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Chapter 4

Topology of orbifolds

This section begins by reviewing the theory of the compact group actions on man-

ifolds. Then we move on to define orbifold and their maps. We also cover the

groupoid definition. We discuss the differentiable structures on orbifolds and the tri-

angulation of orbifolds following the book [Verona (1984)]. We expose the covering

theory using the fiber-product approach following Thurston and the path-approach

following Haefliger. We make some computations of the fundamental groups. Fi-

nally, we relate the fundamental groups with the covering spaces.

We tried to make the abstract definitions into more concrete forms here; however,

in many respect, the abstract definitions give us a more accurate sense of what

an orbifold is. (For examples, see the article [Lerman (2010)].) This section is

somewhat technical but essential to the developments later.

4.1 Compact group actions

Although we need only the result for finite group actions, we will study the situations

when G is a compact Lie group. Let X be a space. We are given a group action

G × X → X with e(x) = x for all x and gh(x) = g(h(x)). That is, we have a

homomorphism G → Diff(X) so that the product operation corresponds to the

composition. In this case, X with the action is said to be a G-space.

An equivariant map φ : X → Y between G-spaces is a map so that φ(g(x)) =

g(φ(x)) for all x ∈ X. An isotropy subgroup Gx is defined as {g ∈ G|g(x) = x}. We

note that Gg(x) = gGxg
−1 and Gx ⊂ Gφ(x) for an equivariant map φ.

Theorem 4.1.1 (Tietze-Gleason Theorem). Let G be a compact group acting

on a normal space X with a closed invariant set A. Let G also act linearly on Rn.

Then any equivariant map φ : A→ Rn extends to an equivariant map φ : X → Rn.

An orbit of a point x of X is G(x) = {g(x)|g ∈ G}. Then we see that G/Gx →
G(x) is one-to-one and onto continuous function. Therefore, the orbit type is given

by the conjugacy class of Gx in G. The set of orbit types form a set partially ordered

by the reversing the inclusion ordering of the conjugacy classes of subgroups of G.
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Denote by X/G the space of orbits with the quotient topology.

For A ⊂ X, define G(A) =
⋃
g∈G g(A) is the saturation of A.

• π : X → X/G is an open, closed, and proper map.

• X/G is Hausdorff since G is compact.

• X is compact iff X/G is compact.

• X is locally compact iff X/G is locally compact.

We list some examples:

• Let X = G×Y and G acts as a product. Then every orbit is homeomorphic

to G and the stabilizers are all trivial groups.

• For k, q relatively prime, the action of Zk on the unit sphere S3 in the

complex space C2 is generated by a matrix
[
e2πi/k 0

0 e2πqi/k

]
.

The quotient space is a Lens space.

• We also consider S1-actions on S3 given by
[
e2πkiθ 0

0 e2πqiθ

]

Then it has three orbit types.

• Consider in general the torus Tn-action on Cn given by

(c1, . . . , cn)(y1, . . . , yn) = (c1y1, . . . , cnyn), |ci| = 1, yi ∈ C.

Then there is a homeomorphism h : Cn/Tn → (R+)n given by sending

(y1, . . . , yn) 7→ (|y1|2, . . . , |yn|2)

where R+ := {x ∈ R|x ≥ 0}. (In other words, (R+)n is the closure of

the positive 2n-tant of Rn.) The interiors of sides represent different orbit

types.

• Let H be a closed subgroup of Lie group G. Let H act on G by the left

action. The left-coset space G/H is the orbit space where G acts on the

right also.

• Given a G-action on a space X and x ∈ X, let Gx be the stabilizer of x.

A map G/Gx → G(x) given by gGx 7→ g(x) is a homeomorphism if G is

compact.

• The twisted product: let X be a right G-space and Y a left G-space. A left

action is given by g(x, y) = (xg−1, gy). The twisted product X ×G Y is the

quotient space.

• Let p : X → B is a principal bundle with G acting on the right. Let F be a

left G-space. Now G acts on the right on X × F by g(x, f) = (xg, g−1(f)).

Then X ×G F is the associated bundle. (See Section 2.4.2.1.)
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Example 4.1 (Bredon). Let G be the rotation group SO(3,R), and let X be the

vector space of symmetric matrices of trace 0 (hence orthogonally diagonalizable).

Suppose that we act by conjugation G ×X → X given by g(m) = gmg−1,m ∈ X
and each g ∈ G. By linear algebra, we prove that two symmetric matrices are in

the same orbit if they have the same eigenvalues with multiplicities. Hence the

orbit space is in a one-to-one correspondence with the set of triples (a, b, c) so that

a ≥ b ≥ c and a+b+c = 0. The second space is a 2-dimensional cone in R3. This is

homeomorphic to X/G. The isotropy group of a diagonal matrix with three distinct

eigenvalues is the group of diagonal matrices with entries ±1 which is isomorphic

to Z2 ⊕ Z2. The isotropy group of a diagonal matrix with exactly two distinct

eigenvalues is the group of matrices decomposing into an orthogonal 2 × 2-matrix

and ±1.

A point x of a space X with a group G acting on it is stationary if the stabilizer

of x is G.

Example 4.2 (Conner-Floyd). There is an action of Zr for r = pq, p, q relatively

prime, on an Euclidean space of large dimensions without stationary points. This

is accomplished in following steps. We sketch the construction here.

• Find a simplicial action Zpq on S3 seen as a join S1 ? S1 without fixed

points obtained by joining action of Zp on the first factor circle and Zq on

the second factor circle.

• Find an equivariant simplicial map h : S3 → S3 which is homotopically

trivial.

• Build the infinite mapping cylinder using h infinitely many times which is

contactible and embed it in an Euclidean space of high-dimensions where

Zpq acts orthogonally.

• Find the contractible neighborhood. Taking the product with the real line

makes it into a Euclidean space. Now on this space Zpq acts orthogonally

as well.

4.1.1 Tubes and slices

For a compact group action, we need to establish the notion of tubes and slices.

These are modeled on twisted product actions: Let G be a compact Lie group, X a

right G-space, and S a left G-space. Then X ×G S is defined as the quotient space

of X × S where [xg, y] ∼ [x, gy] for g ∈ G, x ∈ X, and y ∈ S.

Let H be a closed subgroup of G and let A be a left H-space. shThen G×H A

is a left G-space by the action g[g′, a] = [gg′, a] where g, g′ ∈ G, a ∈ A as this

sends equivalence classes to themselves. The inclusion A → G ×H A induces a

homeomorphism A/H → (G×H A)/G.

The isotropy subgroup at [e, a] for a ∈ A and e the identity element of G

is computed as follows: [e, a] = g[e, a] = [g, a] = [h−1, h(a)] for h ∈ H. Thus,
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G[e,a] = Ha where Ha is the stabilizer of a in H.

As an example, let G = S1 and A be the unit-disk and H = Z3 generated by

e2πi/3. G and H act in standard manners in A. Then consider G ×H A. The

result is homeomorphic to a solid torus fibered with circles. Each non-central circle

is mapped around the quotient solid torus three times and the central circle goes

around once.

Let X be a G-space and P an orbit of type G/H. A tube about the orbit P is a

G-equivariant embedding G×H A → X onto an open neighborhood of P where A

is a space where H acts on. We note the following:

• Every orbit passes the image of e×A where e is the identity of G.

• P equals G(x) for x = [e, a] where a is the stationary point of H in A.

• For general points x = [e, b], not necessarily stationary, we have Gx = Hb ⊂
H.

Let x ∈ X. Suppose that S is a set containing x such that Gx(S) = S; i.e.,

the stabilizer of x acts on S. Then S is said to be a slice if G×Gx
S → X so that

[g, s]→ g(s) is a tube about G(x). It is easy to see that S is a slice if and only if S

is the image of e×A for some tube.

Let x ∈ S and H = Gx. Then the following statements are equivalent:

• There is a tube φ : G×H A→ X about G(x) such that φ([e,A]) = S.

• S is a slice at x.

• G(S) is an open neighborhood of G(x) and there is an equivariant retraction

f : G(S)→ G(x) with f−1(x) = S.

Let X be a completely regular G-space. Let x0 ∈ X have an isotropy group H

in G. Find an orthogonal representation of G in Rn with a point v0 whose isotropy

group is H, which always exists by a compact group representation theory. There

is an equivalence of orbits G(x0) and G(v0). We extend this to a neighborhood

by Tietze-Gleason theorem. For Rn, we find the equivariant retraction given by

Lemma 5.1 of Chapter 1 of the book [Bredon (1972)]. Transferring this on X, we

obtain:

Theorem 4.1.2 (Gleason, Montgomery-Yang). Let X be a completely regular

G-space. There is a tube about any orbit of a completely regular G-space with G

compact.

If G is a finite group acting on a manifold, then a tube is a union of disjoint

open sets and a slice is an open subset where Gx acts on.

Theorem 4.1.3 (Path-lifting and the covering homotopy theorem). Let

X be a G-space and G a compact Lie group.

• Let f : I → X/G be any path. Then there exists a lifting f ′ : I → X so

that π ◦ f ′ = f .
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• Assume that every open subspace of X/G is paracompact. Let f : X → Y

be an equivariant map. Let f ′ : X/G → Y/G be an induced map. Let

F ′ : X/G × I → Y/G be a homotopy preserving orbit types that starts at

f ′. Then there is an equivariant F : X × I → Y lifting F ′ starting at

f . Moreover, any two such liftings of F ′ differ by composition with a self-

equivalence of X × I covering the identity of X/G× I and equal to identity

on X × {0}.
• If G is finite and X a smooth manifold with a smooth G-action and if the

functions have locally smooth lifts, then the lifts can be chosen to be also

smooth. If the derivative of a smooth path with locally smooth lifts is never

zero, then the lift is unique up to the action of G.

4.1.2 Locally smooth actions

Let M be a G-space with G a compact Lie group, and let P be an orbit of type

G/H. and V a vector space where H acts orthogonally. Then a linear tube in M

is a tube of the form φ : G×H V →M .

Let S be a slice. S is a linear slice if G ×Gx
S → M given by [g, s] → g(s) is

equivalent to a linear tube. In other words, this is the case if the Gx-space S is

equivalent to the orthogonal Gx-space.

If there is a linear tube about each orbit, then M is said to be locally smooth.

Lemma 4.1.4. Under the above assumptions, there exists a maximal orbit type

G/H for G. ( That is, H is conjugate to a subgroup of each isotropy group. )

Proof. In each tube, there is a maximal orbit type in it and we find the union

of maximal orbits in it has to be dense and open. For intersection of two tubes,

the union of maximal orbits has to be dense and open in both tubes. Thus, the

maximal orbit of a tube is of the maximal orbit type in M . �

The maximal orbits so obtained in a tube are called principal orbits.

4.1.3 Manifolds as quotient spaces.

Finally, we wish to understand about the quotient spaces. Let M be a smooth

manifold (not necessarily connected), and G a compact Lie group acting smoothly

on M . We denote by M∗ the quotient space M/G. (This is a notation used for this

book.) If G is finite, then this is equivalent to the fact that each ig : M →M given

by x 7→ g(x) is a diffeomorphism, and the following theorem holds if the dimension

of M is ≤ 2.

Theorem 4.1.5. Let n be the dimension of M and d the dimension of the maximal

orbit. Then M∗ = M/G is a manifold with boundary if n− d ≤ 2.
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Proof. Let k = n − d be the codimension of the principal orbits. Consider a

linear tube G ×K V where K is a subgroup of G acting on V . The orbit space

(G ×K V )/G = (G ×K V )∗ is congruent to V ∗ where V ∗ = V/K. Let S be the

unit sphere in V . Then V ∗ is a cone over S∗. We have that dimM∗ = dimV ∗ =

dimS∗ + 1.

If k = 0, then M∗ is discrete. If M is a sphere, then M∗ is one or two points.

(Here, we regard a disconnected 0-sphere as a sphere also.)

If k = 1, then M∗ is locally a cone over one or two points by the previous steps.

Hence M∗ is a 1-manifold. If k = 2, then M∗ is locally a cone over an arc or a circle

as S∗ is a 1-manifold by the previous step. �

Example 4.1.6. Consider the Z2-action on R3 generated by the antipodal map

~x 7→ −~x. The result is not a manifold.

4.1.4 Smooth actions are locally smooth

Recall smooth actions. Let G be a compact Lie group acting smoothly on a manifold

M . Then there exists a G-invariant Riemannian metric on M . Then G(x) is a

smooth manifold where G/Gx → G(x) is a diffeomorphism. Recall the exponential

map for Riemannian manifolds: For any vector X ∈ TpM , there is a unique geodesic

γX with tangent vector at p equal to X. The exponential map exp : TpM → M is

defined by X 7→ γX(1).

Lemma 4.1.7. A G-invariant metric on M can always be constructed so that ∂M

is totally geodesic.

Proof. We start with any smooth Riemannian metric µ on M . Next, we integrate

to obtain the Riemannian metric µ1 =
∫
g∈G g

∗µdg on M using the Haar measure on

G. Now µ1 will extend to a Riemannian metric on an open manifold M ′ containing

M . Find a tube T of ∂M inM ′, i.e., an open neighborhood of ∂M and a submanifold

diffeomorphic to ∂M×(−ε, ε), ε > 0. By taking a sufficiently small tube, we assume

that µ1 extends to a metric on T . Here, we assume that the exponential map from

the normal bundle of ∂M to T is a diffeomorphism. (See Chapter 4 of the book

Hirsch (1976) for details.) Then there exists an antipodal map σ : T → T fixing

∂M by sending a point x of T with a shortest geodesic γ perpendicular to ∂M

with γ(δ) = x to γ(−δ) in T again. We may assume that σ(T ) = T . Considering

geodesics perpendicular to ∂M , we find that the commutativity σ ◦ g = g ◦ σ
holds. By comparing distances between two points and their images under σ, we

see that σ∗µ1 is also G-invariant in T . We form the G-invariant Riemannian metric

σ∗µ1 + µ1. Since σ is an isometric involution of this metric, it follows that ∂M is

totally geodesic. (For the proof, we followed a note of Francis (2010) here.) Now

we use a G-invariant partition of unity to form a metric in M ′ and hence on M . �
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If A is a G-invariant smooth submanifold, then A has an open G-invariant

tubular neighborhood. This follows by using the normal bundle to A and the

exponential map restricted to the normal bundle NA. Then this map is a local

diffeomorphism in a neighborhood N of A in NA. By taking the same radius open

balls in the normal bundle, we obtain the invariant tubular neighborhood as its

image.

Proposition 4.1.8. Let M be a manifold with boundary ∂M . The smooth action

of a compact Lie group is locally smooth.

Proof. We use the fact that orbits are smooth submanifolds and the above state-

ments and that normal bundles are linear tubes. �

Theorem 4.1.9 (Newman’s theorem). Let M be a connected topological n-

manifold. Then there is a finite open covering U of the one-point compactification

of M such that there is no effective action of a compact Lie group with each orbit

contained in some member of U .

The proof follows from algebraic topology.

Corollary 4.1.10. If G is a compact Lie group acting effectively on M , then the

set of fixed points MG is nowhere dense.

4.1.5 Equivariant triangulation

Illman (1978) proved:

Theorem 4.1.11. Let G be a finite group. Let M be a smooth G-manifold with or

without boundary. Then we have:

• There exists an equivariant simplicial complex K and a smooth equivariant

triangulation h : K →M .

• If h : K →M and h1 : L→M are smooth triangulations of M , there exist

equivariant subdivisions K ′ and L′ of K and L, respectively, such that K ′

and L′ are G-isomorphic.

4.2 The definition of orbifolds

Let X be a Hausdorff second countable topological space. Let n be fixed. Consider

a connected open subset Ũ in Rn with a finite group G acting smoothly on it and a

G-invariant map φ : Ũ → U for an open subset U of X inducing a homeomorphism

Ũ/G→ U . φ or (Ũ , φ) is an orbifold chart, Ũ or U = φ(Ũ) is a model neighborhood

or model open set, (Ũ , G) is a model pair, and (Ũ , G, φ) is a chart or a model triple.

An embedding i : (Ũ , G, φ) → (Ṽ ,H, ψ) is a smooth embedding i : Ũ → Ṽ with

φ = ψ ◦ i which induces the inclusion map U → V for U = φ(Ũ) and V = φ(Ṽ ).
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• Equivalently, i is an embedding inducing the inclusion map U → V and

inducing an injective homomorphism i∗ : G → H so that i ◦ g = i∗(g) ◦ i
for every g ∈ G. i∗(G) will act on the open set that is the image of i.

• Note here i can be changed to h ◦ i for any h ∈ H. The images of h ◦ i will

be disjoint for representatives h for H/i∗(G). Conversely, any embedding

i′ : Ũ → Ṽ lifting an inclusion U → V equals h ◦ i for h ∈ H. (See

Proposition A.1 of the article [Moerdijk and Pronk (1999)].)

Definition 4.2.1. Let R+ := {x|x ≥ 0}. Define Rn+ as the n-fold product of R+.

A cell is a nonempty intersection of a convex open set in Rn with Rn+.

Two model triples (Ũ , G, φ) and (Ṽ ,H, ψ) are compatible if for every x ∈ U ∩ V
and open sets U = φ(Ũ) and V = ψ(Ṽ ), there is an open neighborhood W of

x in U ∩ V and the model triple (W̃ ,K, µ) with µ(W̃ ) = W such that there are

embeddings to (Ũ , G, φ) and (Ṽ ,H, ψ). (One can assume that W is a component

of U ∩ V .)

• Since G acts smoothly, G acts freely on an open dense subset of Ũ .

• An orbifold atlas on X is a family of compatible model triples {(Ũ , G, φ)}
so that the family of open sets of form φ(Ũ) covers X.

• Two orbifold atlases are compatible if model triples in one atlas are com-

patible with model triples in the other atlas.

• Atlases form a partially ordered set by the inclusion relation. It has a

maximal element.

• Given an atlas, we obtain a unique maximal atlas containing it by Zorn’s

lemma.

• An orbifold O is a topological space X with a maximal orbifold atlas. We

say that X is the underlying space of O and write X = |O| and we say that

O is based on |O|.
• One can obtain an atlas of linear charts only: that is, charts of form

(Ũ , G, φ) where Ũ is an open subset of Rn and G ⊂ O(n,R). For each

point x ∈ Ũ , one can find a finite subgroup Gx stabilizing the point and

a suitable Gx-invariant neighborhood in Ũ . Then Gx acts linearly up to a

choice Ox of coordinate charts since a smooth action is locally smooth, i.e.,

linear and orthogonal, by Proposition 4.1.8. (Note, if x is in the boundary,

then Ox can be identified with an open set intersected with an upper-half

space and Gx is acting orthogonally on the half-space.) We call such a

chart (Ox, Gx, φ) a linear chart. Therefore, given an orbifold atlas, there is

a compatible orbifold atlas consisting of only linear charts.

• Gx is called a local group. If the local group Gx is not trivial, then x is said

to be singular.

• If we have Ũ with G acting freely, we can drop this from the atlas and

replace with many charts with trivial group.
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• A map f : (X,U) → (Y,V) where U and V are maximal atlases is smooth

if for each point x ∈ X, there is a model triple (Ũ , G, φ) ∈ U with x ∈ U =

φ(Ũ) and a model triple (Ṽ ,H, ψ) ∈ V with f(x) ∈ V so that f(U) ⊂ V =

ψ(Ṽ ) and f lifts to a smooth map f̃ : Ũ → Ṽ . In this case, f is said to be

an orbifold-map.

• If above f has local lifts f̃ : Ũ → Ṽ that is an immersion for the every pairs

of model triples as above, then f is said to be an orbifold-immersion.

• Two orbifolds are diffeomorphic if there is a smooth orbifold-map with a

smooth inverse orbifold-map.

Sometimes, the orbifolds are called effective (or reduced) orbifolds as we defined

here (Adem, Leida, and Ruan, 2007). There are ineffective orbifolds, where for a

model neighborhood (Ũ , G, φ) the group G is allowed to be not effective on Ũ . This

is not a well-studied area.

We also note our convention that an orbifold has certain topological property if

the underlying space has that property.

Definition 4.1. A covering of an orbifold is good if each model neighborhood is

connected, the open set in the triple is homeomorphic to a cell, and the group

acts linear orthogonally and the intersection of any finite collection again has such

properties.

We will show later that each orbifold has a good cover. (See Proposition 4.4.2.)

Given an orbifold O, if we allow some open sets Ũ in model triples to be open

subsets of the closed upper half space Rn−1×R+, then the orbifold has boundary. A

boundary subset of an orbifold is the subset of the underlying space orbifolds where

each element is so that each of its inverse image points in the model open sets goes

to the boundary of Rn−1×R+ under charts. The complement of the boundary is the

interior of the orbifold. If a finite group G acts on a subspace V , we denote by G|V
the homomorphism image of G as restrictions {g|V |g ∈ G}. The boundary has an

orbifold structure also by restricting each model triple (Ũ , G, φ) to (Ũ ∩V,G|V, φ|V )

for V = Rn−1 × {0} whenever Ũ ∩ V 6= ∅ as the model triples are all compatible.

The boundary of an orbifold is the boundary subset with this orbifold structure.

(We will show that the boundary is a suborbifold. See Definition 4.2.2.)

A compact orbifold with empty boundary is said to be a closed orbifold.

4.2.1 Local groups and the singular set

Let x ∈ X. A local group Gx of x is obtained by taking a model triple (Ũ , G, φ) for

x and finding the stabilizer Gy of y for an inverse image point y of x.

• This is independently defined up to conjugacy for any choice of y.

• We reason as follows: Smaller charts will give you the smaller or identical

conjugacy class. The stabilizer group eventually does not change under
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taking smaller and smaller charts up to conjugations. Thus, one can take a

linear chart. Once a linear chart is achieved, the local group is well-defined

up to conjugacy (Thus, as an abstract group with an action.)

The singular set is a set of points where Gx is not trivial. In each chart, the set

of fixed points of each subgroup of Gx is a closed submanifold.

Let (Ox, Gx) and (Oy, Gy) be two charts. Subgroups H of Gx and H ′ of Gy
are strictly topologically conjugate if there is a chart (Uz, Gz) with morphisms into

(Ox, Gx) and (Oy, Gy) in the orbifold atlas so that H and H ′ correspond to conju-

gate subgroups in Gz. H and H ′ are topologically conjugate if there exists a sequence

H1 = H,H1, · · · , Hn = H ′ where Hi and Hi+1 are strictly topologically conjugate.

The connected maximal subset of the singular set where the topological conju-

gacy class of the stabilizer Gx of each of its element x is constant is a relatively

closed submanifold. Thus X becomes a stratified smooth topological space where

each stratum is given by the connected component of the set where the smooth

topological conjugacy classes of subgroups of local groups Gx for x ∈ X is con-

stant. (Here, a stratified space is a space that is a union of disjoint relatively closed

connected submanifolds. A stratum is one of these submanifolds. See Section 4.5.1.)

Because Gy is trivial for y in a dense open subset of Ox, a generic point of an

orbifold has a trivial local group. Hence, there exists a dense open subset in the

underlying space of an orbifold that is nonsingular. The set of singular points is

nowhere dense also.

The singularity of a 1-orbifold is unique: a silvered point. Its neighborhood is

modeled on an open interval where Z2 acts as a reflection group fixing a point.

Thus, a connected 1-orbifold has a base space homeomorphic to the circle S1 or an

interval (half-open, open, or closed) and is diffeomorphic to S1, a closed interval

with one or two silvered points, a half-open interval with one or no silvered point,

or an open interval.

To classify the singular points of 2-orbifolds, we classify finite groups in O(2,R)

acting on open subsets of R2 since we are looking at finite subgroups of GL(2,R):

These are as follows: Z2 acting as a reflection group or a rotation group generated

by a rotation of angle π, cyclic groups Cn of order n ≥ 3 and dihedral groups Dn

of order 2n ≥ 4. The singular points of a two-dimensional orbifold fall into three

types:

(i) The mirror point: R2/Z2 where Z2 is generated by the reflection on the

y-axis.

(ii) The cone-points of order n: R2/Zn where Zn acting by rotations by angles

2πm/n for integers m.

(iii) The corner-reflector of order n: R2/Dn where Dn is the dihedral group

generated by reflections about two lines meeting at an angle π/n. (Note

that Dn is of order 2n. However, the order of the corner-reflector itself is

n.)
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From this, we see that the underlying space of a 2-orbifold is a surface with

corner since each model neighborhood is diffeomorphic to a surface with corner by

above. (This also follows from the proof of Theorem 4.1.5. See the beginning of

Section 4.5 for the definition.)

Fig. 4.1 The actions here are isometries on R2.

Definition 4.2. Given two orbifolds X and Y , we find a natural product orbifold-

structure on |X| × |Y | where |X| and |Y | are the respective underlying spaces. We

assume that the boundary of one of X or Y is empty. For a point (x, y) ∈ |X|× |Y |,
an orbifold neighborhood is U × V for respective model neighborhoods U and V of

x and y where (Ũ , G, φ) is the model triple for x and (Ṽ ,H, ψ) is one for y with

φ(Ũ) = U and ψ(Ṽ ) = V . The group G×H acts on Ũ×Ṽ , and (Ũ×Ṽ , G×H,φ×ψ)

is the model triple for (x, y). Then these charts φ × ψ form an atlas of |X| × |Y |
giving us an orbifold structure. We denote the orbifold by X × Y and call it the

product orbifold of X and Y .

If both ∂X 6= ∅ and ∂Y 6= ∅, then we can put on |X| × |Y | an orbifold-structure

with corner. (See Section 4.5.2 for detail.)

Definition 4.2.2. A suborbifold Y of an orbifold X is an embedded subset such

that for each point y in Y and a chart (Ṽ , G, φ) of X for a neighborhood V of y

there is a chart for y given by (P,G|P, φ) where P is a closed submanifold of Ṽ

where G also acts on and G|P is the image of the restriction homomorphism of G

to P . (We caution the readers that G→ G|P is sometimes not injective.)

Clearly, an open subset inherits an orbifold structure to make them into a sub-

orbifold, and the boundary of an orbifold is a suborbifold. (See Remark 4.2.5.)

A suborbifold in our sense is a “suborbifold” in the sense of Definition 2.3 of the

book [Adem, Leida, and Ruan (2007)], which is easy to show from the definitions.

However, our definition is strictly stronger. Also our definition is strictly weaker
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than the one in Section 6.1 of the book [Kapovich (2009)]. (Actually, we should

say our suborbifolds are “strong” suborbifolds. However, we do not need their

definition.) The basic reason for our definition is so that we wish do surgeries along

the suborbifolds in later sections.

Let I be the orbifold based on [0, ε) with 0 given the silvered point structure.

Then I × I is a 2-orbifold covered by (−ε, ε) × (−ε, ε) with Z2
2 acting on it by

two reflections about the axes. That is, I × I has a corner-reflector of order 2

at which two silvered edges meet. The diagonal δ ⊂ [0, ε) × [0, ε) can be given a

suborbifold structure in the sense of Definition 2.3 of the book [Adem, Leida, and

Ruan (2007)] by Example 2.6 of the same book. However, the inverse image of δ in

(−ε, ε)× (−ε, ε) is not an embedded arc, i.e, a union of two transversal arcs, and it

cannot be a suborbifold in our sense.

Now consider J = {0}×I. Then J is given an orbifold-structure with one-silvered

point. Then J is a suborbifold in our sense. However, J is not a suborbifold in

the sense of Section 6.1 of the book [Kapovich (2009)]. The reason is that the local

groups are required to be mutually isomorphic in the later case.

Clearly, manifolds are orbifolds. But as an orbifold, it might carry more charts.

By an abuse of notations, a manifold in this paper will mean a manifold with the

extended collection of charts as orbifolds: To explain, in general, let G be a finite

group acting on a manifold M smoothly and freely. Then M/G is a manifold with

an orbifold structure with an atlas of charts based on some H-invariant open set in

M diffeomorphic to an open subset of Rn and a subgroup H of G as a model. For

example, RPn, n ≥ 2, will have a chart with the Z2-action on it.

Conversely, we say that an orbifold is a manifold if there is an atlas in the orbifold

atlas with model triples with trivial groups only. A submanifold of a manifold has

a suborbifold structure when the manifold is considered as an orbifold.

4.2.2 Examples: good orbifolds

Let M = Tn and Z2 act on it with generator acting by −I. For n = 2, M/Z2 is

topologically a sphere and has four singular points. For n = 4, we obtain a Kummer

surface with sixteen singular points. In general, a regular branched covering of a

surface by another surface gives us an orbifold structure.

Theorem 4.2.3. Let M be an n-orbifold with boundary possibly empty and Γ be a

discrete group of orbifold-diffeomorphisms of M acting properly discontinuously but

not necessarily freely. Then the quotient space M/Γ has a natural structure of an

orbifold.

Proof. For each point x ∈M , the stabilizer group Γx is a finite group since x has

a neighborhood U whose closure is compact. Since Gx is finite, we form an open

neighborhood
⋃
g∈Gx

g(U) of x. By taking U sufficiently small, we may assume

that U has a model triple (V,G, φ) for an open subset V in Rn or in a half-space
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Rn−1 × R+. Now, U has a finite group GU acting on it. Each element g : U → U

is an embedding and hence lifts to a diffeomorphism g̃ : V → V .

Let GV be the finite group generated by these lifts and G. Then it follows that

g ∈ GV for a homeomorphism of V iff φ ◦ g = h ◦ φ for h ∈ Gx. Let p : M →M/Γ

be the quotient map. Hence (V,GV , p ◦ φ) is then a model triple of p(x) ∈M/Γ.

The sets of these types form an atlas of M/Γ and hence give us an orbifold

structure. �

We say that M/Γ is a quotient orbifold of an orbifold M . In fact, in many cases

orbifolds are of this form. If M is a manifold, they are called “good orbifolds”. We

will talk about these later.

• Consider the Euclidean plane R2 and the discrete group generated by order-

two rotations at (k+n, l+m) for n,m ∈ Z2 and fixed real numbers k, l > 0.

• Cut a rectangle of height 1 and length 2 containing two fixed points ro-

tations on the top side and two the bottom side respectively. We glue by

an isometry given by the composition of the two rotations on the top side,

which is identical with that of the two rotations at the bottom side. We

obtain an annulus. (See Figure 4.2.)

• Then we crease the top circle and the bottom circle at the cone-points and

glue by the order 2 rotations. (This is called “folding”. See Section 5.2.1.)

• Thus, the Poincaré polyhedron theorem exactly fits into this situation.

• We can modify this construction easily by taking a nonstandard Z2-lattice.

This might be a good exercise for readers.

Fig. 4.2 The rectangle and the fixed points

This type of orbifold is an example of an Euclidean orbifold which is a quotient

orbifold of the euclidean space by a wall paper group. (We call “pillows” tetrapaks

to emphasize the Euclidean structure.) See Figures 4.4 and 4.5.
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Fig. 4.3 Tetrapaks often called “pillows”.
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Fig. 4.4 A wall paper group p2: The points are fixed points of some elements of order 2 including

generators and a triangle is mapped by various elements of the group. See wall2a.nb

4.2.3 Examples: silvering

Given a manifold M with boundary, we obtain a doubled M̂ by taking M × Z2/ ∼
where (x, 0) ∼ (y, 1) if and only if x = y ∈ ∂M . A Z2-action M̂ is induced by

(x, 0) 7→ (x, 1) and (x, 1) 7→ (x, 0) for x ∈ M . We build a collar neighborhood of

∂M in M diffeomorphic to ∂M × [0, ε). Then the Z2-action here can be extended

to ∂M × (−ε, ε) by (x, t)→ (x,−t). This is a smooth action. Hence, we can double

M as a smooth manifold M̂ and obtain a smooth Z2-action. Thus, M can be

given a smooth orbifold structure modeled on Z2-invariant open subsets of M̂ with

Z2-action or open subsets of Mo with trivial group actions.

Now the boundary of M became now a set of singular points, called silvered
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Fig. 4.5 A (2, 3, 6)-triangle reflection group. The fundamental domain is one of the bigger tri-

angles and an inside triangle is mapped to many other by various elements of the group. See

wall17a.nb

points. Actually, we can do this for the interior U of a properly and smoothly

embedded submanfold of ∂M . Define M̂U as M×Z2/ ∼ where (x, 0) ∼ (y, 1) if and

only if x = y ∈ U . Then we can find an orbifold structure on M with U silvered in

the above way. (See also Proposition 4.4.3.)

Example 4.2.4. Consider a surface with corner, its boundary that is a union of

smooth arcs ending at corner points, and the set of its corner points.

• We choose some collection of these arcs α1, . . . , αn and finite set of points

in the interior q1, . . . , qm.

• We let the set of points where the the endpoints of half-arcs of the arcs in

the collection coincide be called distinguished corner points. Denote them

by p1, . . . , pl. Each pi is given an order ni, ni ≥ 2. Let each point qi be

given orders mi, mi ≥ 2. If αi is a loop, then its unique endpoint is a

distinguished corner point.

• We give a Riemannian metric on a neighborhood N of the boundary by

φ-equivariantly immersing the universal cover of the neighborhood into the

Euclidean space E2 so that the boundary arcs are geodesic, the angle at each

distinguished corner point pi is π/ni and at the non-distinguished corner

points the angles are π/2, where the homomorphism φ : π1(N)→ Isom(R2)

can be chosen.

• Then each point of the arc αi is silvered by taking as a model open set a

small open ball in E2 containing its image and invariant under the reflection

about the image of αi.

• At each point pi, we take a model open set as a small open ball in E2 con-

taining its image and invariant under the two reflections about the images
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of αk and αl ending there forming an angle π/ni for some k, l.

• At qi, we model its open neighborhood by an open ball with a cyclic action

by Zmi . The neighborhood here is chosen to be disjoint from ones of the

boundary points.

• For other points, we model an open neighborhood of the point disjoint from

boundary or {q1, . . . , qm} by an open set in E2 without any group actions.

• Finally, we see that then these charts are compatible and hence gives rise

to an orbifold structure.

Remark 4.2.5. When we say the boundary or interior of an orbifold, we do not

mean the boundary or interior of the underlying space. They are different concepts.

Of course the boundary of an orbifold is in the boundary of the underlying space

but the converse is not necessarily true. For example, supposing that the underlying

space is a topological manifold, a silvered (n− 1)-dimensional open manifold in the

boundary of the underlying space is in the interior of the orbifold. The interior

of the underlying space is in the interior of the orbifold but the converse is not

necessarily true.

4.3 The definition as a groupoid

We will try to avoid the definitions using the category theory as related to the theory

of stacks in algebraic geometry as much as possible and use the more concrete set

theoretic approach. See for example the articles [Moerdijk (2002); Moerdijk and

Pronk (1997); Pohl (2010); Lerman (2010)] and Chapter IIIG of the book [Bridson

and Haefliger (1999)] and the book [Adem, Leida, and Ruan (2007)]. (See the

articles [Haefliger (1990, 1984a); Haefliger and Quach (1984b)] also for the beginning

of this.) However, there are many reasons to learn orbifolds as groupoids since this

framework provides us with more tools and insights from the category theory and

even from the smooth manifold theory in the categorical setting. These definitions

are mainly introduced to study sheaf theoretic considerations and bundles and so

on. ( The main reason we are introducing these definitions is to explain the path

approach to covering spaces following Haefliger. )

Here, we will try to minimize the theoretical aspect. In spite of the technical

nature, readers somewhat acquainted with the category theory will recognize that

these definitions are very concrete. Only the abstract nature of the category theory

comes when discussing the equivalences of these structures.

We follow mostly the expositions in the book [Adem, Leida, and Ruan (2007)]

and the paper [Moerdijk (2002)].
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4.3.1 Groupoids

A topological groupoid G consists of a space G0 of objects and a space G1 of arrows

with five continuous maps:

• a source map s : G1 → G0,

• a target map t : G1 → G0,

• an associative composition map m : G1s ×t G1 → G1 where

G1s ×t G1 := {(h, g) ∈ G1 ×G1|s(h) = t(g)}.

• a unit map u : G0 → G1 so that su(x) = x = tu(x) and gu(x) = g if

s(g) = x and u(x)g = g if t(g) = x, and

• an inverse map i : G1 → G1 so that if g : x → y, then i(g) : y → x and

i(g)g = u(x) and gi(g) = u(y).

It will be convenient to think of these arrows at points as restrictions of maps to

the singletons. Given a topological groupoid G, we will denote by G0 the space of

objects and G1 the space of arrows. The arrow u(x) in G1 from a point x of G0 to

itself is denoted by Ix.

A Lie groupoid is one G where G0 and G1 are smooth manifolds and the five

maps are smooth and s and t are submersions. (This implies that G1s ×t G1 is a

smooth manifold.)

Let M be a smooth manifold. If G0 = G1 = M and every arrow is of form Ix
for x ∈ G0, then this is the unit groupoid on M .

As a simple example, let a Lie group K act smoothly on a smooth manifold

M . The action Lie groupoid L is given by L0 = M and L1 = K ×M with s as

the projection to the M factor and t as the action K ×M → M . The unit map

is the inclusion map x 7→ (e, x) for the unit element e of K. The inverse map

K ×M → K ×M is given by (g, x) 7→ (g−1, g(x)).

If K is the trivial group, we obtain the unit Lie groupoid.

• Given a groupoid G, we define the isotropy group at x to be the set of all

arrows from x to itself; i.e.,

Gx = {g ∈ G1|(s, t)(g) = (x, x)}
= (s, t)−1(x, x)

= s−1(x) ∩ t−1(x) ⊂ G1.

• A homomorphism of Lie groupoids φ : H → G is a pair of smooth maps

φ0 : H0 → G0 and φ1 : H1 → G1 commuting with all structure maps.

• The fiber-product: Given two homomorphisms φ : H → G,ψ : K → G of

Lie groupoids, we define the fiber product H ×G K to be the Lie groupoid

whose objects are (y, g, z) for y ∈ H0, z ∈ K0, and arrow g : φ(y) → ψ(z)

and whose arrows (y, g, z) → (y′, g′, z′) are pairs (h, k) of arrows h : y →
y′, k : z → z′ so that g′φ(h) = ψ(k)g.
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An étale map of a Lie groupoid is a homomorphism φ : G → H so that φ0 :

G0 → H0 is a local homeomorphism. A homomorphism of Lie groupoids φ : H → G

is an equivalence if

• t ◦ π1 : G1s ×φ H0 → G0 is a surjective submersion.

• the square

H1
φ→ G1

(s, t) ↓ ↓ (s, t)

H0 ×H0
φ×φ→ G0 ×G0

is a fiber product of manifolds.

We can show that two groupoids are equivalent if and only if they are Morita

equivalent; i.e., there exists another groupoid and equivalences from it to the two

groupoids. This essentially means that there is a larger groupoid containing both.

4.3.1.1 A nerve of a groupoid and the homotopy groups

Let G be a Lie groupoid. Define

Gn = {(g1, . . . , gn)|gi ∈ G1, s(gi) = t(gi+1)}

as a fiber product. The face operator di : Gn → Gn−1 is defined by sending

(g1, . . . , gn) to (g1, . . . , gigi+1, . . . , gn). This forms an abstract simplicial manifold,

said to be the nerve of the groupoid G.

The classifying space BG is defined to be the geometric realization as a simplicial

complex (Adem, Leida, and Ruan, 2007). We will not give much details here.

4.3.2 An abstract definition

• A groupoid G is proper if s× t : G1 → G0 ×G0 is proper.

• A groupoid G is étale if s and t are local diffeomorphisms.

• A groupoid G is foliation if each isotropy group Gx is discrete.

• An orbifold groupoid is a proper étale Lie groupoid.

If G is an étale groupoid, then any arrow g : x→ y in G induces a well-defined

germ of a diffeomorphism g̃ : Ux → Vy for neighborhoods Ux of x and Vy of y

in G0, defined as g̃ = t ◦ ĝ, where ĝ : Ux → G1 is a section of the source map

s : G1 → G0 with ĝ(x) = g. (By étale property, such sections exist.) We call

an étale groupoid G effective (or reduced) if the assignment g 7→ g̃ is faithful; or

equivalently, if for each point x ∈ G0 this map g 7→ g̃ defines an injective group

homomorphism Gx → Diff(Ux).

Some authors define proper foliation Lie groupoids to be orbifold groupoids.

However, they are equivalent under a Morita equivalence. Orbifold groupoids are
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usually effective groupoids. Also, Gx is finite for each point x ∈ G0 if G is a proper

foliation groupoid.

The set ts−1(x) = {y|∃z ∈ G1, z : x → y} is called the orbit of x. The orbit

space |G| of a groupoid G is the quotient space of its space of objects G0 under the

equivalence relation x ∼ y if and only if x and y are in the same orbit.

Theorem 4.3.1.

• Let G be a proper effective étale groupoid. Then its orbit space |G| can be

given the structure of an orbifold.

• Two effective orbifold groupoids G and G′ represent the same orbifold up to

isomorphism if and only if they are Morita equivalent.

We do not prove this theorem (Adem, Leida, and Ruan, 2007); however, we

show below that an orbifold gives rise to a proper effective étale groupoid.

Example 4.3. Let M be a smooth orbifold with the locally finite covering U
by model neighborhoods in the orbifold atlas and the underlying space X. Each

nonempty finite intesection of the members of U has a model (U,G, φ) in the orb-

ifold atlas for some domain U ⊂ Rn, a finite group G acting on it effectively, and

φ inducing a homeomorphism U/G to its image. Let M0 be the disjoint union of

the model open sets in Rn of all finite intersections of members of U , and let M1

be the set of arrows obtained by restrictions to points in M0 of all embeddings

U → V for model triples (U,G, ψ) and (V,H, φ) lifting the inclusion maps and their

compositions and the inverse arrows. (Here, it is possible that U = V and G = H.)

Also, we include Ix for all x ∈ M0. Then the space of orbits is homeomorphic to

X and M0 and M1 contain all the information of the atlas. The fact that this is a

proper effective étale groupoid follows by checking the above definitions.

We note the alternative definition:

Definition 4.3. An orbifold structure on a paracompact Hausdorff space X consists

of orbifold groupoid G and a homeomorphism f : |G| → X. Two orbifold structures

(G, f) and (H, g : |H| → X) are equivalent if there is a groupoid equivalence φ :

H → G inducing the homeomorphism |φ| : |H| → X = |G| so that f ◦ |φ| = g.

4.3.2.1 Examples

Let a discrete group Γ act on a connected manifold X properly discontinuously.

Then (Γ, X) has an orbifold structure. We think of it as a groupoid where X0 is

given as X itself and X1 as the space of arrows sending x → γ(x) for x ∈ X0 for

γ ∈ Γ. Hence, there are cardinality of Γ of components of X1 homeomorphic to X0.

(This is the good orbifold discussed above. See Theorem 4.2.3.)

We obtain a 2-orbifold from a compact orientable Seifert fibered 3-manifold M :

We choose X0 to be the union of finitely open disks that are disjoint and bounded
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away from one anoother and each flow line meets at least one of them. We choose

X1 to be the space of flow lines with both end points in these disks.

The fiber order of a closed flow curve is the order of the germ of the return map

to a transversal disk along the curve.

The orbifold X will be a 2-dimensional orbifold with cone-points whose orders

are the fiber-orders of the corresponding closed flow lines.

4.3.2.2 Actions of a Lie groupoid

Let G be an orbifold groupoid. A left G-space is a manifold E equipped with an

action by G: Such an action is given by two maps: an anchor π : E → G0 and an

action µ : G1 ×G0
E → E.

• This map is defined on (g, f) with π(f) = s(g) and written µ(g, f) = g.f

for f ∈ E.

• It satisfies the action identity: π(g.f) = t(g), Ix.f = f , and g.(h.f) =

(g.h).f for h : x→ y and g : y → z and f ∈ E with π(f) = x.

A right G-space is the left Gop-space obtained by switching the source and target

maps of G1.

4.4 Differentiable structures on orbifolds

Now, we go back to the original definition of orbifolds using charts.

Let O be an orbifold. We are given a smooth structure on each (Ũ , G, φ); i.e.,

Ũ is given a smooth structure and G is a finite group with a smooth action on it.

All embeddings in the atlas are smooth. Then M is given a smooth structure under

embeddings. Given a chart (Ũ , G, φ), we define the space of smooth forms to be the

space of smooth forms in Ũ invariant under the G-action. A smooth form on the

orbifold is the collection of smooth forms on all model open sets of the charts so

that they match under embeddings and the local group actions.

This enables one to define the space Λp(O), p ≥ 0 of smooth p-forms on O and

the boundary operators, which are defined as usual since one can define boundary

operators on the model neighborhoods. Let Hp(O) denote the p-th de Rham coho-

mology of O. Let Hq
c (O), q ≥ 0, denote the q-th de Rham cohomology of O defined

from compactly supported smooth forms.

A smooth simplex defined from a simplex ∆ to an orbifold O is simply a smooth

map. One can define an integral of a differential form with respect to a smooth

singular simplex into a model neighborhood by lifting to the model neighborhood

by Theorem 4.1.3. A smooth singular simplex may have different lifts to model

neighborhoods; however, the integral itself is well-defined. (One needs to look at the

currents in the inverse image of the simplex.) This can be extended to any smooth

simplex using partition of unity and barycentric subdivisions of the simplex. Given
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a locally finite covering of O, we can define a smooth partition of unity (in the same

way as in the manifold case). (See for example the book [Munkres (1991)].)

• We refine to obtain a cover by open sets whose closures are invariant com-

pact subsets.

• The idea is to find a smooth function on each chart which vanishes outside

the invariant compact subsets.

• The images of compact subsets can be chosen to cover O.

• Thus, these functions become functions onO which sum to a positive valued

function.

• We divide by the sum.

An orbifoldO is orientable if one can choose an atlas of charts where Ũ is given an

orientation with G acting in an orientation-preserving manner and each embedding

of charts to another charts is orientation-preserving. For example, a reflection about

a hypersurface is excluded and hence silvered boundary is excluded. (However, one

can use densities or forms of odd degrees to replace n-forms and can integrate when

O is not orientable. See the book [de Rham (1984)].)

An n-form ω can be integrated on an orientable orbifold O: Let (Ũ , G, φ) is a

model triple for a model neighborhood U of O and let ω′ denote the n-form on Ũ

representing ω. Then the integral of ω on U is defined as

∫

U

ω =
1

|G|

∫

Ũ

ω′

where |G| is the order of G. Then for any n-form, the integral upon Õ can be

integrated by using a partition of unity.

The Poincaré duality pairing: For an orientable orbifold O,

∫
: Hp(O)⊗Hn−p

c (O)→ R

is given by sending (ω, η) for a closed p-form ω and a closed and compactly supported

(n−p)-form η to
∫
O ω∧η. This is a nondegenerate bilinear form when O is a closed

orientable orbifold. Adem, Leida, and Ruan (2007) prove this.

4.4.1 Bundles over orbifolds

An orbifold-bundle (or V -bundle) E over an orbifold O is given by a smooth orbifold

E and a smooth map π : E → O with the following properties:

• Let F be a smooth manifold with a Lie Group G acting on it smoothly.

• A pair of defining families F for O and F ′ for E so that a model triple

(U,K, φ) ofO corresponds to a model triple (U∗,K∗, φ∗) so that U∗ = U×F
and π ◦ φ∗ = φ ◦ π1 where π1 : U∗ → U is the projection to the first factor.
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• Given (U,K, φ), (U∗,K∗, φ∗), and (U ′,K ′, φ), (U ′,∗,K ′,∗, φ′,∗), we require

that there is a one-to-one correspondence of embeddings λ : (U,K, φ) →
(U ′,K ′, φ) and

λ∗ : (U∗,K∗, φ∗)→ (U ′,∗,K ′,∗, φ′,∗)

where λ∗(p, q) = (λ(p), gλ(p)q) for (p, q) ∈ U∗ = U × F with gλ(p) ∈ G.

• We have

gµ◦λ(p) = gµ(λ(p)) ◦ gλ(p) (4.1)

for embeddings

(U,K, φ)
λ→ (U ′,K ′, φ′)

µ→ (U ′′,K ′′, φ′′).

• If F = G, then this is a principal orbifold bundle (with a right G-action).

Notice that by the one-to-one correspondence property of the third item, there is

an isomorphism K → K∗ given by sending σ ∈ K to σ∗ ∈ K∗ defined by

σ∗(p̃, q) = (σ(p̃), gσ(p̃)q), p̃ ∈ U.

Conversely, the above data are enough to construct an orbifold-bundle as we

can verify that the quotient space of the collection of sets of form U × F by the

identification map is still Hausdorff and second-countable and hence an orbifold.

4.4.1.1 Principal bundles using the groupoids language.

Finally, using the groupoid language, we can define the principal bundles. See the

article [Moerdijk (2002)] and the book [Adem, Leida, and Ruan (2007)] for details.

A principal L-bundle for a Lie group L over a Lie groupoid G is a G-space P

with a right action P × L → P which makes π : P → G0 into a principal L-

bundle over the manifold G0 and is compatible with the G-action in the sense that

g.(p.l) = (g.p).l for p ∈ P, l ∈ L and an arrow g : x→ y.

4.4.2 Tangent bundles and tensor bundles

Given the orbifold O, we build a tangent orbifold-bundle T (O) by taking F =

Rn, G = GL(n,R), and gλ(p) to be the Jacobian of λ at p for each embedding

λ : (U,K, φ) → (U ′,K ′, φ) as above. We can build any tensor bundles in this

way by letting F = T rs (Rn) and G = GL(n,R) and gλ(p) be the induced map

T rs (Rn)→ T rs (Rn) of λ at p.

A reduction of a Lie group G to a subgroup H means an injective homomorphism

H → G which induces a bundle morphism of the principal bundle with the Lie group

H to the principal bundle with the Lie group G.

A frame bundle is obtained by taking F to be Fn(Rn) the space of frames in

Rn, G to be GL(n,R), and gλ(p) to be the induced map Fn(Rn)→ Fn(Rn) of λ at

p.
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An affine frame bundle is given by taking F = A(Rn) the space of affine frames

and G = A(Rn), the Lie group of affine autormorphisms. An affine tangent bundle

is given by taking F = Rn with the same Lie group.

An orthogonal frame bundle is a reduction of the frame bundle to O(n,R):

Orthogonal frame bundles can be built in this way. We let F = On(Rn) the space

of orthonormal frames and let G = O(n,R) and choose gλ(p) be a map On(Rn)→
On(Rn) corresponding to each λ at p.

Let G be a Lie group with a Lie algebra g. Given a principal bundle P , one

defines a connection to be an assignment of an equivariant connection on every

model triple (U∗,K∗, φ∗) corresponding to a model triple (U,K, φ) of O which form

a collection that are consistently defined under the embeddings. The curvature is

also defined as the g-valued 2-form on O which comes from the curvature of each

orbifold chart.

A linear connection is a connection on a frame bundle or a tangent bundle with

Lie group GL(n,R). An affine connection is a connection on an affine frame bundle

or an affine tangent bundle with the Lie group A(Rn). Given an affine connection

on an affine tangent bundle, a geodesic is defined as a smooth map from an open

arc to O so that in each chart it lifts to a geodesic under the connection.

A Riemannian metric on an orbifold is given by an equivariant Riemannian

metric on each chart which matches up under embeddings or simply as a smooth

section of symmetric covariant tensor bundle ST 2(O) whose image lie in the positive

definite forms. A Riemannian metric can be built using a partition of unity again

from any given Riemannian metrics on charts.

The group O(n,R) ·Rn is the group of rigid motions on Rn. We can also replace

the group A(Rn) with O(n,R) · Rn by reduction of the group. This corresponds to

choosing a section to ST 2(O). Then the connections on the reduced affine bundles

are also called affine connections. (As usual, an O(n,R)-connection of a tangent

bundle or a frame bundle is also considered an affine connection since we can always

construct a canonical affine connection from a linear connection by the Levi-Civita

constructions. The set of geodesics does not change here. See the reasoning in

[Kobayashi and Nomizu (1997)] that can be directly generalized to the orbifold

setting.)

Finally, one defines an exponential map exp : T (O) → O: one defines the

exponential map using the linear or affine connection on each model neighborhood

and then patching up the consistent results.

Lemma 4.4.1. Given an orbifold O with boundary, we can give a Riemannian

metric on O so that boundary components are totally geodesic.

Proof. Let x be a point of ∂O. Then we find a model triple (U,G, φ) of x. We

obtain a reflection rF fixing ∂U and we form a finite group LU isomorphic to Z2

generated by these. Then let U ′ =
⋃
g∈LU

g(U) is an invariant open set in Rn
generated by G and LU . We find an invariant Riemannian metric gU on U ′.
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Now, we cover O by a locally finite covering by model open sets Ui with models

(Ũi, Gi, φi). Let U ′i be obtained as above by taking the union under the reflections

in faces of Ui. Obtain Riemannian metric gUi for each Ui. We use a partition of

unity to obtain a Riemannian metric µ on O. This induces a new Riemannian

metric g′Ui
on U ′i .

Let O′ be an open n-orbifold containing O and a tubular neighborhood N of

∂O. This can be obtained by taking open model open sets instead of half-open ones

in Rn. Extend the metric µ to O′.
For each component F of ∂O, we find a reflection rF defined on a tubular neigh-

borhood of F in O′ given by sending points of distance r on a geodesic perpendicular

to F to its opposite point on the geodesic with same distance. Then we form the

Riemannian metric (r∗Fµ+µ)/2. We use a partition of unity so that we have a Rie-

mannian metric, on O, that is invariant under rF in a smaller tubular neighborhood

of F in O′. Then F is totally geodesic this metric as in the note [Francis (2010)].

(See also Lemma 4.1.7.) �
An isotopy F : Y1 × I → Y2 for two orbifolds Y1 and Y2 is an orbifold-map such

that for each t ∈ I where I is an interval, F restricts to a diffeomorphism of Y1×{t}
into suborbifolds of Y2. (We will often consider codimension-zero suborbifolds.)

Let O be an n-orbifold with boundary. A neatly embedded suborbifold is a sub-

orbifold A of O such that ∂A = ∂O∩A or ∂A = ∅ and A∩∂O = ∅. (See Section 1.4

of the book [Hirsch (1976)].) In this case, we can make A perpendicular to ∂O by an

isotopy from the inclusion map of A. Basically, we make the inverse image of A in

the model open sets be perpendicular to boundary and then we use averaging of the

defining functions of A and use partition of unity to build an isotopied suborbifold

in O and the defining functions in the models C2-close to the original ones. Finally,

we show that we can achieve this by an isotopy generated by the vector fields.

A normal vector of a suborbifold O1 at a point x in O is an equivalence class of

a vector v in the tangent space of model neighborhood (U,G, φ) with a chart φ at a

point x̃ corresponding to x and perpendicular to the tangent vectors of the inverse

image of O1 in U under φ.

Let Σ be an i-dimensional neat suborbifold of O for i < n. Denote by N(Σ) the

space of normal vectors of Σ. The exponential map is a diffeomorphism from

Nε(Σ) := {v ∈ Nx(Σ)|x ∈ Σ, ||v|| < ε(x)}
to its image provided ε : Σ → (0,∞) is a sufficiently small valued function. The

proof is entirely similar to those in the Riemannian manifold theory and we omit

these. (See Sections 4.5 and 4.6 of the book [Hirsch (1976)].) The image is said

to be a tubular-neighborhood of Σ. (Here we use the total geodesic properties and

orthogonality of boundary components of O meeting the suborbifold.)

Since we understand the normal bundle of Σ, the orbifold structure of a tubular-

neighborhood can be understood as an orbifold-bundle over Σ where the fiber over

x ∈ Σ can be described as Dn−i/Gx for an (n − i)-disk Dn−i and Gx is a finite

group.
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If Σ is a boundary component, then we define N+(Σ) to be the set of vectors

pointing inside. Each boundary component Σ of an orbifold O has a collar, i.e.,

a neighborhood diffeomorphic to Σ × [0, 1). Using the exponential map from the

normal bundle N+(Σ) to O, and taking the image of vectors of length < ε(x) for

some small valued function ε : Σ→ R+, we obtain a collar.

4.4.3 The existence of a locally finite good covering

Recall Definition 4.1.

Proposition 4.4.2. Let O be an orbifold with boundary. Then there exists a good

covering.

Proof. First, give a Riemannian metric on O where the boundary suborbifolds

are totally geodesic. Each point has an orbifold chart with an orthogonal action.

Now choose a sufficiently small ball in the model neighborhood centered at the

origin so that it has a convexity property. (That is, any path in a model open

set can be homotopied into a geodesic.) (See Chapter 3 of the book [Do Carmo

(1992)].) Find a locally finite subcollection. Then the intersection set of any finite

collection is still convex and hence has cells as finite coverings. �

4.4.4 Silvering the boundary components

In fact, we can fully generalize the results in Section 4.2.3:

Proposition 4.4.3. Let O be an n-dimensional orbifold with a boundary component

Σ. Then we can obtain an orbifold O′ with the same underlying space and every

point of Σ is now singular with generic manifold points becoming a silvered point.

Proof. The proof of Lemma 4.4.1 contains the proof. Basically, we add the

reflections to the groups of the model triples with small image open sets. �

4.4.5 The Gauss-Bonnet theorem

Let O be an orbifold with the underlying space X. We will show shortly that X

admits a finite smooth triangulation so that the interior of each simplex lies in the

connected set of singular points with locally constant local groups in Theorem 4.5.4.

We define the Euler characteristic to be

χ(O) =
∑

k

(−1)dim sk
1

Nsk

where sk denotes the open kth-cell in the triangulation and Nsk the order of the

local group.
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Theorem 4.4.4 (Satake). Let M be a closed orbifold of even dimension m with

a Riemannian metric. Then

(2/Om)

∫

M

Kdµ = χ(M),

where K is the Pfaffian of the curvature form, dµ is the volume measure of M , and

Om is the volume of the standard unit m-sphere.

The proof essentially following that of Chern for manifolds is given by Satake

(1957). Here Satake’s work only allows for codimension ≥ 2 singularities. We see

that by doubling M , the theorem holds. (See Section 4.6.1.2 for details on doubling.)

Thus, the theorem holds for M by divisions by 2 by Proposition 5.1.3.

4.5 Triangulation of smooth orbifolds

In general, a smooth orbifold has a smooth topological stratification and a smooth

triangulation so that each open cell is contained in a single stratum. A smooth

topological stratification satisfying certain weak conditions admits a triangulation.

We now show that the stratification of an orbifold by orbit types satisfies this

condition. We mainly follow pp. 37–38 and pp. 126–127 of the book [Verona

(1984)]. (See also the article [Moerdijk and Pronk (1999)].)

We denote by R+ the subset {x ∈ R|x ≥ 0}. A manifold M with corner is a

topological manifold with boundary with atlas of charts to Rn+ = {(x1, . . . , xn)|x1 ≥
0, . . . , xn ≥ 0} with smooth transition maps. Each point of M has a neighborhood

with a chart to an open subset diffeomorphic to Ri+×Rn−i for a minimal i, 0 ≤ i ≤ n.

Such a point is said to be of corank i. A set of points of corank 0 is the set of interior

points of M and the set of points of corank ≥ 1 is the set of boundary points of M

to be denoted by ∂M .

Let M be a manifold with corners and let ∂M be the boundary of M . A face of

M is a closure of a component of the set of corank 1 in ∂M . It itself is a cornered

manifold B in ∂M with an embedding FB : UB → B×R+ for an open neighborhood

UB of B, called a collar of B, where FB(x) = (x, 0) for al x ∈ B.

4.5.1 Triangulation of the stratified spaces

Let X,Y be two subsets of a topological space A with X ∩ Y = ∅. If X ⊂ Cl(Y ),

then we write X < Y . We say X ≤ Y if X = Y or X < Y .

A face of a topological space A is a closed subset of A with a smooth embedding

FB : UB → B × R+ for a neighborhood UB of B sending B to B × {0}. FB and

UB are said to be the collar and the collar neighborhood. We write FB = (pB , rB)

where pB : UB → B and rB : UB → R+ are smooth functions.

A Hausdorff, locally compact, paracompact space with a countable basis is said

to be a nice space. Let A be a nice topological space and X ⊂ A be a locally closed
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set. A tube TX of X is a neighborhood of X in A with a retraction πX : TX → X

and a function ρX : TX → R such that ρ−1
X (0) = X.

Given positive valued functions ε, δ : X → R with 0 ≤ ε < δ, we define

X × (ε, δ) = {(x, t) ∈ X × R|ε(x) < t < δ(x)}

with obvious extensions to closed interval cases.

Define T εX = {a ∈ TX |ρX(a) < ε(πX(a))} for a function ε : X → R+ where

ε > 0. If X ⊂ U ⊂ A for an open U , then T εX ⊂ U for some ε. (πX , ρX)|T εX is a

proper map into

X × [0, ε) = {(x, t)|x ∈ X, 0 ≤ t < ε(x)}

by choosing sufficiently small ε.

An abstract stratification A consists of

(i) a nice space A and

(ii) a locally finite family A of locally closed connected subsets A′ (strata) of

A so that A is a disjoint union of A whose members are smooth manifolds

(iii) a family of tubes of the strata {τX = (TX , πX , ρX) : X ∈ A}.
(iv) a family of closed subsets A∗ of A called faces

satisfying the following properties:

• If X,Y ∈ A with X ∩ Cl(Y ) 6= ∅, then we have X ≤ Y .

• For any face Ai ∈ A∗, there exists an open neighborhood UAi
and a home-

omorphism FAi : UAi → Ai × R+ onto an open subset so that

– FAi
(a) = (a, 0), a ∈ Ai

– for any X ∈ A, if X ∩Ai 6= ∅, then

FAi
(X ∩ UAi

) ⊂ (X ∩Ai)× R+

for a collar FAi of Ai. We define

pAi
: UAi

→ Ai and rAi
: UAi

→ R+ by

FAi
(a) = (pAi

(a), rAi
(a)) for a ∈ UAi

.

• Each stratum X ∈ A is a manifold with faces Xi := X ∩ Ai, Ai ∈ A∗ with

collars

FXi
= FAi

|X ∩ UAi
: UXi

= X ∩ UAi
→ Xi × R+

whenever X ∩Ai 6= ∅.
• For X ∈ A and Ai ∈ A∗, we have π−1

X (Xi) = Ai ∩ TX and

FXi ◦ πX = ((πX |TX ∩Ai)× IR+) ◦ FAi

in an open neighborhood of Xi provided Xi 6= ∅.



July 30, 2012 15:46 World Scientific Book - 9.75in x 6.5in msjbooksub0729

78 Geometric structures on 2-orbifolds: Exploration of discrete symmetry

P U

A

X

T
X

π
X

AA

i

ii

X iU
X i

Fig. 4.6 An illustration of tubes and faces and so on.

• For any X ∈ A, X has εX : X → R+, εX > 0, so that T εXX ∩ Y 6= ∅ for

Y ∈ A implies X < Y and

(πX , ρX) : T εXX ∩ Y → X × (0, εX)

is a smooth submersion.

• For any X,Y ∈ A, X ⊂ Cl(Y ), there exist positive functions εX defined on

X and εY defined on Y satisfying the statement that

a ∈ T εXX ∩ T εYY implies

πY (a) ∈ TX , πX(πY (a)) = πX(a) and ρX(πY (a)) = ρX(a).

• For any X ∈ A, and Ai ∈ A∗, we have ρX = ρX ◦ pAi in a neighborhood of

Ai.

The dimension of a stratum is the dimension as a manifold. If X ⊂ Cl(Y ) for

strata X and Y , then the dimension of X is strictly less than that of Y . The depth

of a stratified space is the maximal cardinality of collections of form {X1, . . . , Xn}
of strata Xi satisfying Xi < Xi+1 for i = 1, . . . , n − 1. Note that the dimensions

strictly increase in the chain. The maximal dimensional strata are open manifolds

where the tubes are identical with themselves. A stratification has a finite depth if

the maximal dimension of the strata is finite.

A triangulation of a topological space A consists of a pair (K,φ) where K is

a countable locally finite simplicial complex and φ : |K| → A for a geometric

realization |K| of K is a homeomorphism.

A relative manifold (with corners) is a pair of topological spaces (V, δV ) so that

δV is a closed subset of V and V − δV is a manifold with corners. A triangulation

(K,φ) of a relative manifold (V, δV ) is smooth if K contains a subcomplex δK so

that φ(δK) = δV and for any simplex σ of K, the restriction φ to |σ| − |δK| is

smooth and for each x ∈ |K| − |δK| the differential Dφx of φ at x is injective.

A smooth triangulation of an abstract stratification A is a triangulation (K,φ)

of A satisfying the condition that for each stratum X, there is a subcomplex KX

so that KX , φ|KX is a smooth triangulation of (Cl(X),Cl(X)−X).
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Theorem 4.5.1 (Verona). Let X be a nice space, and let A be an abstract strat-

ification of X of finite depth. Then there exists a smooth triangulation of A.

4.5.2 Orbifolds as stratified spaces

Lemma 4.5.2. Let V be a Euclidean vector space or Ri × Rn−i+ for a fixed i =

0, 1, . . . , n. Let G be a finite group effectively acting on V orthogonally preserving

each face of Ri × Rn−i+ .

• The fixed-point set of a linear finite group G action is a closed subspace of

V .

• The subset FG′ of points fixed exactly by a subgroup G′ of G is a vector

subspace with a finite number of closed subspaces removed. FG′ is dense

open in the subspace of fixed points of G′.
• FG and FG′ are orthogonal to faces of Ri × Rn−i+ .

• For distinct subgroups G′ and G′′, FG′ and FG′′ are disjoint.

• If G′′ ⊂ G′ properly, then FG′ is in the closure of FG′′ .

Proof. The first item is clear.

The second item follows from the fact that the fixed-point set of any subgroup

is a subspace. One has to remove subspaces fixed by a larger group from inside.

The third item and the fourth items are also clear. The final item follows from the

second item. �

To prove our result, we will use the results from Section 4.4. (This is strictly for

convenience, and we will need simple results in exponential maps.)

First, let Gx be a nontrivial local subgroup of a point x of an orbifold O. Then

the set of points with local groups locally conjugate to Gx forms a locally closed

connected manifold by the existence of linear charts and Lemma 4.5.2.

Thus, the underlying space X of O is a disjoint union of connected submanifolds

determined by the local topological conjugacy classes of the local groups. Let us

call the collection of connected submanifolds A. Since X is a nice topological space,

the set A forms a stratification:

Suppose X ∩ Cl(Y ) 6= ∅ for two strata X,Y . Given the local linear chart U for

x ∈ X, we see that the stabilizer Gx corresponding to x is the maximal local group

in the chart. Then X ∩ U ⊂ Cl(Y ) ∩ U for each linear chart neighborhood U of x.

Hence X ⊂ Cl(Y ).

We need a slight generalization of orbifolds with boundary. Recall R+ is the

space of nonnegative real numbers and Rn+ the Cartesian product. We define an

orbifold with corners as an orbifold O with the following properties:

• Each point has a model (U,G, ψ) where U is an open subset of Rn+ and G

is a finite group acting on it that acts on each face of Rn+ that U meets.
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• In the manifold cases, we define the corank of a point of O as the corank

in the models.

• We define the face as a subset of ∂O as the closure of a component of the

set of corank 1 in ∂O and it is required to a face of the underlying space

|O|.

(Recall Remark 4.2.5 also.)

The following is a direct generalization of Lemma 4.4.1 with an almost identical

proof.

Lemma 4.5.3. Given an orbifold O with corners, we can give a Riemannian metric

on O so that

• faces are totally geodesic and they are perpendicular to each other when they

meet at codimension-two subspaces.

• each stratum X of O is a totally geodesic manifold with faces in ∂O and

perpendicular to faces in ∂O and is neatly embedded with a collar about

X ∩ F for every face F of ∂O.

Proof. Let x be a point of ∂O. Then we find a model triple (U,G, φ) of x. For

each face F of U , we obtain a reflection rF : actually the Euclidean one will do,

and we form a finite group LU generated by these. We require that the reflections

always commute with one another. Then let U ′ =
⋃
g∈LU

g(U) is an invariant open

set in Rn generated by G and LU . We find an invariant Riemannian metric gU on

U ′.
Now, we cover O by a locally finite covering by model open sets Ui with models

(Ũi, Gi, φi). Let U ′i be obtained as above by taking the union under the reflections

in faces of Ui. Obtain a Riemannian metric gUi
for each Ui. We use a partition

of unity to obtain a Riemannian metric µ on O. This induces a new Riemannian

metric g′Ui
on U ′i . Also, every pair of intersecting faces of O are orthogonal to each

other.

Let O′ be an open n-orbifold containing O. Extend the metric µ to O′.
Take a face F of ∂O. We find a reflection rF defined on a tubular neighborhood

of F in O′ given by sending points of distance r on a geodesic perpendicular to

F to its opposite point on the geodesic with same distance. (We might need to

define this on an ambient manifold containing F and extending F slightly.) Then

we form the Riemannian metric (r∗Fµ + µ)/2. We use a partition of unity so that

we have a Riemannian metric on O which is invariant under rF in a smaller tubular

neighborhood of F in O′ bounded by some extensions of other faces. Then F is

totally geodesic in this metric and still perpendicular to other faces. (See the note

[Francis (2010)].)

Using the reflection rF for the new metric, perhaps a little changed now, we

can silver F by taking a small tubular NF neighborhood of F in O′ bounded by

some extensions of other faces and define charts by using charts of points of F with
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images in NF and adding rF to the group.

We now do an induction process and we can silver every face of ∂O since the set

of faces is locally finite. Now it is clear that the faces are all totally geodesic and

orthogonal when they meet.

Each model neighborhood (U,G) of O has an invariant Riemannian metric in-

duced from that of O. Then since G acts on U intersected with faces of Ri×Rn−i+ , it

follows that each fixed point set of a subgroup of G is a submanifold A perpendicular

to faces of U .

Since a subgroup of G fixes each point of A, it follows that A is totally geodesic.

Thus, each stratum of O is totally geodesic.

Using the exponential map from the normal vector bundle of each face F of U ,

in this case using normal vectors in one direction, we obtain an ε-collar of F for a

positive valued function ε : F → R. We obtain a collar of the image of F in U/G.

Since X is totally geodesic, the collar restricts to X ∩ F and we obtain an ε-collar

of X ∩ F . By patching together, we see that each i-dimensional stratum X has a

collar about X ∩ F for each face F . �
Now we move to the main theorem of this section.

Theorem 4.5.4. Let O be an n-orbifold with corners. Each singularity x of an

orbifold O with a local group Gx always lies in a submanifold of points whose lo-

cal groups are locally conjugate to Gx. Then the collection of such submanifolds

with the nonsingular components forms an abstract stratification of the underlying

space of the orbifold O with corner. Therefore, O with the stratification is smoothly

triangulated.

Proof.

First, we put a Riemannian metric with totally geodesic faces by Lemma 4.5.3.

We let A∗ be the set of totally geodesic faces of ∂O. Cover O by locally finite linear

models.

Suppose that O has only codimension-one strata. Then the result is clear.

As an induction hypothesis, suppose that we proved the result when orbifolds

have only codimension i strata.

Let O have a mutually disjoint collection of codimension-(i+1) strata Y1, Y2, . . .

but no higher codimension ones. Since Yi is relatively closed and with no lower

dimensional stratum in its closure, it follows that Yi is a properly embedded manifold

with ∂Yi ⊂ ∂O. In fact, Y =
⋃
i=1,2,... Yi is a properly embedded manifold. Since

Yi is in a stratum of conjugate local groups, it follows that Yi is a neat suborbifold

of O. Hence, Yi has a tubular neighborhood. (See Section 4.4.2.)

Define a smooth positive valued function ρYi for each Yi so that ρ−1
Yi

(0) = Yi

and define each tubular neighborhood T jYi
as ρ−1

Yi
([0, εij)) for some small positive

valued functions εi1, ε
i
2 : Yi → R, 0 < εi1 < εi2 so that the tubular neighborhoods are

mutually disjoint for fixed j. We assume that εi2 = 2εi1. We may assume that T jYi

are tubular neighborhoods of Yi formed by exponential maps of the normal bundles
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of Yi. Let U j =
⋃
i=1,2,... T

j
Yi

. Define πX : U2 → Y by the nearest point projection.

Define a foliation F on U2 − Y → Y by inverse images of points under πX . (We

need to choose sufficiently small εij .)

We define a map and a graph of tεi2, 0 < t < 1:

(πYi
, ρYi

) : T jYi
→ Yi × R+ and Gtεi2 := {(y, tεi2(y))|y ∈ Yi)}.

Define Σt be the union of the inverse image of Gtεi2 for 0 < t < 1 under (πYi , ρYi)

for i = 1, 2, . . . .

The orbifold O − U1 is an orbifold with corner and codimension i strata only

but with new faces in the boundary. (Note that collars can be obtained by the

tubular neighborhoods.) Hence by induction, we can form πX , TX , ρX for each

stratum X in it satisfying the abstract stratification conditions. Let t0 satisfy

1/2 = εi1/ε
i
2 < t0 < 1. Let U ′ be the open submanifold of U2 containing X bounded

by Σt0 . Consider O − U ′. Now, we radially extend the open set TX , the stratum

X itself, and these maps. TX is extended by taking TX ∩ Σt0 and isotopying them

into Σt′ for 0 < t′ < t0 preserving the leaves of F and similarly for X. For each

t, 0 < t < t0, we define πX : Σt → X ∩ Σt and ρX : Σt → R+ by conjugating the

map ρX and πX on Σt0 by a diffeomorphism and so on for strata X of O other

than Yis. Now the smoothness of πX and ρX is obtained by smoothing operations

that preserve Σts. (We use the coordinates where Σt are defined by a coordinate

function.) For each face Ai meeting X, we can extend the maps pAi and rAi

similarly.

Hence, it follows that O has an abstract stratification.

Given an orbifold O, one can remove tubular neighborhoods of the union of

singular loci of dimension-zero forming another orbifold O1 and removing tubular

neighborhoods of the union of singular loci of dimension-one and so on. Therefore,

we see that we can build O starting from a manifold and adding tubular neighbor-

hoods of strata of codimension n − 1, n − 2, . . . , 2, 1. At each step, of course, we

obtain orbifolds with corners.

The conditions in Section 4.5.1 are satisfied with our choices. This proves that

O has an abstract stratification. Finally, we obtain the smooth triangulation by

Theorem 4.5.1. �

4.6 Covering spaces of orbifolds

Let X be an orbifold. Let X ′ be an orbifold with a smooth map p : X ′ → X so that

for each point x of X, there is a connected model (U,G, φ) and the inverse image

of φ(U) is a union of open sets Ui, i ∈ I for an index set I with models isomorphic

to (U,G′i, πi) where πi is equivalent to the quotient map qi : U → U/G′i and G′i is
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a subgroup of G so that the following diagram commutes for each i ∈ I

U Ui

U/G′i U/G φ(U)

πi

qi
π̂i

∼=
p

q′i

φ̂

∼=
(4.2)

where q′i is the quotient map, φ̂ is the induced map of φ and π̂i is the induced map

of πi.

Then we say that p : X ′ → X is a covering and X ′ is a covering orbifold of X.

Usually, we will require the underlying spaces |X| and |X ′| to be connected unless

we mention otherwise.

We can see it as an orbifold bundle over X with discrete fibers. We can choose

the fibers to be acted upon by a discrete group G (usually on the right), and hence

a principal G-bundle.

Given two covering orbifolds p1 : X1 → X and p2 : X2 → X, we define a covering

morphism to be a smooth orbifold map f : X1 → X2 so that p2 ◦f = p1. A covering

automorphism group of a covering p : X ′ → X is a group of diffeomorphisms γ

satisfying

X ′
γ→ X ′

p ↓ p ↓
X = X.

An element is called a covering automorphism or a deck transformation. A regular

covering is a covering where the deck transformation group acts transitively on the

fibers. Sometimes, this is called a Galois covering and the covering automorphism

group is called a Galois group or a deck transformation group.

4.6.1 The fiber product construction by Thurston

Let us first review the fiber product constructions for the ordinary covering space

theory.

Let Y be a connected manifold, and Ỹ a regular covering map p̃ with the covering

automorphism group Γ. Let Γi, i ∈ I for an index set I be a sequence of subgroups

of Γ, and let pi : Ỹ /Γi → Y be the sequence of induced covering maps.

• The projection p̃i : Ỹ × (Γi\Γ)→ Ỹ induces a covering

p̂i : (Ỹ × (Γi\Γ))/Γ→ Ỹ /Γ = Y

where Γ acts by

γ(x̃,Γiγi) = (γ(x̃),Γiγiγ
−1)

• This map is equivalent to pi : Ỹ /Γi → Y since Γ acts transitively on the

set of components of Ỹ × (Γi\Γ).
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• We now define the fiber-product Ỹ ×(
∏
i∈I Γi\Γ)→ Ỹ of p̃i for i ∈ I. Define

the left-action of Γ by

γ(x̃, (Γiγi)i∈I) = (γ(x̃), (Γiγiγ
−1)), γ ∈ Γ.

By taking quotients of both sides by Γ, we obtain that the fiber-product of

pi : Ỹ /Γi → Y , i ∈ I is isomorphic to

pf : Y f := (Ỹ ×
∏

i∈I
Γi\Γ)/Γ→ Ỹ /Γ = Y.

(This construction gives us coverings with perhaps many components.)

• For each i ∈ I, there is a covering map

pfi : Y f → Ỹ /Γi satisfying pi ◦ pfi = pf (4.3)

induced from the projection

Ỹ ×
∏

i∈I
Γi\Γ→ Ỹ × (Γi\Γ)

(This is the “categorical” universal property we need.)

4.6.1.1 The fiber product of orbifolds

Let Y be a connected orbifold. We can let Γ be a discrete group acting on an

orbifold Ỹ properly discontinuously but maybe not freely. Y = Ỹ /Γ is said to be

an orbifold quotient of Ỹ and Y is said to be developable or good if Ỹ is a manifold.

In the above example, we can let Γ be a discrete group acting on an orbifold Ỹ

properly discontinuously but possibly not freely. Let Γi for each i ∈ I be a subgroup

and pi : Ỹ /Γi → Y be the covering map for each i ∈ I where I is an index set.

pf : Y f → Y is again defined to be the fiber product of orbifold maps pi : Ỹ /Γi → Y .

Moreover, pf has the universal property for the collection pi, i ∈ I that there is a

covering pfi : Ỹ → Ỹ /Γi for each i so that pf = pfi ◦ pi.

4.6.1.2 The doubling orbifolds

A mirror point or silvered point is a singular point with the stabilizer group Z2

acting as a reflection group. One can double an orbifold M with mirror points so

that mirror points disappear.

• Let Vi for i ∈ I be the neighborhoods of M with charts (Ui, Gi, φi), where

I is an index set.

• Define new charts (Ui × {−1, 1}, Gi, φ∗i ) where Gi acts by

g(x, l) = (g(x), s(g)l)

where s(g) is 1 if g is orientation-preserving and −1 if not and φ∗i is the

quotient map to Ui × {−1, 1}/Gi.
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• For each embedding i : (W,H,ψ)→ (Ui, Gi, φi), we define a lift

(W × {−1, 1}, H, ψ∗)→ (Ui × {−1, 1}, Gi, φ∗i ).

These define the gluing maps.

• The result of the quotiening by the gluing maps is the doubled orbifold and

the local group actions are orientation preserving. (We just need to verify

that the topology is second-countable and Hausdorff.)

• The result double-covers the original orbifold with Galois group or the

covering automorphism group isomorphic to Z2.

Proposition 4.6.1. A doubled orbifold has no reflection with a hypersurface fixed

set. Hence the set of regular points is dense open and locally-path-connected and

path-connected.

Proof. Since there is no orientation reversing element in the local group, the first

statement is clear. If there is no reflection, then the singularity is of codimension

two or greater and hence the set of regular points is dense open and path-connected

locally. Thus, the second statement follows. �

For example, if we double a cell with a corner-reflector, it becomes a cell with a

cone-point.

4.6.2 Universal covering orbifolds by fiber-products

Let Y be a connected orbifold. A base point of a covering is a regular point of the

cover mapping to a regular base point of the covered orbifold. A universal cover of

Y is an orbifold Ỹ so that for any covering orbifold Y ′ of Y and base points y∗ of Ỹ

and y′ of Y ′ mapping to a base point y of Y , there exists a covering map p : Ỹ → Y ′

satisfying p(y∗) = y′.
As some examples, we state without justifications:

• Clearly, manifolds are orbifolds. Manifold coverings provide examples.

• A tear-drop is a sphere with one cone-point of order n. Let Y be a tear-

drop orbifold with a cone-point of order n. Then this cannot be covered by

any other type of an orbifold and hence is a universal cover of itself. (See

Section 4.7.1.3 and Theorem 4.7.4.)

• A sphere Y with two cone-points of orders p and q which are relatively

prime is a universal cover of itself. (See Section 4.7.1.3 and Theorem 4.7.4.)

• Choose a cyclic action of Y of order m fixing the cone-points. Then Y/Zm is

an orbifold with two cone-points of order pm and qm, and Y is the universal

cover of Y/Zm.

We will now show that the universal covering orbifold exists by using fiber-

product constructions. For this, we need to discuss elementary neighborhoods.



July 30, 2012 15:46 World Scientific Book - 9.75in x 6.5in msjbooksub0729

86 Geometric structures on 2-orbifolds: Exploration of discrete symmetry

An elementary neighborhood for a covering p : Y ′ → Y is an open subset φ(U)

with a model triple (U,G, φ) so that the situation in equation 4.2 is satisfied.

We can take the model open set in the chart to be one so that U in the model

triple (U,G, φ) is a cell. Then such an open set is elementary as we can see from

below.

4.6.2.1 Fiber-products for Dn/Gi

Let Dn be a cell, i.e., a contractible manifold homeomorphic to a convex subset of

Rn+, with possibly nonempty boundary. Suppose that V is an orbifold Dn/G for a

finite group G acting effectively. We deduce that

• We can show that any covering of Dn/G is equivalent to Dn/G1 for a

subgroup G1 of G. (See Proposition 7 in the article [Choi (2004)].)

• Given two covering orbifolds Dn/G1 and Dn/G2 for subgroups G1 and G2

of G, one can induce a covering morphism Dn/G1 → Dn/G2 by g ∈ G so

that gG1g
−1 ⊂ G2.

• The covering morphism is in one-to-one correspondence with the double

cosets of form G2gG1 for g such that gG1g
−1 ⊂ G2.

• The covering automorphism group of Dn/G1 for a subgroup G1 of G is

given by N(G1)/G1 where N(G1) is the normalizer of G1 in G.

(For the detailed proofs of these elementary facts, see the article [Choi (2004)].)

Given a collection of coverings pi : Dn/Gi → Dn/G for i ∈ I for a collection I,

Gi ⊂ G, and an n-cell Dn, we form a fiber-product.

V f = (Dn ×
∏

i∈I
Gi\G)/G→ Dn/G.

If we choose all subgroups Gi of G, then any covering Dn/Gi of Dn/G is covered

by V f induced by projection to Gi-factor by Section 4.6.1.1. This is the universal

property we seek.

4.6.2.2 The construction of the fiber-product of a collection of covering

orbifolds

Let Yi, i ∈ I be a collection of the orbifold-coverings of Y . We cover Y by elementary

neighborhoods Vj for j ∈ J for an index set J forming a good cover. Now fix j. We

take components of p−1
i (Vj) each of which is equivalent to a disjoint union of V/Gk

for some finite group Gk where V is a convex open subset of Rn+. Fix j. We take one

component of p−1
i (Vj) for each i and form one fiber product. Then we are left with

a disjoint union of fiber products indexed by the choice of components of p−1
i (Vj)

for each i. Over regular points of Vj , this is the ordinary fiber-product. Now, we

wish to patch these up using embeddings. Let U → Vj ∩ Vk be an embedding. We

can assume U = Vj ∩ Vk which has a convex cell as a cover.
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• We form the fiber product pU : Uf → U of p−1
i (U), i ∈ I and form the

fiber product pVj
: V fj → Vj and pVk

: V fk → Vk.

• Uj = p−1
Vj

(U) in V fj is identifiable with Uf since the fiber-product construc-

tion of Uj in V fj is identical with one in Uf with just different labeling.

• Similarly, Uk = p−1
Vk

(U) in V fk is identifiable with Uf .

• Thus, each component of the fiber-products can be identified with another

one by the natural maps of form Uj → Uk.

By patching, we obtain a covering Y f of Y with the covering map pf . Note that Y f

is not necessarily connected. But each component of Y f is Hausdorff and second-

countable and hence is an orbifold.

Let Ỹ be a component of Y f . Also for any cover (Yi, yi), there is a covering

morphism qi : Ỹ → Yi with qi(y
∗) = yi and so that pi ◦ qi = pf : the basic reason

is that for each component of p−1
i (U) for an elementary neighborhood U of pi in

Y , there is a map from a component of pf,−1(U) mapping to it by Section 4.6.1.1

and we can patch these maps together: We show the consistent definition of this

map by considering chains of intersecting open components of sets of form pf,−1(U)

for an elementary neighbrhood U in Y . Basically, if three such open sets intersect,

then we can show that the map is consistently defined. This is similar to the way

one obtains developing maps for geometric structures (see Section 6.1.2). (See the

bottom of page 178 of the article [Choi (2004)] also.)

4.6.2.3 Thurston’s example of a fiber product

Fig. 4.7 The fiber product of two two-fold covers of the interval I with silvered endpoints by
a circle and interval I with silvered endpoints. It is convenient to visualize a cylinder over the
bottom circle parallel to the z-axis and the sheet parallel to the y-axis passing the curved arc in

the left. The circle is almost on the intersection.

Let I be the unit interval. Make two endpoints into silvered points. Then I1 = I

is double-covered by S1 with the deck transformation group Z2. Let p1 denote the
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covering map. I2 = I is also covered by I by a map x 7→ 2x for x ∈ [0, 1/2] and

x 7→ 2−2x for x ∈ [1/2, 1]. Let p2 denote this covering map. Then we determine the

fiber product of p1 and p2: Cover I by A1 = [0, ε), A2 = (ε/2, 1 − ε/2), A3 = (ε, 1]

for 0 < ε < 1/4.

• p−1
1 (A1) is an open interval and p−1

2 (A1) is a union of two half-open inter-

vals. The fiber-product is a union of two copies of open intervals.

• Over A2, the fiber product is a union of four copies of open intervals.

• Over A3, the fiber product is a union of two copies of open intervals.

• By pasting considerations, we obtain a circle mapping 4-1 almost every-

where to I. This could be a long process.

4.6.2.4 The construction of the universal cover

Consider the collection Yi, i ∈ I, of all covers of an orbifold Y . We take each one

Yi with a different choice of a base point yi over a fixed regular point y of Y . These

all are regular points. We take a fiber product of (Yi, yi), i ∈ I and we take a

connected component Ỹ containing a base point y∗. Let p̃ denote the restriction of

the fiber-product map pf to Ỹ . Hence, Ỹ is a universal cover.

Proposition 4.6.2. Let Y be a connected orbifold. The universal cover Ỹ of an

orbifold Y has an open dense connected set of regular points. Any covering auto-

morphism φ : Ỹ → Ỹ that fixes a regular point is the identity map.

Proof. A universal cover has a morphism to a double Y 2 of the orbifold. Any

point mapping to a regular point is also regular. The set of such points is also dense

and open and locally path connected. Since the subspace Y 2,r of regular points of

Y 2 is connected and the set of singular points is at least of codimension 2, the first

part follows.

Let Ỹ r denote the inverse image of the subspace Y 2,r. Then Ỹ r is connected

and is a covering in the ordinary sense of topology. If φ fixes a regular point of Ỹ ,

then it fixes the points of an open model neighborhood. By density, φ fixes a point

of Ỹ r. If φ fixes a point in Ỹ r, then it is the identity on Ỹ r. Since Ỹ r is dense, φ

is the identity. �

Theorem 4.6.3. Let Y be a connected orbifold. The universal cover of an orbifold

Y is unique up to covering orbifold-isomorphisms by the universality property.

Proof. If (Y ′, y′) is another universal cover, then it arises in the list of covers and

hence there is a covering morphism q : Ỹ → Y ′ with q(y∗) = y′. Conversely, we have

a morphism p′ : Y ′ → Ỹ with p′(y′) = y∗. We obtain a morphism p′ ◦ q : Ỹ → Ỹ

fixing y∗. By Proposition 4.6.2, p′ ◦ q is the identity. Similarly, so is q ◦ p′. �
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4.6.2.5 Properties of the universal cover

The group of covering automorphisms of the universal cover Ỹ is called a funda-

mental group and is denoted by π1(Y ), which is well-defined up to isomorphism by

Theorem 4.6.3. (This will be known more accurately as a Galois-group in Section

4.7.)

Proposition 4.6.4. Let Ỹ be a universal cover of an orbifold Y with the covering

map p̃.

• The deck transformation group π1(Y ) of Ỹ acts transitively on fibers of

p̃−1(x) for each x in Y .

• p̃ induces a diffeomorphism Ỹ /π1(Y )→ Y .

• For a subgroup Γ of π1(Y ), Ỹ /Γ is a covering of Y with the induced covering

map from p̃.

• Any covering of Y is of form Ỹ /Γ for a subgroup Γ of π1(Y ).

• The set of isomorphism classes of coverings of Y is in one-to-one corre-

spondence with the set of conjugacy classes of subgroups of π1(Y ).

Proof. Let y be a regular base-point of Y . We change the base point of Ỹ to

any point z of p̃−1(y). Then there always is a morphism q : (Ỹ , y∗) → (Ỹ , z).

We find an inverse to q by finding t = q−1(y∗) . Then there exists a morphism

q′ : (Ỹ , y∗) → (Ỹ , t). Hence, q ◦ q′(y∗) = y∗. Thus, q′ is the inverse and q is

a covering automorphism by Proposition 4.6.2. Thus, π1(Y ) acts transitively on

p̃−1(y).

Given a point x, we find a path γ in Y with endpoints x and y so that its local

lifts to the model neighborhoods have nonzero derivative vectors everywhere. Then

each lift to a model open set is unique up to the model group action. Thus, γ lifts

to a smooth curve in Ỹ with endpoints a point of p̃−1(x) and p̃−1(y∗). In fact the

lift is unique up to the choice of the starting point in p̃−1(x). We see that π1(Y )

also acts transitively on the set of lifts. Since we can find a lift starting from any

point of p̃−1(x), we see that π1(Y ) acts transitively on p̃−1(y) for any y ∈ Y .

We see that the quotient orbifold Ỹ /π1(Y ) is clearly in a one-to-one correspon-

dence with Y . The charts are also compatible.

We omit the proof of the third item.

For a covering Y ′ → Y , there is a covering morphism p′ : Ỹ → Y ′. Now, Y ′ is

actually of form the quotient orbifold Ỹ /Γ for a subgroup Γ of π1(Y ): Suppose that

two regular points p and q of Ỹ go to the same regular point q′ of Y ′ and hence

to a point q′′ of Y . Then there exists a deck transformation γ so that γ(p) = q.

By considering an elementary neighborhood U of p in Y and the components C1,

p ∈ C1 and C2, q ∈ C2, of its inverse images in Ỹ . Consider also the component V

of its inverse image in Y ′ containing q′. Then C1 and C2 cover V respectively. This

can be seen by a path-lifting argument using curves as above. Clearly, γ(C1) ⊂ C2

and γ−1(C2) ⊂ C1 since these are path-components of the inverse image of U . Thus,
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we have γ(C1) = C2. Since p′ sends C1 and C2 into V , it follows that every pair of

points (x, γ(x)) of x ∈ C1 go to a point of V under p′. From this, it follows that

every pair of points (x, γ(x)) for x ∈ Ỹ go to a point in Y ′ under p′. If p and q are

not regular, then we can find nearby regular points that go to a same point in Y ′

by lifting a path.

Let Γ be the subset of elements γ of π1(Y ) so that the pairs (x, γ(x)) for all

x ∈ Ỹ are identified under p′. Then Γ is clearly a subgroup. Moreover, if γ ∈ π1(Y )

is so that x and γ(x) are identified to a point of Y ′ under p′, then γ ∈ Γ by the

above argument. Hence, it follows that Y ′ is the quotient orbifold Ỹ /Γ′.
Given two coverings Y1 → Y and Y2 → Y , we see that an isomorphism f : Y1 →

Y2 lifts to a diffeomorphism Ỹ → Ỹ . We choose an automorphism fixing y∗ by

multiplying by an element of π1(Y ). By restricting to the regular part, we see that

the morphism is the identity map and f is induced by an element of π1(Y ). Since

Y1 can be identified with Ỹ /Γ1 and Y2 with Ỹ /Γ2, it follows that Γ1 and Γ2 are

conjugate. The converse is also simple. �

Let Γ be a subgroup of π1(Y ). Given the quotient space Ỹ /Γ, one deduces

that an element γ of π1(Y ) represents a covering isomorphism Ỹ /Γ → Ỹ /Γ if and

only if γΓ = Γγ. Thus, γ is in the normalizer N(Γ). Conversely, each covering

automorphism of Ỹ /Γ → Y lifts to an element γ ∈ π1(Y ). Given a covering

Ỹ /Γ → Y , we determine that the group of covering automorphisms is N(Γ)/Γ.

Therefore, a covering is regular or Galois if and only if Γ is a normal subgroup of

π1(Y ). (These proofs are identical with the ordinary covering-space theory.)

A good orbifold is an orbifold with a cover that is a manifold. A very good

orbifold is an orbifold with a finite cover that is a manifold. A good orbifold has a

symply connected manifold as a universal covering space: it has a covering space

that is a manifold and the universal covering orbifold must cover this manifold and

hence the universal covering space has to be a manifold.

4.6.2.6 Induced homomorphisms of the fundamental group

Given two orbifolds Y1 and Y2 and an orbifold-diffeomorphism g : Y1 → Y2, we ob-

tain that the lift to the universal covers Ỹ1 and Ỹ2 is also an orbifold-diffeomorphism.

Furthermore, if the lift value is determined at a point, then the lift is unique.

Proposition 4.6.5. Let Y1 and Y2 be connected orbifolds of same dimension. An

isotopy ft : Y1 → Y2 for t ∈ [0, 1] of orbifold-diffeomorphisms lifts to an isotopy in

the universal covering orbifold f̃t : Ỹ1 → Ỹ2 for each t ∈ I unique up to a choice of

f̃0(y).

Proof. We consider regular parts and model neighborhoods where the lifts clearly

exist uniquely for each t. The map t 7→ ft(y) for a regular base point y of Y is

a path in Y . Then ft(y) is regular for all t ∈ I. This lifts to a smooth path

γ̃ : t 7→ p−1(ft(y)). Since ft is an orbifold diffeomorphism, there is a lifting diffeo-
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morphism f̃t : Ỹ → Ỹ for each t determined up to post-composing with the deck

transformations. By post-composing with elements of π1(Y ) if necessary, we can

make sure that a lift f̃t : Ỹ → Ỹ satisfies f̃t(y) = γ̃(t) for each t. Now, we can

verify that f̃t forms an isotopy.

�

Given an orbifold-diffeomorphism f : Y → Z which lifts to a diffeomorphism

f̃ : Ỹ → Z̃, we obtain a homomorphism f̃∗ : π1(Y ) → π1(Z): for each γ ∈ π1(Y ),

there exists a unique δ ∈ π1(Z), so that f̃ ◦ γ = δ ◦ f̃ . If g is isotopic to f and

so is its lift g̃ to f̃ , then it follows that g̃∗ = f̃∗ . (Note that we can define f∗ for

orbifold-diffeomorphisms only. When f is not a diffeomorphism, we need also the

information on the local lifts as well to describe the map using the path-approach

below. We will not attempt this in this book.)

Finally notice that if Y1 is an open suborbifold of Y2, then we can define a

homomorphism ι̃∗ : π1(Y1) → π1(Y2) where ι̃ is the lift Ỹ1 → Ỹ2 of the inclusion

map ι : Y1 → Y2.

Using the path-approach of Haeflger, we obtain a more general result for this.

(See Section 4.7.1.2.)

4.7 The path-approach to the universal covering spaces following

Haefliger

We will now study the path-approach to the fundamental groups and the universal

covering spaces following Bridson and Haefliger (1999). Thus, we see that the

ordinary covering theory for topological spaces and the covering theory for orbifolds

are very much alike.

4.7.1 G-paths

We generalize the notion of paths in the topological spaces to one of those on

groupoids: Given an étale groupoid X with the space of arrows G and the space

of objects X0, we define a G-path c to be an object (g0, c1, g1, . . . , ck, gk) with a

subdivision a = t0 ≤ t1 ≤ · · · ≤ tk = b of interval [a, b] consisting of

• continuous maps ci : [ti−1, ti]→ X0

• elements gi ∈ X1 so that s(gi) = ci+1(ti) for i = 0, 1, . . . , k − 1 and t(gi) =

ci(ti) for i = 1, . . . , k.

The initial point is t(g0) and the terminal point is s(gk). We will normally re-

quire that the orbit space |X| of X is connected. That is, the underlying space

is connected since the orbit space is homeomorphic to the underlying space. (See

Example 4.3.)

The three operations define an equivalence relation:
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• Subdivision: Add new division point t′i in [ti, ti+1] and g′i = Ici(t′i) and

replacing ci with c′i, g
′
i, c
′′
i where c′i, c

′′
i are restrictions to [ti, t

′
i] and [t′i, ti+1].

• Adjoining: We reverse the subdivision process.

• Replacement: replace c with c′ = (g′0, c
′
1, g
′
1, . . . , c

′
k, g
′
k) as follows. For each

i choose continuous map hi : [ti−1, ti] → X1 so that s(hi(t)) = ci(t) and

define c′i(t) = t(hi(t)) and g′i = hi(ti)gih
−1
i+1(ti) for i = 1, . . . , k − 1 and

g′0 = g0h
−1
1 (t0) and g′k = hk(tk)gk.

All paths are defined on [0, 1] from now on. Given two G-paths c =

(g0, c1, . . . , ck, gk) over 0 = t0 ≤ t1 ≤ · · · ≤ tk = 1 and c′ = (g′0, c
′
1, . . . , c

′
k′ , g

′
k′) over

0 = t′0 ≤ t′1 ≤ · · · ≤ t′k′ = 1 such that the terminal point of c equals the initial point

of c′, we define the composition c∗ c′ to be the G-path c′′ = (g′′0 , c
′′
1 , . . . , c

′′
k+k′ , g

′′
k+k′)

so that

• t′′i = ti/2 for i = 0, . . . , k and t′′i = 1/2 + t′i−k/2 for i = k + 1, . . . , k + k′;
• c′′i (t) = ci(2t) for i = 1, . . . , k and c′′i (t) = c′i−k(2t−1) for i = k+1, . . . , k+k′;

and

• g′′i = gi for i = 0, . . . , k−1 and g′′k = gkg
′
0, g
′′
i = g′i−k for i = k+1, . . . , k+k′.

The inverse c−1 is (g′0, c
′
1, . . . , c

′
k, g
′
k) over the subdivision where t′i = 1− ti so that

g′i = g−1
k−i and c′i(t) = ck−i+1(1− t).

4.7.1.1 Homotopies of G-paths

There are two types of homotopies:

• Equivalences

• An elementary homotopy is a family of G-paths cs = (gs0, c
s
1, . . . , c

s
k, g

s
k) over

the subdivision 0 = ts0 ≤ ts1 ≤ · · · ≤ tsk = 1 so that each of tsk, g
s
i , c

s
i depends

continuously on s. We require that t(gs0) and s(gsk) are to be constant

independent of s as usual for a homotopy of paths.

Two G-paths a and b are homotopic if there is a sequence of G-paths a =

a1, a2, . . . , an = b so that ai and ai+1 are either equivalent or there is an elementary

homotopy between them.

A homotopy class of c is denoted [c]. [c ∗ c′] is well-defined in the homotopy

classes [c] and [c′]. Hence, we define [c] ∗ [c′] = [c ∗ c′].
We have the associativity [c ∗ (c′ ∗ c′′)] = [(c ∗ c′) ∗ c′′].
The constant path ex at x is given as (Ix, x, Ix). Then [c∗c−1] = [ex] if the initial

point of c is x and [c−1 ∗ c] = [ey] if the terminal point of c is y. Thus, [c]−1 = [c−1].

We can show easily that the homotopy classes of paths form a fundamental

groupoid.



July 30, 2012 15:46 World Scientific Book - 9.75in x 6.5in msjbooksub0729

Chapter 4. Topology of orbifolds 93

4.7.1.2 The fundamental group π1(X,x0)

A loop is a G-path with the identical initial and terminal points. The fundamental

group π1(X,x0) based at x0 ∈ X0 is the group of homotopy classes of loops based

at x0. (We will require x0 to be a regular point.) The associativity, identity and

inverse properties are proven above.

Let X be an open suborbifold of Y . Then the inclusion map f : X → Y induces

a homomorphism f∗ : π1(X,x0)→ π1(Y, f(x0)) where f(x0) is regular also. In fact,

f could be any homomorphism of groupoids. Hence f could be an orbifold map

X → Y so that for each point x ∈ X, there exists a model triple (U,G, φ) and a

model triple (V,H, ψ) of f(x) ∈ Y so that f lifts to a map f̃ : U → V unique up to

the action

f̃ 7→ h ◦ f ◦ g for h ∈ H, g ∈ G.

Therefore, a covering map will induce the homomorphism.

Theorem 4.7.1 (Seifert-Van Kampen). Let X be an orbifold with the space of

objects X0 and the space of arrows G. Assume that the space |X| of orbits is

connected. Let X0 = U ∪ V where U and V are open and U ∩ V = W . As-

sume that the groupoid restrictions GU , GV , GW to U, V,W are connected. And

let x0 ∈ W . Then π1(X,x0) is isomorphic to the quotient group of the free prod-

uct π1(GU , x0) ∗ π1(GV , x0) by the normal subgroup generated by jU (γ)jW (γ−1) for

γ ∈ π1(GW , x0) for the induced homomorphism jU : π1(GW , x0) → π1(GU , x0) and

the induced homomorphism jV : π1(GW , x0)→ π1(GV , x0) .

Here a groupoid restriction GU means restricting the space of objects to U and the

space of arrows to those arrows with tails and sources in U .

In a more set theoretic language, this means: Let X be an orbifold so that

|X| = U ∪V for two open subsets U and V and let W = U ∩V be a connected open

set. Let x0 ∈W and Û , V̂ , and V̂ denote the induced orbifolds. Then π1(X,x0) is

isomorphic to the quotient group of π1(Û , x0) ∗ π1(V̂ , x0) by the normal subgroup

generated by jU (γ)jV (γ−1) for γ ∈ π1(Ŵ , x0) for the induced homomorphism jU :

π1(Ŵ , x0)→ π1(Û , x0) and the one jV : π1(Ŵ , x0)→ π1(V̂ , x0).

The proof is omitted but is remarkably similar to the elementary topology proof

using dividing homotopies into small ones mapping into model-neighborhoods. This

is an exercise in Chapter IIIG in the book [Bridson and Haefliger (1999)].

4.7.1.3 Examples

• Consider a tear-drop orbifold. We remove a small disk about the cone-

point. The remainder is a disk and has a trivial fundamental group. The

disk about the cone-point has the fundamental group isomorphic to the

cyclic group of order n by equation 4.4. By the Van-Kampen theorem, a

tear-drop has the trivial fundamental group.
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• Similarly, we can show that a sphere Y with two cone-points of relatively

prime orders p and q has a trivial fundamental group: Here, we remove

two disjoint disks around the singularities and the Van-Kampen theorem

to prove this.

• Let a discrete group Γ act on a connected manifold X0 properly discon-

tinuously. Then (Γ, X0) has an orbifold structure. (See 4.3.2.1.) Let x0

be a point with trivial stabilizer subgroup. Let gγ denote the arrow in X1

with starting point x0 and the end point γ(x0) for γ ∈ Γ. Any loop in

this groupoid is equivalent to a G-path (Ix0
, c, gγ) so that γ(x0) = c(1) and

c(0) = x0 by joining all paths in c = (g0, c1, g1, . . . , ck, gk) into a single

path, i.e., by changing g0 to 1 and c1 to γ−1
0 ◦ c1 where γ0 is the deck

transformation corresponding to g0, and g1 to 1 and c2 to γ−1
0 ◦ γ−1

1 ◦ c2
where γ1 corresponds to g1 and so on and joining these paths. Thus, there

is an exact sequence for a base point x0 ∈ X0:

1→ π1(X0, x0)→ π1((Γ, X0), x0)→ Γ→ 1 (4.4)

given by sending [(Ix, c, gγ)] to γ. That is, π1((Γ, X0), x0) is an extension

of Γ by π1(X0, x0). (See Example 3.7 in Chapter III.G in the book [Bridson

and Haefliger (1999)].)

• A 2-orbifold that is a disk with an arc silvered has the fundamental group

isomorphic to Z2: A disk with a group action generated by a reflection

about an arc covers it. Thus, the result follows from equation 4.4.

• An annulus A with one boundary component silvered has a fundamental

group isomorphic to Z× Z2 since our orbifold is covered by an annulus A1

by an action of Z2 which fixes the middle circle of the annulus. There exists

a section from Z2 to π1(A) given by a path γ going to the silvered arc and

returning to the base point. Clearly, γ2 is trivial.

• Consider a 2-orbifold with cone-points which is boundaryless and with no

silvered point. One can cover the cone points by sufficiently small disks

and we can cut out the disks. Then the Van-Kampen theorem enables one

to compute the fundamental group. (See Theorem 5.1.1.)

• Suppose that a two-dimensional orbifold has boundary and silvered points.

Then remove open-ball neighborhoods of the cone-points and corner-

reflector points. The fundamental group of the remaining part can be com-

puted by the Van-Kampen theorem by considering open neighborhoods of

silvered boundary arcs. Finally, adding the open-ball neighborhoods, we

compute the fundamental group again using the Van-Kampen theorem.

The last item implies

Corollary 4.7.2. Let Σ be a compact 2-dimensional orbifold. Then π1(Σ, x0) is

finitely presented for any regular point x0.

In fact, compact n-orbifolds have finitely presented fundamental groups but we

omit the proof that is a higher-dimensional generalization. The fundamental group
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of a three-dimensional orbifold can be computed similarly using the Van Kampen

theorem. However, we need the detailed knowledge of the structure of 3-orbifolds

as can be found in the book [Thurston (1977)] and some papers such as [Dunbar

(1988)].

4.7.2 Covering spaces and the fundamental group

One can build the theory of covering spaces using the fundamental group. We

review the relationship of the homotopy group of G-paths to covering spaces first.

(Here, we will only consider orbifolds with connected underlying space. )

Let us be given a covering X ′ → X for two orbifolds X and X ′. For every

G-path c in X, there is a lift G-path in X ′. If we assign the initial point, the lift

is unique. If c′ is homotopic to c, then the lift of c′ is also homotopic to the lift

of c provided the initial points are the same. From this it follows that the induced

homomorphism π1(X ′, x′0)→ π1(X,x0) is injective.

Moreover, the following familiar proposition holds:

Proposition 4.7.3. Let p : X ′ → X be a covering of an orbifold X with a based

point x0 and let p′′ : X ′′ → X be another one. Let X ′ have a base point x′0 going

to x0 under p and X ′′ has one x′′0 going to x0 under p′′. Then

p′′∗(π1(X ′′, x′′0)) ⊂ p∗(π1(X ′, x′0))

if and only if there is a covering map X ′′ → X ′ sending x′′0 to x′0.

Proof. This is proved using paths as in the covering theory in

topology.

�
A map from a simply connected orbifold to an orbifold lifts to a cover. The lift

is unique if the base-point lift is assigned. Thus, a simply connected cover of an

orbifold covers any cover of the given orbifold. From this, we can show that the

fiber-product construction is symply connected.

Two simply connected coverings of an orbifold are isomorphic and if base-points

are given, we can find an isomorphism preserving the base-points.

Theorem 4.7.4. A symply connected covering of an orbifold X is a universal cover

(Galois-covering) with the Galois-group isomorphic to π1(X,x0).

Proof. Consider p−1(x0). Choose a base-point x̃0 in it. Given a point of p−1(x0),

we connected it with x̃0 by a path. Since the paths map to the elements of the

fundamental group, the Galois-group acts transitively on p−1(x). Hence the Galois-

group is isomorphic to the fundamental group. �

Corollary 4.7.5. An orbifold-covering (X ′, x′0)→ (X,x0) is Galois (regular) if and

only if the image of π1(X ′, x′0) in π1(X,x0) is normal.

Proof. Again, Proposition 4.7.3 implies this. �
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4.7.2.1 The existence of the universal cover using the path-approach

The construction follows that of the ordinary covering space theory. This is included

in Exercise 3.20 in Chapter IIIG in the book [Bridson and Haefliger (1999)]. Let

X be an orbifold with the space of arrows X1 and the space of objects X0.

• Let X̂ be the set of homotopy classes [c] of G-paths in X with a fixed

starting point x0.

• We define a topology on X̂ by open set U[c] that is the set of paths ending

at a symply connected open subset U of X0 with the homotopy class of c∗d
for a path d in U .

• Define a map X̂ → X sending [c] to its endpoint other than x0.

• Define a map X̂ ×X1 → X̂ given by ([c], g)→ [c ∗ g]. This defines a right

X1-action on X̂. This makes X̂ into a bundle over X.

• Define a left action of π1(X,x0) on X̂ given by [c] ∗ [c′] = [c ∗ c′] for [c′] ∈
π1(X,x0). This is transitive on fibers.

• We show that X̂ is a simply connected orbifold.

4.8 Notes

For compact group actions, see the books [Bredon (1972); Hsiang (1975)]. Good

references for triangulation under group actions are articles [Illman (1978, 1983)].

For triangulation of stratified spaces, and hence orbifolds, see the articles [Goresky

(1978); Johnson (1983); Verona (1984); Weinberger (1994)]. The work [Verona

(1984)] is most self-contained. For general introduction to the orbifold theory,

see Chapter 5 of the book [Thurston (1977)] and the article [Matsumoto and

Montesinos-Amilibia (1991)]. The original papers [Satake (1956, 1957)] are also

very readable. Adem, Leida, and Ruan (2007) and Bridson and Haefliger (1999)

treat orbifolds as groupoids. Read the articles [Moerdijk (2002); Moerdijk and

Pronk (1997)] for this approach in detail. Haefliger (1990) and Chapter 13 of the

book [Ratcliffe (2006)] treat the path approaches to the covering spaces. Chapter

5 in the book [Thurston (1977)] and the article Choi (2004) have contents on the

covering space theory using fiber products.

We do not study general maps or morphisms between orbifolds and induced

bundles. This is related to defining the notion of suborbifold as well. Perhaps one

should view orbifolds as 2-categories as Lerman (2010) has done.


