CHAPTER 7

A Kac-Moody root system

In this chapter we explain a correspondence between spectral types and roots
of a Kac-Moody root system. The correspondence was first introduced by Crawley-
Boevey [CB]. In §7.2 we study fundamental tuples through this correspondence.

7.1. Correspondence with a Kac-Moody root system

We review a Kac-Moody root system to describe the combinatorial structure of
middle convolutions on the spectral types. Its relation to Deligne-Simpson problem
is first clarified by [CB].

Let

(7.1) I:={0,(j,v);j=0,1,..., v=1,2,...}.

be a set of indices and let h be an infinite dimensional real vector space with the
set of basis II, where

(7.2) D={w;iel}={a, a;,;7i=012,..., v=12,...}
Put
(7.3) I':=T1\{0}, ' :=1\ {ao},
(7.4) Q= Z Zao O Qg = Z Z>pa.
a€cll acll

We define an indefinite symmetric bilinear form on h by
(ala) =2 (a €1I),
(aoleyjn) = —0u1,

(7.5) oy
oy = {0 G#7 o v,
(AT R% -1 (i=j and |p—v|=1).

The element of II is called the simple root of a Kac-Moody root system and
the Weyl group W, of this Kac-Moody root system is generated by the simple
reflections s; with ¢ € I. Here the reflection with respect to an element a € §
satisfying (a|a) # 0 is the linear transformation

(z]a)
. o _ o)
(7.6) So tho3xHx (a|a)oz6h
and
(7.7 S;i = Sq, for i€l

In particular s;(x) = x — (a;|x)a; for i € I and the subgroup of W, generated by
s; for i € T\ {0} is denoted by W_.

The Kac-Moody root system is determined by the set of simple roots IT and its
Weyl group W, and it is denoted by (II, W,).

Denoting o(ap) = ap and o(a;,,) = ay(;), for o € G, we put

(7.8) Wao 1= Gug X Wao,
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70 7. A KAC-MOODY ROOT SYSTEM

which is an automorphism group of the root system.

REMARK 7.1 ([Kc]). The set A" of real roots equals the W,,-orbit of II, which
also equals W ap. Denoting

(7.9) B :={f € Q4+ ; suppf is connected and (B,a) <0 (Va €II)},
the set of positive imaginary roots AT equals W, B. Here
(7.10) suppf:={a €ll;n, #0} if f= Z N Q.
a€cll
The set A of roots equals A™ U A" by denoting A" = —A%™ and A"™ =
ATPUA™, Put Ay = ANQ4, AL = -AL, AT = A" N Q4 and AT = —A’°.

Then A = Ay UA_, AY™ € Ay and A™ = A¢ U AT The root in A is called
positive if and only if « € Q.

A subset L C II is called connected if the decomposition L1 U Ly = L with
Ly # 0 and Ly # 0 always implies the existence of v; € L; satisfying (v1|va) # 0.
Note that suppa 3 ag for a € A™™.

The subset L is called classical if it corresponds to the classical Dynkin diagram,
which is equivalent to the condition that the group generated by the reflections with
respect to the elements in L is a finite group.

The connected subset L is called affine if it corresponds to affine Dynkin dia-
gram and in our case it corresponds to Dy or Eg or E; or Eg with the following

Dynkin diagram, respectively.
3
6 5 4 1
o—=0 O

2 4 3 2
O—0O—-~0 O—0O
33,222, 111111
(7.11) 11,11,11,11 1
2 2
1 2 3 4 3 2 11 2 3 2 1
o—O0—"ADO—0—0O0—0—0 O0—0O—"0O—"~0O——=0
22,1111, 1111 111,111,111

Here the circle correspond to simple roots and the numbers attached to simple roots
are the coefficients n and n;, in the expression (7.15) of a root a.

For a tuple of partitions m = (mj,u) e P we define

j>0, v>1
Njy = Myl + M2+
oo oo
(7.12) Qm ‘= Nnog + E E n; 05, € Qy,
j=0v=1
K(Qm) = m.

As is given in [O6, Proposition 2.22] we have

PROPOSITION 7.2. i) idx(m,m’) = (m|om’).
i) Giveni € I, we have amr = s;(am) with
Om (i=0),
m' = v vl

(m071 BN LT W (L7 VRS N LT RV ) (’L = (], l/))
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Moreover for £ = (Lo, {1, ...) € ZZ, satisfying €, =1 for v >> 1 we have

o0 fj*l
(7.13) op =01, =ap + Z Z Qjp = <H Sj0;—1" " Sj’25j71> (Oé())7

=0 v=1 >0

(arm|avr)
7.14 Ay, (m) = Sa, (¥m) = Om — 2——ap = am — (am|ow)ay.
(7.14) . (m) .(am) (anlor) (tmlove)
Note that
o = nag + Z an’l,aj,l, € Ay withn >0
(7.15) i>0v>1
:>n2nj’12nj,22--~ (]:0,17)

In fact, for a sufficiently large K € Z~, we have n; , = 0 for p > K and
Sajtajpiitota; @ =0+ (Mj, 1 —nj ), o+ Fajk) € AT
for « € Ay in (7.15), which means n;,_1 > n;, for v > 1. Here we put n;o =n
and ;0 = op. Hence for o« € A} with suppa 3 ag, there uniquely exists m € P

satisfying a = -

It follows from (7.14) that under the identification P C Q4 with (7.12), our
operation J; corresponds to the reflection with respect to the root ay. Moreover
the rigid (resp. indivisible realizable) tuple of partitions corresponds to the positive
real root (resp. indivisible positive root) whose support contains «g, which were
first established by [CB] in the case of Fuchsian systems of Schlesinger canonical
form (cf. [06)).

The corresponding objects with this identification are as follows, which will be
clear in this section. Some of them are also explained in [O6].

’ P ‘ Kac-Moody root system ‘
m am (cf. (7.12))
m : monotone aeQy: (o)f) <0 (VBell')
m : realizable acAy
m : rigid a € A suppa D ag

m : monotone and fundamental | o € Qi:a=agor (a|f) <0 (V8 e€1l)
a €Ay, suppa > ag
indivisible or (aja) <0

aEQ.: (alf) <0 (YFel)
indivisible

ae AL (alam) =1 (Va € A(m))

ap € A(m), («|8) <0 (VB ell')

m : irreducibly realizable

m : basic and monotone

m : simply reducible and monotone

ordm no @ =mnoeg+ )., , NisQiy
idx(m, m’) (0t |0rm')
idxm (0tm|ovm)
d¢(m) (cf. (5.25)) (aglam) (cf. (7.13))
Pidx m + Pidxm’ = Pidx(m 4+ m’) (am|om) = =1
(v,v+1)eG; C S, (cf. (4.30)) sipv € WL (cf. (7.7))
H~ Gy (cf. (4.30)) G in (7.8)

o1 50
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) 5oy (cf. (7.13))
(01, Seo) W (cf. (7.8))
{Am} (AN, am) (cf. (7.18))
{Am} (A(N) + 3am|om)
Ad((z —¢;)7) +7AQ; (cf. (7.18))
Here
(7.16) Ay i={ka;a €Ay, k€Zwg, suppa D ap},

A(m) C A’ is given in (7.30) and A(\) € by for A = (X)) j=0,...p with );, € Cis
v=1,2,.

defined as follows.

DEFINITION 7.3. Fix a positive integer p which may be co. Put
(7.17) I,:={0, (4,v);7=0,1,...,p, v=1,2,..} C T

for a positive integer p and I, = I.

Let b, be the R-vector space of finite linear combinations the elements of
I, := {o; i € II,} and let f)zv, be the C-vector space whose elements are linear
combinations of infinite or finite elements of 11, which is identified with Il;c;, Coy;
and contains b,

The element A € b naturally defines a linear form of b, by (A| - ) and the group

Wi, acts on by If p = 0o, we assume that the element A = &oap + - &) € hY
always satisfies ;1 = 0 for sufficiently large j € Z>¢. Hence we have naturally
b;/ C h,\g/+1 and h\o/o = szo h;/

Define the elements of b,

H»Y

A=Y (w=ia;; (7=0,....,p, v=0,1,2,...),

Ao

171/%”,

l\J\H
l\:)\

HMS

1=v+1
%) P oo
AO = 2Ap — 2A0’0 =g + Z(l + V)OZ()’V =+ Z Z(l — V)Ozj",,,
(718) N v=1 j=1lv=1
AY = Ajo—Ago = Z v(iag, —aj,) (0<j<k<p),
v=1
P oo v
/\) = —Ao - Z Z(Z )\jﬂ-)aj’l,
j=0v=1 i=1
P oo
=—Ao+ Z Z Njw(Njv—1—Aju).
j=0v=1
Under the above definition we have
(7.19) (A%a) = (A%4Ja) =0 (Va € 11,),
(720) (Aj,l/‘aj',l/’) :5j,j’6117l/’ (]7 jI:O713"'7 v, V/: 1727"‘)7
(7.21) (A0|Oéi) = (Aj,o‘ai) = (51,0 (VZ € Hp),
(7.22) {Am} = (A(N) + am|am),
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p
so(AN) = = (3" Aja = 1)ao + A
j=0

(7.23) = —/LAO - AO - i(i (/\0)1‘ — (1 + (51'70)/1))050)1,

v=1 i=1

- Ep: i(Z(Ajl +(1— 5z‘,0)u)>aj,u

with p = Z?:o Aji— L

We identify the elements of b; if their difference are in CAY, namely, consider
them in Bp = h;{ JCAC. Then the elements have the unique representatives in f)]\g/
whose coeflicients of «g equal f%.

REMARK 7.4. i) If p < oo, we have

p
(7.24) {Aeby; (Ala)=0 (YaeIl,)}=CA"+> CAJ,.

Jj=1

ii) The invariance of the bilinear form ( | ) under the Weyl group W, proves
(5.15).

iii) The addition given in Theorem 5.2 i) corresponds to the map A(X\) —
A(N) +7AG,; with7 € Cand 1 < j <p.

iv) Combining the action of s;, on f)}f with that of sg, we have

(7.25)  A(N) = s4,A(\) € CA” and am = So,am  when {N} = 9{\m}
because of (5.30) and (7.23).
Thus we have the following theorem.

THEOREM 7.5. Under the above notation we have the commutative diagram

{Pm : Fuchsian differential operators with {Am}} — {(A(N),m); am € AL}
J fractional operations O I Wao-action, +7‘A87j

{Pm : Fuchsian differential operators with {Am}} — {(A(N),0m); am € AL}

Here A(\) € b, the Riemann schemes {\m} = {Njwlomy ) bi=0,....p satisfy {Am}] =

3 hyeen

0 and the defining domain of w € Wy, is {a € Ay ; wa € Ay},

PRrROOF. Let T; denote the corresponding operation on {(Pm,{Am})} for s; €
Weo with 7 € I. Then Ty corresponds to 07 and when 7 € I’, T; is naturally
defined and it doesn’t change P,,. The fractional transformation of the Fuchsian
operators and their Riemann schemes corresponding to an element w € W, is
defined through the expression of w by the product of simple reflections. It is clear
that the transformation of their Riemann schemes do not depend on the expression.

Let i € I and j € I. We want to prove that (T,7;)* = id if (sis;)* = id
for a non-negative integer k. Note that T? = id and the addition commutes with
T;. Since T; = id if i € I’, we have only to prove that (T} 17p)® = id. Moreover
Proposition 5.8 assures that we may assume j = 0.

Let P be a Fuchsian differential operator with the Riemann scheme (4.15).
Applying suitable additions to P, we may assume \j; = 0 for j > 1 to prove
(To1Tp)>P = P and then this easily follows from the definition of 91 (cf. (5.26))
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00 cj (1<j<p)
)\071 m 0 ma
a4y —ordm)
/\O,u](mo,u) Jvl(mg.)
00 ¢ (1<j<p)
To.To ) [Mo2 = Ao,1 + Umo) (0] 1 —a)

§l—2o,1 [_>\0,1 + 2](m0,2—d) P‘j’Q + Ao — 1}(7",7‘,2)

Moy — X0+ U,y N + 201 = Um, )

00 ¢j (1<j<p)
To,1To [—>\0,2 + 2](m0,1—d) (mj,14+mo,1—mo,2—d)

[)‘0,1 - )‘0,2 + 1](m0,1)

[0]¢

N2+ X02 = Lmy.a)
Mo =202+ Uime,) [N,

)

v+ A2 — ](mj,,,)

00 ;g (1<j<p
To,1To [)‘0 1](7710 1) [O](mj,l)
§ro,2—1 [)‘0 2](mo 2) >‘ij (mj,2)
[Ao 71/](77740 v [/\ij](mj v)
and (T071T0)3P € Clz] Ad(ﬁ)‘0 2= 1) o Ad(@)‘O 2= Ao, 1) o Ad(@lf Ao, 1)RP =C[z]R

D

DEFINITION 7.6. For an element w of the Weyl group W,, we put
(7.26) A(w) := AN w AT

If w=s;8, 5 with i, € I is the minimal expression of w as the products of
simple reflections which means k is minimal by definition, we have

(727) A(w) = {aik78ik (aik—1)7 SikSik_1 (O‘ik72>7 <oy i T Sig (ah)}'

The number of the elements of A(w) equals the number of the simple reflections
in the minimal expression of w, which is called the length of w and denoted by L(w).
The equality (7.27) follows from the following lemma.

LEMMA 7.7. Fiz w € Wy and i € I. If o € A(w), there exists a minimal
expression w = Sy, Sy -+ 8y with sy = s; and L(ws;) = L(w) — 1 and A(ws;) =
si(A(w) \{a;}). If a; ¢ A(w), L(ws;) = L(w) + 1 and A(ws;) = s;A(w) U {a}.
Moreover if v € W, satisfies A(v) = A(w), then v = w.

PROOF. The proof is standard as in the case of classical root system, which
follows from the fact that the condition o; = s;, - - - s4,,, (v, ) implies

(728) Si = Siy, "'Siz+18izsiz+1 c S

and then w = ws;s; = 84, * -+ 84,184, "+ * 54, Si- O

DEFINITION 7.8. For a € @, put

(7.29) a) ==mno+ Z an,,, if o =mngap + Z an,uaj,u €Q.

j>0v>1 j>0v>1

Suppose m € P,4 is irreducibly realizable. Note that sfm is the monotone
fundamental element determined by m, namely, osfm is the unique element of
Wam N (B U {ao}). We inductively define wm € Wi satisfying wmom = aspm-
We may assume wp, has already defined if h(om/) < h(om). If m is not mono-
tone, there exists ¢ € I\ {0} such that (am|e;) > 0 and then wm = wmrs; with
Qm’ = S;Qyy. If m is monotone and m # fm, wy, = WymSo-
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We moreover define
(7.30) A(m) := A(wm)-
Suppose m is monotone, irreducibly realizable and m # sfm. We define wy,
so that there exists K € Z~q and v1,...,vx € W satisfying
Wm = VK S0 - - V2500150,
(UkSo - - v1Spam|a) <0 (Vo eII\ {0}, k=1,...,K),

which uniquely characterizes wy,. Note that

(7.31)

(7.32) VRS0 V1800m = Q(so)km (K =1,..., K).

The following proposition gives the correspondence between the reduction of
realizable tuples of partitions and the minimal expressions of the elements of the
Weyl group.

PRrROPOSITION 7.9. Definition 7.8 naturally gives the product expression wy, =
Siy 8y, withi, €I (1 <v<k).

i) We have
(7.33) L(wm) = k,
(7.34) (alam) >0 (Vo € A(m)),
(7.35) h(am) = h(ospm) + Y (0fom).
a€A(m)

Moreover ag € supp « for a € A(m) if m is monotone.
ii) Suppose m is monotone and fm # m. Fiz mazimal integers v; such that

M1 — dmae(m) < my,, 41 for j=0,1,... Then
A(m) = 50( H Sj1° sj%)A(s@m) U {Oéo}
(7.36) FE

Ufao+aj1+--+aj,;1<v<vjand j=0,1,...},
(7.37) (Oéo ‘a1 ++ aj7y|am) = dmax(m) +mj 41 —mya (V > O).
iii) Suppose m is not rigid. Then A(m) = {a € A" ; (a|am) > 0}.
iv) Suppose m is rigid. Let a € AT satisfying (a|omm) > 0 and sq(am) € Ag.
Then
a € A(m if (a|lam) > 1,
(7.38) (m) . (alam)
#({a, am —a}n A(m)) =1 if (alam)=1.
Moreover if a root v € A(m) satisfies (y|om) = 1, then am —y € AT and ag €

supp(atm — 7)-
V) W s the unique element with the minimal length satisfying Wmom = Qs fm-

PROOF. Since h(sya) — h(a) = —(ay|a) = (syaqr|a), we have

I
™~

h(siz sy a) — h(a) (h(Si; cesya) —h(si o ~si/1a)>

14

(Culsiy - sipe) = 3 (51,8, @ lsy -+ 5140)
v=1

Il
o

v

[
M~

N
Il
—

for ¢/, 4}, € I and o € A.

i) We show by the induction on k. We may assume k > 1. Put w’ = s;, -+ 84, _,
and oy = i, and a(v) = s;,_, ---8;,,, 04, for v =1,... k — 1. The hypoth-
esis of the induction assures L(w') = k — 1, A(m’) = {a(1),...,a(k — 1)} and
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(aW)|am) > 0 for v = 1,...,k — 1. If L(wym) # k, there exists ¢ such that
a;, = o) and wym = S -+ 8i,_,Si,,, * " Si,_, is a minimal expression. Then
h(am) — h(am’) = —(i, |am’) = —(a(f)|am’) < 0, which contradicts to the defi-
nition of wy,. Hence we have i). Note that (7.34) implies supp a 3 ag if @ € A(m)
and m is monotone.

ii) The equality (7.36) follows from

A(Om) N Z Za=A{aj1+-+aj,,;v=1,...,v5 v;>0and j =0,1,...}
acIl\{0}

because A(m) = soA(Om) U {ag} and (H §>0 Sju; ~--sj’1>a,9m = (sHm-
v; >0

The equality (7.37) follows from (a0|ozm)J = d1(m) = dpae(m) and (o, |om) =
Mjp+1 — Myjp-

iii) Note that v € A(m) satisfies (y|am) > 0.

Put w, = si,,, - -5i,_,5i, for v =0,...,k. Then wy = wy and A(m) =
{w, ey, ;v =1,...,k}. Moreover w, w, *a;, € A" if and only if 0 < v/ < v.

Suppose m is not rigid. Let o € A" with (afom) > 0. Since (wma|am) > 0,
wma € AT Hence there exists v such that w,a € Ay and w,_1a € A_, which
implies w, o = «;, and the claim.

iv) Suppose m is rigid. Let o € A’¢. Put £ = (a|am). Suppose £ > 0
and 8 := spam € A;. Then oy = o+ B, ag = bwma + wmP and (Blam) =
(am — lafam) = 2 — £2. Hence if £ > 2, RBN A(m) = () and the same argument as
in the proof of iii) assures & € A(m).

Suppose £ = 1. There exists v such that w,a or w, 3 equals «;, . We may
assume w;, 'a = a;,. Then a € A(m).

Suppose there exists w,»8 = «; ,. We may assume V' < v. Then wy, Qm =
Wy 10+ wy_1 8 € AT, which contradicts to the definition of w,. Hence w, 8 =
a; , for v/ =1,... k and therefore § ¢ A(m).

Let v = w,ta;, € A(m) and (y|am) = 1. Put 8 = am — a = s4am. Then
Wy—10m = w,3 € AT¢. Since f ¢ A(m), we have 3 € A”¢.

Replacing m by sm, we may assume m is monotone to prove oy € supp f.
Since (Blam) =1 and (a;|am) < 0 for ¢ € I'\ {0}, we have g € supp 5.

v) The uniqueness of wy, follows from iii) when m is not rigid. It follows from
(7.34), Theorem 15.1 and Corollary 15.3 when m is rigid. (]

COROLLARY 7.10. Let m, m’, m" € P and k € Z~q such that
(7.39) m = km’ +m” idxm = idxm” and m’ is rigid.

Then m is irreducibly realizable if and only if so is m” .
Suppose m is irreducibly realizable. If idxm < 0 or k > 1, then m’ € A(m).
Ifidxm = 2, then {am’, am”} NA(m) = {am'} or {am}.

PROOF. The assumption implies (otm|am) = 2k? + 2k(am’ |0tmr ) + (e |aomr)
and hence (m/|mr) = —k and s,_,am» = . Thus we have the first claim
(cf. Theorem 7.5). The remaining claims follow from Proposition 7.9. (]

REMARK 7.11. i) In general, v € A(m) does not always imply syom € Ay
Put m = 32,32,32,32, m’ = 10,10,10,10 and m” = 01,01,01,01. Putting

U = 50,151,152,183,1, We have am' = ap, amr = vag, (Qm'|amr) = —2, So0mr =
20im +am, VSg0um = g+20um and SquSguag = SgUSOm = 30m/ +20um = Oy -
Then v = spvag = 2am’ + am» € A(m), (Y|am) = (Sovam’|SovSov0m’) =

(o |S0vam’) = (0w |20ms + amr) = 2 and sy (m) = (Bam’ + 20m7) — 2(2am +
Qmr) = —0mr € A_.



7.1. CORRESPONDENCE WITH A KAC-MOODY ROOT SYSTEM 7

ii) Define
(7.40) [A(m)] := {(a]am); @ € A(m)}.

Then [A(m)] gives a partition of the non-negative integer h(cum) — h(sfm), which
we call the type of A(m). It follows from (7.35) that

(7.41) #A(m) < h(am) — h(sfm)

for a realizable tuple m and the equality holds in the above if m is monotone and
simply reducible. Moreover we have

(142)  [A(m)] = [A(sDm)] U {d(m)} U | {my — myn — d(m) € Zoo: v > 1},
=0

(7.43) #A(m) = #A(sdm) + Z(min{y; mj, > mjq —d(m)} — 1) +1,

j=0
(744)  h(m) =h(sfm)+ D i
i€[A(m)]
if m € P, is monotone, irreducibly realizable and not fundamental. Here we use
the notation in Definitions 4.11, 5.7 and 6.15. For example,

’ type \ m \ h(om) \ #A(m) ‘
H, 1",1",n — 11 n?+1 n?
EOs,, 12™ mm, mm — 11 2m? +3m+1 (2m) +4m
EOsm 41 12m+L i+ Im, mml 2m? +5m+3 | (*"5F) +4m +2
X6 111111, 222, 42 29 28
21111, 222, 33 25 24
P, n—11,n—11,...€ P, on +1 [A(m)] : 1" (n — 1)
Pyomi1 | m+1m,m+1m,m+1m,m+ 1m 6m+1 [A(m)] : 147 . 2m

Suppose m € P,y is basic. We may assume (6.3). Suppose (am|ag) = 0,
which is equivalent to >-%_m;1 = (p — 1) ordm. Let k; be positive integers such
that

(7.45) (amlaj,) =0 for 1 <v<k; and (amlajk,) <0,
which is equivalent to mj 1 =mj2 =+ =myx;, > Mmjk, 11 for j=0,...,p. Then
(740 S5 Y aim

’ k; = ordm Y

If the equality holds in the above, we have k; > 2 and m; x,+1 = 0 and therefore
m is of one of the types Dy or Eg or E; or Fs. Hence if idxm < 0, the set
{kj; 0<j<p, kj >1} equals one of the set 0, {2}, {2,v} with 2 <v <5, {3,v}
with 3 <w <5, {2,2,v} with 2 <v <5 and {2,3,v} with 3 < v < 5. In this case
the corresponding Dynkin diagram of {ag, ;. ;1 <v <k;, j=0,...,p} is one of
the types A, with 1 <v <6, D, with4 <v <7 and F, with 6 <v <8. Thus we
have the following remark.

REMARK 7.12. Suppose a tuple m € Pp +1 is basic and monotone. The sub-
group of W, generated by reflections with respect to ay (cf. (7.13)) which satisfy
(atm|ag) = 0 is infinite if and only if idxm = 0.

For a realizable monotone tuple m € P, we define

(7.47) II(m) := {a;, € Supp m; M, =m; 41} U {éaO}
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Note that the condition (am|ay) = 0, which is equivalent to say that ay is a root of
the root space with the fundamental system II(m), means that the corresponding
middle convolution d, keeps the spectral type invariant.

7.2. Fundamental tuples

We will prove some inequalities (7.48) and (7.49) for fundamental tuples which
are announced in [O6].

PROPOSITION 7.13. Let m € P11\ Pp be a fundamental tuple. Then

(7.48) ordm < 3|idxm| + 6,
(7.49) ordm < |idxm|+2 if p>3,
(7.50) p < 3lidxm]| + 3.

EXAMPLE 7.14. For a positive integer m we have special 4 elements
Dim) :m?,m?, m? m(m — 1)1 Eém) :m? m?® m*(m — 1)1

ES™ : (2m)2, m*, m? (m — 1)1 E{™ 1 (3m)?, (2m)®, m® (m — 1)1
with orders 2m, 3m, 4m and 6m, respectively, and index of rigidity 2 — 2m.

Note that Eém), Dim) and 11,11,11,--- € 73;(;3-)1 attain the equalities (7.48),
(7.49) and (7.50), respectively.

(7.51)

REMARK 7.15. It follows from the Proposition 7.13 that there exist only finite
basic tuples m € P with a fixed index of rigidity under the normalization (6.3).
This result is given in [O6, Proposition 8.1] and a generalization is given in [HiO)].

Hence Proposition 7.13 assures that there exist only finite fundamental uni-
versal Fuchsian differential operators with a fixed number of accessory parameters.
Here a fundamental universal Fuchsian differential operator means a universal oper-
ator given in Theorem 6.14 whose spectral type is fundamental (cf. Definition 6.15).

Now we prepare a lemma.

LEMMA 7.16. Let a > 0, b > 0 and ¢ > 0 be integers such that a +c—b > 0.
Then

~

9

b+ke—6 [<k+1 (0<Kk<5
<7 (0 <k <6).

(a+c—b)b
PROOF. Suppose b > c¢. Then
b+ kec—06 b+kb—6
< k+1.
ate—tp = b T
Next suppose b < ¢. Then

(k+1)(a+c—bb—(b+ kc—6)

>(k+1)(c—bb—b—kc+6
>(k+1)b—b—k(b+1)+6=6—k.
Thus we have the lemma. O

PROOF OF PROPOSITION 7.13. Since idx km = k?idxm for a basic tuple m
and k € Z-g, we may assume that m is basic and idxm < —2 to prove the
proposition.

Fix a basic monotone tuple m. Put o = am, under the notation (7.12) and
n = ord m. Note that

(7.52) (ala) = n(alag) + Zan,l,(amj,y), (a]eg) <0, (a]aj) <0.
j=0v=1
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We first assume that (7.48) is not valid, namely,
(7.53) 3|(a]a)| + 6 < n.

In view of (6.18), we have (a|a) < 0 and the assumption implies |(a|ap)] = 0
because |(a|a)| > n|(alag)|.

Let IIy be the connected component of {a; € II; (a|a;) = 0 and «; € supp a}
containing ap. Note that supp a generates a root system which is neither classical
nor affine but Il generates a root system of finite type.

Put J = {j; 3o, € supp am such that (afe;,) < 0} # 0 and for each j € J
define k; with the condition (7.45). Then we note that

0 (1<v<kj),

(aloy,) = B !
Wik = My — Mgk S —1 (¥ = kj).

Applying the above lemma to m by putting n = b + k;c and n;, = b+ (k; —v)c

(1 <v <k;)and nj;+1 = a, we have

(.54 n—6 <k +1 (1<k <5),
. (Mjiky oy +kn = 2050050, | S 7 (1<k; <6).
Here (alajk;) = b—c—a < —1 and we have |(a|a)| > [(afay,)| > 7?]‘7161 if kj <6

and therefore £; > 3.

It follows from the condition k; > 3 that m € Ps because 1l is of finite type
and moreover that Il is of exceptional type, namely, of type Eg or E7 or Eg because
supp « is not of finite type.

Suppose #J > 2. We may assume {0,1} C J and ko < k;. Since Iy is
of exceptional type and supp « is not of finite type, we may assume kg = 3 and
k1 <5. Owing to (7.52) and (7.54), we have

|[(e]@)| > no,3(no2 + 10,4 — 210,3) + N1k, (P18 -1 + N1k +1 — 2005, )

n—=6 n—=6 n—=6
> 3+1 + 5+1 > 3 7

which contradicts to the assumption.

Thus we may assume J = {0}. For j = 1 and 2 let n; be the positive integer
such that Qjn,; € SUPP @ and Qs +1 ¢ supp a. We may assume nj > ns.

Fist suppose ko = 3. Then (ni,n2) = (2,1), (3,1) or (4,1) and the Dynkin
diagram of supp o with the numbers m; , is one of the diagrams:

3m

3m 4m 5m 6m 4m  2m

O—O—O0——C0O——=0C O |(ala)| > 3m

O<k<m 2m

k m 2m  3m 4m 3m  2m m

O—0O—O—O0—O0—O0—0—0 (ala)| > 2k(m k)
5m

m dm  Tm 10m 8m 6m

O—O——0O——=0

4m m )
O O O O [(a|a)| > 2m
1

For example, when (nq,n2) = (3,1), then k := mg 4 > 1 because (o|cv,3) # 0 and
therefore 0 < k < m and |(a]a)| > k(m—2k)+m(2m+k—2m) = 2k(m—k) > 2m—2
and 3|(a|a)| 4+ 6 —4m > 3(2m — 2) + 6 — 4m > 0. Hence (7.53) does not hold.

Other cases don’t happen because of the inequalities 3 - 3m + 6 — 6m > 0 and
3-2m? +6 — 10m > 0.
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Lastly suppose ko > 3. Then (ko,n1,n2) = (4,2,1) or (5,2,1).

m<k<2m 3m
k 2m  3m  4m E)/T\n 6m 4m 2m

© O O O O O O O |(a|a)] > 2m
0O<k<m 3m

k m 2m  3m  4m  bm 6m 4m 2m

© © O O—O—O0——C0—"—0C0—0O |(a|a)] =2(m 1)

In the above first case we have (a|a)| > 2m, which contradicts to (7.53). Note
that (|aja)| > k- (m —2k) +m -k = 2k(m — k) > 2(m — 1) in the above last case,
which also contradicts to (7.53) because 3 -2(m — 1) + 6 = 6m.

Thus we have proved (7.48).

Assume m ¢ Ps to prove a different inequality (7.49). In this case, we may
assume (a|ag) =0, |(aer)| > 2 and n > 4. Note that

(7.55) 2n=mnp1+ni1+---+np1 with p>3andn;; >1for j=0,...,p.

If there exists j with 1 < n;; < % — 1, (7.49) follows from (7.52) and |(a|aj1)] =

nja(n+mnje —2n51) > 2nj1(5 —nja) 2n—2.
Hence we may assume n;; > "?’1 for j =0,...,p. Suppose there exists j with
nj1 = 251, Then n is odd and (7.55) means that there also exists j' with j # j/

and nj 1 = 5+, In this case we have (7.49) since
(e )|+ (e )] = nja(ntng o =2n50) +nya(ntng o —2n50) > 255 4 252

Now we may assume n;; > 4 for j =0,...,p. Then (7.55) implies that p = 3
and n;, = g for j =0,...,3. Since (a]a) < 0, there exists j with n;2 > 1 and

(el )] + [(alay2)| = nj1(n+nj2 — 2n51) + 1 2(nj1 + 153 — 2n5,2)

n

— ) . (n R, W
= Fnj2 +nj2(5 +nj3 — 2n;2)

{Z n (nj2 >1),

=n—2 (n;2=1andn;3=0).

Thus we have completed the proof of (7.49).

There are 4 basic tuples with the index of the rigidity 0 and 13 basic tuples
with the index of the rigidity —2, which are given in (6.18) and Proposition 6.10.
They satisfy (7.50).

Suppose that (7.50) is not valid. We may assume that p is minimal under
this assumption. Then idxm < —2, p > 5 and n = ordm > 2. We may assume
n>mng1 >ny1 > > np1 > 0. Since (o) < 0, we have

(7.56) no,1 +ni1+ o Fnpr >2n>neq o npo11.
In fact, if ngq1 +---+np—1,1 > 2n, the tuple m’ = (my, ..., m,_1) is also basic and
[(e|)] = [(atmr, )| = % = 3,54 m2 , > 2, which contradicts to the minimality.
Thus we have 2n;1 < n for j = 3,...,p. If n is even, we have |idxm| >
Y _sl(alegi)l = ¥ _5(n + nja — 2n51) > 2(p — 2), which contradicts to the
assumption. If n = 3, (7.56) assures p =5 and ng1 = --- = n5,0 = 1 and therefore
idxm = —4, which also contradicts to the assumption. Thus n = 2m + 1 with

m > 2. Choose k so that ng_11 > m > ny;. Then |idxm| > Zfzk(a|aj71)| =
Z?:k(n+nj,2_2”j,1) > 3(p—k+1). Owing to (7.56), we have 2(2m+1) > km—+(p—
k) and k < % < % < 5, which means k < 4, |idxm| > 3(p—3) > 2p — 4
and a contradiction to the assumption. O



