
CHAPTER 7

A Kac-Moody root system

In this chapter we explain a correspondence between spectral types and roots
of a Kac-Moody root system. The correspondence was first introduced by Crawley-
Boevey [CB]. In §7.2 we study fundamental tuples through this correspondence.

7.1. Correspondence with a Kac-Moody root system

We review a Kac-Moody root system to describe the combinatorial structure of
middle convolutions on the spectral types. Its relation to Deligne-Simpson problem
is first clarified by [CB].

Let

(7.1) I := {0, (j, ν) ; j = 0, 1, . . . , ν = 1, 2, . . .}.
be a set of indices and let h be an infinite dimensional real vector space with the
set of basis Π, where

(7.2) Π = {αi ; i ∈ I} = {α0, αj,ν ; j = 0, 1, 2, . . . , ν = 1, 2, . . .}.
Put

I ′ := I \ {0}, Π′ := Π \ {α0},(7.3)

Q :=
∑
α∈Π

Zα ⊃ Q+ :=
∑
α∈Π

Z≥0α.(7.4)

We define an indefinite symmetric bilinear form on h by

(α|α) = 2 (α ∈ Π),

(α0|αj,ν) = −δν,1,

(αi,µ|αj,ν) =

{
0 (i ̸= j or |µ− ν| > 1),

−1 (i = j and |µ− ν| = 1).
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(7.5)

The element of Π is called the simple root of a Kac-Moody root system and
the Weyl group W∞ of this Kac-Moody root system is generated by the simple
reflections si with i ∈ I. Here the reflection with respect to an element α ∈ h
satisfying (α|α) ̸= 0 is the linear transformation

(7.6) sα : h ∋ x 7→ x− 2
(x|α)
(α|α)

α ∈ h

and

(7.7) si = sαi for i ∈ I.
In particular si(x) = x− (αi|x)αi for i ∈ I and the subgroup of W∞ generated by
si for i ∈ I \ {0} is denoted by W ′

∞.
The Kac-Moody root system is determined by the set of simple roots Π and its

Weyl group W∞ and it is denoted by (Π,W∞).
Denoting σ(α0) = α0 and σ(αj,ν) = ασ(j),ν for σ ∈ S∞, we put

(7.8) W̃∞ := S∞ ⋉W∞,
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70 7. A KAC-MOODY ROOT SYSTEM

which is an automorphism group of the root system.

Remark 7.1 ([Kc]). The set ∆re of real roots equals theW∞-orbit of Π, which
also equals W∞α0. Denoting

(7.9) B := {β ∈ Q+ ; suppβ is connected and (β, α) ≤ 0 (∀α ∈ Π)},

the set of positive imaginary roots ∆im
+ equals W∞B. Here

(7.10) suppβ := {α ∈ Π ; nα ̸= 0} if β =
∑
α∈Π

nαα.

The set ∆ of roots equals ∆re ∪ ∆im by denoting ∆im
− = −∆im

+ and ∆im =

∆im
+ ∪∆im

− . Put ∆+ = ∆ ∩ Q+, ∆− = −∆+, ∆
re
+ = ∆re ∩ Q+ and ∆re

− = −∆re
+ .

Then ∆ = ∆+ ∪ ∆−, ∆
im
+ ⊂ ∆+ and ∆re = ∆re

+ ∪ ∆re
− . The root in ∆ is called

positive if and only if α ∈ Q+.
A subset L ⊂ Π is called connected if the decomposition L1 ∪ L2 = L with

L1 ̸= ∅ and L2 ̸= ∅ always implies the existence of vj ∈ Lj satisfying (v1|v2) ̸= 0.
Note that suppα ∋ α0 for α ∈ ∆im.

The subset L is called classical if it corresponds to the classical Dynkin diagram,
which is equivalent to the condition that the group generated by the reflections with
respect to the elements in L is a finite group.

The connected subset L is called affine if it corresponds to affine Dynkin dia-
gram and in our case it corresponds to D̃4 or Ẽ8 or Ẽ7 or Ẽ6 with the following
Dynkin diagram, respectively.

(7.11)

1�������� 2�������� 1��������
1��������
1��������

11, 11, 11, 11

2�������� 4�������� 6�������� 5�������� 4�������� 3�������� 2�������� 1��������3��������
33, 222, 111111

1�������� 2�������� 3�������� 4�������� 3�������� 2�������� 1��������2��������
22, 1111, 1111

1�������� 2�������� 3�������� 2�������� 1��������2�������� 1��������
111, 111, 111

Here the circle correspond to simple roots and the numbers attached to simple roots
are the coefficients n and nj,ν in the expression (7.15) of a root α.

For a tuple of partitions m =
(
mj,ν

)
j≥0, ν≥1

∈ P(n), we define

nj,ν := mj,ν+1 +mj,ν+2 + · · · ,

αm := nα0 +
∞∑
j=0

∞∑
ν=1

nj,ναj,ν ∈ Q+,

κ(αm) := m.

(7.12)

As is given in [O6, Proposition 2.22] we have

Proposition 7.2. i) idx(m,m′) = (αm|αm′).
ii) Given i ∈ I, we have αm′ = si(αm) with

m′ =

∂m (i = 0),

(m0,1 . . . ,mj,1 . . .
ν
⌣

mj,ν+1

ν+1
⌣

mj,ν . . . , . . . )
(
i = (j, ν)

)
.
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Moreover for ℓ = (ℓ0, ℓ1, . . .) ∈ Z∞
>0 satisfying ℓν = 1 for ν ≫ 1 we have

αℓ := α1ℓ
= α0 +

∞∑
j=0

ℓj−1∑
ν=1

αj,ν =

(∏
j≥0

sj,ℓj−1 · · · sj,2sj,1
)
(α0),(7.13)

α∂ℓ(m) = sαℓ
(αm) = αm − 2

(αm|αℓ)

(αℓ|αℓ)
αℓ = αm − (αm|αℓ)αℓ.(7.14)

Note that

α = nα0 +
∑
j≥0

∑
ν≥1

nj,ναj,ν ∈ ∆+ with n > 0

⇒ n ≥ nj,1 ≥ nj,2 ≥ · · · (j = 0, 1, . . .).

(7.15)

In fact, for a sufficiently large K ∈ Z>0, we have nj,µ = 0 for µ ≥ K and

sαj,ν+αj,ν+1+···+αj,K
α = α+ (nj,ν−1 − nj,ν)(αj,ν + αj,ν+1 + · · ·+ αj,K) ∈ ∆+

for α ∈ ∆+ in (7.15), which means nj,ν−1 ≥ nj,ν for ν ≥ 1. Here we put nj,0 = n
and αj,0 = α0. Hence for α ∈ ∆+ with suppα ∋ α0, there uniquely exists m ∈ P
satisfying α = αm.

It follows from (7.14) that under the identification P ⊂ Q+ with (7.12), our
operation ∂ℓ corresponds to the reflection with respect to the root αℓ. Moreover
the rigid (resp. indivisible realizable) tuple of partitions corresponds to the positive
real root (resp. indivisible positive root) whose support contains α0, which were
first established by [CB] in the case of Fuchsian systems of Schlesinger canonical
form (cf. [O6]).

The corresponding objects with this identification are as follows, which will be
clear in this section. Some of them are also explained in [O6].

P Kac-Moody root system

m αm (cf. (7.12))

m : monotone α ∈ Q+ : (α|β) ≤ 0 (∀β ∈ Π′)

m : realizable α ∈ ∆+

m : rigid α ∈ ∆re
+ : suppα ∋ α0

m : monotone and fundamental α ∈ Q+ :α = α0 or (α|β) ≤ 0 (∀β ∈ Π)

m : irreducibly realizable
α ∈ ∆+, suppα ∋ α0

indivisible or (α|α) < 0

m : basic and monotone
α ∈ Q+ : (α|β) ≤ 0 (∀β ∈ Π)

indivisible

m : simply reducible and monotone
α ∈ ∆+ : (α|αm) = 1 (∀α ∈ ∆(m))

α0 ∈ ∆(m), (α|β) ≤ 0 (∀β ∈ Π′)

ordm n0 : α = n0α0 +
∑

i,ν ni,ναi,ν

idx(m,m′) (αm|αm′)

idxm (αm|αm)

dℓ(m) (cf. (5.25)) (αℓ|αm) (cf. (7.13))

Pidxm+ Pidxm′ = Pidx(m+m′) (αm|αm′) = −1
(ν, ν + 1) ∈ Gj ⊂ S′

∞ (cf. (4.30)) sj,ν ∈W ′
∞ (cf. (7.7))

H ≃ S∞ (cf. (4.30)) S∞ in (7.8)

∂1 s0
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∂ℓ sαℓ
(cf. (7.13))

⟨∂1, S∞⟩ W̃∞ (cf. (7.8))

{λm} (Λ(λ), αm) (cf. (7.18))

|{λm}| (Λ(λ) + 1
2αm|αm)

Ad
(
(x− cj)τ

)
+τΛ0

0,j (cf. (7.18))

Here

(7.16) ∆+ := {kα ; α ∈ ∆+, k ∈ Z>0, suppα ∋ α0},

∆(m) ⊂ ∆re
+ is given in (7.30) and Λ(λ) ∈ h̃p for λ = (λj,ν)j=0,...,p

ν=1,2,...
with λj,ν ∈ C is

defined as follows.

Definition 7.3. Fix a positive integer p which may be ∞. Put

(7.17) Ip := {0, (j, ν) ; j = 0, 1, . . . , p, ν = 1, 2, . . .} ⊂ I

for a positive integer p and I∞ = I.
Let hp be the R-vector space of finite linear combinations the elements of

Πp := {αi ; i ∈ Πp} and let h∨p be the C-vector space whose elements are linear
combinations of infinite or finite elements of Πp, which is identified with Πi∈IpCαi

and contains hp.
The element Λ ∈ h∨p naturally defines a linear form of hp by (Λ| · ) and the group

W̃∞ acts on h∨p . If p =∞, we assume that the element Λ = ξ0α0+
∑
ξj,ναj,ν ∈ h∨∞

always satisfies ξj,1 = 0 for sufficiently large j ∈ Z≥0. Hence we have naturally
h∨p ⊂ h∨p+1 and h∨∞ =

∪
j≥0 h

∨
j .

Define the elements of h∨p :

Λ0 :=
1

2
α0 +

1

2

p∑
j=0

∞∑
ν=1

(1− ν)αj,ν ,

Λj,ν :=

∞∑
i=ν+1

(ν − i)αj,i (j = 0, . . . , p, ν = 0, 1, 2, . . .),

Λ0 := 2Λ0 − 2Λ0,0 = α0 +

∞∑
ν=1

(1 + ν)α0,ν +

p∑
j=1

∞∑
ν=1

(1− ν)αj,ν ,

Λ0
j,k := Λj,0 − Λk,0 =

∞∑
ν=1

ν(αk,ν − αj,ν) (0 ≤ j < k ≤ p),

Λ(λ) := −Λ0 −
p∑

j=0

∞∑
ν=1

( ν∑
i=1

λj,i

)
αj,ν

= −Λ0 +

p∑
j=0

∞∑
ν=1

λj,ν(Λj,ν−1 − Λj,ν).

(7.18)

Under the above definition we have

(Λ0|α) = (Λ0
j,k|α) = 0 (∀α ∈ Πp),(7.19)

(Λj,ν |αj′,ν′) = δj,j′δν,ν′ (j, j′ = 0, 1, . . . , ν, ν′ = 1, 2, . . .),(7.20)

(Λ0|αi) = (Λj,0|αi) = δi,0 (∀i ∈ Πp),(7.21)

|{λm}| = (Λ(λ) + 1
2αm|αm),(7.22)
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s0(Λ(λ)) = −
( p∑
j=0

λj,1 − 1
)
α0 + Λ(λ)

= −µΛ0 − Λ0 −
∞∑
ν=1

( ν∑
i=1

(
λ0,i − (1 + δi,0)µ

))
α0,ν

−
p∑

j=1

∞∑
ν=1

( ν∑
i=1

(
λj,i + (1− δi,0)µ

))
αj,ν

(7.23)

with µ =
∑p

j=0 λj,1 − 1.

We identify the elements of h∨p if their difference are in CΛ0, namely, consider

them in h̃p := h∨p /CΛ0. Then the elements have the unique representatives in h∨p
whose coefficients of α0 equal − 1

2 .

Remark 7.4. i) If p <∞, we have

(7.24) {Λ ∈ h∨p ; (Λ|α) = 0 (∀α ∈ Πp)} = CΛ0 +

p∑
j=1

CΛ0
0,j .

ii) The invariance of the bilinear form ( | ) under the Weyl group W∞ proves
(5.15).

iii) The addition given in Theorem 5.2 i) corresponds to the map Λ(λ) 7→
Λ(λ) + τΛ0

0,j with τ ∈ C and 1 ≤ j ≤ p.
iv) Combining the action of sj,ν on h∨p with that of s0, we have

(7.25) Λ(λ′)− sαℓ
Λ(λ) ∈ CΛ0 and αm′ = sαℓ

αm when {λ′m′} = ∂ℓ{λm}

because of (5.30) and (7.23).

Thus we have the following theorem.

Theorem 7.5. Under the above notation we have the commutative diagram{
Pm : Fuchsian differential operators with {λm}

}
→

{
(Λ(λ), αm) ; αm ∈ ∆+

}
↓ fractional operations ⟳ ↓W∞-action, +τΛ0

0,j{
Pm : Fuchsian differential operators with {λm}

}
→

{
(Λ(λ), αm) ; αm ∈ ∆+

}
.

Here Λ(λ) ∈ h̃, the Riemann schemes {λm} = {[λj,ν ](mj,ν)}j=0,...,p
ν=1,2,...

satisfy |{λm}| =

0 and the defining domain of w ∈W∞ is {α ∈ ∆+ ; wα ∈ ∆+}.

Proof. Let Ti denote the corresponding operation on {(Pm, {λm})} for si ∈
W∞ with i ∈ I. Then T0 corresponds to ∂1 and when i ∈ I ′, Ti is naturally
defined and it doesn’t change Pm. The fractional transformation of the Fuchsian
operators and their Riemann schemes corresponding to an element w ∈ W∞ is
defined through the expression of w by the product of simple reflections. It is clear
that the transformation of their Riemann schemes do not depend on the expression.

Let i ∈ I and j ∈ I. We want to prove that (TiTj)
k = id if (sisj)

k = id
for a non-negative integer k. Note that T 2

i = id and the addition commutes with
Ti. Since Ti = id if i ∈ I ′, we have only to prove that (Tj,1T0)

3 = id. Moreover
Proposition 5.8 assures that we may assume j = 0.

Let P be a Fuchsian differential operator with the Riemann scheme (4.15).
Applying suitable additions to P , we may assume λj,1 = 0 for j ≥ 1 to prove
(T0,1T0)

3P = P and then this easily follows from the definition of ∂1 (cf. (5.26))
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and the relation
∞ cj (1 ≤ j ≤ p)

[λ0,1](m0,1) [0](mj,1)

[λ0,2](m0,2) [λj,2](mj,2)

[λ0,ν ](m0,ν) [λj,ν ](mj,ν)

 (d = m0,1 + · · ·+mp,1 − ordm)

T0,1T0−−−−−→
∂1−λ0,1


∞ cj (1 ≤ j ≤ p)

[λ0,2 − λ0,1 + 1](m0,1) [0](mj,1−d)

[−λ0,1 + 2](m0,2−d) [λj,2 + λ0,1 − 1](mj,2)

[λ0,ν − λ0,1 + 1](m0,ν) [λj,ν + λ0,1 − 1](mj,ν)


T0,1T0−−−−−−−→

∂λ0,1−λ0,2


∞ cj (1 ≤ j ≤ p)

[−λ0,2 + 2](m0,1−d) [0](mj,1+m0,1−m0,2−d)

[λ0,1 − λ0,2 + 1](m0,1) [λj,2 + λ0,2 − 1](mj,2)

[λ0,ν − λ0,2 + 1](m0,ν) [λj,ν + λ0,2 − 1](mj,ν)


T0,1T0−−−−−→
∂λ0,2−1


∞ cj (1 ≤ j ≤ p)

[λ0,1](m0,1) [0](mj,1)

[λ0,2](m0,2) [λj,2](mj,2)

[λ0,ν ](m0,ν) [λj,ν ](mj,ν)


and (T0,1T0)

3P ∈ C[x] Ad(∂λ0,2−1) ◦ Ad(∂λ0,2−λ0,1) ◦ Ad(∂1− λ0,1)RP = C[x] RP .
□

Definition 7.6. For an element w of the Weyl group W∞ we put

(7.26) ∆(w) := ∆re
+ ∩ w−1∆re

− .

If w = si1si2 · · · sik with iν ∈ I is the minimal expression of w as the products of
simple reflections which means k is minimal by definition, we have

(7.27) ∆(w) =
{
αik , sik(αik−1

), siksik−1
(αik−2

), . . . , sik · · · si2(αi1)
}
.

The number of the elements of ∆(w) equals the number of the simple reflections
in the minimal expression of w, which is called the length of w and denoted by L(w).
The equality (7.27) follows from the following lemma.

Lemma 7.7. Fix w ∈ W∞ and i ∈ I. If αi ∈ ∆(w), there exists a minimal
expression w = si′1si′2 · · · si′k with si′k = si and L(wsi) = L(w) − 1 and ∆(wsi) =

si
(
∆(w) \ {αi}

)
. If αi /∈ ∆(w), L(wsi) = L(w) + 1 and ∆(wsi) = si∆(w) ∪ {αi}.

Moreover if v ∈W∞ satisfies ∆(v) = ∆(w), then v = w.

Proof. The proof is standard as in the case of classical root system, which
follows from the fact that the condition αi = sik · · · siℓ+1

(αiℓ) implies

(7.28) si = sik · · · siℓ+1
siℓsiℓ+1

· · · sik
and then w = wsisi = si1 · · · siℓ−1

siℓ+1
· · · siksi. □

Definition 7.8. For α ∈ Q, put

(7.29) h(α) := n0 +
∑
j≥0

∑
ν≥1

nj,ν if α = n0α0 +
∑
j≥0

∑
ν≥1

nj,ναj,ν ∈ Q.

Suppose m ∈ Pp+1 is irreducibly realizable. Note that sfm is the monotone
fundamental element determined by m, namely, αsfm is the unique element of
Wαm ∩

(
B ∪ {α0}

)
. We inductively define wm ∈ W∞ satisfying wmαm = αsfm.

We may assume wm′ has already defined if h(αm′) < h(αm). If m is not mono-
tone, there exists i ∈ I \ {0} such that (αm|αi) > 0 and then wm = wm′si with
αm′ = siαm. If m is monotone and m ̸= fm, wm = w∂ms0.
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We moreover define

∆(m) := ∆(wm).(7.30)

Suppose m is monotone, irreducibly realizable and m ̸= sfm. We define wm

so that there exists K ∈ Z>0 and v1, . . . , vK ∈W ′
∞ satisfying

wm = vKs0 · · · v2s0v1s0,
(vks0 · · · v1s0αm|α) ≤ 0 (∀α ∈ Π \ {0}, k = 1, . . . ,K),

(7.31)

which uniquely characterizes wm. Note that

(7.32) vks0 · · · v1s0αm = α(s∂)km (k = 1, . . . ,K).

The following proposition gives the correspondence between the reduction of
realizable tuples of partitions and the minimal expressions of the elements of the
Weyl group.

Proposition 7.9. Definition 7.8 naturally gives the product expression wm =
si1 · · · sik with iν ∈ I (1 ≤ ν ≤ k).

i) We have

L(wm) = k,(7.33)

(α|αm) > 0 (∀α ∈ ∆(m)),(7.34)

h(αm) = h(αsfm) +
∑

α∈∆(m)

(α|αm).(7.35)

Moreover α0 ∈ suppα for α ∈ ∆(m) if m is monotone.
ii) Suppose m is monotone and fm ̸= m. Fix maximal integers νj such that

mj,1 − dmax(m) < mj,νj+1 for j = 0, 1, . . . Then

∆(m) = s0

(∏
j≥0
νj>0

sj,1 · · · sj,νj

)
∆(s∂m) ∪ {α0}

∪ {α0 + αj,1 + · · ·+ αj,ν ; 1 ≤ ν ≤ νj and j = 0, 1, . . .},

(7.36)

(α0 + αj,1 + · · ·+ αj,ν |αm) = dmax(m) +mj,ν+1 −mj,1 (ν ≥ 0).(7.37)

iii) Suppose m is not rigid. Then ∆(m) = {α ∈ ∆re
+ ; (α|αm) > 0}.

iv) Suppose m is rigid. Let α ∈ ∆re
+ satisfying (α|αm) > 0 and sα(αm) ∈ ∆+.

Then

(7.38)

{
α ∈ ∆(m) if (α|αm) > 1,

#
(
{α, αm − α} ∩∆(m)

)
= 1 if (α|αm) = 1.

Moreover if a root γ ∈ ∆(m) satisfies (γ|αm) = 1, then αm − γ ∈ ∆re
+ and α0 ∈

supp(αm − γ).
v) wm is the unique element with the minimal length satisfying wmαm = αsfm.

Proof. Since h(si′α)− h(α) = −(αi′ |α) = (si′αi′ |α), we have

h(si′ℓ · · · si′1α)− h(α) =
ℓ∑

ν=1

(
h(si′ν · · · si′1α)− h(si′ν−1

· · · si′1α)
)

=

ℓ∑
ν=1

(αi′ν |si′ν · · · si′1α) =
ℓ∑

ν=1

(si′ℓ · · · si′ν+1
αi′ν |si′ℓ · · · si′1α)

for i′, i′ν ∈ I and α ∈ ∆.
i) We show by the induction on k. We may assume k ≥ 1. Put w′ = si1 · · · sik−1

and αm′ = sikαm and α(ν) = sik−1
· · · siν+1αiν for ν = 1, . . . , k − 1. The hypoth-

esis of the induction assures L(w′) = k − 1, ∆(m′) = {α(1), . . . , α(k − 1)} and
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(α(ν)|αm′) > 0 for ν = 1, . . . , k − 1. If L(wm) ̸= k, there exists ℓ such that
αik = α(ℓ) and wm = si1 · · · siℓ−1

siℓ+1
· · · sik−1

is a minimal expression. Then
h(αm) − h(αm′) = −(αik |αm′) = −(α(ℓ)|αm′) < 0, which contradicts to the defi-
nition of wm. Hence we have i). Note that (7.34) implies suppα ∋ α0 if α ∈ ∆(m)
and m is monotone.

ii) The equality (7.36) follows from

∆(∂m) ∩
∑

α∈Π\{0}

Zα = {αj,1 + · · ·+ αj,νj ; ν = 1, . . . , νj , νj > 0 and j = 0, 1, . . .}

because ∆(m) = s0∆(∂m) ∪ {α0} and
(∏

j≥0
νj>0

sj,νj · · · sj,1
)
α∂m = αs∂m.

The equality (7.37) follows from (α0|αm) = d1(m) = dmax(m) and (αj,ν |αm) =
mj,ν+1 −mj,ν .

iii) Note that γ ∈ ∆(m) satisfies (γ|αm) > 0.
Put wν = siν+1 · · · sik−1

sik for ν = 0, . . . , k. Then wm = w0 and ∆(m) =

{w−1
ν αiν ; ν = 1, . . . , k}. Moreover wν′w−1

ν αiν ∈ ∆re
− if and only if 0 ≤ ν′ < ν.

Suppose m is not rigid. Let α ∈ ∆re
+ with (α|αm) > 0. Since (wmα|αm) > 0,

wmα ∈ ∆re
− . Hence there exists ν such that wνα ∈ ∆+ and wν−1α ∈ ∆−, which

implies wνα = αiν and the claim.
iv) Suppose m is rigid. Let α ∈ ∆re

+ . Put ℓ = (α|αm). Suppose ℓ > 0
and β := sααm ∈ ∆+. Then αm = ℓα + β, α0 = ℓwmα + wmβ and (β|αm) =
(αm − ℓα|αm) = 2− ℓ2. Hence if ℓ ≥ 2, Rβ ∩∆(m) = ∅ and the same argument as
in the proof of iii) assures α ∈ ∆(m).

Suppose ℓ = 1. There exists ν such that wνα or wνβ equals αiν . We may
assume w−1

ν α = αiν . Then α ∈ ∆(m).
Suppose there exists wν′β = αiν′ . We may assume ν′ < ν. Then wν′αm =

wν′−1α + wν′−1β ∈ ∆re
− , which contradicts to the definition of wν . Hence wν′β =

αiν′ for ν′ = 1, . . . , k and therefore β /∈ ∆(m).
Let γ = w−1

ν αiν ∈ ∆(m) and (γ|αm) = 1. Put β = αm − α = sααm. Then
wν−1αm = wνβ ∈ ∆re

+ . Since β /∈ ∆(m), we have β ∈ ∆re
+ .

Replacing m by sm, we may assume m is monotone to prove α0 ∈ suppβ.
Since (β|αm) = 1 and (αi|αm) ≤ 0 for i ∈ I \ {0}, we have α0 ∈ suppβ.

v) The uniqueness of wm follows from iii) when m is not rigid. It follows from
(7.34), Theorem 15.1 and Corollary 15.3 when m is rigid. □

Corollary 7.10. Let m, m′, m′′ ∈ P and k ∈ Z>0 such that

(7.39) m = km′ +m′′, idxm = idxm′′ and m′ is rigid.

Then m is irreducibly realizable if and only if so is m′′.
Suppose m is irreducibly realizable. If idxm ≤ 0 or k > 1, then m′ ∈ ∆(m).

If idxm = 2, then {αm′ , αm′′} ∩∆(m) = {αm′} or {αm′′}.

Proof. The assumption implies (αm|αm) = 2k2+2k(αm′ |αm′′)+ (αm′′ |αm′′)
and hence (αm′ |αm′′) = −k and sαm′αm′′ = αm. Thus we have the first claim
(cf. Theorem 7.5). The remaining claims follow from Proposition 7.9. □

Remark 7.11. i) In general, γ ∈ ∆(m) does not always imply sγαm ∈ ∆+.
Put m = 32, 32, 32, 32, m′ = 10, 10, 10, 10 and m′′ = 01, 01, 01, 01. Putting

v = s0,1s1,1s2,1s3,1, we have αm′ = α0, αm′′ = vα0, (αm′ |αm′′) = −2, s0αm′′ =
2αm′+αm′′ , vs0αm′′ = α0+2αm′′ and s0vs0vα0 = s0vs0αm′′ = 3αm′+2αm′′ = αm.

Then γ := s0vα0 = 2αm′ + αm′′ ∈ ∆(m), (γ|αm) = (s0vαm′ |s0vs0vαm′) =
(αm′ |s0vαm′) = (αm′ |2αm′ + αm′′) = 2 and sγ(αm) = (3αm′ + 2αm′′)− 2(2αm′ +
αm′′) = −αm′ ∈ ∆−.
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ii) Define

(7.40) [∆(m)] :=
{
(α|αm) ; α ∈ ∆(m)

}
.

Then [∆(m)] gives a partition of the non-negative integer h(αm)− h(sfm), which
we call the type of ∆(m). It follows from (7.35) that

(7.41) #∆(m) ≤ h(αm)− h(sfm)

for a realizable tuple m and the equality holds in the above if m is monotone and
simply reducible. Moreover we have

[∆(m)] = [∆(s∂m)] ∪ {d(m)} ∪
p∪

j=0

{mj,ν −mj,1 − d(m) ∈ Z>0 ; ν > 1},(7.42)

#∆(m) = #∆(s∂m) +

p∑
j=0

(
min

{
ν ; mj,ν > mj,1 − d(m)

}
− 1
)
+ 1,(7.43)

h(m) = h(sfm) +
∑

i∈[∆(m)]

i(7.44)

if m ∈ Pp+1 is monotone, irreducibly realizable and not fundamental. Here we use
the notation in Definitions 4.11, 5.7 and 6.15. For example,

type m h(αm) #∆(m)

Hn 1n, 1n, n− 11 n2 + 1 n2

EO2m 12m,mm,mm− 11 2m2 + 3m+ 1
(
2m
2

)
+ 4m

EO2m+1 12m+1,m+ 1m,mm1 2m2 + 5m+ 3
(
2m+1

2

)
+ 4m+ 2

X6 111111, 222, 42 29 28

21111, 222, 33 25 24

Pn n− 11, n− 11, . . . ∈ P(n)
n+1 2n+ 1 [∆(m)] : 1n+1·(n− 1)

P4,2m+1 m+ 1m,m+ 1m,m+ 1m,m+ 1m 6m+ 1 [∆(m)] : 14m · 2m

Suppose m ∈ Pp+1 is basic. We may assume (6.3). Suppose (αm|α0) = 0,
which is equivalent to

∑p
j=0mj,1 = (p− 1) ordm. Let kj be positive integers such

that

(7.45) (αm|αj,ν) = 0 for 1 ≤ ν < kj and (αm|αj,kj ) < 0,

which is equivalent to mj,1 = mj,2 = · · · = mj,kj > mj,kj+1 for j = 0, . . . , p. Then

(7.46)

p∑
j=0

1

kj
≥

p∑
j=0

mj,1

ordm
= p− 1.

If the equality holds in the above, we have kj ≥ 2 and mj,kj+1 = 0 and therefore

m is of one of the types D̃4 or Ẽ6 or Ẽ7 or Ẽ8. Hence if idxm < 0, the set
{kj ; 0 ≤ j ≤ p, kj > 1} equals one of the set ∅, {2}, {2, ν} with 2 ≤ ν ≤ 5, {3, ν}
with 3 ≤ ν ≤ 5, {2, 2, ν} with 2 ≤ ν ≤ 5 and {2, 3, ν} with 3 ≤ ν ≤ 5. In this case
the corresponding Dynkin diagram of {α0, αj,ν ; 1 ≤ ν < kj , j = 0, . . . , p} is one of
the types Aν with 1 ≤ ν ≤ 6, Dν with 4 ≤ ν ≤ 7 and Eν with 6 ≤ ν ≤ 8. Thus we
have the following remark.

Remark 7.12. Suppose a tuple m ∈ P(n)
p+1 is basic and monotone. The sub-

group of W∞ generated by reflections with respect to αℓ (cf. (7.13)) which satisfy
(αm|αℓ) = 0 is infinite if and only if idxm = 0.

For a realizable monotone tuple m ∈ P, we define

(7.47) Π(m) := {αj,ν ∈ suppαm ; mj,ν = mj,ν+1} ∪

{
{α0} (d1(m) = 0),

∅ (d1(m) ̸= 0).
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Note that the condition (αm|αℓ) = 0, which is equivalent to say that αℓ is a root of
the root space with the fundamental system Π(m), means that the corresponding
middle convolution ∂ℓ keeps the spectral type invariant.

7.2. Fundamental tuples

We will prove some inequalities (7.48) and (7.49) for fundamental tuples which
are announced in [O6].

Proposition 7.13. Let m ∈ Pp+1 \ Pp be a fundamental tuple. Then

ordm ≤ 3| idxm|+ 6,(7.48)

ordm ≤ | idxm|+ 2 if p ≥ 3,(7.49)

p ≤ 1
2 | idxm|+ 3.(7.50)

Example 7.14. For a positive integer m we have special 4 elements

(7.51)
D

(m)
4 : m2,m2,m2,m(m− 1)1 E

(m)
6 : m3,m3,m2(m− 1)1

E
(m)
7 : (2m)2,m4,m3(m− 1)1 E

(m)
8 : (3m)2, (2m)3,m5(m− 1)1

with orders 2m, 3m, 4m and 6m, respectively, and index of rigidity 2− 2m.

Note that E
(m)
8 , D

(m)
4 and 11, 11, 11, · · · ∈ P(2)

p+1 attain the equalities (7.48),

(7.49) and (7.50), respectively.

Remark 7.15. It follows from the Proposition 7.13 that there exist only finite
basic tuples m ∈ P with a fixed index of rigidity under the normalization (6.3).
This result is given in [O6, Proposition 8.1] and a generalization is given in [HiO].

Hence Proposition 7.13 assures that there exist only finite fundamental uni-
versal Fuchsian differential operators with a fixed number of accessory parameters.
Here a fundamental universal Fuchsian differential operator means a universal oper-
ator given in Theorem 6.14 whose spectral type is fundamental (cf. Definition 6.15).

Now we prepare a lemma.

Lemma 7.16. Let a ≥ 0, b > 0 and c > 0 be integers such that a + c − b > 0.
Then

b+ kc− 6

(a+ c− b)b

{
< k + 1 (0 ≤ k ≤ 5),

≤ 7 (0 ≤ k ≤ 6).

Proof. Suppose b ≥ c. Then
b+ kc− 6

(a+ c− b)b
≤ b+ kb− 6

b
< k + 1.

Next suppose b < c. Then

(k + 1)(a+ c− b)b− (b+ kc− 6) ≥ (k + 1)(c− b)b− b− kc+ 6

≥ (k + 1)b− b− k(b+ 1) + 6 = 6− k.
Thus we have the lemma. □

Proof of Proposition 7.13. Since idx km = k2 idxm for a basic tuple m
and k ∈ Z>0, we may assume that m is basic and idxm ≤ −2 to prove the
proposition.

Fix a basic monotone tuple m. Put α = αm under the notation (7.12) and
n = ordm. Note that

(7.52) (α|α) = n(α|α0) +

p∑
j=0

nj∑
ν=1

nj,ν(α|αj,ν), (α|α0) ≤ 0, (α|αj,ν) ≤ 0.
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We first assume that (7.48) is not valid, namely,

(7.53) 3|(α|α)|+ 6 < n.

In view of (6.18), we have (α|α) < 0 and the assumption implies |(α|α0)| = 0
because |(α|α)| ≥ n|(α|α0)|.

Let Π0 be the connected component of {αi ∈ Π ; (α|αi) = 0 and αi ∈ suppα}
containing α0. Note that suppα generates a root system which is neither classical
nor affine but Π0 generates a root system of finite type.

Put J = {j ; ∃αj,ν ∈ suppαm such that (α|αj,ν) < 0} ̸= ∅ and for each j ∈ J
define kj with the condition (7.45). Then we note that

(α|αj,ν) =

{
0 (1 ≤ ν < kj),

2nj,kj − nj,kj−1 − nj,kj+1 ≤ −1 (ν = kj).

Applying the above lemma to m by putting n = b + kjc and nj,ν = b + (kj − ν)c
(1 ≤ ν ≤ kj) and nj,kj+1 = a, we have

(7.54)
n− 6

(nj,kj−1 + nj,kj+1 − 2nj,kj )nj,kj

{
< kj + 1 (1 ≤ kj ≤ 5),

≤ 7 (1 ≤ kj ≤ 6).

Here (α|αj,kj ) = b − c − a ≤ −1 and we have |(α|α)| ≥ |(α|αj,ν)| > n−6
kj+1 if kj < 6

and therefore kj ≥ 3.
It follows from the condition kj ≥ 3 that m ∈ P3 because Π0 is of finite type

and moreover that Π0 is of exceptional type, namely, of type E6 or E7 or E8 because
suppα is not of finite type.

Suppose #J ≥ 2. We may assume {0, 1} ⊂ J and k0 ≤ k1. Since Π0 is
of exceptional type and suppα is not of finite type, we may assume k0 = 3 and
k1 ≤ 5. Owing to (7.52) and (7.54), we have

|(α|α)| ≥ n0,3(n0,2 + n0,4 − 2n0,3) + n1,k1(n1,k1−1 + n1,k1+1 − 2n1,k1)

> n−6
3+1 + n−6

5+1 >
n−6
3 ,

which contradicts to the assumption.
Thus we may assume J = {0}. For j = 1 and 2 let nj be the positive integer

such that αj,nj ∈ suppα and αj,nj+1 /∈ suppα. We may assume n1 ≥ n2.
Fist suppose k0 = 3. Then (n1, n2) = (2, 1), (3, 1) or (4, 1) and the Dynkin

diagram of suppα with the numbers mj,ν is one of the diagrams:

3m
·�������� 4m�������� 5m�������� 6m�������� 4m�������� 2m��������3m��������

|(α|α)| ≥ 3m

0 < k < m

·
k�������� m

·�������� 2m�������� 3m�������� 4m�������� 3m�������� 2m�������� m��������2m��������
|(α|α)| ≥ 2k(m− k)

m
·�������� 4m�������� 7m�������� 10m�������� 8m�������� 6m�������� 4m�������� 2m��������5m��������

|(α|α)| ≥ 2m2

For example, when (n1, n2) = (3, 1), then k := m0,4 ≥ 1 because (α|α0,3) ̸= 0 and
therefore 0 < k < m and |(α|α)| ≥ k(m−2k)+m(2m+k−2m) = 2k(m−k) ≥ 2m−2
and 3|(α|α)|+ 6− 4m ≥ 3(2m− 2) + 6− 4m > 0. Hence (7.53) does not hold.

Other cases don’t happen because of the inequalities 3 · 3m+ 6− 6m > 0 and
3 · 2m2 + 6− 10m > 0.
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Lastly suppose k0 > 3. Then (k0, n1, n2) = (4, 2, 1) or (5, 2, 1).

m < k < 2m

k
·�������� 2m

·�������� 3m�������� 4m�������� 5m�������� 6m�������� 4m�������� 2m��������3m��������
|(α|α)| ≥ 2m

0 < k < m

k
·�������� m

·�������� 2m�������� 3m�������� 4m�������� 5m�������� 6m�������� 4m�������� 2m��������3m��������
|(α|α)| ≥ 2(m− 1)

In the above first case we have (α|α)| ≥ 2m, which contradicts to (7.53). Note
that (|α|α)| ≥ k · (m− 2k) +m · k = 2k(m− k) ≥ 2(m− 1) in the above last case,
which also contradicts to (7.53) because 3 · 2(m− 1) + 6 = 6m.

Thus we have proved (7.48).
Assume m /∈ P3 to prove a different inequality (7.49). In this case, we may

assume (α|α0) = 0, |(α|α)| ≥ 2 and n > 4. Note that

(7.55) 2n = n0,1 + n1,1 + · · ·+ np,1 with p ≥ 3 and nj,1 ≥ 1 for j = 0, . . . , p.

If there exists j with 1 ≤ nj,1 ≤ n
2 − 1, (7.49) follows from (7.52) and |(α|αj,1)| =

nj,1(n+ nj,2 − 2nj,1) ≥ 2nj,1(
n
2 − nj,1) ≥ n− 2.

Hence we may assume nj,1 ≥ n−1
2 for j = 0, . . . , p. Suppose there exists j with

nj,1 = n−1
2 . Then n is odd and (7.55) means that there also exists j′ with j ̸= j′

and nj′,1 = n−1
2 . In this case we have (7.49) since

|(α|αj,1)|+ |(α|αj′,1)| = nj,1(n+nj,2−2nj,1)+nj′,1(n+nj′,2−2nj,1) ≥ n−1
2 + n−1

2 .

Now we may assume nj,1 ≥ n
2 for j = 0, . . . , p. Then (7.55) implies that p = 3

and nj,1 = n
2 for j = 0, . . . , 3. Since (α|α) < 0, there exists j with nj,2 ≥ 1 and

|(α|αj,1)|+ |(α|αj,2)| = nj,1(n+ nj,2 − 2nj,1) + nj,2(nj,1 + nj,3 − 2nj,2)

= n
2nj,2 + nj,2(

n
2 + nj,3 − 2nj,2){

≥ n (nj,2 ≥ 1),

= n− 2 (nj,2 = 1 and nj,3 = 0).

Thus we have completed the proof of (7.49).
There are 4 basic tuples with the index of the rigidity 0 and 13 basic tuples

with the index of the rigidity −2, which are given in (6.18) and Proposition 6.10.
They satisfy (7.50).

Suppose that (7.50) is not valid. We may assume that p is minimal under
this assumption. Then idxm < −2, p ≥ 5 and n = ordm > 2. We may assume
n > n0,1 ≥ n1,1 ≥ · · · ≥ np,1 > 0. Since (α|α0) ≤ 0, we have

(7.56) n0,1 + n1,1 + · · ·+ np,1 ≥ 2n > n0,1 + · · ·+ np−1,1.

In fact, if n0,1+ · · ·+np−1,1 ≥ 2n, the tuple m′ = (m0, . . . ,mp−1) is also basic and
|(α|α)| − |(αm′ , αm′)| = n2 −

∑
ν≥1 n

2
p,ν ≥ 2, which contradicts to the minimality.

Thus we have 2nj,1 < n for j = 3, . . . , p. If n is even, we have | idxm| ≥∑p
j=3 |(α|αj,1)| =

∑p
j=3(n + nj,2 − 2nj,1) ≥ 2(p − 2), which contradicts to the

assumption. If n = 3, (7.56) assures p = 5 and n0,1 = · · · = n5,0 = 1 and therefore
idxm = −4, which also contradicts to the assumption. Thus n = 2m + 1 with
m ≥ 2. Choose k so that nk−1,1 ≥ m > nk,1. Then | idxm| ≥

∑p
j=k(α|αj,1)| =∑p

j=k(n+nj,2−2nj,1) ≥ 3(p−k+1). Owing to (7.56), we have 2(2m+1) > km+(p−
k) and k < 4m+2−p

m−1 ≤ 4m−3
m−1 ≤ 5, which means k ≤ 4, | idxm| ≥ 3(p− 3) ≥ 2p− 4

and a contradiction to the assumption. □


