(F,).

gEFn

CASE n oDD: At first p, 4 are irreducible. Since pn’i‘f X is already irre-

ducible, there exists no intertwining operator between p, ; and p,_. Moreover
dim p, + = 2"? and so (dimp, )? + (dim p, )% = 2" = |F,|/2. This proves
that any spin IR is equivalent to one of p,, 1.

Another proof for the irreducibility is given by explicit form of characters as

> X (9)] =422 =297 = | 7. 0
gE€Fn
5.4 Actions of G, on spin IRs of F,

From the abstract definition in Lemma 5.2 of the group F, by using the sets of
generators and of fundamental relations, we see that F,, admits actions of G,, in
two different ways as follows: for 0 € &,,,

U(fj) = fo(j)>
[0](f;) = sgn(o)fop)

Accordingly G,, acts on representations p of F, by

(ap)(9) == plo~"(g)),
(lolp)(g) = p(lo7"1(9)),

(5.21) (1<j<n).

(5.22) for g € F,.
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Theorem 5.12.

Opn = Pn for F,, n even;
(5.23) N
OPnk = Pnsgn(o)s for F,, nodd, k= +;
(5.24) [olpn = pn (neven);  [0]pns = pnx (n odd);

where the sign sgn(o)r in (5.23) is defined by sgn(o) - (k1) = (sgn(o)x)1.

Proof. This fact can be seen from the explicit form of characters of p, and
Pn.+ given in the preceding subsection, since they are invariant under &,, for n
even, and covariant with sgn(o) for n odd. O

6 Spin IRs of D, := D(m,n)

6.1 Induced representations from a central subgroup

Assume m = 2m’ be even. We have the central extension
(6.1) {e} — Zy := (2,) — D(m,n) 2o, D(m,n) — {e} (exact),

where the canonical generators n; (j € I,) of D(m n) are mapped to y;

®p(n;) € D(m,n). Here ®p maps each cyclic subgroup T} = (n;) of D(m n)
isomorphically onto T; = (y;) of D(m,n). Let T = Z,,, = <y) and 7" = = (n)
be the protocols of T; and T} respectively. A character of T' is given as Q ( )=

w® with an integer ¢ considered mod m, and w = e*™/™ and the corresponding
character of T" is denoted by x(© : (9 (n) = w°. Note that (™) (y) = wt™ =
—C9(y), with m’ = m/2, and similarly for x(?. Denote by Gy € fj the copy of
¢ e, Cim; (yf) == w"®, and similarly for x;,, € fj’ D Xy (0f) 1= W

For v = (71,...,7), put ¢ := ((j)jer,, ¢ = (jyy» then it covers all one-
dimensional characters of D(m,n) = [[;c; Tj.

However, for non-commutative extension D(m,n), the situation is not so
simple.

Definition 6.1. For v = (y1,...,7x), define spin functions y, and sgnz on
D(m,n) as follows: for d’' = sz n -,

(6.2) Xo(d) = (=1) W sgnp(d) = (1),

where b=0,1; 0 <a; <m =2m’ (j € I,). Define also a (non-spin) character
of D(m,n) by ¢, o ®p and denote it again by the same symbol (.

The character ¢, behaves reasonably under the action of én, but neither
X~y = sgnp - ¢, nor sgng. However the latters describe well rather complicated

behaviors of spin IRs of 5(m, n) under S, as will be seen below. (In particular,
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X~ describes globally the character of spln IR P, of D(m n). Cf. Theorem 6.3
below.) Note that, for d’ and d’ = 22 n,"'n," 77n ,
sgn g (d’d") = (—1)° sgnD(d)sgnD(d”) with ¢ =), a;aj.

The restriction of x., onto D*(m,n) := (2, lN)O(m,n)> > D°(m,n) is a char-
acter, and so is X7|T,_ = Xjn, for each j, which corresponds to (j,, on T; = T7.

Actually the abéve exact sequence (6.1) does not work well to construct
spin IRs p. We apply another structure of central extension with D°(m,n) =
g’y

(6.3) {e} — D°(m,n) — D(m,n) 2 F,— {e} (exact),

that is, D(m,n)/D%(m,n) = F, under VU : nj — f; € F, (j € I,). Any
character of D°(m,n) is given as

(6.4) Xg = X - , H TO 0 77] >

B (m.n) el
n

For another 7' = (71,...,7,), XxJ = ng if and only if v; =~} (mod m’) for all

j eI,

Definition 6.2. Let I, be the set of parameters v = (71, ..., 7,) satisfying
0<~,<m=2m(j€l,), and define its subset I'Y as

(6.5) .= {fy: (V1,72 ) 5 0 <y <m' =m/2 (j EIn)} crl,.

A character x9 of D%(m,n) is extended to X5 = Xy of D*(m,n) by

lﬁl(m,n) -
putting x7(z2) = —1. Now induce it up to D(m,n) as I, := Indgng;ni) X5, and
decompose it into irreducibles. At first we have the following.

Theorem 6.1. The trace character x1u, of the induced representation II,

of D(m,n) is given as follows: for d' =zl nPns?---n € D(m,n),
(=1 (" s o) - 20 = (=1)P 20 - wmertertnen,
xm, (d') = if p"tny? - onin € ﬁo(m,n) or a; =0 (mod 2) (j€lI,),

0, otherwise.

In the above, X, (m"'ns™ -+ n,2) = ¢ (n" 02 - - - n,2"), since it is on ﬁo(m, n).

6.2 Explicit form of spin IRs of D,, and their characters

We prepare a series of matrix IRs of 5n = l~)(m, n). Abbreviate the notation
as D¥ := D¥(m,n) for k = 0,1, and let Y1,Ya, ..., Yo, Youi1 be 2% x 2 type
matrices in (5.13). Let n =2n" or n = 2n' + 1.
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Definition 6.3 (IRs of lN)n) Put, for v = (71,...,7) € Iy,
(6.6) Py(nj) == xy(m;)Y; (G € In),  x4(my) = G () = w7

Lemma 6.2. The system P,(n;) (j € I,,) gives an IR of D,, with P, (z) =
—F, and for d = zzbnpll’lnp;’? = -npzk with any p1,p2,...,pr € I, and b =10,1,

(6.7) Py(d) = (=1)"¢(d) - Y, Y, - Y.
When d' is transcribed as d' = 22”/771(1/177;/2 x ~7]na/” by exchanging n;’s, then

(6.8) Py(d) = x5(d) - ;Y™ Y,

Proof. We can check the fundamental relations (iii)—(iv) in Theorem 2.3 as

{ Pm)?=¢mHE=wE . Pm)"=E (jel,),
Py(nj)Py(m) = =Py (k) Py(n;) (5 # k).

This proves that P, is a representation of D,. The irreducibility can be seen
easily from Lemma 5.9. O

Remark 6.1. The formula (6.7) for spin IR P, suggests in appearance that
the responsibility of non-commutativity among n;’s is shifted through P, unilat-
erally to the side of the product of Y}’s. It is partially true but not completely
because of the sign factor. The spin function x, (not a one-dimensional charac-
ter) in the formula (6.8) represents spin property of P, and helps to keep in mind
the non-commutativity of l~)n, and in particular it describe the character xp, of
P, globally as seen in Theorem 6.3 below. Confer also §§16 17, in particular
Remark 17.1, Propositions 17.8 and 17.6, and also Theorem 20.13 etc.

The non-spin character ¢, is first defined on D(m,n) and then on D( n)
through ®p. The spin function . on D(m,n) coincides with ¢, on D°(m,n)
and also on each Tj. A point of danger of confusion exists in

G(d) = TlicicuX (my7) = £(=1)"x4(d'),

where, to get the sign + exactly, rearrange d = sznpflnpgz--‘an’f as d =
2 M i then X (d) = (<1)Pwmert e = (1) (<1)°¢,(d').

Theorem 6.3. The trace character xp, of IR P, of D, is given as follows.
(i) Assume n = 2n'. Then,

2y (d), for d € 5}1,
XP.Y (d/> _ ’Y( ) .
0, otherwise.
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(i) Assume n =2n’'+ 1. Then,

2" (d) for d' € D},
xe,(d) =3 (20" - x,(d),  for d' € (mny---1,)D},
0, otherwise.

Proof. We prove only the assertion (ii). We apply Lemma 5.10. The relation
abc = ie gives us

V1Yo Yauyr = (abc) ® - @ (abe) = (abe)®™ = (ig)®",
tr(Y1Ys- - Youia) = (20)" =

6.3 Equivalence relations among P,’s
Definition 6.4. On the space I',,, we define an action 7 for each k € I, as

Ve = +m' (mod m),
vi=7 (G#k).

Lemma 6.4. (i) Assume n = 2n'. Then, fory = (vi,...,7.),

69) 7y =(....7,) with {

(6.10) P, =P, <=+ =,

under the congruence =, generated by {Tk; ke In}.

As parameters for a complete set of representatives of the spin dual of lN)(m, n),
we have vy € T, or

(6.11) Y=, ), 0<y<m (jelI,).
(i) Assume n =2n'+ 1. Then, for vy = (V,...,7.),
(6.12) Py =P <~ ~,~

under the congruence =, generated by {TkTg; k,l € In}.

As parameters for a complete set of representatives of the spin dual of l~)(m, n),
we have vy, 7,7 (v €T?), or

0<y<m (1<j<n—-1=2n),

6.13 - sy In—L1y In/y .
(6.13) 7=+ Y-1,7n) {()S%L<m:2m’ (j=n=2n'+1).

Proof. Using the character formulas in Theorem 6.3, we see that the set of
IRs P, with parameters in (6.11) or (6.13) respectively are mutually inequivalent.

The completeness of the set of these IRs is proved by dimension calculus such
as

Z (dim P,)? = (m/)" x (2”/)2 =m" = |5(m,n)|/2, if n = 2n’ even,
¥: (6.11)
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> (dmP)? = () - mx (27)" =+ =" = | D(m,n)| /2,
~: (6.13)
if n=2n"+1 odd. O

Theorem 6.5. (i) In the case where n = 2n' even, a complete set of
representatives of spin IRs of D(m,n) is given by

(6.14) Rep(D,) := {P,; veI}}.

(ii) In the case where n = 2n' + 1 odd, a complete set of representatives of
spin IRs is given by {PW; v satisfies (6.13)}, and is divided into two subsets
as

(6.15) Rep(ﬁn) = Rep+(5n) |_|Rep_(l5n),
{ Rep*(D,) == {P}:=P,; y€I7},

(6.16) o
Rep™ (D) :={P; =P, ,; yeTI}.

The reason for dividing into two subsets Rep*(D,,) and Rep™(D,,) is seen from
the following. Let v = (v1,...,7,) € L'2. Then 7,y = (Y1, -+ s Va1, Vu+m), n =
2n' + 1, and for d' = 2 n,"'n,% -+ -0 € D,, we have U(d') = f,"* --- f o € F,,
and
(6.17)  Pi(d) = xo(d)V}" - Vi = X (d) s (17 - £7).

(618)  P(d) = Pold) = xomy ()i - V00

= X, ()Y - Y, (=Y) ™ = X () e (S £0).

The induced representation II, is decomposed into the sum of IRs above as
shown below.

Proposition 6.6. The induced representation 11, = Indg’f)&y 18 decomposed
as "

I, = [27]-P,, in case n =2n’;
I, = [2”/] . (P7 b PTM), in case n = 2n' + 1,

where [2”/] denotes the multiplicity, and 7,7 = (Y1, -+ -, Yn—1, Ya+m’) (mod m).
In casen=2n'+1 odd, 11, = [2"]- (Pfe@P) ifyell.

Proof. By character formulas in Theorem 6.3, we see that, in case n = 2n/,
X1, = 2. Xp,, which gives the desired result. In case n = 2n’ + 1, we apply

2xp,(d), if d € D},

0, otherwise,

(XP7 + XPTM)<d/) = {

and an explicit formula for the character IL,. O
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6.4 Fundamental IRs F, for n even, and P., P_ for n odd

Put v :=(0,0,...,0) and v := 7,7 = (0,0,...,0,m’), and
Py := P if n = 2n’ even;

(6.19) .
P, =P, P_:=P, ifn=2n"+1 odd.

Then, Py(d’) = sgnp(d) Y, "V, Y% for d' = zn"ny?---n. Through
v : D, — F,, I is essentially equal to p,, and Py to p, +.

Theorem 6.7. The IRs of En are expressed as tensor products of non-spin
one-dimensional characters and fundamental spin IRs as follows:

P,=2¢®PF (yel,) incasen even,

{Pj&@@& (yeTy)

in case n odd.
Pr=¢® P (yeIy)

7 Actions of S, on D, and stationary subgroups
for equivalence classes of IRs

7.1 Actions of én on the group 15n, in CASEs I and 11

Inside of the base group G(m,1,n) = D, x &, , D,, :== D(m,n), an element
o€, acts on D,, as

(7.1) o(i) = Yoy (G €1),
where y; is the generator of T; = T' corresponding to y € 7. However, in the

covering groups ég = éy(m, 1,n) = D, ; én, D, = 15(m,n), of CASE Y =1
and II, the covering group S, acts on D, in different ways for Y =1 and II. We
discuss them independently. B B

Since the central element z; acts trivially, &,, acts through ®¢ : &, — &,,.
But we prefer to keep the original r; € &,, (instead of s; € &,,), and denote the
action of r; on d' € D(m,n) as ri(d') (instead of s}(d')) in CASE I, and as r!'(d’)
in CASE II, to distinguish them each other.

For conveniences, in CASE I, we use the new generators

(7.2) =z (j € L)
of D, = D(m,n) (cf. §2.3). Then, since X~(22) = —1 and P,(z2) = —FE, we have
(7:3) Py(nf) = x+(nj)Y; = x(m))Yj (G €In)  in CASEL,

where Y/ 1= (—1)771Y; (j € I,,). Infact, Py(n}) = Py(z5 'n;) = (=17 x,(n))Y;
XA (15)Y; = x4 (n)Y] -
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From §2.3, we have for 1 <7 <n —1,
(7.4) ri(;) =zl (G €l), in CASET;
(7.5) ri(n)) = nsy (G €I,), in CASEII.

7.2 Action of S, on IRs and stationary subgroups (CASE I)

Theorem 7.1. Let r; € &, and Os(r;))=s,=( 1+1) €S,, 1<i<n—1,
a simple transposition. In CASE I, Type (—1,—1,—1), the action on IR P, of
D, = D(m,n) is as follows: for v € T° in (6.5),
"%P'y = Py, (1<i<n—1),
J,IP,Y = P, (J’ € én, o=>dg(0") € Gn),

where o'y = 07 = (Yo-101), Yo 1(2)s - - - » Vo1 (n))-

Proof. To prove this, we study characters. Let n = 2n'. If a; =0 (mod 2) (j €

I,), then d' = zym;™ ™ =z n"™ - mi, and so ri(d) = 27 s; (™ -7,

From Theorem 6.3 (i), we see that

xp, (ri(d)) = xp., (@) (d' € D).

Let n=2n"+1. If a; =0 (mod 2) (j € I,,), then x(1p,(d) = xp,,(d).
Ifa; =1 (mod2) (j €I,), then

/! _b_rai ran _ _b_nn=1)/2 g an __ . b_n' a1 an
d =2zn" oy, =292 Mty = 2y My
Irgny b, n,/ a1 an _ _b_n 1 Qs (1) o Gsi(n)
ri(d) =2z 2 Msi(1) Msi(n) = R2%2 2271 N 07 =
_ . b_n' %) Asi(n)
= k9 %9 T o Tn )

and from Theorem 6.3 (i), we see that for xp, (ri(d')) = xp, ,(d) (d' € D,),
whence X(1p) = XP,,,- a

Denote by [P,] the equivalence class of IR P,, and by S(P,) the station-
ary subgroup of [P,] in S,, and put S(P,) :== ®s(S(P;)) C &,. Note that
D (S(Py)) = 1(S(Py)) with @y GI — G(m,1,n), when S(P,) is understood
as a subgroup of G

Theorem 7.2. In CASE I, Type (—1,—1,—1), let v € T° in (6.5).

(i) The stationary subgroup of [P,] in S,, n >4, is given as

S(Py)={0" € S,:07=", 0= ®(0’)}.

(ii) Let n be odd. The stationary subgroups of [Pf] and [P;] in S, are
given as

S(Pf)={d"€ S,:07=7, 0= ®(0")}.
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7.3 Action of S, on IRs and stationary subgroups (CASE II)

In CASE II, Type 3 = (=1, —1, 1), in the covering group G1L, the group &, acts
on D, through &,, = &,,/(z1) as in (7.5). Then, for o’ € &, let 0 = ®(0’) € &,,,

(7.6) o) = ") = oy (G € L)
Hence it acts on a representation 7 of lN)n as
(7.7) (o™'7)(d) = (o"m)(d) = 7 ((07)"(d))  (d € Dy).

Theorem 7.3. Let s, = (1 i+1) € 6,, 1 <i < n—1, be simple trans-
positions. In CASE II, Type (—1,—1, 1), the action on IRs of D,, is given as
follows.

(i) Let n=2n' be even. Then for v € T?,

si'P,~P,.,, o'P2P,, (0€6,),
oy = (%—1(1)> Yo-1(2)5 - - - ,’Ya—l(n))-

(ii) Letn =2n'+1 be odd. Then, fory €T, s'P, =P, .. (1 <i<n-—1),
whence for v € TV |

oy

o'Pr=p_  o"P =Pl  (0€6,, sgu(o)=—1).

{ olPr =Pl o'Pr=P. (0€6,, sgu(o) =1),

Proof. We apply explicit character formulas for P, Pj =FPyand P, = P,
in Theorem 6.3. Since the proof for the assertion (i) is similar as that for Theorem
7.1, we treat (ii) here.

For d' = z/n™ ---ng, we have xp (d') # 0 if and only if a; = 0 (Vj) or
a; =1 (V7).

In case a; = 0 (Vy), the components n/* commute with each other, and
so the transformation d’ +— rX(d’) is realized by the exchange a; < a;y; in
(ay,aq,...,a,), whence

k

(7:8) xe, (ri (@) = xp.,, (@) = X, (d)-
In case a; =1 (Vj), we have nSi(?)inSi(ﬁJ{)l = 20,0, and
er(d/) _ (_1)bwa1'y1+---+an71’“/n71+an(’yn+m/)
—(—1)P ek — ()

since a, =1 (mod 2). Their effects cancel each other, and so (7.8) above holds
in this case too. Altogether xp, (rj'(d')) = xp,,...(d') for d’ € D, in general.
This proves the assertion (ii), with the help of (6.12). O
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In CASE II, the stationary subgroup of the equivalence class [P,] in &,, (resp.
in &,) is denoted by S(P,) (resp. by S(P,)).

Theorem 7.4. In CASE II, Type (—1,—1, 1), the stationary subgroups
S(P) C &, and S(P) C &, for P = P,,PS and P, are given as follows:

Yy

S(P) = ®5'(S(P))  for P =P, P*, with

S(P,) = {0€6,;07v=79}C6&, incasen=2n" even
S(PE) = {oeYU;oy=7} CA in case n =2n"+1 odd.

8 Intertwining operators for IRs of En, related
spin representations of G, and %,

8.1 Operators which intertwine IRs P, and P, of En

Assume 4 < n < oo, and let Y1, Y5, ..., Yo, Yo, 4q be as in (5.13), and put

(8.1) V)= (=1)7'Y; (jel,).
Define V,, as
_1)-1
82)  Val)= S (G V) = 5 (= Vi) (e L),

Moreover, when n = 2n’ + 1, we put V as
(8.3) Vo(rj) = ~You V(1) Yo 01 (7 € Ina).

Then we have

Vo (1) = V(1) (J € 1),
(8.4) B —1)n—2 1
Valra) = S0 (Y = Ya) = 5 (Vi + Vi)
and also forn =2n",2n"+ 1, and 1 < j <n —1,
1
Vi(r:)=—=(Y; =Y 1) ;
(8.5) n(75) \/5( J j+1)

Vialry) == =Yan 11V, () YQn':& = Yo 1V, (1) Yo g1 -
Then, forn=2n', V'(r;)=V.(r;)(j €I,,), and

Volry) =V (ry) (€ L),
forn=2n"+1 1
’ V' rp_1) = —=(Y,_1 +Y,).
n(rn-1) ﬂ( 1 +Y,)
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When n = 2n' even, we put for 1 <j<n-—1=2n"—1,
(8.6) Vi (1) = (1Yawi1) - V3, (15) = Vi, (15) - (=iYan4),
and whenn=2n"+1,for 1 <j<n-—1=2n/,

Vit (ry) = (Yaws1) - Vi (1)),
V(1)) == Vi (ry) - (=iYaw1).

{ Vi) = Vi) G € L)

(8.7)

Th
. Vi (ran) = (1Yanr11) - \}Q(YQW F Yonrg1).

Lemma 8.1. The following relations hold :

( V.(ri)*=FE (tel, ),
(88) (Va(ri)Va(risn))* = B (i € I ),

L Vau(ri)Va(rk) = =V (re) Vau(r) (|i — k| >2);

( V,(n)?=E (i € I,),
(8.9) . (Vﬁ(ﬁ)vﬁ(ﬁu))g =F (i € In—s),

| Vo)V, () = —Va )V () (i — k| > 2);

( V' (r)?=F (iel,_ ),
(8.10) (VL) Vi(ripn))* = B (i € Iis),

Vo (ri) Vi (re) = =V () Vi (ri) - ([0 = k[ = 2) 5

and similarly for V! as V. .
For n =2n' even,

Vg(ri)z =F (Z € Infl),
(8.11) (VI(r) Vi (ri))’ = E (i € I,_s),
V)V (ry) = V) VE(r)  (li— k| >2);

Proof. N, (ri)Vp(riz1) + Va(rig1) V() + E =
1

= S { (i + Vo) Vit + Yiso) + (Vs + Yera)(Yi + Vi) } + E= —E+ E= 0.

(Vi) Vn(rip1))’ = E.
Vi (Tn—2)v;(7'n_1) +V, (Tn—1>v; (Tn_g) +FE =
1

= %{(Yn—Q +Yn—1)(Yn—1 _Yn) + (Yn—l _Yn)(Yn_2 +Yn_1)} +F=—-FE+FE= 0.

(V; (TTL—Q)V:L (Tn—l))g =F.
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Similarly, other relations can be verified by calculations. O

Lemma 8.2. For VI and VI~ there hold the following relations :

VI (ry) = VIH( ) (i€, 2);
Vit (r)?=E (i € Inw_y),
(8.13) (Vg+(7"i)V5+(7”i+1))3 =F (i € Ipp_2),

Vit (rs) Vit (re) = =Vt (r) Vit (r) - (i k € Ty, [i—k| >2);
and similarly for V= . Especially for n =2n'+1 odd,

(8.14) Vit (raw)' = —E, (VT (raw-1)V I+(7”2n/))3 = E,
| V)V (o) # = Vi (r2) Vi) (i € o).

Moreover, forn =2n' +1,

Vit ()™t = Vit () (i € Top1) ;
Vit (row) ™t = Vi~ (raw) # Vi (row) (1 =2n).

Proof. VM (rg,)? = Yo You i1 = 201 @ (—be) = 20"V @ (—ia),
Vit (row)t = —E.
Vit (ran 1) VI (ra)
A=Ya-b)(b-c)=

(}/271’—1 - YQn’)(}/Qn’ — YQTL’—‘,—I) — €® n/—1) ® A
2 (—e+ia+ib+ic), AQZ%(—a—m—zb—w), A3 =¢,
(VLH—(TZn’fl)V +<T2n ))3 = F.

Similarly, other relations can be verified by calculations. O

'—‘ N |

8.2 Spin representations of G, by intertwining operators

Through the action of S, on ﬁn, we have an action of &, on IRs of D,,. In the
preceding subsection, we have prepared operators which will serve to describe
intertwining operators between IRs of D,, for the action of 6 Before going into
this subject, we give here a spin representations of &, using these operators.
The following is a consequence of Lemmas 8.1 -8.2.

Theorem 8.3. Letn > 4.

(i) The map r; — V,(r;) (resp. V;(ri)), i € I,_1, gives a spin represen-
tation of the representation group én = R(Gn) = (21,71,72, -+, Tn_1)-

(ii) Similar assertion holds also for the maps r; — V. (r;) and r; —
V'(r;) (i €I,_1), and foro' €&, ,

V(o) = sgn(0’) - Yow 1V, (0) Yo, 11,
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that is, V" (0") = Yo 1V, (0") Youy1 and V(o) = =Y 1V (0') Yopri1 ac-
cording as sgn(c’) =1 or —1.

(iii) For n = 2n', the map r; — Vi(r;), i € I,_1 = Isy_1, gives a spin
representation of the representation group én

(iv) Forn = 2n'+ 1, the map r; — VI (r;) = VI (r;), i € I,_o, gives a
spin representation of én_l = R(Gn_l), which is equal to VY | . But the map
ri — VI (r;) (resp. VI (1)), i € I,_1, gives no representation of the whole

group én .

Proof. (i)— (iii) follow from Theorem 1.2 on the presentation of the represen-
tation group &, = T/,.  (iv) follows from (8.14), in particular, VI=(r, ;) =
_E O

Note that the spin representation Vi, of S is equal to the restriction of
any of matrix-valued functions V' | and Vi | of Smy1 defined in the next
subsection.

After the notion of‘zweiseitige (=two-sided)’ in [Sch3, §14|, we introduce a

definition as follows.

Definition 8.1. For a spin character x of G,,, 4 < n < oo, the character
sgn - x is called associate character of y, and Y is called self-associate or non-
self-associate according as sgn - y = x or sgn - ¥ # x. Correspondingly, a spin
representation m of G is called self-associate or non-self-associate according as

. . e . ~ & sgn
m = sgn-m or not. Here sgn is the sign character on G,, given as 6, — &,, —

{£1}.

This notion will play important rolls later. See [HHo| and also cf. [Sch3] and
the book [HoHu2|. We will see later that Schur’s ‘Hauptdarstellung’ A/ is self-
associate or non-self-associate according as n is odd or even (cf. Theorems 15.2
and 15.3). The present spin representation V,, is self-associate, and irreducible if
n is odd. When n is even, it is equivalent to the direct sum of non-self-associate
spin IRs as predicted below. Actually V, =2 Al @ (sgn- Al) for n = 2n/
(cf. Theorem 15.5).

e Irreducible decomposition of V,,,. When n = 2n’ is even, V,, splits
into a direct sum of two inequivalent irreducible components as will be seen in
Theorem 15.5 by means of characters. At this stage we can show the following.
By calculation, for 4 < n < oo,

J J

V(1)Y= =Y Va(r) (k#j,j+1),
vn(rz)@; = _G);zvn(rz) (Z S In—l) , with

o), i:;g<3/1’+1€+---+Y,§), 0, =E.

(8.15) { V()Y = =Y/ Vau(ry),  Va(ry)Y/, = =Y/Va(rj),
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Let n = 2n' be even. Then Vo (r:)Y5, 1 = Y5, 1 Vou(ri) (1 € Iop_y).
Put

(816) @n = @Qn/ . @/2”/ . (iY2n1+1), 1= vV —1,

then it commutes with Va,/(0’), o’ € éQn/, and ©72 = E. Therefore
1
Qs = §(E +O0y), QQ-=0Q-Q=0,Q,+Q_=F,

gives a decomposition of the space V = C*" of Vs, into a direct sum of two
invariant subspaces Vi := (+V. However detailed structure of them are not
clear at this stage.

. I+ - 1T =
8.3 EXtenSIOIlS v2n/+1 and v2n/+1 fOI‘ VQTZ/ Of 62’/1/

Let n = 2n’ + 1 odd. The situations for VI*(r;)’s and VI~ (r;)’s are rather
complicated. First note that each of the matrices VI=(r,) (1 <i <n —1=2n/)
are determined as an intertwining operator for the corresponding equivalence
relation in (10.1) in Lemma 10.1 (iii) below, or in another notation,

Vit (r) P )V (ri) ™ = P (si'(d)

Vi (r) Py (d)V, (ri) ™t = P (si'(d)

537

(8.17) (yeTI%, d eD,).

Then each of VI*(r;) is uniquely determined up to a multiplicative constant as
a solution of the corresponding equation above.

As is proved, VI (r,)) = VI (r)) = VL /(r,)) 1 <i<n—-2=2n'—1) give a
spin representation VI | of S,_1. However, if we add VI (r, 1) or VI (r,4)
together with them, we can have no representation of én, n =2n'+ 1, at all.

In spite of this, we would like to extend VI (r;)’s and VI~ (r;)’s to reasonable
matrix-valued functions on the whole égnu,_l which are two different continua-
tions of IR VI | of én_l. This is to clarify the complicated situation at present
and also to use later to express intertwining relations among P (y € T9) (see
§10).

To give an extension VI of VII  on én_l, note the following. If ¢’ € S,
does not belong to &,,_1, then ¢’ can be expressed as o’ = or,_10} with o) €
S,_1 (k=1,2), sgn(d}) = 1. Putting VI=(¢”) = VI(o”) for 0" € &,_1 C S,,
we define

(8.18) Vi (0') = Vit (o) Vy F (ra) Vi (01).

Then, since VI (o) = V' (0]), VI (r,_1) = (iYap41) V', (rn_1), We have

(8.19) { Vit (o) = V., (o) if sgn(o’) =1oro’ € ﬁl,,i,
VI (o') = (iYony1) Vi (') ifsgn(o’) = —1loro ¢%,.
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For another extension VI~ we take the same expression o/ = ahro, 0] as

above for ¢’ € én \ én,l, and put
(8.20) Vi (0') = Vi (03) V(1) Vi~ (01).
Then, since VI=(o}) = V! (o), VI (r,_1) = V., (r,1) (—=iYan11), we have

(8.21) Vi (0") = Yo 1 Vi (0') Yaia = V(o) if sgn(o’) =1,
| VI (0') = Viy(0") (~iau41) if sgn(o’) = 1.

8.4 Spin representations of 2, by intertwining operators

Let n = 2n’ + 1 odd. From the spin representations V! and V of én, we get
those of the double covering group ﬁln by restrictions. Note that, as remarked in
§2.4, the representation group ‘B,, = R(an) of 2, is special for n = 6,7, since it
is 6-fold covering whereas it is double covering for n > 4, 6,7. In this paper,
we treat only this double covering 2, generated by v} = 27111 € 6, (1 <i <
n —2) (c¢f. Theorem 2.7). We put for v/ € 2,

5L () = Vv,
5, (v) = Vi),

n

(8.22)

and in particular UX(z;) = —E. Then, G} (v') = U, (v') for v’ € gln_lLand we

get from the results in the preceding subsection the following: for v € 2, ,
Ur() = VITQ),

. ) )

U, (v) = Vi (V) = YounUf (V) Yo,

Theorem 8.4. Let n > 4. The maps v, — G} (v]) and v, — U, (v}), 1 <

(2 7
i < n — 2, giwe respectively spin representations of the double covering group

U, which is the representation group B, = R(an) ifn#6,7.

Note 8.1. It will be seen in Theorem 15.5 (ii) that U, = U, is a direct sum
of two inequivalent spin IRs of 2,,.
8.5 Conjugations by Yo 41, Va(r), V;, (r:), Vi, (r;) and VI (r;)
Denote by t(A) the conjugation B +— ABA™' on GL(2V,C).

Lemma 8.5. (i) The conjugation t(Yo, 1) yields the transformation

Yi— =Y, (1<j<2n), Yaoui1— Youir.
(i) For1<i<n-—1, the conjugation .(V,(r;)) yields the transformation:

Y/ =Y (Gel,) with Y] = (=1)7'Y (j € I,,)

J
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(iii) In case n =2n'+1 odd, the conjugation L(V,’L(Tn_l)) yields the trans-
formation:

Vi =Y (jelna), Y =Y, ViV,
(iv) For1l <i <n-—1, the conjugation L(V'n(ri)) yields the transformation:
Y — _Ysi(j) (] S In)‘

(v) For1<i<2n'—1, the conjugation t(V*(r;)) yields the transforma-
tion:

Y; — Y0 (4 €Iay), Yopyr1 = —Youia.

(vi) The conjugation t(VE+(ran)) (resp. o(VE=(ron)) ) yields the transfor-
mation:

ViV (j<20/ =1, ViV (<20 —1),
Yo = —Yon 41, resp. Yo = Yonr 41,
Y72n’+1 = YVQn’- }/Qn/_,_l = —YVQN/.
Proof. These are proved by calculations. O

The conjugation ¢(Y2,41) yields the transformation of IRs P, of D,,, through
Lemma 8.5 (i), as follows. We will discuss later for other types of conjugations.

Lemma 8.6. The conjugation t(Ya, 1) yields the transformation
L(S/Qnﬁi,l)Pfy(d/) = P(TIT2...T2n/)fy(d/) (d/ E Dn)’
or t(Yon 1) Py = Plriryery )y - Moreover (71 Tow)y R 7.

Proof. For 1< j <2n’ and j = 2n’ + 1 respectively,

, -1 _ LYY, = Y, = utm Y
Yo 1Py (0) Yo,y = Yow1wVY;Y, 1 = —wW Y = WY,

-1

-1
)/én’+1pv(n2n’+l>§/2n/+1 = }/72”/+1w72n/+1}/2n/+1)/2n/+1 = w'YQn/Jrl YQTL'+1‘ O

9 Intertwining relations among F,’s under S,
in CASE 1

Lemma 9.1. In CASE I, Type (—1,—1,—1), the following intertwining
relations hold.
(i) Forl<i<mn-—1, the conjugation (V,(r;)) yields for v € T,

U(Valri)) Py(d) = Py, (ri(d))  (d' € Dy).
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(ii) Forn=2n'+1 odd, v€T? in (6.5), and for 1 <i<n-—1,

UV, (r)) Py (d) = P (ri(d)) (d' € D,).

siY

(iii) For 1 <i<n—1, the conjugation L(V’n(ri)) yields
UV (1)) Py (d) = Prryysin (ri(d)) - (d' € D),

and (TiTiv1)siy7 = Si(TiTix1)Y = SiY-

(iv) For 1 <i<2n'—1, the conjugation L(VE*(TZ-)) yields
(VI (r)) Py(d) = Poy (ri(d)  (d € Dy),

where v = (I—IJ#Z.’Z.JFLQTL,Jrl Tj)% and ' ==, .
(v) In case n =2n'+1 odd, the conjugation (V5 (ray)) yields

(VI (100 )Y Po(d) = Poyyirimpry 1y (Ta (d))  (d € D),

and (TiTo -+ Top )y R 7Y -

Proof. (i) For i€ I, _;,

U(Va(r:) Py(117) = t(Vin(r)) (DY) = @t G207y

= WY = P, (i),

U(Vn(ra) Py (nigy) = e(Vn(ra)) (W™ Yo ) = 00t = P (ri(]44) )5
and for j #i,i+ 1,

L(Vn<7"i))P'y(77§') — L(Vn(ri)) (wwﬁ(j—l)m/yj) — _wwﬁ(j—l)m/yj

= Wl Y} = Py (ri(n]))-
(ii) For n =2n’+ 1 odd,

UV (ra1)) Py (1) = (V3 (r2-1)) (Xrr (121) Yoo1) = (=1)" 2wt (=)

= (=)t = P (i (),

(V3 (1)) P (1) = (Vi (rat) (X (1) Y2) = (= 1) 2wt (=Y, )
(1) W Yoy = Po L (r ().
(iii) For i€ I,_;, let j#i,i+1,

UV (r) Py () = (V3 (r)) (DY) = ot G0mTyg

= WY = Plrase (1H0)

(V3 (1)) Py (1) = o(V3,(r2)) (@7 F Yo ) = —wrm 'y,

= WY, = P s (11 (04));

(Th ) 2y (0) = o(V3()) (o7 0707Y) =~ 0y
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= WY} = Pl (ri(0))).
(iv) Fori e Iy g, let v = (H#i 1241 i)
WV () Py () = (V3 () (@7 HO0MY)) = wrt Gm0my = Py (rf (),
(V) Py (70) = (VI () (W77 Yo ) = w0, = Py (rf(nf));
and for j € Ioy, # 4,1+ 1,

LV () Py () = (V3 (1)) (w5 F07DmY5) = @t 0m0myy = P (ri(n)));
L(VLH(W))P (M3 +1) = L(VIH(T )) (W%" 2! Yo +1)
— (W anrprt2n'm’ Yoni1 = ( 772” ' )

(v) Fori=2n'(n= 2n/+1), and j # 2n/,2n' 4+ 1,
L(VIH(T%,))R(%) = (VI (ro)) (witU=DMY)) = @utG-Dmy,
= Py, v (Tzln' (773))’
and for j = 2n',2n" + 1,
LVt (ran)) Py (1) = t(V (ro)) (wen TC =DMy ) =
= W CIT Yy = Py (T (1))
VI (row)) Py (0 q) = (VT (raw)) (@072 00207 V1)
= WY = Pt (1t (o 1)) O

From the assertions (i) and (ii), we get the following intertwining relations.

Theorem 9.2. Suppose we are in CASE I, Type (=1,-1,-1).
(i) Foro €6, let c = ®(d’), then fory €T,

{(Va(d"))Py(d) = By (a'}(d)) = Bpy (aX(d))  (d € D),

or in another notation, o''P, = L(Vn(a’))_l (Psry).
(ii) In the case where n =2n'+ 1 odd, there holds for v € T,
(Vo (0") Py (d) = Py (o'(d) = Py (0'(d)) (@' € Dy),

or in another notation, U’IP; = L(V’(o’))fl (P).

n oy

10 Intertwining relations among P,’s under S,
in CASE 11

Recall that rii(d') = s¥(d') and o'"(d') = o}(d') with 0 = ®(¢’) € &, for
o € 6, from (7.6). This action of &, in CASE II on D(m,n) is the non-

twisted natural one through &,, — &,,, compared with the twisted one in CASE
L.
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Lemma 10.1. In CASE II, Type (—1,—1, 1), the following intertwining
relations hold. B
(i) Fori€ I, 1, the conjugation (V) (r;)) yields, for d' € D,,

L(VITL<T7/))P’Y(d/) - PTlTQ Tn)sz’Y( Il(d/)) P(TlTZ Tn 31'7( II(d,))
and (TiTy 1) 8y = Si(TiTa -+ - Tp)y. For ~' := (m7e -+ 7,)7, we have ' =,
in case n =2n', and v =, 17,y in case n = 2n' + 1.
(i) In case n = 20 even, the conjugation (Vi(r;)) yields, for i € I,
and vy €1,
UV () Po(d') = Poy (si'(d))  (d € Dy).
(il) Let n =2n'+1 be odd. Forie I,_y, y€T, and d €D, ,

LV (r)) Py (d) = Pysp (sH(d)),
L(VE=(ry)) Py (d') = Pyyry (sI(d)).

In other notations, for vy € TY  d' € En, and 1 <i<2n'=n—1,

Vit () P () = P (si'(d),

UV () Py (d) = Psfl-:(sy(d'))-
Proof. (i) For i € I,y let j #i,i+ 1. Then, with ' = (my72---7,)7,
(T00) P, ) = () () = o Yign = 1Yoy = Po (800,
UV (r0)) Py (mir) = e(Viy(ri)) (w1 Yig) = —w?i41Y) = Wity
= Py, (s ( 1-1(77i+1))7
t(V3 () Py () = (V3 (ri) (@7Y) = w0 = WY = Py (i ()
(ii) For i € Inu i,
L(VE(r) Py(ni) = (V) (wY;) = w¥Yiq = Py (s (i),
L(VE(r:)) Py(mig1) = (V1)) (w1 Y4 ) = 0 #1Y; = Py (s (1)),
(Vi (ri)) Py(ng) = (Vi (r2) (@Y5) = @Y = Pas (s (17)).

(iii) Note that L(VIH r; ) L(zYQn/H) ( )), then by (i) above and Lemma
8.6,

L(Vg+(ri))P7(d/> = L(Z'YZTL’H)L(V;("V))P (d) = L(iY2n’+1)P(T172 Tn)SZ'Y( H<d,))
= Plryry)(mimam)siy (51 (d) = Prosiy (si'(d).
Similarly for VI~ (r;). O

(10.1)

From Lemma 10.1, we have the following.
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Theorem 10.2. In CASE II, Type (—1,—1, 1) :
(i) Foro € &,, put o = ®(d’), and let vy € T',, and d' € D,,.
Ifsgn(o) =1, then V', (¢') = G (0') and

(VL (0)) Py ) = 1(5 () Py (d) = Por (0(d)).
If sgn(o) = —1, then
L(v;(al))Pv(d,) = Plrimymn)oy (UH(d,))'
In another notation, these are expressed respectively as
olP, = L(V’n(a’))_l(Pm) = L(U:{(U’))_l(Pm) if sgn(o) =1
ollp, = L(V’n(a’))_1 (Pirirgern)oy) if sgn(o) = —1.
(ii) Let n =2n' be even, then fory € I, and d' € D,
L(VE(U,))P'Y(d/> = Py (UH(d/)) ’
or o'P, = L(Vg(a’))_l (Psry).
(iii) Letn = 2n'+1 be odd. The two extensions of VL, on &,_1 as matriz-

valued functions VI and VI~ are given respectively in (8.19) and (8.21).
Suppose sgn(c’) =sgn(o) =1 for o’ € S, 0 = ®(c’). Then

Vit(o') = V(o) = Ui (o),
Vi~ (o) = V(o) = U, (0") ;
and, for v € TY and d' € D,

L(U;{(U’))Pj(d’) = P} (c"(d)),
L(U_(U’))P;(d’) = P (o"(d)),

n oy

(10.2)

(10.3)

which are expressed in another notation as
oIPH = (U} (0") (P,
P = (U, (0’))_1 (P).

oy

(10.4)

(iv) Let n = 2n' 4+ 1 be odd. Suppose sgn(c’) = sgn(c) = —1 for o’ € &,.
Then
Vit (o) = (Yaws1) - V'(0'),
Vi (o) = V'(0') - (=iYopi1) = (—=iYaws1) - V"(0') ;
and, for vy € TY and d' € D, ,
L(Vg+(0'/))P,;"_(d/) =P, (aH(d’)),
L(VE_(U’))PJ(d’) =Pl (aH(d’)),
which are expressed in another notation as

AP = (V) ().

oy

o"'P; = L(Vg_(a’))_l (Pf).

Ty

(10.5)

(10.6)

(10.7)
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11 Classification of spin IRs of G(m, 1,n), CASE I,
Type (_17 —17 _1)

We have already several classifications of spin IRs of generalized symmetric

groups G(m,1,n) such as |[Rea2| and [HoHu4|. Here we give a classification

by means of (say) a constructive method, which serves directly to explicit calcu-
lations of their characters.

11.1 Irreducible spin representations II! cn and II A of GI
Let m be even. Take a spin representation II of

(11.1)  GL=GYm,1,n) = R(G(m,1,n))/{zz5") = Dy %

n

o

such that II(z;) = I1(z) = —I or of Type (=1, —1,—1), where D,, = D(m,n).

Theorem 11.1. Suppose n > 4 and m is even. Let 11 be a representation
of the covering group G = R(G(m,1,n))/{z0z5 ") such that
(i) (z1) = =1, Il(29) =—1I.
Then it is actually a spin representation of G(m,1,n), of CASE I, Type (—1,—1,—1).
The operators 11(r;)’s and 11(n;)’s satisfy the following:

(i1) { ()2 =1 (i€l,4), (Mr)(rig))’ =1 (icI,.),
(ry)U(ry) = =IL(rj)(r:) ([t =] = 2),

(iii) ()™ =1 (j € I,),
(iv) ()T (ny) = =T ) (n;) (5 # k),
(v) ()OI (r, ) = =11(n, ;) (G € In).

Now cgnsider spin representations V,, and V  of én in Theorem 8.3 and the
IR P, of D,, in (6.6):

(11.2) Vou(r:) = (_3};_1 (Y;+ Y1) (iel, ) of &,

V;L (Tz> = Vn(ri> (Z - In—2> _
11.3 —1)n-2 NGRS
( ) Vo (ro-1) = ( f\l/)§ (Yoo =Ya) (i=n-1) ’

(114)  P,(n)) = (=1)'wYp(n;) = x4(n;) Y; = () Y] (j € I,,) of D,.
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11.2 Stationary subgroups of [P,| and [P;]

—~spin
Take the complete sets of representatives of the set of equivalence classes D,
of spin IRs of D,, in Theorem 6.5 as

(11.5) Case n = 2n’ even:  Rep(D,) = {[P)]; 7 el };

(11.6) Case n =2n'+1 odd: Rep(D = Rep™( |_|Rep Nn )
. { Rep'(Da) = {[Pf]=[P] ;v eTh},
with o~
Rep™ (Dy) = {[P;] = [Pr]: v €T }.

Here the subset T'? of T, is defined by the condition

(117) 7:(7177771)7 OSVJ <m/ (]EIn)

Lemma 11.2. For representatives P, (resp. Pj =P, and P, = P, ifn
is odd) with v € T, of equivalence classes of spin IRs of D,, there holds

(11.8) o' (P) 2 Py, o'(PY)2Py (0€6,),
and the stationary subgroups in én of their equivalence classes are given as

S(Py) = S([P {a EGn;ny ’y}

(11.9)
S(PF) == S([Pj[ ={o' ¢ S, oy = v} in case n is odd.

Proof. The first relation (11.8) follows from Theorem 9.2.
For the second relations, we know from Theorem 6.4 that P, = P, if and
only if +' &, 7, since v is taken from I'). Then (11.9) for P;" = P, follows from

Theorem 9.2. For P, = P, ., letting 0~'(k) = n for o’ € S,, 0 = B(0'), we
have

0" (Py) = Po(ray) = Priton) = Proioy) = P,

gl (o7)
U(Tn'y) = (7071(1), ey Yo1(k) + m’, Vo=1(k+1)s - - - ,’ygfl(n))
= Tk(O"Y) ~n Tn(O"Y)' 0
In CASE T (contrary to CASE II), it is not so much necessary to use the

notation P in case n = 2n’+1. However we prefer hereafter to use it principally
in place of P, in accordance with CASE II, and we denote V,, also by V. We

put for the subgroups D;, x S(P,) and D, ><1 S(P5) of GI as

(11.10) T (d, o) = Pyd)-Va(o)  ((d,0') € Dy % S(P)),
(1L11)  75(d, o) = PE(d)-VE@W) (o) € D, x S(PF))
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~ 1 ~ 1
Then they are spin IRs of D, x S(P,) and of D, x S(P;) by Theorem 9.2,
which are also denoted as P, - V,, and Pf - V£ respectively.

On the other hand, we see from Theorem 9.2 that, under én, P, (resp. Pf
if n is odd) is conjugate to P, (resp. to va) for any 0 € &,,. Therefore, as a

representative of their conjugacy classes under &,,, we can choose P, (resp. Pf
if n is odd) with a parameter v € T'Y of the following normal form.

Definition 11.1. A parameter v € I',, is said to be normalized, if there
exist a series of integers

(11.12) c=(cr,...,cx), 0<ci<cg<---<cxg<m,
and a partition of I, = {1,2,...,n} into subsets as
(11.13) I=||5L, K={12.. K}

keK

such that v, = ¢ (j € I) for k € K. In a visual form, when ;’s are consecutive
intervals,

(11.14) A =1(ClyeeeyCly CoyunayCoy C3ynnn JCK 1y CKy vy CK ).
—_——— ——— —————’

jel jel2 JjelK

Lemma 11.3. Let v be as in (11.12) - (11.14). Then stationary subgroups
S(P,) in 6, are of the following form :

(11.15) S(P) = S([P, —1(H61k>: gl(HeSnk),

kel kek

where ny := ||, n1 + -+ ng =n, and Pg is the canonical homomorphism
G, —6,.
Similarly for S(PY) in case n is odd.

11.3 1IRs of stationary subgroups S(P,), S(P;") (CASEI)

Thus S(P,) (and S(P5) if n is odd) is a double covering group, with the central
subgroup (z1) = Zs, of the direct product [[, ., &7, of smaller symmetric groups.
Its IRs are of two kinds:
(1) spin IRs s with ms(z1) = —I, and
(2) non-spin IRs 7g with mg(z1) = 1.
Our basic representation V,, (resp. V if n is odd) is spin one and 7r (resp.
m'* if n is odd) is already of (spin) Type (—1,—1,—1). Therefore, to get spin
representatlons of Type (—1,—1,—1) of G(m, 1,n) itself by the inducing-up pro-
cess, we are forced to pick up, at this stage, non-spin linear IRs of [], . S,
as

(11.16) Ts = T _®M, = (Ay,...,Ag),
ke
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where 771(\’2) denotes an IR of &, = &,, corresponding to a (Frobenius-) Young
diagram Ay of size ng. For ny =1, we put A, = @.

~ 1 ~ 1

Consider 7s as an IR of D, x S(P;) (resp. of D, x S(PF) if n is odd)
through the quotient map, and take an inner tensor product with 7r£ =P, -V,
in (11.10) (resp. mi* = P¥. V¥ in (11.11)) as

(11.17) 7r§ Hrg = W; Cma (resp. ng Hrg = W;i Cmry ifnis odd).

~ 1 ~ 1
As a natural parameter for this IR of D,, x S(P,) (resp. D,, X S(P5) if nis odd),
we take (c, A) and denote it as 7, , (resp. 7T(I:iA if nis odd), where ¢ = (cy, ..., ck).
11.4 IRs of Gi(m,1,n) in CASE I, Type (—1,—1,—1)

By inducing it up to é,ﬂ we obtain spin IRs of CASE I, Type (—1,—1,—1), as

1

G : .
m, = Ind7™, 7L, in case n is even,
’ DpxS(Py)
(11.18) " & L ‘
[;y = Ind", w7 incasen is odd.
’ DpxS(PyF) 7

Then we obtain the following result as a consequence of the standard inducing-
up method for semidirect product groups.

Theorem 11.4. Letm be even andn > 4. A complete set spnIR' (G(m,1,n))
of representatives of equivalence classes of spin IRs of CASE I, (spin) Type
(—=1,—1,-1), of G(m, 1,n) is given by the set of the following IRs :

Case n = 2n’ even : I,
Case n = 2n'+1 odd : I and IIL, ;
where, for parameter (c,A\), ¢ = (c1,...,ck) is related to v through (11.12) -

(11.14), and A = (A4, ..., Ak) runs over K-tuples of Young diagrams of size
ni,Na,...,ng in (11.16).

Example 11.1. Most simple spin IRs of é; are given in special cases where
S(P,) =6, or S(P¥) =6&,. For 0 <k <m' =m/2, put v* = (k,k,... k),

~ ~ I ~
then it is &,-invariant and so S(P,w ) = &, and D, x S(P,w) = G, . Similarly
also for ijk) in case n = 2n' + 1.
Take A©) = (n) a Young diagram with one row of length n, then m, ) is the
trivial representation 1z of &,,. Then the parameters (c, A) of the corresponding

spin IRs of Gl in these cases are given by ¢ = (k) with K =1 and A = A©

HLA@ = 7T]I€,A(O) = P,w -V, incasen is even ;

+ I+  _ pt ot .
Hk,A(0> =Toa0 = PW“) V. in case n is odd.
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Especially, take k = 0, then P, ), P;QO) and Pv_“” are denoted in (6.19) respectively
by Py, P, and P_ (cf. Theorem 6.7). The special spin IRs

(11.19) =PV, I :=pP -V T =P .V,.

will play very important roles in the theory of spin irreducible characters of é}l,

and also in that of spin characters of égo under taking limits as n — oo.
On the other hand, take A = (1,1,...,1), then 751 = sgn, and

I I
I ao) = Tea = Py - (Vi sgn).

11.5 Another parametrization of IRs of él(m, 1,n)

Parametrization by (¢, A), using normalized 7, is good for describing equivalence
classes of IRs of G!(m, 1, n), similarly as in §17 in [I]. However, for giving char-
acters of IRs él(m, 1,n) explicitly in later sections and also for studying their
limits in the next part, another parameterization is better.

Denote by Y the set of all Young diagrams A, in which the empty set @ with
zero box is contained by definition. For T'= Z,,, put as in [HoHH, §1]

(11.20) Yo(T) = {A=(\)eeq: A €Y, ) X =n},

ceT

where the size of A € Y is denoted by |A|. Moreover we define a representative
space of a quotient of Y,,(7T") under certain equivalence relation as

(11.21) Y1) = {A=(A\)eqo s M€Y, D [N =n},

CeTo
where T° is the half of T given by
(11.22) T .= {CE?; () =w", 0<a<m =m/2}.

Then a parameter (¢, A) in Theorem 11.4 above corresponds bijectively to an
element in Y,,(7)°, as is explained below.

We give in §6.1 two abelian subgroups of D(m,n) as D°(m,n) C D'(m,n) =
(2, DO(m, n)). A spin character of D'(m,n) is given by restricting a spin function
X~ in (6.2), whereas a character ¢, of the base group D(m,n) and a non-spin
character (,o®p of 15(m, n) are defined as ¢, = (Cy, ..., ) with (5 = (5, = CV‘Tj
for j-th copy T; = (y;) of the protocol T = (y). We identify ¢; with (0%) € T
through T; = T

The decomposition of I, in Definition 11.1 is a special case of the following
one.
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Definition 11.2. For v € I',,, we define a partition of I,, by ¢, = (¢j)jer,
as

Li=|] ;he: he={iel; G=¢}

If v € TY corresponds to ¢ = (cy,...,cx) and I,, = | lyexc Ix, then the set of
Young diagrams A" = ()\”’C)Cefo with [A\"¢| = |I,.¢| given by (c, A) just belongs
to Y,(T)°. Then Theorem 11.4 can be restated with this new parameter as fol-
lows.

Theorem 11.5. Let m be even andn > 4. A complete set SpinIRI(G(m, 1, n))
of representatives of equivalence classes of spin IRs of CASE I, Type (—1,—1,—1),
of G(m,1,n) is given by the set of the following IRs :

Case n = 2n/ even : I, A" e Y, (T)°;
Case n = 2n' + 1 odd : my,, ., A" eY, (1)

12 Classification of spin IRs of G(m, 1,n), CASE II,
Type (_17 _17 1)

12.1 Irreducible spin representations of G := G(m, 1,n)

Let II be a spin representation of

G = GM(m,1,n) = R(G(m,1,n))/(zs) = D, x S,, D, = D(m,n),
such that II(z;) = II(23) = —1I or of (spin) Type (—1,—1, 1).

Theorem 12.1. Suppose n > 4 and m is even. Let 11 be a representation
of the covering group G™(m,1,n) = R(G(m,1,n))/(z3) such that
(i) M(z) =—1, T(z)=-1I.
Then the operators 11(r;)’s and 11(n;)’s satisfy the following:

(i1) { M) =1 (i€ L), (M)’ =1 (i € I_y),
(

(r)I(ry) = —TL(r)I(r;) (i — 5] > 2),
(i) I(n;)™ =1 (j € I,),
(iv) () (m) = —T(m)IL(n;) (5 # k),
(v) ()T, ) = M(ns) (G € Ln).

Now we prepare several spin representations as follows. For én with n =
2n',2n' 4+ 1, two representations V! and V! in Theorem 8.3 as

(12.1) {W”) = » YY) G € L_y):
Vi(r;) = Yo Vi(ry) Yot
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and one more spin representation VI in case n = 2n’ even, for éw as
(12.2) Vi (r)) = (Yaws1) - Vi (15) = Vi (1)) - (=i¥opi1)  (J € Tna);

and, in case n = 2n’ 4 1, two spin representations U} and U of 2, in (8.22) as

Oy () = V,(v) ~
(12.3) , t L wedy.
G, (U ) = Vn(v ) = Yv27l'+1vn(v ) Yv2n’+1

As spin IRs of D, we have in (6.6) and in (6.16) respectively

Py(n;) = wpn) =xy(m)Y; (G €Ln, yET);
Pf=P, P, =P,, (yeI}) ifnisodd,

and so P (n;) = xy(0;)Y; (J € In-1), Py (m) = —x5(1) Yo

(12.4)

12.2 Stationary subgroups of [P,| and [P;]

—~spin
Take the complete sets of representatives of equivalence classes of spin IRs D,,
in Theorem 6.5 quoted above in (11.5) —(11.6).

Lemma 12.2. For representatives P, in case n even (resp. P; and P;
in case n odd), with v € T, of equivalence classes of spin IRs of 5n, the
stationary subgroups in én of their equivalence classes, and their S, -orbits are
given as follows.

—~spin

(i) Let n=2n" even. For representatives P, of D,
(12.5) S(Py) :=8([P)]) = {0 € S, oy = 7} (o= (")),
and o"P, = P, foro € &,.

—~spin

(i) Let n =2n'+1 odd. For representatives P and P, of D,

T e bl
S(Py)=8([P]]) = {o' e, ; oy =1}
According as sgn(o) = 1 or sgn(o) = —1 for o € &, there holds respec-
tively
II pt+ ~ + : II p+ ~ — II p— ~ -+
o' Pr=P_ ile, o P =P_, o P =P .
Proof. Recall that P, = P, if and only if 4" ~,, 7. Then (i) follows from
Theorem 10.2 (ii). Similarly (ii) follows from Theorem 10.2 (iii) and (iv). 0

~ I I -
We put for the subgroup D,, x S(P,) (resp. D, x S(Pf)) of G(m,1,n) as
follows.
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~ o
e In case n = 2n' even, for (d',0’) € D,, x S(P,),

(12.7) ml(d o) = P(d) V().
~ I ~ I
e In case n = 2n'+1 odd, we put, for (d',0") € D, x S(P) = D, x S(P;),
0t(d',0') = PIHd)-Uf(d);
s, ) = P)-B
Tr’y ( 70) T 'y( ) n(U)

Then they are spin IRs of the corresponding subgroups by Theorem 10.2.

——~spin

As a complete set of representative of their conjugacy classes in D,,  under
the action of &,,, we can choose from the following

e in case n = 2n’ even, {PV; v E FQL}, under the action of én;

e in case n = 2n’ + 1 odd, {R+ ;Y E F?l}, under the action of 2, .
In fact, in case n is odd, we have, by Theorem 10.2(iv), O'HP,; = L(VE’(J’)) _1(Pj7),
o= ®(d'), for 0’ € &, sgn(c’) = —1. We can choose those 7’s normalized in
the sense of Definition 11.1 (slightly modified in case n is odd), and arrive to a
parametrization, by (c, A)’s, of equivalence classes of IRs of GI. However, here

we prefer to follow another parametrization as in §11.5. R
For v € I'), we have a non-spin character ¢, = (C1,...,Gn), ¢ = Gy € T,

n?

of ﬁn and a partition I,, = |_|<€f0 I, ¢ in Definition 11.2.

Lemma 12.3. Let v € I'). Then stationary subgroup S(Py) and S(P)) in

S,, are respectively of the following form.
(i) In the case where n = 2n’ even,

(12.9) stp) =5 ([] &1.), & =6y
ceTo
(ii) In the case where n =2n' + 1 odd,
(12.10) s(P) = 05" (T] &1 %)
CeTo
and the index [Hg‘efo Sr,. [leero 61, N A, = 2, except the cases where
(12.11) L =1(CeT) (n<m'=m/2), []6n.={e}
ceTo

Notation 12.1. A subgroup of &,, of the form Hcefo &1, 2, is denoted
as

Ql( HCETO an,<) = ngfo GIn,c N2,
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in |I] of this series of papers. In accordance with this notation, the subgroup of
S, in the right hand side of (12.10) will be denoted as

(12.12) AT _.0n) =26 (18N 2).

Example 12.1. In case J = {1,2,3}, {2,3}, {3}, we have respectively
q)(;l(ﬁl) = (z1,11,72), (21,72), (21).

12.3 IRs of stationary subgroups S(P,), S(P;") (CASE II)

e CASE n = 2n’ EVEN :

The subgroup S(P,) is a double covering group (with the central subgroup
(21) = Z>) of the direct product [[.c70 &1, . Its IRs are of two kinds: (1) spin
IRs 7s with 7s(2z1) = —1, and (2) non-spin IRs 7s with 7s(z1) = I.

Since the representation VI is spin one and 7T£I is of Type (—1, —1, 1) already,
to get spin representations of Type (—1,—1, 1) of G(m,1,n), we are forced to
pick up non-spin, linear IRs of ngfo &y, as

(1213) Mg = Tpn = ®ﬂ—§\€3’<7 A" = ()\mC)CEfO’

ceTo

where 7r/(\2< denotes an IR of &;, , = &y, | corresponding to a Young diagram
A6 of size |1, ¢|.

e CASEn=2n"+1 0ODD :

The subgroup S(P;7) is a double covering group (with the central subgroup
(z1)) of 2A( [Teero Sy, ). Its IRs are of two kinds: (1) spin IRs ms with ms(21) =
—1, and (2) non-spin IRs 7 with ws(21) = I.

Since the representations U, of 2, are spin one, and 70" are already of Type
(—=1,—1, 1), to get a spin representation of Type (—1,—1, 1) of G(m,1,n),
we are forced to pick up a non-spin, linear IR of ﬂ(HCEfO an,c)v or an IR of
QL( ngfo 617%).

To describe them, put for a moment G = Hce’fo &, and H = Ql( Hcefo 61%(),
then H is normal and of index two in G. As an IR of G, Take my» above, and
put pan = Tpn ’H Then we know the following (cf. Lemmas 17.5 and 17.6 in [I]).

Lemma 12.4. Let s € G\ H, and assume that the partition I,, = |_|C€f0 L¢
is not in the exceptional cases in (12.11).

(CasE TA-1). Assume "A" # A", where 'A™ := ("N"°) ._p0. Then mipn =
sgn - mp, and

pian = pan  irreducible,
(oan)" 2= pany (pan)"(B) = pan(shs™") (h € H),

G
IHdeAn = TAn @ Tepn.
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(CaSE TA-2). Assume "A™ = A". Then mpn = sgn - mpn, and
pan = p(AOg e p&lﬁ? pggz a2 pf\lg irreducible,
(Ph0)" = P,
Ind% pg\o;) = man (e =0,1).

A complete set of representatives of equivalence classes of spin IRs for
Q‘(ngfo GIM) 1s given by the set of

no__ i tA? n iAn = Dan
pr = ﬂ-Anlm(ngfO Gln,§)7 in case ‘A" # A", where pyn = ppn ;
,05\0,2 , pfxln) , in case ‘A" = A",
_ 0 (1)
where T AR ‘Q[(ngfo Glnyg) = Ppn ©® PAn-

Remark 12.1. For the difference between irreducible components p(AO,Z and
(1) f I
pan Of Tpn ) see [I, §17.5].

Q[( HCE’f‘O Gln,g

On the basis of this lemma, we prepare a parameter space Yngl(T)O, T=2,,
for equivalence classes of IRs of Ql( H(efo S In,c) as follows: put

YT = {{A" FA" 5 A" = (™) o0 € Yo (T)0, PA" £ A"},
(12.14) Y,2(T)%2 = {(A" k); A" € Y, (T)°, tA™ = A",
A > 2 (3¢), k= 0,1},
YT = {A" = (V) o 3 A <1 (VQ)}.
Then Y2(T)%3 # ) if and only if n < m/ = m/2, and Y,*(T)%3 corresponds to
the exceptional case in (12.11). Put

(12.15) YT = YD) u Y (1) uY,2(T)%,
Then, in case n > m' =m/2, YX(T)° =YX (T)" LY (T)*2.

12.4 1IRs of G(m,1,n) in CASE II, Type (—1,—1, 1)
Let G = G(m,1,n) = R(G(m,1,n))/(z3) be as before. Take a non-spin
IR s of S(P,) (resp. of S(P)), and consider it as an IR of D, X S(Py)

~ I
(resp. D, x S(P;")) through the quotient map, and take an inner tensor product
as follows.

CASE n = 2n/ EVEN :

(12.16) I Ors =7 Oaan .

~ I
As a natural parameter for this IR of D,, x S(P,), we take A" = (/\”’C)Cefo €
Y,.(T)° and denote it as ...
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CAsEn=2n"+1 OoDD :

70T [ pan for {A"'A"} € Y,(T)"1,
(12.17)  aP* Qs =1 70+ P k=01 for (A", k)€ Y} (T)"2,
7O [ pan for A" € Y(T)%3

Here the 3rd row on the left hand side is the exceptional case (12.11), and A™ =
(A" ¢egos A™¢ = @ or O (one box) for ¢ € T and ms = ppn = 1 the trivial

representation (cf. Example 12.3 below). We denote these representations as

U+ U+ :
Tan and myn o respectively.

We have picked up only Pj’s, discarding P ’s. Here we remark a simple
conjugacy between 7r$+ and 779_ as follows.

Lemma 12.5. Let s, € ‘Dél(ngfo S1,.) \ S(PE). Then sgn(s)) =
~ o
sgn(so) = —1 and soy = v with so = ®(sy). Then, for g € D, x S(P;),

1o —1

70 (sh9'sy ) = (1Y) Vi (s0)) - 70F(g) - (1Y) Vi(st))

Proof. First, by Theorem 10.2 (i), «(V,(¢")) Py (d) = P(Tng oy (O ’H(d’))
for o’ € G, if sgn(o’) = —1, where o = ®(¢’). Take o’ = s, ', then s5 'y = 7,
and so we have

Viu(s0) Py (55 () Viu(s0) = Pirmaeorma(d) - (d' € D).
Note that sjg'sp ' = (sp"'(d'), sho’sy ") for g’ = (d', 0"), then
T (s09's0 ho= P (sq 1 (d)) -0, (soo’sy 1)
= P, (s0"(d)) - (1Y) V., (sho'sy ) (i) !

= (1Y2) - Plryry) 7(36 ) (360’36 ) (1Y)~
= (iY,)V,(sp) - P(d/ ) - Vi, (s5) " (@,) ™
= (iYa)V,(sp) - 77 (g") - V' n(50) (1Y) O

Finally, by inducing up to é}f, we obtain IRs of CASE II, Type (—1, -1, 1).
CASE n = 2n/ EVEN :

(12.18) M, = Ind% 7L,
Dy xS(Py)

CASEn=2n"+1 oDD :

(1219) T8 :=mmd, 7%, 0%, =Wd%, % (k=0,1).
Dy xS(P5h) Dy xS(Py)

Then we obtain the following result in CASE II.
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Theorem 12.6. Let m be even andn > 4. A complete set spinIR" (G(m, 1, n))
of representatives of equivalence classes of spin IRs of CASE II, (spin) Type
(—=1,—1, 1), of G(m,1,n) is given as follows.

(i) CASE n =2n’ EVEN :

spinlR" (G(m, 1,n)) consists of TIN., A" € Y,,(T)°.
(i) CASE n=2n'+1 ODD, AND n >m' =m/2:
spinlR" (G(m, 1,n)) consists of IRs

HUZ_, An,tAn c Yan T 0,1’
(12.20) { A { } (1)

H%{n, (A", k) € YHT)*?, k=0,1.

(iii) CASEn=2n'+1 oDD, AND n < m/ =m/2:
spinlR" (G(m, 1,n)) consists of IRs:

nor, O%f,. (k=0,1), in (12.20),
o) ML (=0, n (1220

5., A" e Y, (T)03.

Example 12.2. Simple spin IRs of G are given in the cases where S(P,) =
&, for n even, and S(P;) = A, for n odd. For 0 < k < m/, put v = k) =
(k K, ... k) eI

~ ~ II ~ II ~ ~

In case n is even, S(P,w) = &,, and D, x S(P,w) = D, X 6, = G'.
Take A" = (X“C)Cefo. Then IIY. = (P, - VI) Hman . As its special case for
k =0 and A" = (n), we have a simple spin IR of éél
(12.22) Iy =Py -V, Py=Po.

~ ~ ~ I ~ ~
In case n is odd, S(PY,)) =, and D, x S(P*,)) = D, x A, =: H', which
7 v
is a normal subgroup of GI of index 2. Take A" = (A"’C)Cefo such that ‘A™ # A"
and put ppn = ﬂAn‘ﬂ . Then
11

GII G
ST = Ind2? 705 = Ind2

o i (Pl - By) T pan.

As its special case for k =0 and A™ = (n), we have simple spin IRs as

M. 7o G ILA S
o) = d A of GII,

~ ~ ~ II ~
M o= Py - U with Py = P, of H' = D, » 2.

Spin IRs in (12.22)—(12.23) will play important roles in studying spin irreducible
characters.

Example 12.3. Let n be odd. For A® € Y,*(T)%, we start with v =
(71,-.-,7) such that v;’s are all different (. n < m’ = m/2), and so S =



S(PJ) = Z1 = (z1). Then U} is the spin character xi(z1) = —1 of Z;, and py»
is the trivial representation 1, and

(P -0,)((d,2") = PF(d) - (1) (a=0,1);
5 =mdé"  (PF-x1)  (IRof GIY).

Dn><Z1

Part 111
Spin irreducible characters of

R(G(m, 1,n)) of Types (—1,—1,=£1)

13 Conjugacies in G, and ,,, and in én and §(n

13.1 Standard elements in G, and in én

To give characters of spin representations of permutation groups, we should study
conjugacy classes in &,, and 2,,, together with those in the base groups &,, and
2.

Conjugacy class of 0 € &,, is denoted by [0]g and that under conjugations
of 2, is denoted by [o]y. Conjugacy class [o]g is determined by the type of its
decomposition into disjoint cycles. This means the following. Let 0 = o7 - - 0y
be a cycle decomposition such that ¢; > o > ... > {; > 1 with ¢{; = {(c;). Add

lyrq = ... =¥, =1 if necessary, so that we have a partition of n as
(13.1) dti=n, bh=b> . >4>1
1<5<t

Put my = #{j; ¢; = k}, then 1™272...n™ ig called the type of ¢ or of the
partition above.

As a representative of the conjugacy class of type 1™12™2...n™" we define
a standard element (or permutation) in &,,, and also a corresponding standard
element in the covering group én =T as follows.

Definition 13.1. Put Ny =0, Ny =0y, Ny =01 +---+ 0, (1 <k <t), and

(13 2) 01 = 8182 *SN;—1, Ok = SNi_14+1 """ SN,—1 (1 <k< t)?
' ol =TTy TN 1, O = TN 41 TN (1S k<),

where the elements oy, and o}, for k > s mean the identity elements in &,, and
S, respectively. We call 0 = 0105+ -0y and ¢’ = o0}, - - - 0} standard elements

of type 1™12™2...n"" in G,, and &,, respectively.

181
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Note that in the expression of ¢’ the order of product is essential, since
oo, = zleLkafﬂaé, L;=10;—1, for j #k.

13.2 First, second and third kind of elements

In this and the next subsection, the main reference is [Sch3, Abschnitt II]. Af-
ter Schur, we define the first, the second and the third kind of elements (or
permutations) in &,,, and transfer this definition to the covering group &,,.

Definition 13.2. For o € G, let 0 = 0105 --- 0, be a cycle decomposition
of o, and ¢; = {(0;) length of oy, and 1™12™2 ... n™ type of o.

(1) o is called of first kind, if either o is even and contains at least one odd
cycle o; (or ¢; even), or o is odd and contains at least one pair of cycles of the
same lengths;

(2) o is called of second kind, if it is not of the first kind, that is, if either o
is even and contains only even cycles (or all ¢; odd), or ¢ is odd and lengths of
cycles are all different;

(3) o is called of third kind, if o is even and lengths of cycles are all different,
so that the number of the trivial cycle (= cycle of length 1) should be < 1.

An element o’ € én is called of first kind, of second kind, and of third kind,
if so is the image 0 = ®g(0’) € S, respectively.

Lemma 13.1. Letn > 4. For o € U, let 0 = o109---0, be its cycle
decomposition. Then its conjugacy class [o]g in &, splits into two conjugacy
classes in 2, if and only if o is of 2nd kind and 3rd kind at the same time, that
18, all 0;’s are even and with different lengths. In that case, for o standard,

(13.3) [0le = [o]a U [s105; ']a -

Note that this has been given in the study of characters of 2,, by Frobenius
[Frob2].

13.3 Conjugacies in én and in évln and central functions

For o € &,, denote by [0']g its conjugacy class under S, and by [o']5 its
conjugacy class under 2,. For o/ € 2, standard, [0']g = [0'lg U [ro'r g,
and we ask relations among 4 conjugacy classes [0]5, [ri0'r g, [210']g and
[z1r10'r 5

Theorem 13.2. Let n > 4, and o' € én Under conjugations of én,
o' is conjugate to z,0' or not, according as o' is of 1st kind or of 2nd kind
respectively.
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Theorem 13.3. Letn >4, and o’ € §(n be standard.
(i) If o’ is of 1st kind and not of 3rd kind, then o’ is conjugate to zy0’ under

&
5 = 2105 = [7’10’7“1_1]5[ = [217’10’7“1_1]5[.

(i) If o' is of 1st kind and also of 3rd kind, then o is conjugate to z 0’
under &, but not under A, and [0']g does not split under 2, :

# [z10']5, [7“10,7"171]5[ # [217“10,7“171]'5“ [0']5 = [2’17"10'7"171]@-

(i) If o’ is of 2nd kind and not of 3rd kind, then o’ is not conjugate to z 0’
under &,, and [0']g does not split under A, :

lo]o = [s1081 a;
g 7£ [Zlo—l]é7

&
5= [mo'r g # (2105 = [2im0'r g

(iv) If o’ is of 2nd kind and also of 3rd kind, then o' is not conjugate to z 0’
under &, and [0'|g splits into two conjugacy classes under 2, :

[

lo'ls &

)5 = [0'lg U [ro'r, .
(05, (21075, [rmo'ri g, [ziro'r g (4 are different).

Theorem 13.4. A complete set of representatives of conjugacy classes
in &, 1s giwen as follows: denote a standard element of types 1™12M2...nMn
simply by o', then
o’ of 1st kind,

o', z0o of 2nd kind.

Theorem 13.5. A complete set of representatives of conjugacy classes
i A, s given as follows: denote a standard element of types 1™12M2...nMn
simply by o', then

o’ of 1st kind and not of 3rd kind,
o', o' (or rio'r ) of 1st kind and also of 3rd kind,
o', zi0’ (or zrio'ryh) of 2nd kind and not of 3rd kind,
o', no', rior 7t el of 2nd kind and also of 3rd kind.

A function f on &, or on 2, is called spin if f(z10") = —f(0).
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Theorem 13.6. Let f be a spin central function on S,. Then flo) =
if o’ is of the 1st kind. Moreover f is completely determined by the values f(o
for every standard elements o’ of the 2nd kind.

0
)

Theorem 13.7. Let [ be a spin central function on A,. Then fle') =0
if o' is of the 1st kind and not of the 3rd kind. Moreover f is completely
determined by

(1) the values f(c') for every standard elements o’ either of the 1st and the
3rd kind or of the 2nd and not the 3rd kind, and

(2) the values f(o'), f(rio'r; ") for every standard elements o' of the 2nd
and the 3rd kind.

14 Characters of spin representations of G,
and 2,

14.1 Traces of spin representations V, and V, of G,

Let 4 <n < co. We defined in (8.2) and (8.3), spin representations V,, and V
as follows: put Y/ = (=1)77'Y; (j € I,,), then

(1) Vi) = S (i Yi) = (07 =Yh) (€ L)

and for n = 2n’ + 1 odd,

Vo (ry) :=Vu(ry) (i € I,2),
(14.2)

V;(rn,l) = —ann(rn,l)Yn_l =

Since the characters xv, and xy. are invariant under én, by Theorem 13.6,
it is sufficient for us to calculate the trace tr(V,(c”)),tr(V, (¢’)) for standard o’
of 2nd kind. Let o’ € &, and 0 = ®(0') € 6, be standard elements in Definition
13.1, but hereafter we omit the trivial factors os41,...,0; and 0,4, ..., 0, added
in (13.2) in case s <t as

0 =0109***0g,
(143) { 0":0’10’&---0‘2, O'jZCD(O';»), 612£222£5>1,
(144) Ek = E(O'k), E(O'k) = Nk — Nk,1 Z 2 (k € Is)

e Trace of spin representation V,, of G, :
The matrix corresponding to ¢’ is expressed as

(14.5) V(o) = Va(o1) - Va(o)),

s
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Valoh) = Val(rne,) - Va(rn2)
(14.6) = - H (1) H(Y; + Yipa),

2(¢x—1)/2
Np_1+1<i<Np—1

where the product is taken in the natural order of the index i.
In addition to Lemmas 5.9 -5.10, the following lemma will be used repeatedly
in calculating traces.

Lemma 14.1. (i) A monomial product Yy, Yy, Yy, ,Yi, . such that
{k1,ko,... kowi1} = Ioni1 has non-zero trace given as

(14.7) tr(Ye, Yieg - Yiy, Vo, ) = (20)"'sgn(o),

where 0 € Gopiq 08 such that o(i) = k; (i € Topriq).
(ii) For a formal monomial F = Y"'Y,"*--. Y, * put supp(F) := {j €

I, ; a; #0 (mod 2)}. For two such monomials Fy and F», suppose supp(Fi)N
supp(F2) =0, and supp(F1) Usupp(Fy) C Ion S Iopia, then

=

’ tI'(Fl) tI‘(FQ)
2" 2"

(14.8) tr(F Fy) = 27

Proof. (ii) Let Fy = Y;Y," .. Y,% and Fy = V;""V,” ... V,’»_ then a;b; = 0
for all j, and F1Fy = £Y,°Y, ... Y, with ¢; = a; + b;.  If tr(F1Fy) # 0, then
¢; = 0 (mod 2) for all j € I, since supp(F1F2) # Ip41. This means that
a; = 0 (mod 2) and b; = 0 (mod 2) for j € I,. Then, actually as matrices,
Fi = Eyy, Fy = Eyu.

If tr(F1 Fy) = 0, then ¢; = 1 (mod 2) for at least one of j € I,,. For that j, a;
or b; is odd, and accordingly tr(F;) = 0 or tr(F;) = 0. O

CASE 1: when Y5,,; does not appear in (14.5)—(14.6):
Note that when V,,(0%)’s are expanded into linear combinations of monomials
of the form HpeKjY},C”, K := supp(0}), their supports are mutually disjoint for

j € I, since so are K,’s, and that, when tr(Vn(a;-)) # 0, its monomial term

with non-zero trace is of the form Hpe K, Yp% and is unique among its monomials
(to see this, we appeal to the explicit form of V(r;) in (14.1)). Then we see from
Lemmas 5.9-5.10 and 14.1 the following;:
, (Valol)  e(Valol)

o’ 2’ ’
(1-2) tr(Va(o})) #0 = L(0,) =0 (mod 2).

(1-1) tr(V,(o')) = 2"

Lemma 14.2. Suppose that Yo,/ 11 does not appear in (14.5) — (14.6). Then,
for a standard o' = oy -0y in (14.3), L(0') = > 5. L(0},), and
2" (—=2)" Zkers (/2 if I(o1) = €, — 1 = 0 (mod 2, Vk € I,),

0, otherwise.

tr(V,(0')) = {
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CASE 2: when Y, ,; appears in (14.5)—(14.6) :
From the setting, we have [supp(c)| = n = 2n/+1 in this case if tr(V,,(0”)) #
0. By Lemmas 5.9-5.10 and 14.1, as monomials with non-zero traces, there are
two cases:
Case (2-1): }/;cly}cg T Yk2n/Yk‘2n/+17 {k17 k27 ey k?n’-‘rl} - IQn’—l—l ;
Case (2-2): Y]V ---Y>
For Case (2-1), from the degree of the monomial, we see that if tr(V,(0”)) #
0, then >, (¢x — 1) should be equal to n = 2n' + 1. But this is impossible.

For Case (2-2), similarly as in CASE 1, all o, should be even, and we have
the following.

Lemma 14.3. Suppose that Ya, 11 appears in (14.5)—(14.6). Then we
have n = 2n’ +1 odd and |supp(c)| =n =2n'+1. For a standard o' =o' --- 0"

in (14.3), )

(v -

Thus, from Lemmas 14.2 and 14.3, we obtain for the trace of V,, the following:

2" (=2) " Zwers D2 i [(g1) = 0 (mod 2, Vk € T,),

0, otherwise.

Theorem 14.4. Let n > 4 and put n' = [n/2]. For a standard element
o =0)---0.€6, in (13.2),

oln/2] . (_2)—Zkezs(€k—1)/2 — on'. [Ticr (—2)~W=1/2,
tr(V, (o)) = if L(o},) =0 (mod 2) for all k € I,
0, otherwise.

As a corollary, we have the following. According to Definition 8.1, for a spin
character x of G,, the associate character is sgn-x, and Y is called self-associate
if sgn - x = x. Then the character xv, is self-associate, or sgn: xv, = Xv,,-

Corollary 14.5. The product of the representation V,, and the one-dimen-
stonal character sgn is again equivalent to V,, or sgn -V, = V,, that is, the
spin representation V, is self-associate.

e Trace of spin representation V of G, :
From the formula (14.1) —(14.2), we see that

(14.9) ~ Y,V (r)Y, ' =V, (r;) (1<i<n-1).
This gives us the following result.

Theorem 14.6. The spin representation V, is equivalent to sgn - V,.
Moreover it is also equivalent to V,, since sgn -V, =V, , so that

V, =V, and xy- =Xxv,-
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14.2 Traces of spin representations V/ and VI
14.2.1 Trace of spin representation V) of G,

Let the notation be as in Definition 13.1 and (14.3) —(14.4). Then, under the
spin representation V! . the matrix corresponding to a standard o’ is expressed
as

V(o) = Vi (o1) -V, (07),
14.10 1
( ) V5(oy) = Y=y H (Y; = Yis),
Nip_ 1 +1<i<Np—1

where the product is taken in the natural order.

CASE 1: when Y;,,; does not appear in (14.10):
Then we see that

(1) tr(v%(gl)) _on' . tr(vzz(lffl)) tr(Vg;(las)) ;
(2) tr(V;(a,’ﬁ)) #0 = L(og) =l — 1 =0 (mod 2).

Lemma 14.7. Suppose that Yo, 11 does not appear in (14.10), or equiv-
alently that we are either in the case of even n = 2n’, or in the case of odd
n=2n"+1 and |supp(c)| < n =2n'+ 1. Then, for a standard ¢’ = o} ---0. in

(14'3)5
tr(V) (0")) = {

2" (=2)" Zrer. 6 =D/2 i [(g7) = 0 (mod 2, Vk € I,),

0, otherwise.

CASE 2: when Y, ., appears in (14.10):
We can discuss similarly as for V,,, and obtain the following.

Lemma 14.8. Suppose that Yo, 11 appears in (14.10). If tr(V;(a’)) £ 0,
then n = 2n' + 1 and |[supp(o)| =n =2n' + 1. For a standard ¢’ = o} --- 0. in
(14.3),

2" (=2)7 Zrer (=D if (o) = 0 (mod 2, Vk € I),
(710%) — { -2) (=0 )

0, otherwise.
Thus, from Lemmas 14.7 and 14.8, we obtain for the trace of V!, the following:

Theorem 14.9. Let n > r and put n’ = [n/2].
(i) For a standard element o' = o1 ---0l, € &, in (14.3),
/A (Ca)Sher 6D = 7 [,y (~2) D
tr(V) (o") = if L(o},) =0 (mod 2) for all k € I,

0, otherwise.

(ii) There hold equivalencies V', =V, = V., and V!, is self-associate.
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14.2.2 Trace of spin representation V! of G, n = 2n’

Recall that, for n = 2n’, we defined in (8.6) operators V% (r;) for j € I,,_1, and
proved that they give a spin representation of G, :

(14.11) Vi () = (iYaui1) - Viy(rj) = V3, (1) - (=iYau41)-
For o' =rjrj, -1, j1 <Jo<...<jp<2n,
V(o) = V(o)) = V(1) Vi () - Vi (ry,) if L(o') = 0 (mod 2),
1

Vg(0/> =V, (0") (=iYon41) it L(o') =

Theorem 14.10. For én, n = 2n/, the characters xyu and xv; of vl
and V!, coincide with each other, and so these spin representations are mutually
equivalent.

Proof. Suppose L(c’) = 0 (mod 2). Then V(¢') = V/ (o).
Suppose L(¢’) = 1 (mod 2). Then VY(o') = (iYany1) - V! (0"), and V' (o)
does not contain Y5,/; and is a linear combination of monomial terms Yy, Y%, - - -

of order < 2n’ — 1. Therefore (iY2,11) V/,(0) cannot contain Yo, 1Y, Yy, -+ of
degree 2n’ + 1, whence every homogeneous terms in it are of trace 0, and in total
the trace of V(a’) is zero. O

Note 14.1. As will be seen in Theorem 15.5 (i), when n even, V!, = sgn-V/,
is a direct sum of inequivalent spin IRs A/ and sgn-A’ : V! = Al @sgn-A/ .

14.3 Traces of spin representations U of 2,

Let n = 2n’ + 1 odd. Spin representations U= oj 2, are defined by the formula
(12.3). Then, for v’ = 200, o' = ryri, -+ -1i, € Un, L(c’) = L even,

) =V, () = (=1)"- V(o) ;
(14.12) G, (V') = (Yanri1) - V(') - (iVapry1) .

Thus U are restrictions of spin representations, equivalent to V’, of the
group én to the subgroup §ln So their characters are invariant under én
Therefore, in spite of Theorems 13.5 and 13.7 on a complete set of represen-
tatives of conjugacy classes in G,, and on central functions on it respectively, the
characters ;= are completely determined by their values on standard elements

in QNln
Theorem 14.11. The traces of the spin representations U, and U, are
restrictions of the character xv: of &, onto 2,.
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Forv' = zto’ € U, with a standard o,
(=1)0- 27 . (=2)” Zker, e =1)/2
if 0 = ®g(0’) has a cycle decomposition
o=o0y 0 L(og) =0 (mod 2) (k € I);
0, otherwise.
Note 14.2. As will be seen in Theorem 15.5 (ii), when n = 2n’ + 1 odd,

U 2 U, is a direct sum of two inequivalent spin TRs Ugf), k=0,1, of gln, where
U7(11) _ (Ugo))m‘

tr (U1 (v)) =

14.4 Behaviors of VI and VI~ on &, n=2n'+ 1

For n = 2n’ + 1, the matrix-valued functions VI* and VI~ on én, defined
in (8.7), coincide with the spin representation VI | on the subgroup &, ; =
(21,71, ..,Tn_2), and also give equivalent spin representations U, and U, on
the subgroup 2, by restriction. Consider them on the remainder subset &,,\

(én,l Uﬁ[n), then, since n = 2n/ 4+ 1, it is a union of ﬁn,l—cosets as

|_| {z\inflrnfl'rn72 Ty |_| |_| évln,lmrn,lrn,g Ty
jeI,_1,even j€I,_1,0dd
Proposition 14.12. Foro’ € én\(én,l Uﬁl), there holds tr(VL—(0")) =
—tr(V;”(a’)). In particular, for o' = o"r,_1 with a standard 0" € A,,_1,

(Vi (o) = te(Vii(0") - (Fi/V2).

Proof. Under the conjugation of ﬁln_l, o’ is conjugate, modulo a mul-
tiple of powers of z;, to an element 7' such that 7/ = 7{75---7, with dis-
joint cycles, 7, = rn,_ "N, _141° - TN—1 (K < s) and 7. = rprp4q - -1y Put
" =11 _(rptps1 - Tpo2), then 7" = 7"r,_y with 77 € 2(,,_;. Note that
Vit(o) = Vi (r) -+ ViE(r), and

Vgi(Ts/) = vg—l(rp) T vg—l(rn—Q) : ﬁ (Yonr41Yon F Egur).

Expand the right hand side of VI*(o’) into a linear combination of monomials
Y, “ .- Y % as before, then we see from Lemmas 5.9-5.10 that, as the contri-
bution from the last term of V= (r, 1), we should take FFE,. (not Ya, 11Ya,).
This gives us the first assertion.

The proof of the second assertion is similar. O

15 Relations to Hauptdarstellung of Schur

15.1 Rewriting of Hauptdarstellung A, for G,

Schur’s Hauptdarstellung A,, is given for the representation group ¥,, [Sch3, §22|.
So we rewrite it for another representation group &,, = %/, of our present choice,
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and denote it by A!. Then we compare it with V,,,V and V! = V" Put
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(15.1) N=[n-1)/2] (n=2N+1 or 2N +2)
and define (only in this section)
X AFD @ a@ VR (1 <k <N),
(15.2) X, = PEDRpeePNR (1 <k < N),
Xons = V.

Note that we have defined in (5.13) matrices Y; (j € I,,) of type 2" x 2" with
n’ = [n/2], and here X} (j € I,,) are similar but of type 2V x 2V,

(15

3) T

Put for 1 <7 <2N + 1,
= aj_lXJ/-,l -+ ij]/

in such a way that they satisfy the relations

(T =E

TiTi o + TG

{

T/+E=0

(Xo:=0),

(1<j<2N+1),

(1 <j<2N),

where EF = E,~. Then the equations for a;’s and b;’s are

(15.4)

ap = 0, 1912 = 1,

QG,jbj = -1

a; 3+b7=1 (1<j<2N+1).
(1 <j<2N).

A set of solutions is immediate from [Sch3, Abschnitt VI| as follows.

Lemma 15.1.
(

aon, b1:1>
N v+1
v = — s by - 1< <N7
N | wi = ey SvEN)
V2 1 V2
(241 = — v ;o bage = vt3 (1<v<N-1).
L 2vr+1 2vr+1

Thus we get a spin representation r; — T; (1 < j <n —1) of én, which is
denoted by A! and called ‘Hauptdarstellung’ of &,, = ¥/ | for n = 2N + 1 or
n=2N + 2.

15.2 Character of ‘Hauptdarstellung’ A/ of S, = <

Theorem 15.2 (cf. [Sch3, §23]).

Let n = 2N + 2 even.

The character

of Al is given as follows: for a standard o' = oloy---0. € G, o = P (0},)
disjoint cycles, with (;, = ((0},),
N . <_2)*Zkers(£k*1)/2 — 2”/2—1 (_2)*21&13(@*1)/27

Xay, (@)
in/2—1

N VN +1=

n/2,

if L(o},) =0 (mod 2) (k € I,),

it o' =rirg 11 (0dd),
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and xar(0') =0 if o’ is not conjugate to an element above or to z -times of
it.

Proof. For ¢’ = ryry---r,_1, we express the following product as a linear
combination of monomial terms X{*' X" ... X/ :

nTy-- T, =X, ] (y21X], +8,X])), 2N+1=n—1

2<j<2N+1

Then, since the degrees of each monomials are all n—1 = 2N +1 odd, the unique
monomial term with non-zero trace is

X1 boXh o ban 1 Xonn = by -bonyy - (abe)®N = by bony - (i8)PN.

On the other hand,

I Vr+3 _ JVN+1  VN+1

b b X b = X =
H 2v4+1Y2v4-2 2N+1 zm 2N+ 1 2N

0<r<N—1 0<y<N-1
Hence we obtain

XA;L(OJ):%-(%)N:Z‘N N+1=:"*1/n/2. m

Theorem 15.3 (cf. [Sch3, §23]). Let n = 2N +1 odd. The character of Al

is given as follows: for a standard o' = o} --- 0, op = Pg(0},) disjoint cycles,
N, (_2)*219613(@*1)/2 — 2(”‘1)/2 (_2)*21&613(51@*1)/27
xar (o) = if L(o},) =0 (mod 2) (k € I,),

0, otherwise.

15.3 Relations to ‘Hauptdarstellung’ A/,

Lemma 15.4. In the case where n = 2N + 2 is even,

2.9N . (_2)72%18(@&71)/2 — 9on/2, (_2)72%13(%*1)/27

XA! + Xsgnoar = if L(o},) =0 (mod 2) (Vk),
0, otherwise.

Theorem 15.5. (i) The spin representations V,, =V, = V! of S, <
is related to Schur’s ‘Hauptdarstellung’ A} as

Vo, =A@ (sgn-A), if n=2n" even (N =n’ — 1),
V., = Al (irreducible), if n=2n"+1o0dd (N =n').

(ii) The restriction of Al n >4, onto the subgroup évln are as follows:

n’
o When n is even, Al is not self-associate, and A;‘ﬁ 15 irreducible.
n
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~ 5F > U

., and it

o When n is odd, Al is self-associate, and A;‘ﬁ

is a direct sum of two inequivalent spin IRs Ugf), k = 0,1, of ﬁln, where
US) _ (U;O))Tl.

Proof. (i) follows from Theorem 15.3 and Lemma 15.4 above, together with
the results on characters in §14.

(ii) is proved by applying Lemma 17.4 in [I] (cf. also Lemma 12.4), and char-
acter formulas in §§14 -15. a

In case n is odd, our representation V,, is another realization of ‘Hauptdarstel-
lung’ A/ of Schur. On the contrary, in case n is even, V,, is decomposed into the
direct sum of A/ (cf. §8.2).

~ 1 ~ 1
16 Characters of IRs of D, x S(P,), D,, S(P,yi)

This section for CASE I, Type (—1, —1, —1), and the next one for CASE II, Type
(—1,—1, 1), correspond to the step (f-7) in §3, and are very important steps on
the way of getting character formulas for spin IRs of R(G(m,1,n)) of CASEs I
and II.

16.1 Formulas for calculating trace of 7!(¢’), 7}°(¢')

16.1.1 Preparation for calculating characters

As in §11, consider spin representation V,, and V_ of én and the IR P, of ﬁn :

(16.1) Vo) = T v = L (v =) (e Ty)

. n\’17 \/i 7 i+1 5 4 i+1 n—1) 5
Va(ri) = Vy(ri) (i € In—2),

062 Y gy = E vy = L v ) =0y
n\Un—1 \/i n—1 n \/§ n—1 n )

(16.3) P,(n) = (=17 ¥ p(n;) = x+(0)) Y; = ¢ (n)Y] (5 € 1)

where Y] = (=1)'7'Y; (j € I,,). |
—~spin
The complete sets of representatives of the set of equivalence classes D,
are

Case n = 2n/ even : Rep(D,) = {[P);veT%};

16.4 ~ ~ ~
(16:4) Case n =2n'+1o0dd: Rep(D,) = Rep(D,)[|Rep (D,),

where Rep™(D,) = {[P¥];y € [0}, P* = P,, P, = P,,. The set I
consists of v = (71,72,...,7,) satisfying 0 < v, < m’ = m/2 (k € I,,) as in
(11.7), and 7,y = (Y1, -+, Y1, Vn + M').
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For representatives P, (resp. P and P if n is odd) with v € I'), the sta-
tionary subgroups in &,, of their equivalence classes are given as
S(py) = {0 € S, oy = 7} in case n is even ;

16.5 ~
(16.5) S(Pf)={0'€6,; d'y=~} incasenisodd.

~ 1 ~
Recall IRs of the subgroup D,, x S(P,) of G given as

(16.6) ﬂ—g(d/’gl) = Pw(d/) V(o) ((dl,UI) S En >Id S(PW)) :
W}Yi(d/’a/) = Pf(d’) . fo(a’) ((d',a’) c 571 >14 S(P,Yi)),

or i = P, -V, and 7}* = P - Vi with V! = V,,. Put their characters as

) = tr(7(g)) (¢ € D, x S(Py)) ifniseven;

) = u(x* () (Je D, x S(P¥)) if nis odd.

Before starting calculation of them, we refer Table 4.1 on the general property
of supports of characters. We keep to the notations in §6.1 and Definition 11.2,
which we recall briefly. We have two abelian subgroups of D,, = D(m,n) defined
as

(16.8)  D°(m,n) = (n2nl,...,n2) C DYm,n) = (2, D°(m,n)).

(16.7)

A spin character of D} = D'(m,n) is given as X5 = X7}51 with a spin function

X~ in (6.2) on D,. A character ¢ = (¢i,...,¢,) on D(m,n) and a non-spin
character ¢, 0 ®p (denoted again by (,) on D(m,n) are defined for v € I',,. Here
G = Cimy; = Q’T‘ for j-th copy T} of the protocol T'= Z,,. Define a partition of

ITL by C’y = (Cj)jehm v e F?p as
(16.9) Li=| s le e={iel =0}

We normalize ¥ = (71, ..., 7,) € I'Y under conjugation of &,, so that (11.12) -
(11.14) hold. Then the above partition is nothing but (11.13) with I, = I, ¢ an
interval for ¢ = (),

16.1.2 Normalization of representatives of conjugacy classes in CASE I

~ 1 ~ 1
Any element g” € D,, x S(P,) (resp. D, x S(PF) if n is odd) has a standard
decomposition as

g =2"%"g, ¢ = o) =& & g g

é‘(l]th:,’,];aq’ O'/:O'i...o'g7 d/: (/11...5(/% 'ZQXdll"'d;,

(16.10) g; = (d;,0%), 05 = Ps(0}) a cycle, K := supp(c}) D supp(d}),

d; =[] " =dSh;, d) €DS=D°(m,n), h; =[] n,”. 8, =0,1,

\ pEKj pEK]‘

(
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(16.11) with X = " ord(d))(L(c}) + -+ + L(0}4)),

2<j<s

since r}(nz) = 21, .(j)- Here the product of n,* for d; is in the natural order

except otherwise indicated. Note that the top term z'z.* has usually some
ambiguity, because & & = z&, & (¢ # q) if ord(§;) = ord(¢], ) = 1 (mod 2)
and d%o;, = 200} it L(o}) = L(o},) = 1 (mod 2) etc. When we study spin
characters of Type (—1,—1,—1), it is sufficient to determine their values for
conjugacy classes modulo the center Z = (21, z2), so that we consider principally
elements of the form ¢’ above.

We normalize representatives ¢’ !

o Cn 9 9s g5 = (dj,0%), under
~ 1
Conjugacy of Dy (I)G(ngrf GIM). To do so, recall Lemmas 1.3—1.6. Let

= ®(o ) be a cycle (k1 ko ... ki), £; = (0}). To fix the choice of the
prelmage o; of 0, let ki be the smallest among {k1, ..., ke, }, and put
(1612) O’;- =Ty, koThko ks """ Tk@j—lvkl’.j'

The support K; = supp(o}) = {k1,k2,...,k;} is contained in some I, ¢, and
suppose here for simplicity that I,, ¢ is equal to [1, M] C I,,.

Lemma 16.1. (i) Putoj :=rry-- 141, thenoi = ®(0y) = (12 ... {;).
Take a 7 € Sy such that To;7 " = o) with 7 = ®s(7'). Then 7'oir'” 1=
zlyag”, where the exponent Y is computable.

(ii) Let o} = o). Then K; =[1,N], N = {;, and there exists a d € Dy such
that

ord(a Yord(d )+X sord(d")

(16.13) cZg;d = (dj,0}) with dj =z o
where, express d; with new generators m;, as d; = m " ny** - -ny"", then

X = Z byb, (mod2) with b,:=as+---+a, (p>2).

2<p<g<N-—-1

(iii) Let g; = (d},07) = (0, o o). Then U;-_lgé = (d}, o) with

J = (zom),_,)" if ord(d;.) = L(ag) = 1 (mod 2),
(77;@71)17 otherwise.

Proof. Note that ord(d’») =ay+---+ay (mod m). Let d =5,y - "~
Then dg]d = (dd’ 1(d)~", o)) and

J

. 1 ond@)L() b b
0i(d) = oydoi = oyt Moy oy 0™ =
ord(d)L( ') 1 b} /b’ by

= Z My 13 -y,
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dd; o (d) ™ = (" ) () X

ord(J)L(a’-) ;) —bl g~V ;—b =Y
j N N-1 ... 2 1
X (22 m NN M3 T2 )
g bitar—bly s bytaz—b) 1 Uy+an—by_, X
=" Uy /Y X Zg .

Put b +ar1 —b,=0(1 <k <N —1). Then asolution is given by
b’lz(), b%z—(ag—i—ag—i-"'—i-ak):—bk (ZSKSN)

Moreover X is computed to be equal to -, .. byb, modulo 2. O

By this lemma, we see that each g; is conjugate under é[n’g, modulo powers
of z; and z;, to the following normal form g?’ :

o Let K; C I, ¢ be an interval [n;,n; + {; — 1] C I, then for some k; € K,

ord(d’; .
(16.14) 9?/ = (nl/gj ( J)a ‘7?/) with U?/ = TnTnj+1 0 Tng4e;—-2-

For such a normalization, we can take k; the smallest in K, but here we take
k; an arbitrary element in K; to prepare for calculation of characters of induced
representations. In this connection, see also §22.2, Part V, below.

Example 16.1 (Representatives in &,,(7") under conjugacy). In the case
of a wreath product group &,(T) := D,(T) x &,, Dy(T) := [ler, Ths Te = T,
with a non-abelian 7', a general element is expressed as

9="E8 " Sag1- g5, & = (tg), 95 = (dj,05), dj = (tp)pek;, K; = supp(0;),
with o; disjoint cycles, ¢, € Tj. The datum determining its conjugacy class
(cf. Theorem 1.2 in [HHH1, p.6]) is the set of {[t,,], ..., [t,,]} and { (P, (d;), €(0;));
j € I}, where [tx] denotes the conjugacy class of ¢ in T, = T, and for
g5 = (lﬁ kg c. kgj),
Poj (dj) = [tkej cee tk2tk1} .

Example 16.2 (Representatives in é}z under conjugacy). For simplicity, let

raz_ 1a3 /a4 [as

g/ - 5191’ 51 = 7717 gi = (d/ba,l)’ 01 = ToT'3Ty, dll =Ty N3 Ny 75
Then g = CD(Q/) =691, 4 =y, 1 = (dl,Ul), 01 = 528384 = (2 3 4 5)7 dy =
Ys Y3 ystys®. Take d' = ) ny 20y “n)™ with ¢y = a5, c3 = a4 + a5, co = az +
a4 + as, and consider the conjugate d’'g’d’". Then
gd™ =gl & = ded”, g = dgid”

1 catcatca ¢l n _ _x rord(d))
1= = §&, 1 = 21 ;

with = (¢ + a3 + as) + c1(az + az + ag + as) + (az + as)as + as(ay + as).
This simple example shows that the set of data
ord(&) (i € I,,), (ord(d}),€(c})) (j € L)
usually does not determine uniquely the conjugacy class of ¢’ in (16.10), whereas
it determines the conjugacy class modulo the central group Z = (21, 22).
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16.1.3 Product formulas for traces of 7!(¢') and 7*(¢)

~ 1
For ¢’ =&, -+ &,91 95, g5 = (dj,07) € Dy x S(P), put
(16.15) Q={q,q¢, -.,¢}, J=I,={1,2... s}

CASE n = 2n' EVEN :

(16.16) w) = TP < I (P@)va(e)).

9€q jeJ
(16.17) Py(&) = xy(mp") Yy =G ) Y™ (g€ Q),
(16.18) Pv(d;‘) = H Xv(”;ljap)y;oap = C’y(dg) H Y;;/ﬂpa
pEK; PEK;

where a, = 3, (mod 2), and the product is taken in the natural order. After
normalization (16.14), a, # 0 at most for one p € K}, and V,(07}) is given by a
product of V,,(r;) in (16.1) correspondingly.

CASE OF n=2n'+1 ODD :
For Vi = V,, Pt = P, and 7!t = 7!, the same formulas as (16.1) and
(16.16) — (16.18) hold automatically. Also recall that

() = Po(d) Vilo)) (¢ =(d,0) € D, x S(P7))

!
Pr =P, V,(r;):==Y,Vu(r;) Yo' (jel,.,).

Calculations for 7T£+ for n odd are carried out together with 7r,IY for n even,
and distinction depending on the parity of n will be remarked at the place.

In the expression of 7} (g}) = P,(d;)V,(0}) for gf = (d},0}) in (16.16), we
expand the right hand side into a linear combination of monomial terms such
as Y'Y, 02 - Y, ”. We know that the terms with non-zero traces are those such
that

(16.19) Vove v, ag=cn=...=c¢, =0 (mod?2), or
(1620) Yk1Yk2 tee Yk2n’+17 with {k‘l, k‘z, ey k2n’+1} = IQn/_l’_l.

Similar assertions hold also for ng. Therefore, since the supports of ﬁfh’s and
gj’'s are mutually disjoint, we have the following.

Lemma 16.2. (i) CASE OF n EVEN:  fl(¢) # 0 = (Condition I-00) :
ord(d’) + L(¢") = 0 (mod 2) ;

(Condition I-00) { ord(&,) = 0 (Vi), ord(d}) + L(0}) = 0 (mod 2) (V).

(i) CASE OF n ODD:
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if |supp(g)l <n, fi*(¢)#0 = (Condition I-00);
if |supp(¢)] =n, fi*(¢') #0 = (Condition I-00) or (Condition I-11):
|supp(¢')] = n odd, ord(d’') + L(¢’) =1 (mod 2) ;

(Condition I-11) { Ord(ffh) =1 (Vi), ord(d;) =1 (mod 2) (V).

Proof. The assertion (i) comes from the statement above on (16.19). The
first half of (ii) is similar as (i), and the second half should come from Lemma
14.1on Yy, Yy, -+ Yy, ., in (16.20) with n = 2n’ + 1, and this will be confirmed
from the detailed discussion in §16.3 below. However here we quote it from Table
4.1. O

~ 1
For ¢ = (d',0') € D, x S(P,), we separate ¢’ into two cases as

CASE 1: ord(d") + L(¢") = 0 (mod 2) ;
CASE 2: ord(d") + L(¢’) = 1 (mod 2).

Note that, in C~¥,IL, since their supports are mutually disjoint (cf. (I-v) and
(I-v') in §2.3),

ord(d})(ord(d})+L(c}))

dg = 2 .
(1621) % 20rd(d/.)0rd(d’ )Jrord(d’.)gi(ol’ )+L(o%)ord(d,) L(c%)L(c})
9992 =2z * o ’ Fa TR gllcgé' -

Then we obtain the following lemma.

Lemma 16.3. Under (Condition I-00), the operators @\ (€, )’s and 7 (g}) s
all commute with each other.

Lemma 16.4. (i) CASE OF n = 2n' EVEN: The following product formula
holds

Cr L&Dy A9)
I/ /\ _ on v \Sq v \9j
filg) =2 HTHQ—n
q€Q jeJ
(ii) CASE OF n ODD: Fzcept the case of (Condition I-11), the analogous
product formulas hold for fy and fi_ respectively.

Proof. (i) In the expansion of the operator 7} (g}) into a linear combination of

. . 2ch + - 2¢) 2¢;
monomial terms, those with non-zero traces are of the form Y, ™'Y, - - Y;-p P (:

EQn/). Moreover, for each of fvI (ﬂh)’s and fvI (g;)’s, the supports in I,, of their
monomials with non-zero traces are mutually disjoint since so are supp (ﬁt’h) ’s and
supp(g;)’s. Here the support of a monomial Y'Y, - Y;sp means the collection
of suffices j, € I,, with ¢ # 0. This proves the assertion (i).

The proof for (ii) is similar. O
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(NM) Normalization of the situation:

—~spin

(NM1) Since we work with a representative of D, of an &,-orbit, we can
assume that every I, - C I,, is an interval in I,,.

(NM2) Assume the normalization (NM1). Then, inside each I, ¢, the charac-
ter of 7 and 7'* are invariant at least under é[n,g C S(P,) (resp. C S(PF)). So,
to calculate their characters, we can assume that every K; = supp(o;), contained
in some 1, ¢, is itself an interval.

~ 1
16.2 Characters of IRs 7! of D, x S(P,), CASE 1

To start with, we assume only the condition ord(d’) + L(¢’) = 0 (mod 2) for

= (d',0"). Let us calculate f(g') = tr(w}(¢')). This is automatically common
to f1*(¢') = tr(x}*(¢')) in case n odd. By Lemma 16.4, it is enough for us to
calculate tr(7}(¢})) and tr(7}(g})) independently.

(1-1) Case of ¢, (¢€Q):

2" (&), iford(&) =0 (mod 2),
1

(16.22)  f1(&) = tr(7 (&) :{ 0 if ord(¢/) = 1 (mod 2) .

(1-2) Case of g = (d;,0}), j€J=1,:
(16.23) = [ =dny, dye DS, b= 1] " 68,=0,1;

peK; peK;

(1624)  7(g)) = Py<d;->vn<a’->

J

Hyﬁpx H

pEK; p,p+1eK;

(Y, + Yoi1),

where the products on p € Kj are in the natural order of p. In fact, (,(d}) -

[Lex, Y;ﬁp = X+ (d}) - Tlex, ng In the rightmost hand side of (16.24), we see
from Lemmas 5.9-5.10 and 14.1 that, to have a non-zero trace, it is necessary
that the degrees of monomials in its expansion should be even, i.e.,

(16.25) ord(d}) + L(o}) = 0 (mod 2).

Note that fJ(gg) is invariant under EKJ. and éKj C é;n’g, then we may

assume by Lemma 16.1 to simplify complicated suffices that g; is normalized

modulo z{z) as

K; = supp(0}) = {n;,n;+1,...,n;+¢;—1}, an interval in I,
(16.26) d; = n}vjord(dg') for some k; € Kj,

/ /
0% = T Tnji1 Tnyrey—2, 05 = (o) = (ny nyj+1 ... nj+L;—1).
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For simplicity of calculations, we take n; = 1 and put N =n; +{; —1 ={; so
that K; = [1, N] C I,,. The expression dj = djh; is given as

0 _ s 2lord(d})/2] [, iford(dj) =1 (mod 2),
(16.27)  dj =, o hy= { ep  if ord(dj) =0 (mod 2).
Put k, := (—1)?~1/+/2 for simplicity, then
(16.28) I1 # = (—Di&D2 o762,
p,p+1EK;

In fact, [, piiex, (=P = (= EG=DEG=2/2 = (—1)[%=D/2 - Thus, modulo
constant coefficient (— l)w i=D/21.2=(6=D/2 e come to calculate the trace of
(16 29) { ij (Yi + sz)(sz + YE},) te (YN_1 + YN) if Ol"d(d;) =1 (mod 2),

' (Y1 +Y2)(Yo+Ys) - (Yy_1 + Yy) if ord(d}) = 0 (mod 2).

To get a monomial term of the form (16.19) with non-zero trace from expan-
sion of (16.29), we put on each Y, (p € In) a color black or white depending
on if it comes in or not to form this monomial term. When Y}, corresponds to
n}cj = hj, we express it as Yy, € h;. First we start with putting color black to
Yy, € hj, the front multiplicative factor in (16.29).

Then, we proceed successively from V,, (r1) = k1 (Y7 + Y2) until V,,(ry_1) =
kn-1(Yn_1 + Yy) in (16.24), putting colors on Y, and Y, in V,(r,) = k,(Y, +
Y,41) successively. At the point for V,,(ry) = kq(Yy + Yy41), if we pick up the
first component Y, to get YqQ, then we color it black and the second component
Y,+1 white, and similarly in the reversed case. The mode of coloring of two terms
Y,, Y11 of V,(r,) is called the parity of V,(r,), for which we denote (black,
whzte) simply by (b, w), and (white, black) by (w, b).

Step 1. First start with V,,(r1) = k(Y1 + Y2).
Case (1): IfY; € hy, then Y] in V,,(r;) should be black to get Y;?, and
the parity of V,,(r1) is (black, white) — (b, w).
Case (2): IfY; € hj, then Y] in V,,(r;) should be white and automatically
Y5 in V,,(r1) should be black, and the parity is (w, b).

Step 2. Next take V,,(r2) = ra(Y2 + Y3).
e Suppose the parity of V,,(r1) is (b, w).
Case (bw): Since h; =7}, Y5 in V,(r2) should be white, and the parity
of V,(r2) is (w, b) expecting Y32, by supposing to get black Y3 in the next step.
e Suppose the parity of V,,(r1) is (w, b).
Case (wb-1): If Y5 € hj, then Y3 in V,,(r3) should be white to have twice
(not triple) of black Ys in total. The parity of V,,(r2) is (w, b).
Case (wb-2): Otherwise, Y5 in V,,(r2) should be black, and the parity of
Vou(r2) is (b, w).
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Step ¢+1. Assume that the parity of V,(r,) has been decided for p =
1,...,4q.
e Firstly suppose the parity of V,,(r,) is (b, w).

Case (bw-1): If Y, € hj, then Y, in V,,(rg41) = Kgr1(Yor1 + Yot2)
should be black, and the parity of V,,(r,4+1) is (b, w).

Case (bw-2): If Y 11 & hj, then Y, in V,,(rg41) = Kgr1(Yor1 + Yoi2)
should be white, and the parity of V,,(r,41) is (w, b).

e Secondly suppose the parity of V,,(r,) is (w, b).

Case (wb-1): If Y1 € hy, then Y, in V,(rgq1) = Kgr1(Yor1 + Yoi2)
should be white, not to get Y3 (triple of Yy,1), and the parity of V,,(re41) is
(w, b).

Case (wb-2): 1If Yo11 & hy, then Youu in Vi (rgnn) = rg1(Yor1 + Yor2)
should be black, and the parity of V,,(r4+1) is (b, w).

Step N—1. At the end,
Case (1): if Yy € hy, then the parity of V,,(ry_1) should be (w, b).
Case (2): If Y & h;, then the parity should be (b, w).

This last step is guaranteed if and only if ord(d}) + L(o}) = 0. In fact, the
front factor in (16.29) coming from h; = 1y, controls the change of parities of
V.. (r,) according to p as follows.

Parity Rule I-00. The parity of V,(r,) remains unchanged be-
tween p = k;j — 1, k;j, and at p = k; + 1 it changes. If we put aside
of consideration V,(ry,) for h; = T,s then for the rest of Vau(rp) s
their parities change alternatively, from (w,b) to (b, w), or from
(b, w) to (w,d).

In this situation, we should have even number of blacks, and so L(0}) —
lsupp(h;)| = L(0%) — ord(h;) should be even. This is equivalent to ord(d}) +
L(o}) = 0.

The above process to determine parities of V,,(r,) is illustrated in the table
below.

Table 16.1. Parity of V,(r,) (p=1,2,...,N —1)

In each small unit table, on the 1st row, columns after the separation ‘||’
are for Yi, € h;. On the 2nd row, sections are for parities (b, w) or (w, b) of
Vu(ry), p=1,3,..., and on the 3rd row, sections are for V,(r,), p=2.4,...

CasE: N =/{(d}) =8 (L(o}) =7):
Yi, €hj=m b | | | |

Vaulrp) p=1,3,57) || b w|b w|b w|b w
Vin(rp) (p=2,4,6) x‘w b‘w b‘w b‘x

Yi, € hj =1 o [ [ [ |1
Vu(lrp) (p=1,3,57)||lw b|b w|b w|b w
Vin(rp) (p=2,4,6) || x ‘w b‘w b‘w b‘ X
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Vi, €y =mr [ [ [ []o]
Valrp) (p=1,3,57)||w blw blw b|b w
Van(rp) (p=2,4,6) X‘b w‘b w‘b w‘x
Voehow [ [ [ T
Valrp) (p=1,3,5,7)||w b|lw blw b|lw b
Va(rp) (p=2,4,6) x\b w\b w\b w\x
()(]]9: 57) w‘b w‘b w‘b ?‘? NOT OK
V()( 4,6) x\b w\b w\b w‘x

In this way, we obtain the only one monomial term with non-zero trace, apart
from its coefficient (—1)IG=D/A . 27602y (d7) a

(16.30) IT v» x [ % = Ew.
kesupp(h;) 1<p<e;—1
Y, if Y, is black for V,(rp),

(16.31) with X, = { Yyu1 if Yy is black for V,(rp).

Lemma 16.5. For g; = (d},0

]’]

the condition (16.25) holds, then

(16.32) tr(ml(g}) = tr(Py(d))Vn(a)))
= xo(d)) -2 (—1) /AL (=2,

'), assume it is normalized as in (16.26). If

Otherwise tr(m}(g})) = 0.
Moreover, when 7} (g;) = Py(d;)Vy(0}) is expanded into a linear combina-
tion of monomial terms Y'Y, - YN, N = {;, there exists at most one term

with trace non-zero, which is of the form chll YQQCI2 e Y]\?C?V (= Eyn).
Proof. Let h; = ;. Then the factor Y}, is put in front of V,(ry) as
(16.33) Yy, - k(Y1 +Y2) - ko(Yo+Y3) - kvo1 (Yot + Yo).

We send Y}, step by step by exchanging with V,,(r1) = k1 (Y14+Y2),..., Vi (rg,-1)
= kk;—1(Ya,—1 + Yi;). Since we are only interested in the unique monomial
with non-zero trace in (16.30)—(16.31) obtained from (16.33) by expansion, the
sign changes to send Y}, from the front of V,(r;) until the back of V,(r,_1)
accumulate in total to even number of times, since Y, permutes elements of the
following form

2¢c} 2¢, ; ]
}/}11”,Yju , ]1<~--<]u<kj> or
2} 2c; ; )
Y}ll,,,Y}uCu}/kj’ J1<"'<j“<kj'

Summarizing the results until now, we have the following.
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Proposition 16.6. Assume that ¢ = (d',¢') € D, x S(Py), expressed as
in (16.10), satisfies the condition ord(d') + L(o’) =0 (mod 2).

(i) For f1(¢') = tr(nl(g")) # 0, it is necessary and sufficient that (Condition
I-00) holds for g'. In that case the following product formula holds

C 11 &) )
I/ 1\ _ on Y \>q Y \JJ
(16.34) f(g) =2 HTHT’
q€Q jed
where fWI (5&) is given in (16.22), and fWI (g}) is in Lemma 16.5.
(ii) Suppose f1(g') = tr(xl(g")) #0. When 7l(g') is expanded into a linear
combination of monomial terms Y'Y, ---Y ¢ there exists only one term with

. . 2¢ y - 2¢} 2c!
trace non-zero, which is of the form Y;"'Y,"? .- Y, (= Eyu).

Remark 16.1. Note that x, (1) = (=1)P~'¢,(7,) and by definition ¢,(n,) =
¢y(np). The difference between x., and ¢, will have an important meaning in the

following (cf. Part III). So, to make the difference much clearer, we introduce a

sign function on D, : for d” € D, express it as d” = zpnl? -5l and put

(16.35) sgnp(d’) = (=1)" = x4 (d")/¢(d").

The point is that sgnz(d”) and x,(d”) do not behave well under the action
of &,. In fact, for r, (p € I,_1), in CASE I,

(16.36)  sgnp(r,(d") = (=) s 5 (d7),

with ord(d”) = by + -+ - + b,.
7 bk br

However, when d” has a normalized form as d” =, ™ or d" = M, > Ok =
ord(d"), the sign function sgnz(d”) behave much simple way as

(16.37)  sgnp(rh(d")) —{ e o pl) Torp# kit 1;
sgnz(d”) forp=~kj, k; + 1.

In particular, if ord(d”) is even, then sgnz(d”) is invariant under S, in the sense

that sgng (J’I(d”)) = sgng(d”") (o' € S,). This is one of the reasons for the

choice of a representative of the conjugacy class of g; = (d}, o) modulo Z in the

form of d; = n;jbj, by = ord(d;) (3k; € Kj).

Here we add a remark for CASE II too. Recall that v\ (n) = 7s,k), Sp =
®s(ry), then we have sgnp(r H(d”)) = (—1)"*+1 sgny(d”). Therefore, if d” has
a normalized form as d” = nkbk, b, = ord(d"), then sgnz(d”) is invariant under
S, in the sense that sgnp (o ’H(d”)) =sgnp(d’) (o € S,).
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~ 1
16.3 Characters of 7" of D, x S(P,), CASE 2

To start with, we assume only the condition ord(d') + L(¢’) = 1 (mod 2) for
g = (d',0’). Here also the formulas (16.23) - (16.24) are valid.

In the right hand side of (16.24), when expanded into a linear combination
of monomials in Y}’s, the only one which has non-zero trace is, multiplicatively

modulo erInY,fC;ﬁ,
(16.38) ViYs - YouYauia (=" Eyw)
and so there should be

(16.39) n=2n"+1 odd, and |supp(¢)|=n=2n"+1.
This turns out to be a case only for 71" (= 7! for n odd). We prefer to change
here the notations to those with superfices + (for instance as P = P,, V| =
Vo, mit =l etc.), in comparison to the case of 7}~ which will be treated later.

5
Let us determine contributions to the monomial Y;Y5 - - - Y5,,41 from each of

7l (€]) and 7t (gf).

(2-1) Case of w"(£): For each wi* (&) = P (&), we should have the
term Y; so that ord(§;) =1 (¢ € Q).

I ) I _

(2-2) Case of m(g;): For each 7r7+(g})2,— P (d;)V (), we should
have [[;cx,Yr multiplicatively modulo J,cx Yy, “% and accordingly ord(d}) +
L(0}) = |Kj;|. On the other hand, |K;| = L(0}) + 1 (mod 2), and accordingly
ord(d}) =1 (j € I,). Hence, if fI*(g') # 0, then ¢’ satisfies (Condition I-11) in
Lemma 16.2.

As in CASE 1, we may assume that g} is normalized as in (16.26), and put
here for simplicity of calculations as n; = 1 and N = n; +¢; — 1 = /{; so that
K; = [1,N] C I,.. Note that d; = d%h;, d2 = o, D~1 by =, (k; € K).
Then we have

PH(d}) Vi (o}) = (—1)[G-D/2 9-6=0/2 3 (dh)x

16.40
(16.40) X Vi, (Vi Ya)(Ya + Ya) - (Yot 4 Vi),

To get in total the monomial term (16.38), we should pick up from (16.40) a
monomial term Y;Y5--- Yy in modulo. On picking up from Y; until Yy succes-
sively, the parity of each V;(r,) will be uniquely determined one after another
as is seen below. As in CASE 1, Y, € h; should be black from the beginning.

Step 1. We have two cases as follows.
Case (1): Y) € h;. In this case, Y7 in V., (r1) should be white and so Y5
in it is forced to be black, and the parity of V! (r;) should be (w, b).
Case (2): Y € h;. In this case, Y} in V; (1) should be black, and so
the parity of V. (r1) should be (b, w).
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Now suppose that, the parities of V. (r,), p =1, ..., ¢, have been determined.

Step ¢+ 1.
e Suppose the parity of V7 (r,) is (w, b). Then h; = 77;], with k; <gq.
Case (wb): Here Y 1 & hj, and Y, in V;(r441) should be white, to
keep Y, 11 once, already taken from V' (r,) as black, and so the parity of V! (r,11)
should be (w, b).
e Suppose the parity of V. (r,) is (b, w).
Case (bw-1): If Y,y € hj, then Y1y in V (r441) = Kgy1(Yys1 + Yoio)
should be white, and so the parity should be (w, b).
Case (bw-2): If Y.y & hj, then Y,y in V;(rg41) should be black, and
so the parity should be (b, w).

Parity Rule I-11. As a general rule, at the step for Vi (r, 1),

(1) if Yy41 € hy, then the parity of Vi (r,41) is reversed from that of V(1) ;

(2) if Yor1 & hj, then the parity of V' (rey1) is unchanged from that of
Vo (rg)-

Step N — 1. At the end,
Case (1): if Yx € hj, then Yy in V}(rn_1) = kny—1(Yy-1 + Yn) should
be white, to have Yy only one time (from h;). So the parity should be (b, w).
Case (2): If Yy & hj, then the parity should be (w, b).

Let check the consistency of Step N—1 above with Parity Rule I-11. Note
that, in the above, the factor Y;, € h; in the front multiplicative factor in (16.40)
changes the parity of V. (ry,) = i, (Y, +Yi,41). Consider three cases depending
on

(a) whether Y; € h; or not, and

(b) whether Yy € h; or not.

We see below each case is possible under ord(d;) = L(0}) = 1.

Case (Yes, No): The parities of V;(r,) starts from (w, b) for p =1 and
should end at (w, b) for p = N.

Case (No, Yes): The parities of V; (r,) starts from (b, w) for p =1 and
should end at (b, w) for p = N.

Case (No, No): The parities of V;(r,) starts from (b, w) for p = 1 and
should end at (w, b) for p = N.

Altogether we see the following.

Lemma 16.7. Assume a ¢ = (d',0') € D, x S(P,) is in CASE 2:
ord(d’) + L(0') = 1 (mod 2). Then, to have tr(zl(g')) # 0, n should be odd
and |supp(¢')| = n. In this case, fi*(¢') = tr(zlt(¢)) # 0 if and only if
(Condition 1-11) holds for ¢'.

Moreover, in the expansion of WEf(g’) imto a linear combination of mono-
mials terms Y'Y, ... Y. e there exists one and only one term with non-zero

trace, which is Yy - - You Yaw 1 (multiplicatively modulo ;" VY, ... Y,2") in
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(16.38).

The way of determining parities of V! (r,)’s is illustrated in the following
table.
Table 16.2. Parities of V[ (r,) = 5, (Y, + Y1) (p+ 1 € K;) in 717 (g)).
Case: N =/{(0}) =10 (L(oh)=9):  K;={1,2,...,N},

J

Yi, €hj=m b | | | | |
Vi(rp) (p=1,3579|w blw blw blw blw b
Vi(rp) (p=2,4,6,8) x‘w b‘w b‘w b‘w b‘x
L TS N
Viirp) p=135791b wlw blw blw blw b
Vi(rp) (p=2,4,6,8) x\w b\w b\w b\w b\x
Veh-w [ L[ T[T [T [0
Vi(rp) p=1357910b w|b w|b w|b w|w b
Vi(rp) (p=2,4,6,8) X‘b w‘b w‘b w‘b w‘x
Voch—m [ L[ T [ T[]
Viirp) p=1357910b w|b w|b w|b w|b w
Vi(rp) (p=2,4,6,8) x‘b w‘b w‘b w‘b w‘x
= | | | | |
Vilr,) p=1,3,57,9 b w|[b w|b w|[b w|[? 7] NOTOK
Vi(rp) (p= 6,8) X‘b w‘b w‘b w‘b w‘

Thus, under (Condition I-11), we have a unique monomial term inside ¥ (gj)
for each j € I, to get Y1Y5---Ya,/ 41 in total, together with ﬂ*(ﬁ(’]) (q € Q) The
specified monomial term from 7*(g}), apart from its coefficient (—1)(%=1/2].
272 x (df), is in case by = ny, (3k; € K)

1<p<N-—1 pek;
' B Y, if Y, is black for V' (rp),
(16.42) with X, = { Y, if Y,y is black for Vi (r,),

where 't (g}) := (=1)%!, in the above setting that K; = [1, N].
For 7r1+(g) in total, by taking product over ¢ € Q = {¢; ; i € I,} and
g € J :=1I,, we get the following.

~ 1

Proposition 16.8. Let n be odd, and ¢’ = (d',0') € D, x S(PJ) satisfies
(Condition I-11). Assume that each g} (j € J) is normalized as in (16.26).
Then fﬁ'(g’) = tr(ﬂ,lf(g’)) is given by

fI+ H Xw H51+ g] Xw(d/) ( )[(2 i=1/2] 9= (4=-1)/2

qeqQ jed
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xtr(HYq-HHYp)

qeQ jeJ peK;

H Xv H X7 d’ H(_l)[(ejfl)/Q] 27(@,1)/2’

q€Q jeJ jeJ

where the sign €' (g}) is given by (16.41)~(16.42), and the one €'(g') comes
from rearrangement to have Y1Ys5---Yo,11 as

(16.43) HquH{ij I] Y}:g J) ViYs--Y,.

qeQ jeJ peKj\{k;}:
Y, black
Moreover, since ord(dj) =1 (j € J), d = 2,\¢, ---& dy---d, with X in (16.11)
which is given here as X =3, (L(o}) 4+ -+ L( oy ))

~ 1
16.4 Characters of IRs 7.” = P -V, of D, x S(P;)

Assume that n = 2n’ +1 odd. Then, for 7}~ = P -V, P7 = P, ., with y € I'},
we have the following formulas by (16.1) - (16.3),

Sy oy = CDT 4
(16.44) Vi, (ri) = Vn((iazl))n—Q /3 (Yi+Yin) (Z el, ),
Vo (ra1) = NG (Vo1 —Y}) (i=n—1);
(16.45) { Pr(nf) = Prny(nf) = w’”ﬂ(ﬁ%) =x+(n)Y; (j € Iy = Inw),
Pr(m) = Pro (i) = @74 p(m) = =xy(m) Yo (G =n = 20"+ 1),

~ 1
Let g' = (d',0') € D, x S(P;). We can discuss just as in §§16.2-16.3 for
” , and only the difference from there is that,

(A) xy(n,)Yn,n=2n"+1, is replaced by xr,(1,)Yn = =X+ (1) Y5 ,
(from the contribution of d'-side);
(B) Y, in V¥ (r,_1) = s, 1(Y, 1 + Y,) is replaced by —Y,, in VI~ (r, ;) =
Fin1(Yn_1 —Y,), where x, = (—1)P71//2,
(from the contribution of ¢’-side).

Altogether, we see that, for 7r , it is enough to replace Y,, by —Y,, everywhere
on the way of calculating characters of ﬂ{f. In more detail, we see the following.

CASE 1: ord(d)+ L(¢') =0 (mod 2):

In the case where Y,,,n = 2n’+1, does not contribute to the unique monomial
term with non-zero trace Y12d1Y22d2 - Y, we have tr (7l (g)) = tr(xl(g))-

On the contrary, when Y,,,n = 2n’ 4+ 1, actually contributes to the unique
2¢) }/220’2

. . 2¢c)
monomial term with non-zero term Y) - Y, ™, there are two cases:
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Case (1-1) The case where Y,, appears only as a contribution from d’. In
this case, there appear (Xv(n;)Yn)Qc" for 7t*(¢) in §16.2, and ( — Xv(ng)Yn)%

5
for 71~ (¢') here. Thus we have tr(7}"(¢')) = tr(71(¢)).
Case (1-2) The case where Y,, appears as contributions both from d’ and
from ¢’. In this case, for ﬂi*(g’) in §16.2, there appear as contributions from
the side of d’ and from the side of ¢’ respectively:

()(7(777’1)}/,1)2C;f1 and Y, in VI(r,—1) = ko1 (Yoot + Yo).

On the other hand, for WEY_(g’ ) here, there appear as contributions from the
side of d’ and from the side of ¢’ respectively:
(=, (m)Y.)" ™" and =Y, in Vi (re1) = finoy (Va1 — Vo).

Both for 7" and 7", these two elements contribute as their product to the

monomial with non-zero trace, and so the difference of the signs cancels out.
Hence tr(7}"(¢')) = tr(x}(¢')).

Lemma 16.9. Suppose n = 2n' + 1 odd, and ord(d’) + L(¢') = 0 (mod 2)
~ 1
for g = (d',0') € D, x S(P;). Then

(et () = (2 (9)

and tr(wg_(g’)) # 0 if and only if (Condition I-00) holds for ¢'. In that
case, when Wff(g') 1s expanded into a linear combination of monomial terms
such as Y\'Y,* - Y the term with non-zero trace is unique and of the form

2c! < - 2¢) 2¢!
V7,2 Y (= Bgur)

CASE 2: ord(d)+ L(¢') =1 (mod 2):

In this case, we can discuss as in §16.3 for w1+

5 - The unique non-zero trace

comes from Y1Y5 - Y5, 1 multiplicatively modulo HjGIanQCj as in (16.38), and
to have such a term, ¢’ should satisfy the condition (16.39).

Moreover, in a similar discussion here for WL’ as that for 7r§+ in §16.3, the
only difference between them is (A) and (B) above. There follows from this the

following.

Lemma 16.10. Suppose n = 2n'+1 odd, and ord(d') + L(¢’) = 1 (mod 2)
~
for g = (d',o') € D, x S(P;). Then

tr(et- () = —tr (et (g").

and tr(ﬂg’(g’)) # 0 if and only if (Condition I-11) holds for ¢'. In that
case, when W}Y’(g’) 1s expanded into a linear combination of monomial terms
such as Y\'Y,* - Y the term with non-zero trace is unique and of the form

VYoV, (=i"Eyw) .
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Remark 16.2 (Sum of IRs 7!t @7}~ for n odd). From the above lemma,
the character of the direct sum W&Odd = 7T£+ ® W}f for n odd is given as follows:

~ 1 ~ 1
for ¢ = (d,0") € Dy x S(PF) = D, x S(Py),

2. tr(ﬂff(g’)) if ord(d’) + L(¢’) = 0 (mod 2) ;

16.06) (i) ={ ¥ if ord(d) + L(0) = 1 (mod 2).

I,odd

By the results in §5, we see that .

sentation p, + @ p,,_ of F,.

is naturally constructed using the repre-

16.5 Character formulas for 7} (n even), and 7* (n odd)

~ 1
Summarizing the results until here we have character formulas for 7T£ of D, x

~ 1
S(P,), and 7I* of D, x S(P) as follows.

~ 1
Theorem 16.11. Let v € Y. Take a ¢ = (d',0') from D, x S(P,))

~ 1
for n = 2n’ even, or from D, X S(Pf) for n = 2n' + 1 odd respectively,
!

and express it as ¢’ = (d';0') =&, & g1+ g, in (16.10). Assume that g’ is

normalized modulo Z = (z1, 23) in such a way that each g; (j € J = 1) satisfies
(16.26).

(i) CASE n = 2n' EVEN: The normalized character ]?;I = tr(wi)/Q”/ is
factorizable in the sense that the product formula (16.47) below holds in general.
If ord(d’) 4+ L(0') = 0 (mod 2), then f](g') = tr(wg(g’)) # 0 if and only if
(Condition 1-00) in Lemma 16.2 holds for ¢'. In that case,

(16.47) Ry = T1AE) - T15 ()

q€eQ jeJ
L&) = (&) (1€ Q).
Fig) = ) (-1 62 (e )

If ord(d') + L(o") = 1 (mod 2), then f](g') =0 identically.

(ii) CASE n =2n'+1 opD: The normalized characters Ei = tr(ﬂf/i)/Z”/
are not factorizable. If ord(d’) 4+ L(0’) = 0 (mod 2), then f1(g) = tr(x}"(¢))
is given by the same formula as for f(g') = tr(ﬂi(g’)) above, and

A7) = 17

If ord(d') 4+ L(o’) = 1 (mod 2), then fi*(g') # 0 if and only if (Condition

I-11) holds for ¢'. In that case,

f'1y+(g/) = gl(g/) X'y(d/) . (22)17,’ H<_1)[(€j—1)/2] 27(53'71)/27
JjeJ
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L) = =AY,
where the sign €'(g') comes from rearrangement to have Y1Ys---Y, as

[ I1{ TT v} = ) vveons

qeQ jeJ pGKj\{kj}:
Y, black
~ 1
(i) Suppose F1(g") # 0 (resp. [=(g) #0) for g = (d',0') € Dy 3 S(P,)
~ 1
(resp. Dn x S(PF)). Then, when mi(g') = Py(d')V,(0') (resp. 7=(g) =

y
PE(d')\Vi(0")) is expanded into a linear combination of monomial terms such

as Y\Y,% - Y . there exists only one monomial term having non-zero trace,
which is of the form Y120/1Y226/2 Y (= Eyw) if ord(d')+L(0") = 0 (mod 2),
or of the form Y1Yo---Y, ( = i"Ey) if n is odd and ord(d) + L(o') =
1 (mod 2).

Suppose fJ(g’) =0 (resp. fii(g’) = 0), then all the monomial terms have
trace zero.

~ I ~ I
17 Characters of IRs of D, x S(P,), D,, S(Pf)

17.1 Formulas for calculating trace of «}'(¢/), n = 2n’
Recall the definitions of spin representations V! in §8.1 of &, and 7wl in §12.2:

1 ~

0% el of &,

(17.2) V(1) = (iYaws1) Viu(rp) =V, (rp) (=i Yani1) (p€Ta—1) of Gy

17.3)  7(d, o) = P(d) - V") ((d.0') € Dy x S(P,)) for n=2n'.
vy Y

Let n = 2n’ even, and put the character of 7T,IYI =P, -Vas

(17.1) Vi(r,) =

(17.4) f(g) = te(x(g)) (¢ € D x S(P)).
Then f'(z219') = f]'(229') = —f7'(¢'), since w/(z1) = 7}/(2,) = —E.

Here we refer to Table 4.1 for general 1nformation on the supports of spin
characters of CASE II. We keep to the notation in the preceding section.

- - ~ T~
Any element ¢” € D,, x S(P,) C G} = D,, x &,, has a standard decomposi-
tion as
( g// — Zlb122b29/, g/ — (d/,OJ) — (/11 ;rgll"'g;’
E=tg=mn4", o =00, d=¢ & -didy---d,
(17.5) § ) = (d},0}), 0; = Bs(d}) a cycle, KJ = supp(}) D supp(d’)
= an‘lp:d?hj, d? € 50 D0 (m,n), h; = an ,

\ pEKj pEK
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where the product over p € Kj is in the natural order of p. In appearance, this
decomposition is similar as (16.10), but we use here the generators ny,...,n,
of D, instead of n,... ,m,. there, and the multiplication rule here should be
understood in CASE II. For instance, the factor z;* in (16 10) in front of the
expression of d’ does not appear here in (17.5) because r}*(n) = 1s,5) (k € I,,).

We normalize v = (71,...,7,) € I'2 under &,, so that (11.12)—(11.14) hold,
in particular, every I, ¢ is an interval of I,,.

Lemma 17.1. For g; = (d;,0}), assume that K; = supp(oj) C I, =
(1, M].

(i) Put oy :=riry---1¢_1, and take a 7' € &p,  such that To;7" = o) =
(IDG( 0’) in &, witho®= (12 ... {;) and 7 = ®g(7"). Then 7"097"_1 is equal
to 0 " modulo a power of z.

(ii) In case o = a?’, K; = supp(0}) = Iy, there exists a d e ﬁKj such
that

dgid™" =z (dl,0)) with d! =5,

for some k € K; with a certain exponent x.
(i) Let g; = (d},0}) be such that dj = n?, o = 0. Then, with suffiz k—1
modulo (; ,

1
o5 gioy = (n 1, 07").

For each j € J = I, we have K; C I, for some ( € T\O, since ¢ = (d',0') €

~ o
D, x §(P,) with S(P,) = (I)gl(ngfO Sy,.) in case n = 2n' even. We have
for n = 2n’ even, with Q = {q1, ¢, ..., ¢},

(17.6) g) = [[ P& xH(P (d)V (o ))

q€Q jed
(17.7) Py(&) = xy(n) Yo =G ) Y (e €Q),
(17.8) P(dy) = [ x(7)v =6 [y Gen,
pEK; peK;

where V}/(0}) is given by a product of V}/(r,) in (17.2), and the product over
p € K, should be in the natural order of p.

To calculate characters, we can assume as in §16.1.3 the normalization of the
situation according to (NM) Normalization of the situation: (NM1)-+(NM2).

We work dividing the situation into two cases as
CASE 1sig:  L(0') =) ,.; L(0}) =0 (mod 2),
CASE 2sig:  L(0') =) ,.; L(0}) =1 (mod 2).
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17.2 Characters of )' = P, - V] of D, x S(P,), CASE 1sig
17.2.1 Reduction of calculations in CASE 1sig: L(o') =0

In the expression of 7rH(d;, 0}) = Py(d})V,}(0}) in terms of Y}’s, there appears
the term Y5, 41 if L(o}) =1 (mod 2). However, in the present case of L(¢") = 0,
Y511 appears even number of times, and so it disappears in the total product
expression of 7!(g’) in (17.6), since Y5, %3 = Eyu.

Moreover, in case L(c’) = 0, to express nyl(d’,a’), we may use only the
operators V/ (r;) = \/Li (Y; — Yj41) instead of VI(r;) = Vi(rj) - (—iYany41).
Expanding the right hand side of (17.6) into a linear combination of monomial
terms such as Y'Y, .- Y. n = 2n’ < 2n’ + 1, we see that the terms with
non-zero traces are only those such that

(17.9) YY) %Y 20 (= By,
Since the supports of £ ’s and g}’s are mutually disjoint, fyl(g’ ) # 0 implies

ord(d) =0, L(¢')=0 (mod?2);

(Condition I1-00) { ord(¢;,) = 0 (Vi), ord(d};) + L(o%) =0 (mod 2) (Vj),

because L(0’) =0 is assumed. Note that, in GH G"(m,1,n),

ord(d’;) ord(d)) L(d’) L(oy) .
(17.10)  gig=2 7 Ueam T gy (GF#D,

then we see that, if ord(d;) = L(0}) =1, ord(d)) = L(0}) = 1,
9591 = 2122 919 (in D, S(Py)),
(g5 (91) = 3 (90 (95)-

Lemma 17.2. Assume L(
the operators 7}(€)’s and 7} (g

ord(d;) = L(0}) = ord(d)) = (02

0') = 0 (mod 2). Under (Condition I1I-00),
)’s commute with each other. In particular, if
) =1, then m}(g;91) = ™ (9,95)-

Lemma 17.3. Let n = 2n’ be even. Assume L(c') = 0 (mod 2) and
~
(Condition 11-00) for ¢ = (d',0") € D,, x S(P).
(i) Divide the index set J ={1,2,...,s} as
(17.11) J=J.| |1, Je={j€eJ;sen(o)) =1},

and divide J_ into pairs as J_ = | |{j1,72} and denote this as {j1,j2} T J_.
Then

(17.12) fH(g') —on'. H f7 (521) . H fV (g;) . H fv (991992) '

v n' n’ 2n’
qEQ JeJ+ {j1,j23CJ-
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(ii) For {j1,j2} C J— or for a pair {ji, j2} such that L(o} ) = L(0},) =1

J2 7

13(9.95,) = 1 (93,95,)-

Proof. (i) Since L(o’) = 0, the operator Ya,/;; actually appears neither
in W%I(g;) for j € J, nor in ﬂ%l(gélg;é) for {j1,j2} © J_, because V(¢”) =
V'(c") if sgn(o”) = 1 for ¢” € Sy,. Monomial terms with non-zero traces in

these cases are of the form 1/;-126/1}/;-226/2 . Y;:C” Moreover, for 7'(¢), ()

and 71 (g’ ¢’ ), supports in I,, of their monomials in Y;’s are mutually disjoint.
Y J17792 J

Hence the assertion follows from Lemma 14.1 (ii).

(ii) This assertion follows from Lemma 17.2. 0

Note 17.1. For g} with L(0) = 1 or equivalently j € J_, we have f'(¢}) =
0 except when [supp(gj)| = n as will be seen in CASE 2sig below. This is
the reason why an exact product formula (not a quasi-product-formula such as
(17.12)) does not hold for the character f.'.

Actually for {j1, 5o} C J-, f)'(g},95,) # 0= £'(95,) 1, (9},)-

Example 17.1. Let (d;-,a;-) be with d;- =L, 0';- =rirg---ry_1, N <n=
2n/. Then L(o;) = N — 1, ord(d;) =b, .. ord(d;) + L(oj) =b+ (N — 1), and
Pv(d;') = Xv(nkb)ka = wb%ka7
71_’1}/1(9.;) — wb’yk 2(N—1)/2 ka %
(Y1 —Y5) (Yo —Y5) - (Yno1 — YN) (—iYap41) if N is even;
(Y1 = Yo) (Yo —Y3)- -+ (Yn_1 — Yn) if N is odd.
If bis even and N is odd, then the unique monomial term with non-zero trace
in the right hand side is (—Y,?)--- (=Yy_?) and
tr(wl(g})) = W (1) D2 g2,

If bis odd and N = 2n’ even, then the unique monomial term with non-zero
trace is

{ Yi(=Y2) - (=Yaw)(=iYowi1) = i Y1Y2 - Yoy if k=1,
Vi Y1 Yo (=Yhpa) -+ (=Yow) (—iYop41) = iY1Ya - Yaniq  otherwise,
tr (il (g})) = w27 N=D/2 g (24)n = bk L 2L/2,

In all other cases, we have tr(z!l(g})) = 0.

17.2.2 Calculation of fJ'(-) = tr(ﬂE(-)), CASE 1sig-1 and CASE 1sig-2
(CASE 1sig-1) CASEOF ¢ € @ :

2"\, (fl’]), if ord(f(’]) =0 (mod 2),
1

We have wa (gflli) - { 0, if ord(ﬁg) =1 (mod2).



~ ~

[II] 17  Characters of IRs of Dy, x S(Py), D, X S(Pf) 213
Now we divide g} into two subcases, (CASE 1sig-2) or (CASE 1sig-3), de-

pending on j € Jy or j € J_.

(CASE 1sig-2) CASE OF g}, j € J:
Suppose j € J¢. Since sgn(o}) = 1 or L(0;) = 0 (mod 2) in this case, we
have ord(d}) = 0 (mod 2) under (Condition II-00), and V"(c}) = V'(0}), and

(1713) 7)) = BV}
= @) [T T 0=V

pEKj p7p+1€Kj

Note that fJ'(-) is invariant under éln’q if K; C I,¢, then we may assume,
to simplify complicated suffices, that modulo Z (cf. Lemma 17.1)

K; = supp(0}) = [nj,n; + ¢; — 1], an interval in I,
(17.14) d; = )i, by = ord(d)), for some k; € Kj,

/ /
Of = TnyTojg1 - Tnype,—2, 05 = (o) = (ny ny+1 ... nj+L0;—1).

For calculations at present, we put n; = 1 and N = n; +{; — 1 = {; odd,
then

(17.15) oy =mrry---rno1, 05 =®(0)=(12 ... N),

Since ord(d;) = 0 (mod 2), the decomposition d; = dh; is trivial as h; = er.
Thus we come to calculate the trace of

(17.16) 2702 (V) — Ya) (Yo — Ya) -+ (Va1 — Yav).

When this is expanded as a linear combination of monomial terms in Y7, ..., Yy,
the unique term with non-zero trace, up to 2-(%=D/2 g

(—Yy)) - (=Yy 1) = (=1)OV2 vy L
Lemma 17.4. In CASE 1sig-2, under the above normalization of g} =
(d},05),
FING5) = tr(Py(d)) Vi (0))) = xy(dj) (1) G0/ 2w =607,

17.2.3 Calculation of f)(:) = tr(n}'(-)), CASE 1sig-3

(CASE 1sig-3) CASE OF A PRODUCT ¢ gj,, {j1,j2} CJ_:
Here ord(d},) = ord(d},) = L(0},) = L(0},) = 1 (mod 2), and so ord(d}, dj,)

Ji J17J2

L(c’ o/ ) =0 (mod 2). Hence, by ¢’ d, = d o/ in CASE II,

J17J2 J177J2 J27 01
1) w/(g,95) = B(d;d,)V(0],05,) = Po(d;,d3,)V(0],07,).
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1395, 95,) = (7 (95,95,)) = tr(Py(dj,d3,) V. (05, 7,))
Remark 17.1. For n > 4 general, we have from Lemma 10.1 (i)

P(‘I‘1‘I‘2---Tn)'y (OJH(d/)) if Sgn(a’) =1 ;

(1718) (7} (o) Pr(d) = {H(U,n(d,)) it sgnlo’) = 1.

~ I
for ¢ = (d',0’) € D,, x S(P,). Moreover, for {j1,72} T J_,

Py (d},d3,) Vi (0,05,) = Py(d}) Py (d},) V3, (05,) V3 (07,)
= —P(d;)V,(05,) - Pw(d,‘ )V (05,)-

J2

(17.19)

Therefore, the map D, x S(Py) 3 g — P,(d')V},(0’) does not give a representa-
tion of this group, but it does if it is restricted on the subgroup D, x (8( )ﬂQl )

In this sense, when sgn(o’) = —1, we understand the symbol P, (d')V/, (o) simply
as an operator (or a matrix), and do not use a representation-like notation such

as 7 (g") for P,(d')V,,(0').

As in (17.14), g; (j = j1, j2) are supposed to be normalized as follows: with
; even,

(17.20) 05 = TnyTny1 = Toytty—2y K = [ng,n+0=1] C I,
d; = dOhy, d)=n""", by =my, b; =ord(d)) (Ik; € K).

Then, taking into account (17.19), we calculate the trace of the following

(1721)  Py(dd;,)Va(0},00) = X3 (&), s () - (1)

J17J2 Ji17Jj2

x 27T Y (Y =Y ) (Vg = Yagea) - (Yo 2= Yar oa 1)
x 27 (=172 Yy, (Yo = Yop 1) (Yog o1 = Yo 2) - (Yo evp—2 = Yog i np 1),

where nj =n;,, Ny =1{;, (t=1,2).

To get a monomial term of the form (17.9) from the right hand side, we put
on each Y, a color black or white depending on if it comes in or not, to form a
monomial term such as (17.9). At the point of starting, we first color black all
Yi, € hy (J = J1, J2)-

The process of coloring is independent for each of the 2nd line (for j;) and
the 3rd line (for jo) of (17.21). It is similar to that in CASE 1sig-2, and we have
the following rule which is illustrated in Table 17.1 below.

Parity Rule II-00. For Yy -V'(ry )V'(rpq1) -+ V'(rwn,-2), the
parity of V'(r;) begins with (b, w) or (w, b) depending on k; = n;
or not. The parity changes alternatively until i = k; — 1. From
it = kj —1 to i = kj; it remains unchanged, and it again changes
alternatively starting from i = k;.
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Table 17.1. Parities of V) (r,) = %(Y Ypi1) (p,p+1 € Kj) in 7ll(g)).
Case: Nj =(;=10 (L(0}) =9): K; = [nj,n;+—1] = [1, Ny,

Vi, €hj=m b | \ | | |
V;l(’l“p)](p =1,3,57,9) (| b w|b b wl|b wl|lb w afjcurilu(litle)czll
v/n(rp) (p = 2747678) X ‘ w b ‘ b ‘ w b ‘ w b ‘ X Slgn -
Y. € ]’Lj =1 ‘ b ‘ ‘ ‘ ‘
V%(?‘p)J(pz 1,3,5,7,9) [w b|b wl[b w|b w|b w a-ccurfu(litf)%
Vi) 0=2,4,68) [[x[w bJw b[w b[w b] Hen =
€ hj =19 \ | | [ To]
Vi) (p=1,3579|w blw b|lw b|lw b|b w 2¥a%2%$§
Vi(rp) (p=2,4,6,8) X\b w\b w\b w\b \x sign =
Yy, € hj = mo \ \ ‘ | I
Vﬁ("”p)] (p=1,3579 1w b[lw blw b[lw dblw b a}fcurilu(litle)%
Vil =268 [x]0 wlb wlb wlb wlx] 7

Thus we get the unique monomial term with non-zero trace as

(17.22) IIZ*%”W%?EX I1 XQ,

t=1,2 p,pt+1EKj,

Y,  if the parity of V) (r,) is (b, w),

(17.23)  with Xf—{ﬁglﬁmmmwdvmwﬁww)

In our circumstances where ord(dj,) = ord(dj,) = 1 (mod 2), we have
d;ld;2 - Z2d/2d;17 and so X'Y(dgld;2) - _X'Y(dQngl) and XV(d}l)X7<d;2) (dgldgz)

if K;, is on the left of Kj,.
On the other hand, (,(d}, ), (d},) = ¢ (d; d;,) = ¢,(d),d} ) in general, and
if d; = HpeK ny"?, a product in the natural order, without z,-factor, then

X~(d;) = ¢,(d;), and when this is the case for j = j1, j2, we have x,(d} )x(d},) =
Cv(d;@)@( dj,) = ¢ (d} d’,). So, we may use ¢, instead of x., with careful attention
on their differences.

Lemma 17.5. In CASE 1sig-3, for {j1,j2} T J_, under the normalization

(17.20),
() (g5,95,) = tr(P <d;1d;2>V’ (%%J)
_ (gjlgﬁ) H Xﬂ/ d/ é /2 —(£;-1)/2 7
J=J1,J2

where x(d; )x+(d},) = ¢ (d},d},), and the sign (g}, g;,) = 1 is determined so
that, in (17.22),

1124@fnﬂ<nkx I1 A;>:

t=1,2 p, p+1eKj,
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(17.24) =c(g),q;,) - (-1) J] (=042 B,

J=Jj1,J2

Practically speaking, suppose, for j = ji,j2, that k; € K; s the cj-th number
from the smallest one in the increasing order in K;, then

(17.25) e(ghg,) = J[ (-1
J=Jj1,J2

Proof. In the middle line (j; = 1) in (17.21), we pick up a monomial as
follows:

(=Y9%) o (=Y0)) - (Yauyd) - (=Yauyl) o (=Y, ) = (1) By

if by = 2u + 1;
(=Y92) o (=Y, 3) - (=Y3)) - (=Y5,3) (=Y, ) = (1) 2 By
Similarly for the last line in (17.21). O

17.3 Characters of n)' = P,- V] of D, x S(P,), CASE 2sig

Recall that CASE 2sig for n = 2n' even is defined by L(o') = >, L(0}) =
1 (mod 2), and in this case, V}/(¢0') = V},(0”) (=iY2n41). Moreover V]I(c}) =
V'(0}) or Vi(0}) = V,,(0}) (=iYan41) according as L(0}) = 0 or = 1, and we
have in total

(17.26) (¢ = v [ P&, H(  (d)) V(o )) X (—iYowy1), K=+l
qeQ JjeJ

Here the orders of products on ¢ € Q and on j € J should follow the order in
the expression ¢’ = & ---& g;---g.. Even so, there remains some ambiguity
for the sign . In fact, in general

L(c’)L(c",) ord(d;)ord(d’,
(17.27) Sy = 5D e

Suppose (ord(d}), L(o ])) = (1, O) and (ord(d’ ), L(0} 1)) = (0,1), then g} and G
are commutative as g¢g; = g} g;. However ,y(d;)V’ (o) = =V,(0] ,) (d’)
and so

(PA@) V30 ) (P ) Vi) = = (P(d) Vi) ) (Py(dy) V(o)) ).

This ambiguity of & in (17.26) is introduced by using V', instead of V. To
avoid this, we take a representative of ¢’ in (17.5) of conjugacy class modulo Z
expressed as

(17.28) g; (j € Jy) are placed before ¢ (j € J_).

Then k = 1in (17.26). Here |J_| is odd since L(c') =1 (mod 2).
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In the right hand side of (17.26), when expanded into a linear combination of
monomials in Y};’s, the only one with non-zero trace is, multiplicatively modulo

2c!
[licr, i
(17.29) V1Yo Yo Yonsa,

since n = 2n’, and so there should be ]supp(g’)| = n. Since the degree of
monomials Y, - - - Y, 2" coming out of [1;c,Vin(0}), J = I isodd, there should

be ord(d’) =1 to get together Y1Y5 - - - Yo, multiplicatively modulo J],.; Y “
For each P, (&), we should have the term Y, multiplicatively modulo YQC
that ord(§,) =1 for all ¢ € ). Moreover, for each P, (d;)V,,(d%), we should have

[I1cx, Yr multiplicatively modulo [T, Y, k2 , and accordingly ord(d})+ L(0}) =
|Kj|. On the other hand, |K;| = L(0})+1, and accordingly ord(d;) =1 (5 € J).
Therefore ord(d’) = >, ord(&;,) + >, ord(dj) =r+s =1, s0 1+ s odd and

=n=2n, ord(d') = L(¢') =1 =1
(Condition IT-11) { [su pp(g;) n n', ord(d’) (o') , T+S ;

d,)=1(€l,), ord(d;) =1(j € I,) (mod?2).

We normalize g; = (d},0%) as in (17.20), with d} = nkij, b; = ord(d}) odd,

52
and 0% =1, n 410 Tojpe, -2, then
(17.30)  Py(d))V,,(0}) = ¢ (df) - 277 D/2
X Yk)j (YTLJ - Ynj+1>(Ynj+1 - YTLZ-"-Q) e (Ynj+€j—2 - Ynj—i-éj—l)‘

Expanding into a linear combination of monomials of Y),’s, we are forced to pick
up the term

(17.31) C’y(d;') o-(t;=1)/2 Vi, Yo, Yoo1 e Yigor - (=Y 41) - (= Yo, 40,-1)
= (,(d )2 (f‘—l)/2( 1)€j—1 Y, Y s Y Yo,

where the first line should be appropriately understood in the extremal cases:
kj = nj or kj = n; +{; — 1. Note that [[;c,(— 1)%~! = sgn(o’) = —1 in this
case.

Proposition 17.6. Let ¢ = (d',0) € D, ><1 S(Py) be in CASE 2sig, that
is, L(0’) =1 (mod 2). Then [f]'(¢') = tr(nl(¢')) # 0 if and only if (Condition
II-11) holds for g" =&, ---&, g1 ge-

Assume that ¢’ is normalized, modulo Z, as in (17.14). Then

[T (&) - TT () (—1)s 272 s o'

q€Q JjeJ

<o [Tv TI I y,,-<—mn,+1>)

qeQ jeJ peK;
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:_()C'yd, n12n H2K71

jeJ

where the product HpeK,-Y;) is along the natural order of p € K;, and the sign
e'l(g') = £1 is given by rearranging the product of Y,’s as

[licoYa - 1ljes (HpeK]-Y;)) =¢e"(g) - V1Yo Yau .

Note that the normalization (17.28) is not asked here, instead of it we intro-
duce the sign e"(g’).

- I
17.4 Character formula for 7! = P,V)! of D, xS(P,),n=2n

Define normalized character f,yﬂ(g’) = fg)/ dim ! = tr(all(g")) /2"

~
Theorem 17.7 (CASE n = 2n' EVEN). Assume that ¢’ = (d',0’) € D,, %

!

S(P,) is expressed as g' = &, -~ & 91+ G, 9; = (dj,0%). Put Q ={q1,...,q-}
and

(17.32)  J=1I,, J=J,UJ., Je={jeJ;sgn(oj) ==*l}.

(i) Casi L(o’) =0 (mod 2) OR sgn(¢’) =1: Here f;ﬂ(g’) # 0 if and only
if (Condition I1-00) holds for ¢'. In that case, there holds a product formula as

= 1A < IT A" = II £'(4.90)-

€qQ JE€J+ {j1,J2}CJ—

If ¢’ is normalized modulo Z as in (17.14), then
£ = 68,

£ = G (d)) (—1) G D260/, for j € Jy.,
};11(991992) — ¢ 931932 ) H G d’ e /29 —1)/27 for {j1,72} C J_,
J=Jj1,j2

where the sign £(g}, g},) is defined by (17.22)—(17.24), and suppose, for j =
J1,J2, k;j € Kj 1is the c;-th number from the smallest one in K;, then

(17.33) e(gr9,) =TI (=1
J=j1,J2

(i) Case L(o') = 1 (mod 2) OR sgn(o’) = —1: Here f!(¢') # 0 if and
only if (Condition II-11) holds for ¢'. In that case, if ¢ is taken in a normalized
form as in (17.14), then

J’c:/II(g/) _ —SH(gI) ,l»n’fl . C’y(dl) . H 27(€j71)/2

jed
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where e''(g') = %1 is given by

(17.34) [TV T II Yo =<"(d) - YiYa - Yaur.

qeQ jeJ peK;

17.5 Character formula for 70 = P> - Uy, n=2n/+1

Recall that W?i = Pf -UF for n = 2n’ + 1, where two spin representations U

and U, of gln are given as

U, (') = V,,(0') ~
(17.35) . (o' e 2A,).
U, (0") = Vi(0') = Yawia - Vi (0") - Yy 1y
with two spin representations for én:
1
V) = = (Yi-Y |
n(r> \/i( +1) (Z e In71>-
Vi) = —Youi1-Vi(r:) - Yo, 0

Assume n = 2n/ + 1. For v € 'Y, we prepare two spin IRs of 13,“
(17.36) P (n;) = p(nj) = xy(n;)Y; (G € Ln) ;

X~(m3)Y; (J € Ina),

(17.37) P (13) = Xruy(nj) Y; = { ()Y (G =n).

Stationary subgroups of the equivalence classes [P.f] and [P] are

(17.38)  S(PF) ={o' € A5 o) =7} =% () 05" ([T S1nc):

In the following, we denote by Q~l( ngfo 614) the group at the right hand side.

~ I
Lemma 17.8. For ¢ = (d',0') € D,, x S(P) = D,, x S(P;),
(7 () = w(P(d) Vi)
tr(ﬂff*(g')) = tr(Plryryer)y (@) Vi (o)) = (—1)°ord@) tr(w,?Jr(g’)).
Proof. For the second equality, we have

17 (g") = Py (d) U, (0') = P,y (d) - Yo V,,(0)) Y,
Ynilme(d/) Y= P(TlTQ'“Tn)’Y(d/) = <_1)Ord(d/)P’y(d/) : U
By this lemma, our task is reduced to calculate the trace of the operators
~ I
Py(d') V(o). Put fO%(g') := tr(79%(g')), Then, for ¢’ = (d',0") € D,, x S(P¥),

(17.39) F27(g) = (=) 0% (o).
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Define normalized character as

fy@i(g/) — f’iyji(g/)/ d1m W?i, lel ﬂ_gi _ 2n” n/ _ [n/2]

Take g’ = (d',0') € D, x S(P5) normalized modulo Z as

17400 =11 119 11 99 9 =(d.o).

qeQ Jjed+ {1, d2}Cd-

where @, J and Jy are as in (17.32). Note that, since S(P;) C A, g;(jeJo)
should be considered always as products 9;‘1 g;é of pairs of two elements.

ee CASE ord(d') =0 (mod 2) :

Since L(¢') = 0 (mod 2) a priori, the calculations are quite similar as those
in §17.2 for 7!} in CASE 1sig. At first, it is proved that f®*(g') # 0 if and only
if (Condition II 00) below holds for ¢’ :

ord(d) =0, L(¢') =0 (mod 2) ;

(Condition I1-00) { ord(§;) =0 (¢ € Q), ord(d}) + L(0o}) =0 (j € J).

In that case, we get the explicit form of f¥*(g’) as in Theorem 17.9 (i) below.

ee CASE ord(d') =1 (mod 2) :
Note that, in CASE 1II, we have (d},0%)(d},0;,) = (d,d;, 03,0%) (j # k), and

S0, W?i(g;gfc) = ﬂ?i((d;d;,a;a;)). Since L(o') = 0 a priori, we have ord(d’) +
L(0o’) =1 (mod 2). Hence when we expand the operator

=17 I Pronen - IT =7 ((d,dy,, of03)

qeQ JEJ+ {71,732}CJ-

into a linear combination of monomial terms in Yj’s such as Y,*'Y,”--.Y, o,
only one monomial term with trace non-zero is

Y1Ya - Yaui1 (=" Eyw),

multiplicatively modulo Y12C/1Y2QC/2 = an/ic{ Then we see that fffi(g’ ) # 0 if

and only if (Condition U-11) below holds for ¢’ :
N=n=2n'+1, ord(d') =1, L =
(Condition U-11) { supp(g)| =n=2n"+1, ord(
ord(¢)) =1(qge ), ord(dj) =1 (j € ) (. r+s=1).
CASE OF j € J,: Suppose that g} is normalized modulo Z as in (17.14).
Then, we pick up from the expansion of

(17.41) Vi, -2 T (Y, = Yo,

J
n; §p<nj+€j—1
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a monomial term

Yy, - o—(-1)/2 . Yo, - 'Yk]-—1(—ij+1) . (—Ynj+zj—1)
(17.42) (0—1)/2 01
— 9—(4-1)/ (—1)% 'Yn]- e ij_1ijij+1 . Ynj+e_1-

CASE OF {j1,j2} T J_: Note first that g} g}, = 21224},4),, and so 19 (gjlgjg)

= 7T§5+(gé»zg§»1). Suppose that, for j = j; and ja, g}’s are normalized modulo Z as
above. Then we should pick up from

Yk Ykm H S i Ynj+1)(Ynj+1 - Ynj+2) T (Ynj+£j—2 - Ynj+€jfl)7
J=i1,j2
a monomial term
H 9—(4;=1)/2 (_1)%’—1 Y YV Yip o Yoo -
J=Jj1,J2
Thus, in total, we have

7.‘_U+(g/): ( ) C’y(d/ |J_|/2 H2 571/2 )E'flx}/lx/éu_yn7

JjeJ

where the sign £%(¢’) = %1 is determined by

(17.43) HYXH(HY)zs J) YiYs Y,

qeQ j€J peEK;

Its trace is .07 (¢') = °(¢) - ¢,(d) - (=112 (20)™ - [es 2-G=1/2 since
Hje](_l)éj_l =sgn(o’) =1
Theorem 17.9 (CASEn = 2n’+1 opD). Letg = (d',0') =& & 91 g
= (d', "), be an element of D, x S(P5), where S(PY) = QNI(HCEfO Sy,).

J’]

(i) Suppose ord(d') = 0 (mod 2). Then f°F(g") = f°7(¢'), and 07 (g') #

.
0 if and only if (Condition II-00) holds for g'. Moreover there holds a product

formula as

H ij: H fUi g]) H JC;U:E (g;dg;z)‘

q€Q JEJ+ {j1,72}CJ-

If ¢' is normalized as in (17.14), then
£ = (&),
£ (g)) = G (d)) ()R, for j € Jy,

f (9]19]2) gjlgjz H C"/ d, é /2 _1)/27 for {jlaj?} C J—a

J=Jji,J2
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where the sign £(gj, 9;,) is defined by (17.22) —(17.24), and also by (17.25).

(ii) Supposeord(d’) =1 (mod 2). Then f°F(g") = —f£°(¢) and fOF(g) #
0 if and only if (Condition U-11) holds for ¢'. If ¢' is normalized as in (17.14),
then

15g) = 0g) - Gd) - (=) iy T[T,

jeJ
where the sign €°(g') = £1 is determined by (17.43).

Remark 17.2. In the special case where |1, | <1 (V¢ € T) or S(Pr) =
Zy = (z1), we see in Example 12.3 that 75" = P - xy, so its character is easy to
get.

U:I:)

17.6 A covariance property of characters f?i = tr(7r7

Recall that W?i is no more a group representation when we go out from
~ T N ~ I ~ ~ o
Dy, % S(PF) = Dy X A(T]eero 61,) to Dpx @5 ([Teeqo 61,,)-

Hence the following covariance property of f?i = tr(ﬁgi) is very interesting,
and it plays an important role in calculating characters of spin IRs of éTILI in
§20.3.

Let s; € q)_l(HceTO S, ) If sgn(sp) = 1, then f?i(s’og’sg 1) = f?i(g’),
since s € S(PY).

Lemma 17.10. Let sgn(sy) = —1 or sy & il(HCET\O anc)' Take a g €

~
Dy, x S(PE) normalized as g =&, --- &, g, --- g, with d; = 77k ' (3k; € K, j €
J). Then

FOE(shg'sy ™) = (=)@ £ ().

Proof. First, by Theorem 10.2 (i), «(V,(¢")) Py (d) = (7172...Tn)07(0’11(d’))
for o' € G, if sgn(o’) = —1, where 0 = ®(0’). Take ¢’ = s,~", then s, 'y = 7,
and so we have

(17.44)  V,,(s0) 7' Py (s () Viu(s0) = Primaeomaa (d) = (1) P (),
for d' € D, . Note that sjg's) " = = (s SN, sho'sh” 1) then
w$+(sgg’sg_l) = ( T (d)) -0t (360’56 1) = P, (s H(d’)) 'V;(SGU'Sg_l)
(s} «v; P (5 (d) V() - V(o)) Vilsh ™)
= V0(50) - (P (d) Vin(0") - V()
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= Valso): (C)™ B (VL) - V(s )
= (=1) -V (sp) 1 (g) Viu(sp)
Hence we get fUF(shg'sh ') = (—1)°d@) fO+ (). 0

Another proof. We appeal to detailed calculations in the preceding subsec-
tion. Note that

-1 II 1 II II -1 -1
A = (. 'sa ) = 66 st (€ (shais™) -+ (st ™,

where sogés{) b= (s d )> 800550 ). On the one hand, for & = ng* and
dj = HpGKj "

3611(52) _ 7780((557 /H H 7780
pEK;
whence P (s ’H(g’)) = (W@Y, )™, P F (s /H(d/)) = HpEK (W0 Yo )™

On the other hand, note that, for j € J, and {j1,72} C J_ respectively
V(56050 1) = Va(s) Vi (oh) Vi(sh) ™ 5
V(56057550 ) = Vals) Valo,05) Valso) ™
and that V7, (s()Y, V5 (s5) ™t = =Y (p € I,).
From these two facts, the one for P and the other for V;, and also from

L(oj) = 0, L(0},0},) = 0 (mod 2), we see that the effect of 70%(¢') —

U+(56g’56 "), on their expressions by means of Y,’s, is just the replacement
Y, — Ysp (p € I,), and on their coefficients is x,(d') = w7t tenin
w“”so(1>+"'+a"730<"> = x,(d') since 55 'y = 7.

Under this replacement Y, — Y (), every monomial Y;*'Y,"---Y “ with
trace zero (resp. trace non-zero) is sent to such a one with trace zero (resp. trace

NON-Z€ero).
In case ord(d’) = 0 (mod 2), the traces themselves remain unchanged.
In case ord(d’) = 1 (mod 2), fP(¢') # 0 if and only if ¢’ satisfies (Condition
(8] 1ol = 1)

U-11), and the sign €5(¢’) changes as °(sg’'s),

I Yow < IT I1 Yeow =sentso)- [T Yo < IT 1] %-

qeQ jeJ peK; qeQ jeJ peK;

,]1 ]2

= —&Y(¢'), since

This proves the assertions for fOF. O

18 Factorisability of characters and covariance
of trace functions

18.1 Origin of factorizability of normalized characters

We explain here the origin of the factorlzablhty of the normalized character
fJ(g) = tr(nl(g))/dimx! such as f] (g]gl) Iy (g])f (g ) This will be impor-
tant in studying induced characters of 7). Similar for f] fII e
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Put n' = [n/2] as before. Among monomial terms in Y7, ..., Y5, 1 such as

Cop/ 2¢/ 2c!
Yt Y, 3", those who have non-zero trace are of the form Y™ --- Y, (=

/ . 1. . ch 2c, ,
Eyv) or Y1Ya Yo (= i"Eyw) (multlphcatwe]y modulo Yf EREED A +1).
Any of other monomials, which has trace zero, will be called an odd monomial.

To calculate fWI(g;) (resp. fWH(g;-)), we expand Wi(g;) (resp. Wil(gg»)) icnt/o a
linear combination of monomial terms in Yi,..., Y, 4 such as Y .- Y, , 57
Then we appeal to the following lemma.

Lemma 18.1. When W{Y(gg) is expanded into a linear combination of mono-

. . Co, /1 .
mial terms in Yy, ..., Yo 41 such as Y1 ---Y, , 2" there exists only one term
3 9 + 1 2n/+1 ’

with trace non-zero and all others are odd monomaals, or

(18.1) (g5 = NjByer + D A Y Y

odd
where \; = tr(m,(g})) /2" = E(gg), and N .. are constants such that if

A9 . #£ 0, then supp (V" ---Y) == {p € I,;¢, # 0} C K. Similar
assertion holds for Wffl(g;) and fWII(g}).

A proof for the factorizability of E under (Condition I-00) :
Let us prove E(ggg{) = fj(gg)ﬁ(g,’) for j # 1. Expand 7! (g;) also as

(18.2) T (g1) = MByw + > M) Vv,
odd

where A .. # 0 implies that supp(Y ---Y™) € K;. Multiply (18.1) with
(18.2), and note that supports of monomials in (18.1) and (18.2) are mutually
disjoint because K; N K; = (), we have

T (g591) = 7G5 (g) = MM By + > A vy
odd

Taking the traces of both sides, we obtain f;l(g;g{) =\ = E(g;)ﬁ(g;) O

18.2 Covariance of certain trace functions (CASE I)

Let us study the behavior of characters of stationary subgroups under the con-
jugation of G,,. To calculate induced characters, e.g., for ﬂi, we should calculate

11

- -1
fJ(s’g’s’_l) for s € G, in case s'¢’s" € D, x S(P,), and similarly for 71*

o
More generally we define several (spin) trace functions on G} as follows: for

~ I ~ ~
vyeT,and ¢ = (d',0') € D, x &, =Gl

etc.

(18.3) T/ (g) == tr(Py(d)Vnu(0"), T5(¢) :=te(P(d)Vy (o)),

v v



[IT] 18 Factorisability of characters and covariance of trace functions 225

and study their covariance under conjugation of s’ € én.

~ 1 ~ 1
Suppose ¢’ = (d', 0’) is in the stationary subgroup D,, x S(P,) (resp. D,, x

S(PF)), and express it (modulo zz)) as

(184) g = q1 ’ ;Tgigég;a él_n(;aq (QEQ:{Qh’Qr}%
‘ (d;7 J) d;' - HpeK 77;“", K; = Supp(g;) (jeJ=1I,).

For any s’ € &, put s = ds(s') € &, then

sy LS = @, ) = ()
: S/g§ s~ 1 (Sll(d) S/O'/S’ 1)’ S/I(d;) — HpEK( (5)77;( ))a

Lemma 18.2. Under conjugation of s’ € én, we have a covariance as

Py (7(61)) = Goonal€) (s80()Y i
) G (&) B if a, = 0 (mod 2) ,
| Ge1q(&)) sen(s $)Y{, ifa;=1(mod2).

tr(PW(s/&’JS/—l)) B tr(Py(S;)) .
(s-14(E) - ToE) (e Q, s €6,).

Proof. Pw(s’l(fé)) = (Cw(n;(q))sgn(S)Ysl(q))aq = (-1,(&) (sgn(s )Ys,(q))aq' =

Lemma 18.3. The operator P,(d;)V,(0%) is transformed by conjugation
of s € G, as

(18.6) P (s"(d})) = oo (d) - T (sen(s)Yey)™

pEKj

Ezpress V,(0') as a product of V,,(r,)’s and then expand it into a linear com-

. . . C
bination of monomaial terms HpeKjYp " as

(18.7) V(@) = A [Ler, Yy ¢=(@lperys A €C,

then its conjugation by s’ € én 18
—1 Cp
(18.8) Vi(s'oys’™) = Z Ac - HpeKj (Sgn(s)l/;’(p)) ’

where the products are along with the natural order of p € K;. Moreover

tr(PW(s’I(d;-)V (s'o%s"™ 1))) B tr (P, (d}) V(o))

_ T &),
() @y Uehees

(18.9)
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Proof. (i) Note that V,,(s'0%s"" 1) =V, (s)Vn(0})V,(s') ™! and

J
vn(ri)yzglvn(ri)il = - s/i(p) (pEIn)
V)YV = senls)YYy (v L)

Compare the expansion of P,(d})V(c}) into a linear combination of monomi-

als in Y)’s obtained from (18.7) with that of Pv(s’l(d;-))v (s'a%s"™ ") obtained
from (18.6) and (18.8). Then, apart from the proportional constants ¢, (d})
and (s-1,(d}), the latter is obtained from the former by replacing each Y, by
sgn (s )32’(;,)

On the other hand, as is remarked in Lemma 16.5 and in Theorem 16.11,
in the expansion of P,(d})V(c}), there exists at most one monomial term with
trace non-zero and all others are odd monomials (cf. also Lemma 18.1). Since
the monomial term with trace non-zero is of the form [] ., Y, 2 (= Ey.), we

have the following rule.

pEK;

Consequence of Replacement 1-00: Under replacement I-00:

Y, = sgu(s)Yy,, (p € Kj), the unique monomial term with trace

20! :
non-zero [[,cp Y, ™ = Eogw for g; remains to be equal to Eyv,
J

and all the other odd monomials are mapped to odd monomials with
supports inside s(K;).

Thus we get the covariance relation (18.9). O

Proposition 18.4. Let n = 2n' even, and s' € &,. For ¢ = (d,o') €

~ 1
D,, x S(P,), expressed as in (18.4), the value TI(S’g’s’ 1) is obtained as follows.
According to the decomposition T)(g') = quQ 7)) Tl T (9)),

(18.10) TI s'g/sl 1 HTI 8§/ 1= 1 HTI S/g; - 1 7

qeQ jeJ

and ’]‘71(3’5;3’71) (resp. T)(s'g}s'™ ) is obtained from the formula in Theorem
16.11 (i) for T}(&)) (resp. Tl(g])) by replacing v with s~'v. In short,

Tl(s’g's’ Y is obtained from the formula of T)(g') by replacing v with
s7Ly.

Proof. By Theorem 9.2 (i), for any s’ € S, and d € D,, V(s NPy (d)V,(s)7!
= P, (s’I(d’)). Then we have

Py(s' N (d))Va(s'0's ™) = Vu(s)Peiy(d)V(s) L V(8 )V (0")V,u(5) 7
= V() (Pi1y(d) V(")) Vu(s)

r 1 o—1

Taking traces of both extremities, we see that 7 (s'g’s'™") is obtained from 7} (¢’)
by replacing v with s=1. O
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~ 1
Lemma 18.5. Let n=2n'+1 odd. Then, for ¢ = (d',0') € D,, x S(P;")

.
and s' € &,,. Express ¢ as in (18.4).

(i) If ord(d’) + L(o’) = 0 (mod 2), then there holds for T} the similar
assertion as in Lemma 18.5.

(ii) Assume ord(d') + L(c’) = 1 (mod 2). Then e'(s'g's'™") = €'(¢’) and

I 1 I
Ty )
Cs=14(d) G(d)
Proof. The proof is similar as for Lemma 18.3 except the proof for £'(s'g’s' ")

= ¢'(¢g') in (ii). For this, when 73" (¢') is expanded into a linear combination of
monomial terms in Y,’s, there exists only one with trace non-zero given as

v, 11 11 v = Yy YL (=) (=) By)

qeQ jeJ peK;:
Y, black

and all others are odd monomials. Under the replacement Y — sgn(s)Y[, ) (p €
I,), it is replaced by

H segn(s H H sgn(s) Yy, —sgn(s)”“HK]’~H HY; O

qeQ jeJ peK;: qeQ jeJ peK;:
Y, black Y, black

Similarly as Proposition 18.4, we can prove the following.
Proposition 18.6. Let n =2n'+1, s’ € S, and g =(do)e é,ll Then,

TI+( s'g
TI+< )

'S (resp. T (s'g's"™ YY) is obtained from the formula of
(resp. 7;1’(9’)) by replacing v with s~y

Proof. For TJ*, the proof for 7} in Proposition 18.4 is also valid, since
Pf =P, and V} = V,. For /-, by Theorem 9.2 (ii), we have, for any s’ € &,
and d € D,, V,(s)P;(d)V, ( )7t = P_(s''(d)). Then

Y n

Py (sN(d))V, (s'0's ™) =V, () (Pr, (d)V, (0) V()7

Taking traces of both sides, we obtain the assertion. a

18.3 Covariance of certain trace functions (CASE II)

We define (spin) trace functions on C?,ILI as follows: fory € I'), and ¢ = (d',0') €

T~ i
D, x6,=G,,

(18.11)  T)Y(g) :=tr(Py(d)V, (o)), TPH(g) = te(P(d)U, (o).
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Proposition 18.7. Letn=2n'>4. For s € &, and ¢ = (d',¢') € GI,
TWH(S/g’S’*l) is obtained from the formula of T}'(g') by replacing ~ with s~'~.
Proof. By Theorem 10.2 (ii), for any s’ € S, and d' € D,
V(s P,(d)VI(s) "t = Py, (s'"(d')). Then we have
P (s"M(d))VI(s'o's ™) = V(") (Peo1y (d)VE(0")) V,u(s)
Taking traces of both sides, we obtain the assertion. O

Proposition 18.8. Letn =2n/+1>5. Fors' € A, and g = (d',0") € 6«7111
with o' € A,
7;U+(s’g’s’_1) (resp. ’Z;U’(s’g’s’_l)) is obtained from the formula of T°F(g')
(resp. ’];U’(g’)) by replacing v with s~ 'y.

Proof. By Theorem 10.2 (iii), for any s’ € A, and d' € D,,, N
UE(s") PE(d)UE(s') ™ = PE(s'"(d')). Then we have for o’ € 2,
PE(s'(d)UE(s'0"s ™) = BE(s') (PEL (@)U (0) B (s) 7

Taking traces of both sides, we obtain the assertion. a

19 Characters of spin IRs of G! (CASE I)

19.1 Formula for calculating characters of spin IRs

First we prepare formulas for characters of induced representations. For v € T'?,
we have ¢, = (()jer, with ¢; = (j, identified with (") € T C T, and a
partition in Definition 11.2 as

(19.1) L= e Ie={iel; G=C

Here T0 = {n@ € T: @ (n) = w, 0 < a < m’ = m/2}. We assume that 7 is
normalized (under the action of &,,) so that all I,, /’s are intervals in I,,. IRs of
[Icc7o &1, are parametrized by a set of Young diagrams A" = (A”’C)Cefo as

(19.2) man = B w(A™),

¢ceTo

where \"¢ is of size |I,¢| and 7(A™¢) is an IR of &, . corresponding to A™<.
-1 ~ 1

Consider IRs of D,, x S(P,), and those of D,, X S(P5") given as

Thoan = Oman  if n =20 even ;

19.3
(18.3) e o= mE Hman if n= 20/ 41 odd.
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By inducing them up to CNJTIL = CNJI(m, 1,n), we obtain spin IRs of CASE I, Type
(—1,—-1,-1), as

Gl . i
I, = Ind ~"I 7T£ An 1D case m is even ;
(19 4) D S(P“/) 7
' I+ + .
IT5 = Ind%" L, Tyan i case n is odd.
Dn, ><1 sy 7

Remark 19.1. In the parametrization above such as I}, and Hﬁ, v is
implicit but, as is shown by the parametrization in §11.5 and §12, it is subordinate
to A™. In fact, the information of (the equivalence class of) v is fully contained in
A™ = (A™€) g0, since [\"| is equal to the multiple |, ¢| of ¢ in ¢, = (Gi. .- ., Gu)-

Put fan(0’) := tr(man(0”)), then fan(0’) = fan(0o) = tr(man(0)), o = (o),
and
foan = tr(ﬂg’,\n), Fi. =tr(Il}.) in case n is even ;

f«%\n = tr(wijfm), P = tr(Hfi) in case n is odd.

(19.5)

Then we have at first

o ((d o)) = f1((d',0") - fan(0),
(19.6) fﬁ;\n ((d/70/>) — fii((dlaal)) 'fAn<0')'

-1 ~ 1 ~ 1
Let &' = G, and H' = D, x 8 be one of D, x S(P,) and D, x S(P),

nI

where S is one of S(P,) and S(P5) correspondingly. Also let 7 be one of IRs

of H' in (19.3), and put II = Ind%,x. Denote by f, and Fi; their characters.
Extend f, from H' to G’ by putting identically zero outside H’. Then we have

(19.7) Fu(y) |H,| > fgbd' g
9,€G’

From this, we see that Fi;j(¢’) = 0if ¢’ is not conjugate under G’ to an element
of H', and so Fy is completely determined by its values on H'.

~ 1
Lemma 19.1. Let ¢’ = (d',0') € H = D,, x S, then

/ 1 / ! /N
Fulg) = 15 > (), g8 Th).
5/5’56’6?68

Proof. This follows from the facts that f; is invariant under D, C H' and
that s'g's’"" = (s''(d'),s'a’s'™"). O

Lemma 19.2. Let ¢'=(d',0’')e H' = D, >4 S, cmdfI ( f/), fﬁi:tr(ﬁ%).
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(i) In casen = 2n' even, S = S(P,) = @gl(HCE@ Sy,.) and with s = ®(s'),

FAn Z f /I d/ / // 1)) ~fAn(80871).
sES\Gn:
s'o’s'tes
(ii) In case n=2n'+1 odd, S = S(P; ) = _I(HCGTO GIM) and

FREG) = Y (@) 5057 - fu(sos™).

s': as above

Now we prepare here, as an important ingredient, explicit formulas for char-
acters of the special spin IRs of G} given in Example 11.1:

I} =Py-V, with By=Pw for GI, n>4 even,

M, = P.- Vi with PL = PX, for G}, n>5 odd.

Their characters are calculated in §16 as special cases, which we denote by
Fy,, Fl, and F!  respectively. Their intimate relations with the general case of
v facilitate to understand the covariance in §18.2 above, and also the calculation
below. B

An element of G| is expressed as ¢” = 2, z2 by’ g = (d',0') =
with ¢} = (d, 0

]’J

/ .

91 9,
') (j € J=1I,). Normalize ¢’ as in (16.26) modulo zl“zg’

Theorem 19.3. (i) CASE n =2n’ EVEN: If ord(d') + L(¢’) =0 (mod 2),
then Fy,(¢") = tr(Il(¢")) # 0 if and only if (Condition I-00) in Lemma 16.2
holds for g'. In that case, with {; = {(07),

Fl(¢) =2 - T[ (=602 - -b2
jeJ
If ord(d') 4+ L(o’) = 1 (mod 2), then Fy,(¢') =0 identically.
(ii) CASE n =2n'+ 1 opD: Suppose ord(d') + L(o’) = 0 (mod 2). Then,
FI.(¢)=F!,d)=F;,(d), and is given by the above formula.
Suppose ord(d') + L(o') = 1 (mod 2). Then F! (¢) = —F!,(¢), and

Fi,n(g’) # 0 if and only if (Condition I-11) in Lemma 16.2 holds for ¢'. In that
case,

FL(g) =e'(g) @)™ - [[(-pl/2a-tnr,
jeJ
where the sign €'(¢g') comes from rearrangement to have Y1Ys---Y,, as

(19.8) [Tv<II{w II %} =) vy

qeq jeJ pEX;\{k;}:
Y} black



[II] 19 Characters of spin IRs of Gl (CASE I) 231

19.2 Reduction of the summation over s’ € S\G,

~ 1
Let v € TY. Take a ¢ = (d',¢’) from D, x S(P,) for n = 2n’ even, or from
~ 1
D, x S(PF) for n = 2n/ 4+ 1 odd respectively, and express it as ¢ = (d',0') =

AR ;Tgl - g-. Normalize ¢’ as in (16.26) modulo 2,°z. From Theorem 16.11,

we get the following.

Lemma 19.4. (i) CASE n = 2n’ EVEN: If ord(d’) + L(¢’) = 0 (mod 2),
then f1(g") = tr(nl(¢)) # 0 if and only if (Condition I-00) in Lemma 16.2
holds for g'. If ord(d') + L(0') = 1 (mod 2), then f](g') = 0 identically. In

~ 1
general, for ¢ = (d',0') € D,, x S(P,),
£(9) = G (d) - Fya(d).
(ii) CASE n=2n'+1 opD: Iford(d)+ L(¢’) =0 (mod 2), then fl=(¢') =

)
fi7(g). Iford(d)+L(o") =1 (mod 2), then f1~(¢") = — £,*(¢), and f1*(¢) #
0 if and only if (Condition I-11) in Lemma 16.2 holds for ¢'. In general, for

<1
= (d',0") € D, x S(P),
) = Gd) - FLL(d).

Using Propositions 18.4 and 18.6 together with Lemma 19.2, we obtain the
following summation formulas for spin irreducible characters Fj., F\} and Fy...

Proposition 19;5. Let v € TY and A" = (A”’C)Cefo be as in (19.2)—(19.4).
Take ¢’ = (d',0") € G and let

g=%(¢")=(d,0) € G, =D, x&, =G(m,1,n),

with d = ®(d) € D,, 0 = ®(c') € S,. For s € &,, put s = ®(s'), then
D(s'g's' ") = sgs™t = (s(d), sos71), and (10 (d) = C-14(d) = ¢ (5(d)).

(i) Case n = 2n' BVEN: If ord(d') + L(0’) = 0 (mod 2), then Fi.(¢') =

tr (I, (¢')) # 0 only if (Condition I-00) in Lemma 16.2 holds for g'. If ord(d')+
L(c’) =1 (mod 2), then Fl.(¢") =0 identically. In general, for ¢ = (d',0’) €

D, % S(P,), with S, = ®(S(P,)) = {s € &, ; 57 =},
Fia(g") F()In ') Z Gy (5(d)) fan(sos™).

s€ Sy \6Gn :
sos~te S,

(ii) CASEn =2n/+1 0opD: Iford(d)+ L(c') = 0 (mod 2), then Fy.(¢') =
Fyi(g) = Fl.(¢). If ord(d') + L(c') = 1 (mod 2), then Fi.(¢") = Fﬁ:( N,
and F\f(g) # 0 only if (Condmon I-11) in Lemma 16.2 holds for ¢'. In

general, for ¢ = (d',0') € D, x S(P+)
Fi(d) = C Y G(s(d) fan(sosT).

s: as above
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19.3 Relations to non-spin irreducible characters of G(m,1,n)

The group CAJ;,IL is a quadruple covering group of the base group G, = D, X &,, =
G(m,1,n), and the sum

(19.9) > Gs(d) fan(sos™)

SE Sy \Gp :sos~1€ Sy

is the value of a (non-spin) irreducible character of G,, at the point g = ®(¢’).
Let us explain this a little more in detail. Take v € I', and a character
G = (1, G, .., C) of Dy, and define a partition of I,, as

(19.10) Ty o= (Ind)cepr Ln=| | Tnc, Tc={i€Lu: =}

ceT

Then the stationary subgroup S, in &,, is given as S, = Hcef 61%(. Take an
IR mpn := K 7 m(A™¢) of S, with A" = (/\"’C)Cef, |A™¢] = |I,.¢|- Then we have
an IR 7, an(g9) = ¢,(d) man (o) of H, := D, x S,, and inducing it up, an IR of

G, =D, x5, as
(19.11) IL, pn := Ind$" % an -

Lemma 19.6. The characters f%An of Tty an and ﬁ’%An of f[%An are respec-
tively given by

v

f’y,/\"<h) = Cv(d) fA” (U) (h = (da U) € D, x S’y) )
F’y,A"(g) = Z f’y,A”(SgS_l) (g = (da U) € Dy % 671)
s€ S, \Gn:
sosTle Sy

Note that the above sum is nothing but the sum in (19.9). On the other
hand, the irreducible character F% An is explicitly expressed as follows.

Denote by x(A™¢;0) the character value of m(A\"¢) at 0 € &;, . If 0 =
o109 -+ -0y is a cycle decomposition of o, then the value x(A\"*; ) is determined
by the set {¢, = {(0,);1 < p < t} of lengths, and so it is also denoted by
X()\N,C; (gp)1§p§t>; that iS,

(19.12) XA (6)1<p<t) == X(AS50) if 0 =0100- 01, £, = (o).

Recall that the redundancy ¢; =1 (s < j <t) is admitted, and g = (d,0) €
G, is expressed by its decomposition into basic elements as

{ g = (d, U) = 5(1161}2 e 'gqrgng ©0s, fq = yqaq (q € Q)a
g9j = (dj,05), supp(d;) C supp(o;) (j € J),

with @ ={q1,¢2,...,¢.} and J ={1,2,...,s}. Consider partitions of @ and .J
as

(19.14)  Q=(Qd) s Q=] | e and T = () eer J = |_|@J<.

(19.13)
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For a pair of partitions (Q, J) satisfying the condition
(Condition QJ) Qcl+Xjes & < el (CeT),

we define a function of g given as
(19.15) X(A";Q, 7:9) =]] (C(quQ< & Tljese di) x x (A" (gj)jng)) :
¢eT

Note that, if ¢ is conjugate under &,, to an element of D, x S, then there
exists at least one (Q, J) which satisfies (Condition QJ). We have

(19.16) n — |supp(g)| = ) _ (Ifn,cl —1Qcl =) @)'
Cej—v\ JjeJ¢
Define an important number N(Z,; Q,J;g) as
(19.17)  N(Z,; Q, J: g) :== (n— |supp(g)])! x

% T Mol (gl = 1)+ (gl = 1Qc = Y- 65+ 1)

ceT JeJ;

Then 7o 7 N(Zn; Q,J;9) =n!, where (Q, J) runs over those satisfying (Con-
dition QJ). Furthermore we put

(19.18)  b(Zn; Q, J;g) := ( nSQ J39) _ (n — [supp(g)|) -
15 H<|1n,<;|—|Qc|—ij>!
ceT jede

Here, even for a pair (Q, J) which does not satisfy (Condition QJ), the above
formulas have meaning if we understand as N(Z,,; Q,7;g) = 0.

By a simpler discussions than those in [HHH1, §§4.3—-4.4|, we obtain the
character of an IR of the wreath product G,, = &,(T) = D,, x&,,, D,, = D,(T),
of the cyclic group 7' = Z,,, with the n-th symmetric group &,, as follows.

Theorem 19.7 (Non-spin Case).

(i) Let A™ = ()\”’C)Cef € Y,(T) be a set of Young diagrams such that \*
determines an IR m(\"¢) of &1, . = &y, |, [Inc| = [N"|. Put 7ty = ¢, O
7an . Then Tyan s an IR of D, X S, with S, = ngf 61, ., and the induced

representation ﬁw\n is irreducible. Every IR of G, is equivalent to an induced
representation of this type.

(ii) Take a g = (d,0) € D,, X S, C Gy, and let its standard decomposition
be as in (19.13), and put Q = {q1,q2,...,¢-}, J = {1,2,...,s}. Then the
character value F’%An (g) of the IR luT%An of G, is given by

(19.19) Foan(g) = ) b(T: Q. T:9) X (A" Q, T ; g),
(2.7)
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where the summation runs over all pairs of partitions (Q,J) for which (Con-
dition QJ) holds, and b(Z,; Q,J;g) is given in (19.18), and X(A"; Q,J; g)
in (19.15).

(iii) For a g = (d,0) € G, which is not conjugate to any element in D, x S,
the character vanishes. The above character formula (19.19) is also valid in
this case, in the sense that there is no pair (Q,J) satisfying (Condition QJ).

Lemma 19.8. For g = (d,o) € G,, = G(m, 1,n),

v %

Foian(g) = sgn(o)-Fyan(g):
F(TlTZ"'Tn)'Y7An (g) = (_ 1)Ord(d) : F’Y»An (g) *

Remark 19.2. One dimensional characters of G,, = D,, X G,, are given as
follows: for (k,e), 0 <k <m, e=0,1, and for g = (d,0) € G, d = (t;)ier, ,

Xke(9) = Ck (P(d)) -sgn(o)® = Whord(d) sgn(o)°,

where P(d) :=tut,_1---t; and w= p2mi/m.

19.4 Explicit formula for spin irreducible characters of
G,

Summarizing the above results we obtain the following formulas for spin irre-

ducible characters F)L., F\" and F/..

Theorem 19.9. Let v € Y and take A" = (A”’C)Cefo € Y,.(T)° cor-
respondingly. Take ¢ = (d',0’) € 6’,2 expressed as g = & & 9195 g,
with & = 1," (¢ € Q@ = A{q,...,¢}) and g; = (dj,07) (j € J = I,). Let
g:qD( Y= (d,o0) € G, =D, x6,=G(m,1,n).

(i) CasE n = 2n/ BVEN: If ord(d’) + L(0’) = 0 (mod 2), then Fl.(¢) =
tr (Il (¢')) # 0 only if (Condition I-00) in Lemma 16.2 holds for ¢'. If ord(d')+
L(c') =1 (mod 2), then Fi.(¢") =0 identically. In general,

FK"(Q,) = FOI,n(g/) X Fw,A" (9)7

where Fyan(g) is given in (19.19).

(ii) CASEn = 2n/+1 obDp: If ord(d)+L(c’) =0 (mod 2), then Fit(g') #0
only if (Condition I-00) in Lemma 16.2 holds for ¢'. In that case, Fy,(g') =
FIX(¢) = FlL.(¢). If ord(d) + L(¢') = 1 (mod 2), then Fl.(¢') = —Fit(g)
and F\f(g) # 0 only if (Condition I-11) in Lemma 16.2 holds for g'. In
general,

Fih(g) = FL,(¢) x F,an(g).

(iii) With sgn(o’) = sgn(o),
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Fl\a(9) = sen(o) Flu(g), Fiald') = sen(o’) Fi(g).

Corollary 19.10. Spin IRs in CASE I, Type (—1,—1,—1), are expressed
as tensor products of special spin IRs with non-spin IRs as follows:

I =~ HI @ Mypn  for A" € Y, (T)°.

20 Characters of spin IRs of G!! (CASE II)

20.1 Formulas for calculating spin IRs of é}f

For v € TY, let {, = ((j)jer, be as before, and denote by Z,, the partition
I, = [icr0 Ing: Inec ={j € In; ¢; = ¢} in Definition 11.2 or (19.1). Here we
assume that v is normalized so that every I, ¢ is an interval in I,,.

As seen in Theorem 12.6, equivalence classes of IRs of GH GH(m, 1,n) in
CASE II, Type (—1,—1, 1), are realized as induced representations as follows.
Recall that, in CASE II, the stationary subgroup S is S(P,) = g ( [Tecqo S,.)

or S(PF) = 5[( [eero Sy, ) according as n is even or odd.

CASE n =20/ EVEN : For A" = (A™¢) .50 € Yo(T)",

~ II
e =7 D pn IR of D, x S(P,),
(20.1) _
MM, = md®* i, IRof Gl
Dn)‘]s( Py)

Put fan(0”) := tr(man(0”)), then fan(0') = fan(o) :=tr(man(0)),0 = ®(0’), and

'YA" = tr( ’YA") Fll = tr(Hf\In) ;
(20.2) e ((d0) = fH((d,0") - fan(0),
FH(d0) = tr(mi((d' o))
CASE n = 2n' +1 opp : For {A",'A"} € Y,X(T)%! and (A" k) € Y 2(T)02

respectively, we have, with two spin representations U, U, of 2, in (17.35),

U+ o - U+ £, 75%
Ton = Mo L pan with 70% = P> - U, -
(20.3) { - T IR of D, x S(P¥) ;

ﬂ-'zyj:lli" _ﬂ-UiDpA727
9% = Ind% LT

(20.4) Dg,*f“) ) IR of GI';
3., = Ind”" Tk

ans(Pi)



236 T. HirAI, A. HORA AND E. HIRAI

Tan = tr(m W) Fia o= tr(IIg),
209 {fsffn, = (), FE = (I
O ((d,0) = fOE((d,0")) - fRa(0),
206 % = (1), Jhulo) = (o))
' Otk ((@0) = 55 ((d 0")) - fRn (o),
fﬁn’,{(a) = tr(pi\'l)( ))

~
Lemma 20.1. Lety €TV, and take ¢ = (d',0') € D,, x S.
(i) In casen = 2n' even, S = S(P,) = q)G_l(ngfO S1,.) and with s = ®(s'),

L) = Y ) ) - o).
Se8\Gn:
so's'"les

(ii) In casen=2n"+1 odd, S = S(Pf) = 2i( [Teero GIn,C) and

FoE(g) = Y () S0’ ) - fRalsosTh)
s’ : as above

FPE(d) = Y (M), 80’ ) - fho(sosTh).

s': as above

On the other hand, special spin IRs are given in Example 12.2:
M = By - VY with By =P for Gl\, n >4 even,

M = p . GF with Py = P, for A = D, % 9, n > 5 odd,
vy
M =1In dHHHHH for G1I.

Their characters are calculated in §17 as special cases, and we denote them by

F3h F5 and FI, respectively. Their intimate relations with the general case of
v facilitate to understand the covariance in §18.3 above, and also the calculations

below. - .
Take a ¢ = (d',0') from D, x S(P,) for n = 2n’ even, or from D,

X
S(Pf) for n = 2n’ + 1 odd respectively, expressed as ¢' = & ---&, 9195 g,
and normalized as in (17.14), or, £ = 0, (¢ € Q@ = {q1,...,¢}) and ¢} =
(dj,0%) (j € J = I,) with £; = {(0}) and

U;' = T Tng41 " Togat;—2, 0 = @(0") = (n; n;+1 ... nj+£;—1).

U b;
(20.7) { dy =, (Fk; € K = [njn; +4; — 1)),

Theorem 20.2. (i) CASE n = 2n’ EVEN: If L(¢') = 0 (mod 2), then
L (g) = tr(IIH(g")) # 0 if and only if (Condition II-00) in §17.2.1 holds for
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g'. In that case,

Foa(g) =27 e([Les gf) - [T (=122,
JjeJ

where 5(1_[]‘6], gé) = H{jhh}t{h e(9},95,), with the sign (g}, g;,) = +1 defined
by (17.22)—(17.24), and also by (17.25), and for j € J_, {; are even and we
use the rule (—1)Y2(=1)Y/2 = —1,

If L(0') = 1 (mod 2), then Fg\ (¢') # 0 if and only if (Condition II-11) in
§17.3 holds for ¢'. In that case,

F&In(g/) _ 6II(g/) . 2n’in/71 . H(_l)éjfl 27(@71)/2
jeJ
_ _€II<gl> . 277,’2-11'71 . H 27(£j71)/2’
jed
where e (g') = +1 is given by (17.34).
(i) CasEn=2n"+10DD: Letg = (g,0') € H'=D, x A, C G

If ord(d’) = 0 (mod 2), then Fff(g’) # 0 if and only if (Condition II-00)
in §17.5 holds for ¢'. In that case,

08)  FM() =2 (e gp) - [0

JjeJ

If ord(d') = 1 (mod 2), then Fff(g’) # 0 if and only if (Condition U-11)
in §17.5 holds for ¢'. In that case,
(209  FL() =) - ()P @i [T,

jeJ

where the sign €5(g') = +1 is determined by (17.43). ) B

Let 7' € &, \ Ay. If ord(d) =0 (mod 2), then F'(r'g'r'~1) = Fi(g).
If ord(d") =1 (mod 2), then FJIrIf(T’g’T’*l) = —FJIrIf(g’).

(ili) CASE n =2n/+1 0oDD: Let ¢ = (d',0') € HY and 7' € &, \ Ay, then

(20.10) P (g = | 2FE(g) i ord(d) =0 (mod 2),
o 0 if ord(d’) =1 (mod 2),

and F', (7'g") =0 identically on T HY,

From Theorems 17.7 and 17.9, we get the following. In particular, for the
assertion (ii) below, we should note that ((,rp..r ), (d) = (=1)°"4) ¢ (d').
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~

Lemma 20.3. Lety €Y and ¢ = (d',0') € D,, x S be as above.

(i) Casgn=2n EVEN: S=8(P) =0 " ([Icq0 G1,.)-

If L(0") = 0 (mod 2), then fi!(g') = tr(x!l(g)) # 0 if and only if (Condition
I1-00) in §17.2.1 holds for ¢'. If L(c’) = 1 (mod 2), then fI'(¢') # 0 if and
only if (Condition II-11) in §17.3 holds for ¢'. In general,

M) = G (d) - FlL(d).

(i) CASEn=2n'+1o0DD: S=S8(P)= 5[(]_[(6?0 S1,.)-

If ord(d') = 0 (mod 2), then f.°F(g") # 0 if and only if (Condition II-00)
in §17.5 holds for ¢'. If ord(d’) = 1 (mod 2), then ff*(g') # 0 if and only if
(Condition B-11) in §17.5 holds for ¢'. In general,

() = G () - FE ().

20.2 Spin irreducible characters of GI! (Case n even)

Using Proposition 18.7 together with Lemma 20.1, we obtain the following for-
mula for spin irreducible characters Fji., n even, for A" = (A™) g0 € Yo (T)".

Take ¢’ = (d',0') € G, and let
(20.11) g=%(¢)=(d,0) € G, =D, x6&, =G(m,1,n),

with d = ®(d) € D,, 0 = ®(¢') € S,. The non-spin character ¢,(d') on D,
is considered also as a character of D,, which is denoted by the same symbol as
G,

For s' € &, put s = ®(s'), then ®(s'g’s’ ') = sgs™ = (s(d),sos™!), and
Cs-14(d") = (-14(d) = ¢, (s(d)) Let F’%An(g) be the character of an IR of the
base group G,, = G(m, 1,n) given in (19.15)—(19.19).

By Proposition 18.7 and Lemma 20.3 (i), we obtain the following, through
similar discussions as for Theorem 19.9.

Theorem 20.4 (CASE n = 2’ > 4 EVEN). Let A" = (\"¢) .50 € Yoo (T)°.
~
(i) Take ¢ = (d',0') € D, x S(P,), S(P,) = q)e_l(Hggfo S1,.). Suppose
L(o’") =0 (mod 2). Then Fl(¢") = tr(IIY.(¢")) # 0 only if (Condition I1I-00)
in §17.2.1 holds for ¢'. In that case,
Fixn(g) = Fy(g),
Fyn(g') = Fy(g) x Fyan(9).
Suppose L(c’) = 1 (mod 2). Then Fy.(¢') = tr(Ilf.(¢")) # 0 only if
(Condition 1I-11) in §17.3 holds for ¢'. In that case,

Eln(g) = =Fir(9),
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v

Fan(g') = Foh(g) x Fyan(g).

- ~ 1
(ii) If ¢ € GY is not conjugate to an element of D, x S(P,), then
Fi(g) = 0. 5 )
(ili) In total, F\n = Fjl, x Fxn, and so II, = I} @ IT, an .

20.3 Spin irreducible characters of CN?}LI
(Case n odd, Case of {A" A"} €YX(T)")

20.3.1 Preparatory formulas in Case n odd

Let n =2n/+1 > 5be odd, and v € I'°. Note that, as is remarked in §14.3.1, the
character of U, is invariant under &, since U} is the restriction to the subgroup
2, of a spin representation of the group &,, which is equivalent to V..

Take s; from (I)él ( HCEfo GIM) \ 5(( ngfo Gjmc), then sqy =~ and

(20.12) so = B(s)) € S, \ A, with A, = 2{( I1 ew), s,=[[ e

¢eTo ceTo

and S, = A, UspA,. Moreover we have by Lemmas 12.4 and 17.10 respectively

(20.13) (pan)™ = pan,  for {A",'A"} € V()" ;
| ()™ = p, for (A", k) € Y1(T)"2,
(20‘14) f$+(86g/86—1) — (_1>0rd(d’) f$+(g’).

where the superfix x 4+ 1 is understood modulo 2. For d’' € D, and s’ € én, put
d=®(d), s=®(s), then

& ((s68)M(d)) = 7(303( ) =G (s(d) = ¢ (s i d)) ;
C(T1T2 T)s™ (d) ( )Ord(d Cs—1 (d) = ( )Ord(d (S(d))

By Proposition 18.8, we have, for ¢ = (d',0’) € D, x 2, C GH and s’ € 91n,

Cs*lv(d/)
G(d)

(20.15)

(20.16) tr(Pj(S'H(d'))zs;(s'a's’—l)) = te(PHd)TE (o)) -

and in particular, for ¢’ = (d',0’) € D, x S(P;) and s’ € 2,

Cs*“/(d,)
Gld)

Therefore, noting that syg'sy ' = (s N d), sho'sh” "), we have by Lemma 20.3 (i)
the following.

(20.17) (s = 2% (g) -
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Lemma 20.5. Let ¢’ = (d',0') € D, x S(Pf) and s’ € A,, .
(i) Suppose ord(d') =0 (mod 2). Then, under (Condition II-00) on ¢,
Oy = Fil(e) x G (s(d)) ;
fH(s'spg'se ') = Pl (g') x G (sso(d)).

(ii) Suppose ord(d') =1 (mod 2). Then, under (Condition U-11) on ¢,

[OH(sg's ™) = FINE(gf) x ¢, (s(d)) ;
FOH(shg'sy 1Y) = —FIN(gf) x ¢ (ss0(d)).

20.3.2 Case of A" = (\™) g0, {A","A"} € Y(T)*! (Part 1)

Using the above results, we discuss spin irreducible characters F' Ej , depending
on the cases whether ord(d’) = 0 (mod 2) or ord(d’) = 1 (mod 2). Here we treat
the case of ord(d’) = 0 (mod 2).

We obtain from Lemmas 19.8 and 20.1 (ii) the following result.

Lemma 20.6. Let {A",'A"} ¢ Y(T)%', n = 2n/+1. For ¢’ = (d',0') €

D, x S(Pf), S(Pf) = ﬂ(ngfo Sy1,.), assume that ord(d’) = 0 (mod 2).
Then, under (Condition II-00) on ¢,

FeHg) = FI(g) *
(20.18) X Z ((V(s(d)) fhn(sos™h) —|—§7(sso(d)) e (5500(550)*1))

s€ A \Un :
sosTle A,

For g = ®(¢') € D,, x A,, the character of an IR (, - pan of D,, x A, is given
by
Xyan(g) = Gy (d) - fRa (o).

The sum in (20.18) gives the character of the induced representation

(20.19)  TndD St (G, - par) 2 TndDr g (i (G - oae) ).

With an element sy € S, \ A, , the character of Indg::f&(gﬂ, - pan) is given as

Xoyan(g) + Xy an (30930_1) = (d) (fKn (@) + fin (80050_1))a

because s; 'y = 7 and so , (So(d)) = (,(d). Moreover the above sum is the
character of Indfﬁy PAn = Tan @ Tepn by Lemma 12.4, which is zero outside of
A,. Thus we see that the sum in (20.18) is equal to F,an(g) + F,ian(g) =
(1 + Sgn(a>)F'y,A” (g> = 2F’y,A" (g)
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~ o
Proposition 20.7. For ¢ = (d,0') € D, x S(PF) with ord(d) =
0 (mod 2), FUE(g') # 0 only if g satisfies (Condition II-00). In that case,

v v

FoHg) = FH (g -2 Fyan(g) = F2L(g) % Fyan(g)-

20.3.3 Case of A" = (\"¢ )ceor {A™, A"} € Y(T)*! (Part 2)

Here we treat the case of ord(d’) =1 (mod 2). In this case, as is seen in Lemma
17.9 (i), f2*(¢') # 0 if and only if the following condition holds for ¢’ :

|supp(¢’)|=n=2n'+1, ord(d') = 1, L(¢’) =0 (mod 2),

(Condition U-11) {Ord@;)z 1(ge Q) ond(d)=1(j e J) (o ras=1).
(i

Apply this, and use Lemma 20.5 (ii) and (pAn)SO = pan, then we obtain the
following.

~
Lemma 20.8. Let g = (d',0') € D, x S(PF) be as in (20.7). Assume
ord(d') = 1 (mod 2). Then, possibly For(g') # 0 only if ¢ satisfies (Condition
U-11). In that case,

FUt(g) = P9
X Z (@(S(d)) f/ﬁ\)n(sas_l) — Gy (Sso(d)) fKn (880030_13_1)>,
s€ A\ 2Up, sos—le A,

Now, on the base group level, we consider induced representations of ¢, [ pan

~ I
from D, x A, = (IJ(Dn X S(Pf)) up to H, := D, x 2, and also up to G,, =
D, x &, as

Pyhkln = Indg:xulW (C’Y o PAn) of Hy ;

(20.20)
P, = IndZ,, (¢ O pan) of G,.

Since Indf‘:p,\nv% Tan B Tepan , we have PVG/(,, = 1'[7 An D ﬁ,y,tAn.
Denote by Fﬁ(ln the character of P%An. Then the sum in the above lemma
gives us Fﬁ('n(g) — ]:ﬂﬁ(n (sogso_l) On the other hand, since A" # 'A" we
71 . .
have 0 (ppn) = pan and * (C pan) = (- pan. This gives us FVAn(g) =

% (s0g507")-
Theorem 20.9 (CASE n =20/ +1>5 opD). Let {A™ 'A"} € Y,X(T)%!
~
(i) Let g = (d',0') € D, x S(P5) be as in (20.7).
Assume ord(d') = 0 (mod 2). Then FU.(g') # 0 only if g’ satisfies (Con-
dition 11-00). In that case,

FSH(g) = Fi5(g) -2+ Fyanlg) = FIY(d) X Fyan(g)-
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where F’%An (9) denotes the character of non-spin IR of the base group G, =
D, x &,, = G(m,1,n) given in (19.19) in Theorem 19.7.

Assume ord(d’) = 1 (mod 2). Then Fyf(g) = 0, F{'.(¢) = 0, and
Fpt(g) = FiL(g) x Fyan(9).

- ~ I

(ii) If ¢ € G is not conjugate to an element in D, X S(Pf), then
FRi(g') = 0, Fyan(g) =0, and Fil(g') = FIL,(g) x Fyan(g).-

(iii) Let 1T, an = Ind$" 7, an be as in (19.11). Then

Fol = Ff’n X F%An and TIST = ' ® IUI%An.
Remark 20.1. Let n > 5 be odd, and {A",*A"} € Y,*(T)%!. Then,

s, =08, as IRs of (53

20.4 Spin irreducible characters of é}f
(Case n odd, Case of (A", x) € Y,(T)*?, k =0,1)

20.4.1 Irreducible characters of H, = D, x4,

First we discuss on the base group level. Recall Definition 13.2 for &,, and refer
Theorems 13.3, 13.5 and 13.7 for ,,.

Lemma 20.10. Let g = (d,0) =&, -+ -&,.01- - gs be an element of H,, =
D, x U, with & = yg*, g; = (d;,0;), forn > 4. Let 7 € &, \ A,. Then
the conjugacy class of g under G, = D, x &,, splits into two conjugacy classes
under H, if and only if »r <1 and o = oy---05 € A, is of the 2nd kind and
of the 3rd kind (in the sense of Schur) at the same time, that is, ((o;) (j € J)
are all odd and mutually different.

Let A" = (A”’C)Cef € Y, (T) be such that ‘A" = A™ and |\™¢| > 2 (3(),

and let v € T',, is subordinate to A™. On the base group level, for the subgroup
~ o

DpxA, = ®(D, x S(PE)) of G, = D, x&,, consider its IRs ¢,Eply] (v = 0,1),

and take their induced representations up to H, := D, x 2, and also up to
G,=D, x6, as

(20.21) Pl = dfr o, (GEAR)  of Hy;
pﬁfcf[cn’n = Indg:ﬁdAv (C'Y B pg\fi}) of Gn .

Take an so € S, \ A,. Then ¢, (sodsy ') = ¢,(d) (d € D,), * (p&@?) = p&ﬁnﬂ),
and Indi”W p(A’iE = Indf‘”V pS@H) = man, and accordingly

(20.22) PG 2y (k=0,1).
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Denote by Fﬁw the characters of ﬁfﬁnﬁ, Then, for h = (d,o) € H,,

FWI{/\" (SOhSO ) F’yfkln K+1 (h) ;

(20.23) Fﬁ(‘np(h) + Ff/(;’l(h) = I an(h) ;
Fln oy n() = (=1)@ Ele (h),

Since F7 An( ) = 0 outside H,, the second equality above can be expressed as
F% an = F A SAng T )k Loan g if each F .. 1s extended identically zero outside H,,.

Proposition 20.11 (non-spin irreducible characters of H,). Let A™ be such
that *A™ = A", and v € T is subordinate to A"*. For a g = (d,0) € D, x
A, C H, = D, x%2,, let its standard decomposition be as in (19.13), and
put Q ={q1,q92,...,4-}, J ={1,2,...,s}. Then the character F’yA” (9) of IR

Pﬁ{; of H, is given by

1
(20.24) Eff (9) = B > (T Q Tig) X(A K Q. T 5 9),
(2,9)
where the summation runs over all pairs of partitions (Q,J) for which (Con-
dition QJ) in §19.3 holds, and the coefficient b(Z,; Q, T ;g) is given in (19.18),

and

(20.25) X( , K Q j g HC( q€Qc gq jEJ; d]) X fK”,N(UJ)'

CET

Here o7 denotes an U,,-conjugate of o such that o7 = [[..70¢ with o¢ € &y,
a product of cycles of lengths {; (j € J¢).

For any g = (d,0) € H,, which is not conjugate to any element in D, x A,,
the character vanishes.

To calculate Fﬁ\"n (9) — Fﬁ{@nﬁ(sogso_l), the evaluation of the difference
fhn (07) — Fhn (soo7s0") is essential. The latter has been already studied for
irreducible characters of 2, by Frobenius [Frob2|, and here we remark only the
following.

Lemma 20.12. The difference f}., ( 7) — fhn (soo7s0™") of character

values s non-zero only when, for each ¢ € T,

ncl=>25es ti <1, and 4 (j € Je) are all different, odd integers.

20.4.2 Characters of spin IRs II}, of G for (A", k) € Y2(T)*?

Now we study characters of spin IRs I3}, of GI for (A" k) € Y(T)*2, and
apply Lemma 20.12 and Proposition 20.11. Introduce a condition on ¢’ as
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|supp(¢')| =n =2n"+1, ord(d') = 1, L(o’) = 0 (mod 2),
(Condition U-11s) ¢ ord(¢;) 1( €Q),ord(d;) =1(j€J), r<1(]Q|<1),
L(cj) =0(j € J), and £(o%) (j € J) all different.

Theorem 20.13 (CASE n=2n'+1>5 ODD).
Let (A", k) € YX(T)*? k=0,1.

I
(i) Let ¢ = (d',0') € D, S(PF) be as in (20.7).
Assume ord(d') =0 (mod 2). Then F}\jfn(g’) # 0 only if (Condition II-00)
holds for ¢'. In that case,

v

FRio(d) = FRH(9) = Fin' (9) x Fyan(g),
where F’%An (g9) denotes the character of non-spin IR of the base group G, =
D, x &, =G(m,1,n) given in (19.19), and F, sn(g) = 0 if sgn(o) = —1.

Assume ord(d’) = 1 (mod 2). Then FUan(g’) # 0 only if (Condition U-11s)
holds for ¢', and an"fl(g’) = —F}\Snfo(g/), and

FEE(0) = FI(9) % (B (0) = B cn(9)  (6=0,1).

- 11
(ii) If ¢ € G is not conjugate to an element in D, x S(Pj[), then
Fyi(g) =0.
Proof. We start with the summation formula in Lemma 20.1. Take an
she d! =~ &1 S. Then the main sum in the formula is rewritten as
0 CeT n,¢

> {EHE @) T) - f s +

SES\Up: s'a’s' LS
f$+(($/11(5611(d/)) (860’8’0 1) 1= 1)) fAn ( (80080_1)8_1)},

By Proposition 18.8, for ¢’ = (d’, 0’), this is equal to

S ) P alss™) 4 705 (5455 ™) P (s(s0050~)s ™) 1

s’ : as above

By Theorem 17.9 (ii), we have f0t(¢') = fU+(¢) = ¢,(d) - FH(g).
On the other hand, by Lemma 17.10, fU*(s{g'si™") = (—1)°d@) fO+(g").
Therefore, under the condition sgn(¢’) = 1, the sum above is equal to

ST S (Fuplsos™) & (505 7)),

s’ :as above

according as (—1)°"4@) = +1. This gives us the formulas for Ff\jjﬂ
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Remark: that F(flz'Q"'Tn)’Y,An7H(g) = (=1)D e (g), then the results for
113, . are obtained from those for ITY.! . . O

Remark 20.2. Let n > 5 odd, and (A", x) € Y,X(T)%?, k =0, 1. Then,

., =208t T8, =218, asIRsof GI.

20.5 Spin irreducible characters of é}f
(Case n odd, Case of A" € Y,*(T)%%)
This is an exceptional case in the case of n odd, and we say that the corresponding
IRs II9, are in Case (Exc). As seen in Example 12.3, PF-U; = Pf-x1 with a spin
character x; of Zy = (z1) C A, @ x(21) = —1, and pan = 1 for A € Y(T)%2,
~ 1 - -
Here D, x S(Pf) =D, x Zy, and I =md%" (P} x1).

Theorem 20.14. Letn =2n' +1 < m' = m/2, and A" = ()\”’C)Cefo €
Y(T)%3. The character FOF of TIST is given as follows. Lety = (71,...,9m) €
'Y in (11.7) be subordinate to A", then v;’s are all different.

~ ~ I~

Let ¢ = (d",0') € G = D,y x &, with d’ = zd',d = n"ns?---n.

Then FOH(g") =0 except when o' = 22, For g" = (d", 2,

( (_1)(1(_1)1) 2n/ deen Ca'y(d,)a

if d € DY or a, =0 (mod 2) (q € Q);
() R = (=D (=1 Q)" { Zea, Gor(d) = Xear, Gosin(d)
ifa, =1 (mod 2) (¢€Q);

L 0, otherwise.

where X, is given in Definition 6.1, and (,(d') = wnat+man ) = e2mi/m  gn

81:(1 2)€6n

Note 20.1. In this exceptional case, A" € YV, (T)%3 all 0 < v; < m/ =
m/2 (j € I,,) are mutually different. So (,, 0 € &,,, are all different non-spin
characters of D,,. Moreover, in the middle line in (%), put a; = 2b; + 1, then

Gty (@) = w0 (WP eb o,

This shows that we have there a non-zero function on (1, ---n,)D?.



Part 1V

Spin characters of infinite group
R(G(m, 1, oo)) of Types (—1,—1,+1)

For a finite dimensional representation 7 of a group H, its normalized character
is defined as Yr(h) := tr(w(h))/dim= (h € H). In this part, we study pointwise
limits of normalized spin irreducible characters of R(G(m, 1, n)) as n — 00, in
CASEs I and II. We prove that the set of all limits gives exactly the set of all
characters of the infinite group R(G(m, 1, oo)) of each spin type.

21 Towards limits of spin irreducible characters

21.1. Summary on spin IRs and spin irreducible characters.

To start with, we summarize the fundamental results on spin IRs and their
characters of R(G(m, 1,n)) in CASEs I and II as follows. For CASE I, Type
(—1,—1,—1), spin IRs are classified in Theorem 11.5 with their parameter space
n (11.21), and their characters are given in Theorem 19.9. For CASE II, Type
(—1,—1, 1), spin IRs are classified in Theorem 12.6 with their parameter spaces
n (12.14), and their characters are given in Theorems 20.4, 20.9, 20.13 and 20.14.
The parameter spaces for them are given as follows: let ¥ be the set of all Young
diagrams, and T°={( € T; ((n) =w?, 0 <a<m' =m/2}, then

Yo(T)? = {A=(A) cqo; A €Y, defo’)‘c’ =nj;

YT =YD uyX ()2 oy ()%, with

YT = [{A" A A% = (V) o € V(D)0 TA" £ A7,
Y,H(T)%% = {(A", k) ; A" € Y,,(T)°, tA" = A", [A™¢| > 2 (3(), k= 0,1},
Y(T)%3 = {A”— (A" eqo 3 A <1 (V0)}-

Table 21.1. Spin IRs and spin irreducible characters for G(m,1,n).

CASE Parity Symbol of irreducible | given in

Type of n IRs characters | Theorem

I n even | I}, (A" €Y, (T)) Fi. 19.9 (i)

(“1-1.-1)| ™ odd | I}, T, (A" € Y, (T)°) Fyh, Froo | 19.9 (i)
" n even | I, (A" € Y(T)?) Fi, 20.4
(~L-1, 1) | L IRE (AT AT e Y)Y | FRS 20.9
0%y (A" k) e Y(T)?) | FOF, 20.13
s (A" € Y2(T)3) FOF 20.14

246
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21.2. Evaluation of supports of spin irreducible characters.

We evaluate the supports of each irreducible characters and obtain the fol-
lowing Table 21.2, which is a refinement of Table 4.1.

Table 21.2. Supports of spin irreducible characters for éY(m, 1,n),
Y=I, 11, 4<n<oo, m=2m'"

CASE Y f(g") # 0 = Condition for ¢’ =d’ ’:5{11 .. -é’éhg'l gl g} (d, o)

P9
(spin) T'ype ord(d') + L(0’) = 0 (mod 2) ord(d") + L(0") =1 (mod 2)
(B1, B2, B3) ord(d') =0 ord(d') =1 ord(d') =0 ord(d') =1
parity of n L(c")=0 L(d)=1 L(d") =1 L(d")=0
(_11(71‘;“3_“1)) Condition 1-00 2
(_Il (n fdf)l) Condition T-00 Condition T-11

IT (n even) L s

(—1,—1, 1) Condition II-00 | Condition II-11 1%}

except Case (Exc):
IT (n odd) - Condition U-11s

(—1,-1, 1) Condition II-00 [] in Case (Exc):

Condition U-Exc

Here the symbol & means that characters are identically zero there.

(Condition 1-00) and (Condition I-11) are given in Lemma 16.2, (Condition II-00)
in §17.2.1, (Condition II-11) in §17.3, (Condition U-11) in §17.5, and (Condition U-
11s) in §20.4.2. For the convenience of readers, we list up them here, together with
(Condition U-Exc) below appearing in Case (Exc) in §20.5:

ord(d") + L(¢") =0 (mod 2),

ord(§;) =0 (g € Q), ord(d}) + L(c}) =0 (mod 2) (j € J);
|supp(¢’)] = n odd, ord(d')+ L(c’) =1 (mod 2),

ord(§;) =1 (¢ € Q), ord(dj) =1 (mod2) (j€J);

L(c") =0 (mod 2),

d(§,) =0 (g € Q), ord(d}) + L(03) =0 (mod 2) (j € J);

(Condition I-00) {

(Condition I-11) {

ord(d")

(Condition II-00)

=n=2n, ord(d)=L(c")=1, r+s=1,
1(q€Q), ord(dj) =1 (mod2) (j€J);

{ |Supp ) odd, ord(d’') =1, L(¢’) =0 (mod 2),

(Condition II-11)

(Condition U-11) ord(€]) €Q), ord(d’) =1 (] eJ) (. r+s=1);

|supp(¢')|=n odd, ord(d') =1, L(¢’) = 0 (mod 2),
Ord fq) =1 (q €Q), ord(dj) =1 (j € J), r<1(|Q[<1),
=0(j€J), and (o)) (j € J) all different;
\supp( "N=n (<m') odd, ord(d') =1 (mod 2),
o' =2z (a=0,1); ord(§) =1 (Vg€ Q = I,).

(Condition U-11s)

(Condition U-Exc) {
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When we consider limits of characters of spin IRs of é,}/ , Y=L1II as n — oo, as
soon as n > |supp(g’)|, there does not hold any of (Condition I-11), (Condition II-11),
(Condition U-11) and (Condition U-11s) for ¢’, no more. So we are naturally led to
consider only the cases of ¢’ under (Condition I-00) or (Condition II-00). The case of
A™ € Y,,(T)%? is out of our present consideration since n < m' = m/2.

The inductive limits GY := lim, .o, G,Y (Y=I, II) are covering groups of G :=
G(m,1,00) = lim;,, .~ G(m, 1,n) and are quotients of the representation group
(21.1) R(G(m,1,00)) := lim R(G(m,1,n))

n—oo
by a central subgroup Z! := (292, ') or Z' := (z3) corresponding respectively to Y=I
or Y=II as

(21.2) GY = R(G(m,1,00))/2Y (Y=L, T).

We may consider as G = Unso G.Y, and as topological groups with the inductive
limit topologies, they are discrete and countable. (Condition Y-00) for each ér}/ can
be extended to (Condition Y-00) for égg Denote by I3 'L, the normalized character
Fi./FL.(e), and similarly for other cases.

Lemma 21.1. (i) In CASE I, Type (—1,—1,—1), the limits
lim  Fia(g im  Flif(g)= lim Fl(d
n:2}rzr’n—>oo A (g )7 n:2n’1—rg11—>oo A (g) nz?n’l-rgll—wo An (g)
are all zero if g’ € égo does not satisfy (Condition 1-00).
(ii) In CASE II, Type (—1,—1, 1), the limits
lim F{i(¢),  lm FO¥g),  lim  FOF(g)

n=2n'—o0 n=2n'+1—o00 n=2n'+4+1—o00
are all zero if g’ € é’g does not satisfy (Condition II-00).

21.3. General theory on limiting process as n — oo.

In §§2-3 of [HoHH], we studied harmonic analysis on a general branching graph,
allowing infinite valencies of the graph (see Theorem 3.2, loc. cit. in particular). Gen-
eralizing it, we give Theorem 14.3 in our first paper [I], for the case of an increasing
sequence of compact groups. As its corollary in the case of increasing sequence of finite
groups, we have the following.

Theorem 21.2. Let --- C H, C Hpy1 C -+ be a sequence of finite groups,
and Hoo = lim,_,oo Hy, be its inductive limit. Let f be a character of Hy (i.c., an
extremal, normalized central positive definite function on Hs ). Then there exists at
least a sequence of IRs m, of H, such that f is the pointwise limit of normalized
irreducible characters X, = Xr,/dimm, as n — oo.

With this as our background, to obtain the set E(G) of all characters, for G = Ho,
by the limiting process, there are the following two points to be checked:

(1) To pick up all the good limit functions on G,
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(2) Not to pick up any bad limit functions on G.

In our previous papers [HHHI1| and [HoHH]|, we have studied the case of wreath
products H, = 6,(T) and G = Hy, = G (T), with T any compact group. In [HHHI]|,
concerning the point (2) above, it is proved that, if T" is infinite, then there exists always
non-continuous limit functions (of course, positive definite), which are certainly out
of K1(G) and are called as bad limits. Also a necessary and sufficient condition is
given for a path {m,; n € N} to have a good limit (cf. Theorems 6.1 and 7.1, loc. cit.).
Moreover, in Example 6.1, loc. cit., for G = G (T') with certain infinite 7', interesting
bad limits are given explicitly.

21.4. Limits of the special spin irreducible characters.
In CASE I, we gave in Example 11.1 (§11.4) special spin IRs
I} of GL, in case n = 2n is even,
I, of G, in casen =2n'+1is odd,
and their characters Fol,n and Fin are given in Theorem 19.3 (§19.1). Note that
if FO{n(g’) # 0 (resp. Fi,n(g’) # 0), then ¢ € CNLIL satisfies (Condition I-00), and
that (Condition 1-00) does not contain any condition explicitly referring n. Then we

see easily that, when n’ — oo, these characters, after normalization, have naturally

pointwise limits on GI = lim,/ o GQI ;= lim,, oo GQn 41 We denote them by Fo .

and F] .00 Tespectively.

In CASE TI, we gave special spin IRs in Example 12.2 (§12.4) as follows:
- ~ 10 ~
Iyl of Gl=D, x&,, incasen= 2n"
7 ~ ~ I ~
" of H" =D, x 2, and I =1In d HHH of GI in case n=2n/+1.

Their characters are denoted by F[%In, FJIFI;{ and FJIFIn respectively and are given in

Theorem 20.2 (§20.1). Note that if Fj. (¢") # 0 (resp. FJIFIH( ") #0or FY! (g) #0),

then ¢’ € G satisfies (Condition I1-00), and that (Condition I1-00) does not contain
any condition explicitly referring n, then we see that, when 71’ — 00, these charac-
ters, after normalization, have naturally pointwise limits on G'Il = lim,/_ G%L, =

lim,,/ G2n /41- We denote these limits by g pitH

0,000 oo and F +HOO respectively.

For Y = I1I, denote by OY the subset of GOYO consisting of all ¢’ which satisfy
(Condition Y-00). Then, as we see above, the supports of limiting functions above are
contained in OY in CASE Y.

22 Limits of special spin irreducible characters

For Y=I, II, denote by FY the set of all the limits of normalized spin irreducible
characters of G Y asn — oo. Then FY consists of central positive definite functions on
GY = lim,— oo G , and we see from Theorem 21.2 that FY contains the set EY (GY)

of all the characters of GY of (spin) Type Y:

(22.1) FY 5 EY(GY) (Y=L 1I),
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To obtain these sets F Y, the following calculations of limits of normalized char-
acters of special spin IRs play important roles as is explained in the first subsection
below and will be seen in the next section. Our goal is to give explicit form of each
limit functions f € FY, and also to prove the equality FY = EY (C:’O\;), and thus to
get character formulas.

22.1 General situation before taking limits

CASE 1. For general spin IRs, we have in Theorem 19.9 tensor product structures
as follows: let A" = (A”’C)Cefo € Y,(T)° and v € TY subordinate to A", then

(22.9) I, 2 @A, Fl(d)= Fo{n(g’) X F,an(g), in case n >4 even,
i =l @z, Fii(d) = Fl.(g) x F, an(g), incase n>5 odd,

where ¢ € GL, g = ®(g'), and F%An(g) denotes the character given in (19.19) of
non-spin IR fI%An = Indg’:L Ty an of G = @(éi) in (19.11).

Denote by F';A" the normalized character F, an/F, an(e). Then we have the
following product formula:

(223 { E{n (¢) = ﬁo{n(g/) X F,;An (g9), in casen >4 even,

Fit(g) = ﬁin(g’) X Fﬂ\n (g9), in case n >5 odd.

CASE II. For general spin IRs, we have in Theorems 20.4, 20.9 and 20.13 tensor
product structures as follows:

CASE n = 2n' > 4 EVEN:
For A" € Y, (T)°, TN, T @I, xn and Fil = FiL x F) an.
CASEn=2n"+1>5 0ODD:
For {A",'A"} e V(T)%, TIYF =T ® fI%An and FUf = F}rlvn X F’%An.
For (A", k) € YH(T)02, k=0,1, for ¢’ = (d',0') € GI,
if ord(d) = 0 (mod 2),  Fty(g) = Fit, (9) = FIT(9) x By an(g),

. I1,H P H, 5 Hp
lf Ord(d,) = 1 (mOd 2)7 F[z\jj:/{(g/) = F+,7L (g/) X (nyIzX”J{(g) - ny}j\n7/§+l(g))7

From the above list, together with the detailed data from Theorem 20.13, we obtain
the following product formula:
In case n > 4 is even, ﬁ/{,{ (¢) = ﬁ(ﬁl(g’) X FL:A” (9), A" eY,(T)°;

In case n > 5 odd, F = ﬁOI}L X F‘,;An, {A"PA"} € YH(T)%!, and

ﬁ}é{fﬂ(g’) = ﬁ}rlf(g’) X F,:An (9), (A", k) € (T2, if |supp(¢’)| < n.
From the above product formulas, we see for each of CASEs I and TI, the following.
On the subset O, for which O' NG contains the supports of Folm and Fi)n,
the study of limits of ﬁAIn(g’) and Fit(g') asn=2n' — oo or n =20 +1 — o0, is
equivalent to that on limits of non-spin normalized irreducible characters waAn (9) on
the subsets O = @1(01) of Gso.
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Similarly, on the subset O containing the supports of FOHn (n =2n') and Fff
(n =2n' +1) if [supp(¢’)| < n, the study of limits of F){L(g') and FU:fK(g/)7 k=01,
as n’ — o0, is equivalent to that on limits of non-spin normalized irreducible characters
F ™\« (g) on the subsets O = & (OM) of G

22.2 Explicit formulas for special limit characters

As indicated above, special limit functions ﬁo{oo, F _&700 etc. are important and also will
be known to be characters on égo etc. Their explicit formulas follow from Theorems
19.3 and 20.2 respectively.

CASE I, TypE (—1,—-1,-1):

Take ¢ = (d',0") € GL = Do, >14 Soo normalized as before as

!

9 =& & 99 gs &=m"" (a€Q={q1,..-,q}),

b; .
(22.4) g; = (dj,0}), dj=m," (3k; € K;j =supp(g)), j € J =I);
O';- = TnTni+1 - Tnj44;—25 Kj = [nj,nj—}—fj—l].

Lemma 22.3. (i) If ord(d') + L(¢’) =0 (mod 2), then ﬁo{oo(g’) # 0 if and only
if (Condition I-00) holds for g'. In that case, with {; = (%),

(22.5) Fio(g) = [J (-l 072 2-t-0/2,
jeJ
If ord(d') + L(¢’) =1 (mod 2), then ﬁO{m(g’) =0 identically.

(ii) There holds ﬁOI,oo I?;IOO on the whole group GL .

CASE II, Type (—1,—-1, 1):
~ ~ T~
Let ¢’ = (d',0') € G = D, x G4 be normalized as

! ¢!

9 =8 €, 9199 &=n" (1€Q={a,...,a}),
(22.6) g; = (d}, 0%), d;= nkjbﬂ' (Fkj € K; =supp(g;), j € J =1I);
09 = TnyTng4+1 -+ - Tnj4t,—25 Kj = [nj, n; + €j — 1].
Lemma 22.4. (i) If L(¢’) =0 (mod 2), then ﬁo{io(g’) # 0 if and only if (Condi-
tion II-00) holds for ¢'. In that case,

(22.7) () = e(Tes ) - [[(-)GD/2 22,
jeJ

where E(H]EL g;) = 1y, 10 €(95,95,), with the sign (g} g},) = +1 defined by
(17.22) - (17.24), and also by (17.25).

If L(0") = 1 (mod 2), then FyL (¢') =0 identically.

(i) Let ¢’ = (¢',0') € HLY = Doy x A € GL.  If ord(d’) = 0 (mod 2), then

ﬁﬁ’g(g’) #0 if and only if (Condition II-00) holds for ¢'. In that case,

(22.8) FM(g) = e(Tey o)) - JL (-1 D22/,
jeJ
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If ord(d') =1 (mod 2), then FE H( 'Y =0 identically. )
(iii) Let ¢ = (d',0’) € HY and 7' € G0 \ Ano, then ﬁ_goo(g') = ﬁf”g(g’), and
ﬁfoo( 'q") =0 identically.

22.3 Notes on representative elements of conjugacy classes

~ ~ I ~
For the formula in Lemma 22.3, we take ¢’ = (d',0') € GL, = Dy x G4 normalized
as in (22.4) above.
Let us give a note on the normalization of d; in g} = (d},0}) as d; = n,;]_l)j. As
is seen above, it is enough to consider lim, oo F. L. (¢’) under (Condition 1-00). Now
take a general g’ € G, for which d’s are not yet normalized. For any h' = (d",0") €

DK >4 GK , we have h'§ R~ ! = &, and for k # j,

/ .
_ / " . / " g lf k € :] 5
(229) /g;Ch/ 1 _ ZlL(O'k)L(U )220 d(dk)L(O' )g;(: _ kL . ‘ +
(z122)M0 gl if k€ J_.
Moreover, for the transform g; — h'g h’ ,supposed; = (1 2 ... ;) andso K; = I,.

Then, for g} = (d},07) and i € Kj,

(midmiyy, o) for j € Jy;

— L(d")
22.10 tahnt ™Y = 2 (ldil o) =
( ) 957, Z9 (777, 41 U]) 22(771d/771+17 O';) forjeJ_.

Case of j € J. = {j € J;sgn(o}) = 1}: In this case, L(0}) = 0, ord(d}) =
0 (mod 2). For example, for d; = 77’1“177’ a2néa3, we have ord(d;) = a1 +az+a3 =0 and

—ai s /a1 __ ¢ /a2 /a3 /a1 aiaz(, /ai+az a3 !
7 g; ™M =g m5 s ])*22 (12 UR! an)7
/ —a1—a2 air / _sai\ sait+az2 _ _ajas/, /a1+az2+as /
T2 (771 9; ™ )772 = 25 (3 ) Uj),

719 can be equal to 29 or to e under the fixed even a1 + as + as.

and 2,
This explains the necessity to take d; in the normal form as nz,jbj , bj = ord(dj).

Moreover note that o’ n;bJ o] -1

may be arbitrary.
Case of j € J_ = {j € J;sgn(o}) = —1}: In this case, L(o}) = 1, ord(d}) =
1 (mod 2). Note that, for d; = 77{“177’ a2n§a3 we have ord(d}) = a1 +az +az =1 and

= n;jf{, then we see that the choice of k; € K

/—ai / raz2 ras rai I\ _ _ai+taiaz/ rai1taz ras /
) ) (772 )a

m g 771 =29t (15 5 e 0 N3 50y
) —a1—ag a1 y ra1\_ rsait+az2 _ _aj+ajas aitas/ 1 a1taztas /
Up) (771 g9;™Mm ) = %9 ) (3 ) Uj))
and z;1+“1“322a1+a2 = 22“1“3+a2 can be equal to 29 or to e under the fixed odd a1 +
. . . . b
az + az. This explains the necessity to take d;- in the normal form as 77,’€j7 .
1,1 bj o~ 1 _ ;7 bj oo b 0 —1 b; _
Moreover we have o nk o, = Zanj+71 or oingio; = N Ik = Y4,

then since b; = 1 (mod 2)

b o 11—1)bs ) b;
X'V(n;fjj) = (- 1)(k D055 = —(—1>(k7+1 Db i +1 = XW(Z2"72~+]1)'

J
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Note that this equality has an important meaning with respect to the formula of
tr (ﬂg(gé)) in Lemma 16.5, for which we should pay attention on the factor x,(d}) at
the rightmost hand side of the formula (16.32).

On the other hand, we have x, (17;;]-") = —X~ (772]41-)31) This is consistent with the

property of a central positive definite function f on C:‘go of type (—1,—1,—1) such

that f(z29') = —f(¢'). In more detail, for the conjugacy class [g}]; of g; modulo

~ ~ 1 ~ .
Z under Dg; x Gg,, we can take, as its representative, g](-l) = (n;%b]’ 0’4) and also

J
g(»2) = (n,’gj _f_’{, O';-), which are conjugate to each other modulo (z2) under conjugation

= 1 —1 2
by &k, as a}gj(. )a;» = 229](- ),

23 Limits of spin irreducible characters

23.1 Limits of non-spin irreducible characters F% a» of Gy

For the completeness, we refer here briefly §§5-6 in [HHH1| in the simpler case of
Gn =Dp(Z ) ¥ 6y, and Goo = Doo(Z 1) X Goo. Put, for a non-spin IR myn.c of Sy

n,¢ ?

- tr(mync(0))
nC . ) . A
XA 50) = dim 7y (U < GI"‘()’

and when o is a product of disjoint cycles of lengths ¢; (j € J¢), it is denoted also
by 5{()\”74; (Ej)jejc). Then, for non-spin IRs IL, o» of G, with A" = ()\”’C)Cefo €
Y, (T)°, its normalized character is given as follows (cf. §19.3).

With a partition Z,, = (InvC)CEfo of I, and partitions Q@ = (Q¢)c0 of @ =
{ar,-- @}, and T = (J¢) g0 of J ={1,..., s} satisfying the condition (Condition
QJ) in §19.3, we define a function of g € G,, as

nlsupp(9)]
X
n(n—1)---(n —[supp(g)| + 1)

el ncl—1 Ml = 1Qcl = Xjes 6 +1
x T e Eme— ,

c(Z,; Q, T; g) =

ceTo "
X(An3 Q J:9) = H (C(H(IGQg &g - Hj€J4 dj) x X(A™¢ (KJ)JGJCD :
¢eTo
. Fooan -
(23.1)  Flan(g) = M =) dZ;Q T;9) X (A5 Q, T g).
%A"(e (Q,7)

First consider FJM on the subgroup D,, C G,, through the above formula.

Lemma 23.1. To have a pointwise limit lim,_ F;An(d) on Dy, it is necessary

and sufficient that the following limits exist : for every ¢ € ZFO,

(23.2) 3 lim Hncl (=: B¢ (put)).

n—oo N
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In that case, ZCETO B; =1.

On the other hand, we know the following about the asymptotic behavior of irre-
ducible characters of &,, (cf. [VK] or [HHH1, Theorem 5.4]). For a Young diagram A"
of size n, let lengths of its rows and columns be 7;(A"), ¢;(A") (i € I,) respectively,
and put

(23.3) az()\”) = 7"2(/\”> —i+ 1/2, bz()\n) = Ci<)\n) — 14+ 1/2 (Z S In).
Lemma 23.2. Suppose that the following limits exist:

(23.4) o) := lim M, Bi:= lim b (e N).

n—oo n n—oo n

Then there exists the pointwise limit of )?()\”; (Ej)jej) as

(285)  lim X5 (G)es) = [T (D i + (15713087,

n—oo N 4 4
jeJ eN 1€EN

Lemma 23.3. Assume that Be = lim,_.o |I,,¢|/n ezists for any ¢ € T°, and
that, for every ¢ € TY with B¢ > 0, the following limits exist:

(A€ b (A€
(23.6) ag; = lim ai(A >, B = lim {4

n—o0 ’Imd n—o0 |In,C|

(te N).

Then the limit of FJM (9) as n — oo exists and

(23.7) nILYEOFVTA"@) => 11 {<< [T 11 dj) '

Q.J ¢eTo q€Q;¢ jede
: BC‘QcI 11 Bcej . ( of b+ (—1)b! Z ﬁé,ﬁ)}.
e €N iEN
Put
(23 8) { Q¢ = BC . 0[272'7 /BC,Z = BC . Bé)l (Z c N),
pe = Be = Yien aci — Yien Bea (CETY),

and reorder (¢ ;)ien, (B¢,i)ien in the descending order, and then introduce a param-
eter A as

(23.9) A=(a,Bim),  a=(ac)cqor B=(Bc)ccqor #=(1¢)ceqo ;

ac = (aci)ieN, ac1>oco>oac3>---2>0,

(23.10) ¢~ (Oaiien, acr 2 aca = acs he >0,
/BC = (ﬁg,i)iGNa ﬁgl Z /BC72 Z /6<73 2 e Z 0,

(23.11) > (ol + 18l + ) = 1. Jlacll =D ac.

¢eTo iEN

Then we have the following result on as a special case of Theorem 7.1 in [HHH1].
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Theorem 23.4. (i) Assume that B¢ = lim,_. |I5,¢|/n exists for any ¢ € T°,
and that, for any ¢ € T° with B: > 0, the limits in Lemma 23.3 ewist. Then, for
9=11,eq8a jcs 95 95 = (dj,05), {; = (o),

(2312)  lim Ea(g) = ] { 11 (Z aci+ Y Bei + ug)C(&z) X

QT ¢eTo \q€Q¢ €N iEN
45 L 0
T (X ey + (" 12&,5)«@)},
j€Je iEN iEN

where (Q,J) runs over all pairs of partitions Q = (QC)CET‘) of Q@ = {q1,---,q}
and J = (‘]C)CETO of J ={1,...,s}. The right hand side is a function fa with the
parameter A = (o, ;1) given as

(23.13) fale) = ] fa&) - I falg)),
q€Q JjeJ
(23.14) fa€) = D2 (llagl + 15l + wc ) C(&0).
ceTo
(23.15) falg) = 3 (Yad+ 0y 8.7
¢ceTo €N ieN
(i) Put

A(T®) := {A = (o, B 1) ; parameter satisfying (23.9)-(23.11)},

(23.16) ~ -
]:(TO) ={fa; A€ A(To)}.

Then f(fo) 1s the set of all pointwise limits of normalized irreducible characters FVTA"
as n — 0o.

Put ‘A := (3,a; ), then 7: A ‘A is an involutive action on A(T°)

Lemma 23.5. (i) For A€ A(T\O), the restriction of fa onto the subset O' C Goo
determines its parameter A completely. In other words, let A" = (o/, ;') € A(T?)
be another parameter such that far|, = fA|OI) then A’ = A.

(i) For A, A’ € A(T®), their restrictions on the subset O C Goo coincide with
each other, or far| n = fAloH ,if and only if A" = A or A/ ='A = 1(A).

Proof. (i) is proved by using the following equality: for z € C,
Z 1 1+ Biz
exXp Z Z Oé + /67,) = expy§ —% Z(anLﬁl) H m
£>2 €N iEN iEN ¢

(ii) The equality fas
For ¢ € T°, ¢ > 1, with

€) _ Zacﬁ E 1 Zﬁ(m C/ C E Za 1)(—1 Zﬁ/’iﬁ’

1€EN 1EN 1€EN €N

on = f A’ ol holds if and only if the following equalities hold.
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C(CG1) + e = C'(G 1) + g (£=1);
C(¢ 0 =C'(¢0) ({=3 odd);
C(GOCGR) =G0 C' (G k) (£ =2 even).

From the last equation we have either C((,¢) = C'(¢,¢) or C(¢,£) = —C'((,¢)
for any ¢ € T°, £ > 3 odd. Actually the former gives us A’ = A and the latter gives
A" ='A. We omit the details. O

23.2 Limits of spin irreducible characters for (CASE I)

Under the condition |[supp(¢’)| < n, the characters F){, and F}J, with A" € Y,(T)°,
have the same form. If ¢’ € G satisfies (Condition I-00), then the normalized charac-
ters corresponding to them are expressed as

(23.17) Fo(g') < Ean(9),

where g = ®(¢') and F’YTA" (g9) is given in (23.1). Then we get the following result on

the limit of normalized spin irreducible characters of CNJTIL as n — 00. Note that this
limit concerns essentially on the subsets O'N G of G! and O! of GL both defined by
(Condition I1-00).

Theorem 23.6 (CASE I). Assume that By = lim,, .o I, ¢|/n exists for any ¢ €
fo, and that, for any ¢ € 7O with B¢ > 0, the limits in (23.4) exist.

(i) The normalized spin irreducible characters ﬁ/{n(g’) have a limit fL(g) =
lim,, o0 ﬁAIn (¢) with a parameter A € A(T°) as

(23.18) Falg) = Fioolg)) x falg)-
(ii) In another expression, the limit function f}4 is factorizable in the sense that,
for ¢ =&, &, &, 91957 g5 in (22.4),

(23.19) ile) = [T 7€) - T £iap).
qe@ jed

And fL(g') # 0 only if ¢’ satisfies (Condition I-00) or g’ € O, and for fq =1, (ord(€)) =
0 (mod 2)), ¢} = (d}, 0}) (ord(d}) + L(0}) = 0 (mod 2)) with dj = nk (Fk; € Kj),
23.20)  fh(e) = > (llacll + Bl + nc) C(€p),

CeTO
(2321)  fh(g) = > (-1l 2—%'—1)/2( Sal+(-nsty ﬁcﬁj) ¢(d))

ceto €N iEN

If ¢’ does not satisfy (Condition 1-00), then f4(g') = 0.

(i) Let F1 be the set of all the limits of normalized spin irreducible characters on
Gl of Type (—1,—1,—1) as n — oo. Then

(23.22) Fl={fi Ac AT} = {Fl - fa: A€ AT}
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23.3 Limits of spin irreducible characters (CASE II)

Recall that (Condition IT-00) in §21.1 is used both in Case n = 2n’ even and in Case
n =2n'+1 odd in common.

23.3.1. Case n = 2n' > 4 even.

By Theorem 20.4, irreducible spin characters are given by F{L = tr (Hgn) with
A" = ()\”’C)Cefo € Y,(T)", and that F\L = F&In x F Ao on GII, and moreover that, if
lsupp(g’)| < n, then F{L(g') # 0 only if (Condition II-00) holds for ¢’. The normalized
character is given as

(23.23) F{i(g)) = Fon(g') x Foan(9)-
23.3.2. Case n=2n'+1>5 odd.

(1) Let {A™,'A"} € YX(T)%!. Then, from Theorem 20.9, the corresponding

irreducible spin characters are given as F}ff = Fg\t and

FRH(d) = Filu(g) x Foan(g) (9 € G, g =(g)) € G)
and the normalized ones are
FGH(g') = Fonle) < Exan(9).
Moreover, if [supp(¢')| < n, then FO.7(¢) # 0 only if ¢ satisfies (Condition II-00).

(2) Let (A" k) € Y,(T)%? with *A™ = A", k = 0, 1. Then, by Theorem 20.2 and
20.13, under ord(d’) = 0 (mod 2), Fﬁ;(g’) # 0 only if (Condition 11-00) holds for ¢/,
and Fo'o(g') = Fiot (),

11,H -
FOY(d) = Fion (9) x Fyan(g),

and, under ord(d’) = 0 (mod 2), if [supp(¢')| < n, then FAZ,S,LTK(Q’) = 0. Therefore, if
|supp(¢’)| < n, the normalized ones is

FOg) =Fl(d) x ETaa(g) (9 € G,

We see from Theorem 20.2 that, if |supp(¢’)| < n, then ﬁfn(g’) = foljl(g’), and
also by Lemma 22.4 that, for the limits as n — oo, ﬁoléo = ﬁfoo on é;{

23.3.3. Limits of normalized spin characters (CASE II).

As is seen above, the normalized spin irreducible characters F (g, F}ﬁ(g’ ),
and FAQTO(g’), under [supp(¢’)| < n, are all of the same form: Fy, (g') x Fyn(9),
which is not zero only when ¢’ satisfies (Condition 11-00). Therefore, on the subset

o = U4§n oo Ol of CNJC{CI), the existence of the limit as n — oo depends completely

9

9]

on that of the series of non-spin irreducible characters . (g).
The latter is discussed in Theorem 23.4, and we get the following.

Theorem 23.7 (CASE II). Assume that B = limy, . I ¢|/n ezists for any ¢ €
T°, and that, for any ¢ € T® with B; > 0, the limits in (23.4) exist.
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(i) The series of normalized spin irreducible characters FXL(g'), ﬁﬁf(g’), and

ﬁﬁfo(g’) have the same limit fY(¢') with a parameter A € A(T°) written as

(23.24) Fig) = Feio(d)) x falg)-

(ii) In another expression, the limit function fﬂ 15 weakly factorizable in the

following sense. For g = & & ---& G195 gs € CN{E, = Uiscn<oo CNJTILI, put Q =
{ar, - e}, J =1, Jp = {j € J;sgn(o;) = £1}. Suppose g’ satisfies (Condition

I1-00) or ¢ € O, then |J_| is even, and decompose J_ into disjoint pairs as J_ =
Ll{j17j2}7 61Ep7’€85€d as {jl?j?} L J*; and

(23.25) B =TI 11 Ay T1 g,

q€Q JjeJ+ {j1,j2}CJ-

where each factors are given as, after assuming that the expression of g’ is normalized,

modulo 225, as in (22.6),

0 =2 (lacl + 13l + nc) <(&p)  forg e @,

ceTo
_ ., ¢ ¢ .
g = D ()& VRV (S a0 b S 3 ) () for j e
ceTo ieN ieN

and for {j1, j2} C J_, with the sign 5(gjlgj2) in (17.22)-(17.24), or in (17.25),

fg(gg,lg;é) - 5(9]‘193‘2) . H { Z (_l)lj/2—1 2(6]'71)/2< Z O‘c,ez'j _ Z ﬁ(?) C(d;)}

J=J1,32\ ¢ceTo ieEN iEN

Suppose g' does not satisfy (Condition 11-00), then fY(g') =0 identically.

(i) Let FU be the set of all the limits of normalized spin irreducible characters of
Gl of Type (—1,—1,—1) as n — oo. Then

(23.26) FU={fl, Ac AT} = {F) - fa; Ac AT}

Corollary 23.8. Suppose a¢; # B¢ for at least one of (¢, i) € TO x N. Then the
limit function fY is not factorizable because, for g’ = $onn Can 9195 -+ g5 in (22.6)
satisfying (Condition 11-00), fg(gg) =0 for any g;, j € J—, whereas

fg(gg»lggé) # 0 for an appropriate choice of ¢} , g, with {j1,j2} C J-.

The limit function f1141 is factorizable if and only if o = B¢ for all ( € 70 or
a= 0.

Proof. We have fg(gglg;2) = 0 always, if and only if, for any (¢,i) € T° x N,

Z agi'j = Z ﬁcﬁj for all even ¢; > 2.
1€EN iEN
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On the other hand, note that

k
kA
(23.27) exp{ Z in ?}—exp{ Z :):Z} H 1_% (z€C).
2<k<o0 t€N 1<i<oco 1<i<oo
Then we have 044122 = ﬂqf and so a¢c; = ¢ (i € N). O

24 Determination of spin characters of G(m, 1, >0)

24.1 Preliminaries

Recall that (cf. §3), for a topological group G’, K(G’) denotes the set of all central,
continuous positive definite functions on G’, K1(G’) the set of f € K(G’) normalized
as f(e) = 1 at the identity element e € G, and E(G’) the set of extremal points
(called characters) in the convex set K1(G’). Let Z’' be a central subgroup of G’ and x
a character of G'. Denote by K{(G') (resp. EX(G’)) the elements f € K1(G’) (resp.
E(@")) satistying f(2'g') = x(2/)f(¢') (' € Z', ¢’ € G'). Then the set of all extremal
points of K{(G’) is equal to EX(G') and E(G’') = Uz EX(@").

Furthermore let N’ be a normal subgroup of G’, and define a restriction map for
feKi(G) by Rg,/f := f| s Then, as is seen in §6 in [I], we have the following.

Lemma 24.1 (cf. [I, §6]). Suppose G’ is discrete.

(i) The restriction map RY, maps K1(G') into K1(N'), and E(G') into E(N').

(i) Suppose that a function @ on N' is invariant under G': o(g'h'g' ™) = o(W) (¢ €
G',I' € N, if it is invariant (under N'). Then RY, maps K1(G') onto K1(N').

(iii) Suppose moreover that a central subgroup Z' of G' is contained in N', and that
every f € KX(G') vanishes outside N', then RY, maps EX(G") onto EX(N').

Now put Goo = R(Gs), Goo = G(m, 1,00), and let GY, Y=I, II, be the quotient
groups of G given as

~1
~ for Y=1I;
(24.1) GY = Goo/2¥ = 1im GY, 2V = (eazy ) for ’
(23) for Y=IL
Denote by ® (resp. ®Y and ®vy) the canonical homomorphism Goo — Goo (resp.

Goo — G’Y and GY — (o, similar to those in Diagram 2.1.
Define subsets O(I) and O(II) in Go respectively by (Condition I-00) and (Con-
dition II-00) as follows:

I):={g" ¢ Goo: g = ®Y(g") € GL satisfies (Condition 1-00) },

24.2 ~ ~
(24.2) O(Il) := {¢g" € Goo; g’ = @"(¢") € G} satisfies (Condition 11-00) }.

Then @Y (O(Y)) = OY € GY,®(O(Y)) = OY C Gu, for Y=I, II. Consider a
normal subgroup N := ® 1(N) of G of finite index, where N := A (T)%? a
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normal subgroup of G = S (1) :

N = q>—1(m (1)), T=2Zp, SQ2)={t*teT}CT=2Zpn,
(24.3) WAoo (T)9®) = {(d,0) € G ; P(d) € S(2), 0 € Aso}
= { (d,0) € Goo 5 0ord(d) =0, L(c) =0 (mod 2)}.

Then N contains the subset O(II) but not O(I).
As in [I, §10], for the mother group Goo = R(G(m, 1, oo)), let x¥ (Y =1~ VIII)
be the character of Z = (z1, 29, 23) C G in CASE Y, Type (1, B2, 33), that is,

(24.4) XY (z) =8 (i=1,23),

and put KIY(CNJOO) = Ki‘Y(éoo), EY(éoo) = EXY(GOO), and call f € EY(éoo) a
character of G, of CASE Y, Type (01, 32, 33). We have a decomposition of the set of
characters as

(24.5) E(Gx)) = || EY(Gw).

Y=I~VIII

From the studies in [I, §§9-10] on the supports of central functions, we have the
following (cf. the summary in Table 10.1 in [I]).

Lemma 24.2. For Y=I, II, every [ € KF(C:’OO) vanishes outside the subset O(Y).

We have studied in [I, §§10-11] the properties of K (Go) and the subsets O(Y),
and summarized the results in Tables 10.1 and 13.1, loc. cit. In particular, by the
detailed study of structure of O(I), we obtain in [I, Theorem 11.1 (ii)|] the following
important result.

Lemma 24.3. For f € KY( OO) of CASE'Y, the criterion (EF) to be a character
holds for Y =L

For the level of quotient groups G = éY Y =1, II, we set similarly as above:
let X’ be the character of Z = (z1,22) given by X(Zz) = -1 (i = 1,2), and put
EY(@Q') = EX(G) for G’ = GY. An element f € EY (GY) is a character of a factor

representation of éo\g and the natural correspondence
(24.6) EY(GY)3f — fodY € EY(Gw)
is a bijection.

Problem setting: Prove the completeness of the set of limit functions FY in
CASE Y for CASE Y, Y=I and 11, that is, F¥ = EY (Go\g)

The inclusion FY D EY (égg) is already known in (22.1), so that the problem is
to see the converse inclusion FY C EY (GO%)
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24.2 Fl= El(égo) and parametrization of spin characters

Every limit function f in F' (on égo) is factorizable as proved in Theorem 23.6 (ii),
and so, it is extremal by Lemma 24.3, whence F! C E! (Ggo) Thus we obtain the
following theorem.

Theorem 24.4. (i) Every limit as n — oo of normalized spin irreducible charac-
ters of GL = GY(m,1,n), in CASE I, Type (—1,—1,—1), is extremal or is a character

of C:go = CNJI(m, 1,00), so that F' = El(égo), and this gives a formula of spin char-
acters as

E'(GL) = {fh: A€ A(T")} = {Ioo - fa3 A€ AT},

where A(fo) denotes the set of all parameters A = (a, 35 1) satisfying (25.9)-(23.11).
The above equality can be rewritten as EI(GOO) = Flo®l

(ii) The space El(éio) C K (é’go) of spin characters of G(m,1,00) in CASE I is
parametrized by A(T®) and is compact as a topological space, and the map A(T°) >
A fix € EI(GgO) 15 homeomorphic.

24.3 FI = EH(éED) and parametrization of spin charac-
ters

24.3.1. Restriction map from Goo to N = O~YN), N = Ao (T)°?.

Denote by K (]\7 ), Y =1, II, the set of all normalized central positive definite
function f on N satisfying

(24.7) Fh)y =xY(2) f() (2 € Z = (21,20,2), ' € N),

where x'(z;) = =1 (i = 1,2,3), and x"(z;) = =1 (i = 1,2), x"(23) = 1, respectively.
Moreover, let EY (N) be the set of extremal elements of the convex set Ky (N), that
is, the set of characters of N of Type (—1,—1,—1) or (—1,—1, 1) respectively.

First we have the following fact, similar to Theorem 6.2 in [I]. Define a restriction
map Rg: from K3 (éoo) as

(24.8) RY: Ki(Gx) 3 F — f = Flg € K1 (N)

Proposition 24.5. (i) A function f on the normal subgroup N is Goo-invariant
if and only if it is invariant (under N ).

(ii) The restriction map Rg gives a surjection from E(Goo) onto E(N), and also
a surjection from EY (éoo) onto EY (N) for Y=1,1I.

The proof is similar as that for Theorem 6.2 (ii) and (iii), loc. cit., and omitted.
Now put, for Y =1, II,

(24.9) RY(f):=RY¥(fodY) (feKi(GY)).

By the proposition above, we obtain from Theorem 24.4 the following.



262 T. HirAI, A. HORA AND E. HIRAI

Proposition 24.6. The set of characters EI(N) of the normal subgroup N =
®~Y(N) in CASE I, Type (—1,—1,-1), is equal to the set of RI(f1) :

E'(N) = {R'(f4); A= (a. ;) € A(T")}.
As a property of the restriction maps RY,Y = I,1I, we remark the following.

Proposition 24.7. (i) For Y=I, we have R'(f;) = R'(f}) for A € A(T\O),
and the restriction map R is 2-to-1 if 'A # A, and 1-to-1 if ‘A = A.
(ii) For Y =TI, the restriction map R is bijective.

Proof. We see easily that R! ( f}l) =RI! ( fé) from the explicit form of f} given in
Theorem 23.6, or more directly from Lemma 23.5 (ii). On the contrary, suppose that,
for A= (a,[;u) and A" = (o/, 5/, 1), there holds (fj o <I>I) ‘Kf = (f/IV o <I>I) |N‘ Then,
we can discuss just as in the proof of Lemma 23.5 (ii).

The assertion (ii) is easy to prove. O

24.3.2. Operators M and N of multiplying the character )Zﬂuo.

In CASE VII, Type (1, 1,—1), there exist 2-dimensional IRs ma ¢, of Goo =
R(Goo), given in [I, §12]. Here (x € T, (x(n) := w¥, with the generator n of T = Z,,,
and o, (2{2925) = (—1)°E2, and

(2410) 7T27<k (77;) == <<k(()77) —CI?(U)> 5 7T27<k (Tz) = ((1) é) (Z,] S N)»

where 7; = zzj _17]j (mj €T; =T, j € N) form another set of generators of Dee.
The trace character of ma ¢, is given as follows. For ¢’ = 282028 d'o’ € R(G), d' =
[Lienn™, o' € 6o, put ord(d’) := 3y aj (mod m), then

2. (=1)° ord(d) if I(6') =0, ord(d') = 0 (mod 2),
) e { (1)) (¢7) =0, ord(d) =0 (mod 2

0 otherwise.

So the support of the character xr, . is equal to N = OUN), N = Ao (T)53.
Let X, G denote the normalized character xr, & /2, then the inner tensor product
ma,¢, X T2 ¢, has normalized character given as

e, (6") - Xrae, (9" = (Golm) Cem) ™) - X 54",

where X5 denotes the indicator function of N. In particular, for £ = ¢ = 0, we have
~ 2
(24.12) (Xﬂz,co) = X5

Noting that X2 ¢, is a character of Goo = R(Gs) of Type (1, 1,—1), we define two
maps M and N similarly as [I, Definition 16.1]:
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Definition 24.1. Between the set of normalized central positive definite functions
K{(N) in CASE I and the set of such functions K{'(N) in CASE II, we define two

maps M and N as follows: for F € K} (K/) and f € K{I(N), put

(24.13)

{ M(F)(g”) = %WZCO (9”) ’ F(gﬂ)7 (g// c ]\7)

NUNG") = Xmagy(9") - f(9"),

We see from |1, §10, Table 10.1] that for any f € K{I(CNJOO), its support supp(f) is
contained in the subset O(II) C N. Therefore the restriction map

(24.14) K (Gw) > f— f|5 € KIY(N)

is bijective, and maps E™ (éoo) onto EH(]\Nf) bijectively.

Moreover note that (5(}2’40)2 is just the indicator function of N = . (T)%®) c G4
if considered as a function of g = ®(g”) through modulo Z, and is the indicator function
of N = ®71(N) as a function in ¢" € Gw.

These facts guarantee that M and N are mutually the inverse of the other and so

both are bijective. Moreover since they are both linear, they map the sets of extremal
points E'(N) and B (N) mutually each other.

24.3.3. Spin characters in CASE II, Type (—1,—1, 1).

Proposition 24.8. (i) The map M and N between K] (Kf) and K{I(ﬁ) are
mutually the inverse of the other, and both preserve convex combinations. They induce
bijective maps M’ and N between the sets of extremal points E'(N) and E"(N).

(ii) With restriction maps from EY (ém), Y =1, 11, there gives rise to the following
diagram, with Go = R(G(m, 1,00)) :

EYGL) = F'(Gu) EY(Gs) = EN(GL)
Rg: | surj. bijec. | Rg
oM _
PR B
N/

/giii) Under these maps, the correspondence of functions are as follows: for A €
A(TO)7 f,I4 - FoI,oo - fas fH - Fol,go - fa,
EUGL) 5 f} o flod! flodl o file pU(GL)
surj. | R R | bijec.
(fac®ly = (fio®)|g
Note 24.1. As a spacial case of the proposition above, we have for the special

characters, B B
5571’772’(0 X (FOI,OO © (I)I) = (FO{LO ° (I)H)'



264 T. HirAI, A. HORA AND E. HIRAI

Now, appealing to Theorem 24.4 in CASE I, we arrive at our final theorem as
follows. As a parameter space for E''(Go), we have the quotient space A(T°)/(r) of

the set A(TO) of A= (a,3;p) satisfying (23.9)-(23.11) by the action 7: A — !A.

Theorem 24.9. (i) Every limit as n — oo of normalized spin irreducible charac-
ters ofGH GY(m,1,n), in CASE II, Type (—1,—1, 1), is extremal or a character of
GCLIJ GH(m7 1,00), so that ]:II EH(GH) This gives a formula of spin characters
in CASE II, Type (—1,—1,1), a

EMNGY) ={fi; Ac A(T")} = {FL - fas A AT")}.

This equality can be rewritten as E (éoo) = Fllo oM,

(ii) The map .A(T\O) >Aw file pH (ég) C Ky (é’g) is continuous and, as its
image, the space EY (ég) is homeomorphic to the quotient space A(T\O)/@') and is
compact as a topological space.

25 Structure of the space of spin characters of
G(m, 1, 00)

25.1. Multiplicative structure of spin characters of G(m,1,0).

Here we quote the main result of the paper [DuNe| by Dudko and Nessonov on
spin characters of G(m,1,00). The notations ibid. are as follows:

By =6 X Ly Ly =Up>1Zn,

(Bm = G(m,1,00)), and B,, arepresentation group of By, isomorphic to R(G(m,1,00))
(cf. Theorems 3.2 and 3.3 in the present paper). The canonical homomorphism Em —
By, is denoted by pr.

The cocycles 0 = [ty,tu,t,] in Definition 9, p.1428, of a factor representation 7

of B, is equal to our (spin) Type B = (B1, B2, 33) modulo ordering as [ty,t,,t,] =
[B1, 83, B2]. There are 8 cocycles named as

00 - [17 17 1]7 91 - [_1) 17 1]7 92 = [17_1) 1]7 03 [
00 =[1,1,-1], 05 = [-1,1,-1], 66 = [1, ~1,-1], 67 = [

1,-1,1],
1,— 1 —1]

For each cocycle 0, except 8 = 0, a special factor representation 7Tg7 called basis repre-
sentation of finite type of Em, is constructed, in such a way that, in its representation
space V(m4), there exists a unit cyclic vector &) such that (75(g)€5,€5) = x5(g) (g €
Em), where xZ denotes the character of 72. (This representation, uniquely determmed
modulo equivalence by positive definite function f = Xz, can be called as Gelfand-
Raikov representation associated to f, cf. [GeRal.). First, for three cocycles 6 = 61,05
and 07, the representatlon 7r9 is defined by specifying the operator 7r9( ) for each stan-
dard generators g of Bi,. Second, for a cycle 8 other than the above, write 6 as a
product

0 = 01i92j07k7 U J k€ {07 1}7
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and consider the tensor product
b\ ®i b\®j b\®k
my = (71)% @ (13)% @ (7).

Put & := (631)@ ® (632)@ ® (537)@)]“ € V() and take the closed subspace H} spanned
by 7 (Bm)&5, then mf := 7Té|Hg
It is claimed that Theorem 10 on p.1429 is the main result of the paper:

Theorem 10. Let x be an arbitrary indecomposable character of Em cor-
responding to a cocycle ;. Then there exists an indecomposable character
X' on By, such that

x(9) = x5,(9) X' (pr(9)) (15)

holds for each g € By,. Conversely, every function x of the form (15) is
an indecomposable character on By, corresponding to the cocycle 6;.

25.2. Parameter spaces of spin characters of S, and G(m,1,00).

As the parameter space of (non-spin) characters of the infinite symmetric group
Soo, the set of Thoma parameters is given (Satz 3 in [Tho2]) as

A= {(, 8); a = ()ien, B = (Bi)ien satisfying (25.1)},
{ o> 2> >0, f1>F>..>0>...>0,
el + 181N < 1, el := X senv iy 1Bl = 2ien Bi-

Define a subset C! C A' of “ nearly of half a dimension” of A' (even though both of
infinite dimensions) as

(25.1)

Cli={v; 7= (m)ien satisfying (25.2)},
(25.2) N2> . 2%>...20, [q<1

Moreover, for a subset K of the dual T of the group T'= Z,,, put

A(K) := {(a, B;1); = (a¢)cere, B=(Bc)cer, 1= (t¢)cek
satisfying (25.3)—(25.4) },

(25.3) ac = (agiien, Be= (Beidien,
. Oég‘,IZOéC,QZ...ZO,,647126922...20;MCZ()?
(25.4) ol + 1181 + [l = 1,

where [laf| := 2 e llacll, 181 = 2eer 165l llull = 2cek me- Then, A(T) for

K = T is the parameter spaces for non-spin characters, and the subset A(fo) for
K = T° (“of nearly half a dimension” ) is used to prepare parameter spaces for spin
characters of G(m, 1, 00).

Let foo be the pointwise limit (on éoo) of the normalized character xa, as n — oo.

The exact form of f;o is obtained directly from Theorems 15.2 and 15.3, and see that
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the support of fvoo is contained in the subset B C 5[00 = 04 ! (Qloo) consisting of
elements o’ € Ao, of the following form (cf. Definition 13.2 (2)):

o' =aioh---0ol, o = Pg(0},) disjoint cycles, £y = £(o},) all odd.

_ Nazarov proved that any spin character of éoo is given as a product fm - f, of
foo and a non-spin normalized character f of G (Theorem 3.3 in |[Naz|, cf. also
Ivanov [Iva]). The latter is given by a parameter (o, 3) € A' as f = f, 3. Every
[ € E(6) is factorizable in the sense that, if 0 = 0102 in S is a decomposition
such that supp(oy) (k = 1,2) are mutually disjoint, then f(o) = f(o1) f(o2). So, fo
is uniquely determined by the following formula: for a cycle 74 of length ¢,

_ ¢ (1)1 ¢
(25.5) fap(me) =) ol + (=D B
where (—1)"! = sgn(7y). Since supp(foo) C B, we have }.Voo “fap = foo - fv.0,
where 7 = a U 8 is given from (a, 3) by rearranging the union of {a; (i € N)} and

{Bi (i € N)} in the descending order.

Table 25.1. Spaces of non-spin and spin characters of S, and G(m, 1,0).

parametrization parameter subset
through space D supp(f)
symmetric
eroup G | (.0) = fap | (a,8) €A Sec
coverin = r3 1 1 ~
groupg S 7'_>foo'f%0 'YEC cA B C s

For G(m,1,00) = 6 (Z,) and its covering groups:

CASE | (spin) cocy- | parametriza- parameter subset
Y type cle tion through space D supp(f)
I |(1,-1,-1)| 6; | A—FEL.f4 Ac A(TY) O(I)

M | ((L-1,1) | 6 | A FX.f4 | {A A} € AT?)/(r) O(II)

VIT | (1L,LA) | 6y | A Xy - fa | {A%A} € A(TO) /(r) | O(VII)

VII | (1,1,1) 6 A fa Ac A(f) Goo(Z )

The subsets O(I), O(II) and O(VII) are given in Table 10.1 in [I], and O(I), O(II)
are redefined in (24.2). Moreover, O(VII) = &~ (N), N = Ao (Z,,)°P.

Note 25.1. The factor representation 75 = 7T32 in [DuNe| is equal to 2-times

multiple of our 2-dimensional spin representation my ¢, in CASE VII (Theorem 12.1 in

I]), and that XY is equal to Xa2.¢,. The one 72 = 74 loc. cit. can be constructed from
92 7<0 7 07

IRs IT}, H£r~0f G} (depending on n even or odd) in Example 11.1 as n — oo, and x27
is equal to FOIO Similarly the one 7rl5’ = 7755 loc. cit. can be constructed from IIL, HH

in Example 12.2 as n — o0, and ng is equal to ﬁ;{
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The problem of transcribing the parametrization of spin characters of G(m, 1, c0),
in Table 25.1, in terms of parameters in [MoJo| for spin IRs (cf. [Iva]), is an interesting
problem but left to be open here.
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