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Chapter 2

Manifolds and G-structures

In this chapter, we review many notions in the manifold theory that can be gener-

alized to the orbifold theory.

We begin by reviewing manifolds and simplicial manifolds beginning with cell-

complexes and the homotopy and covering theory. The following theories for man-

ifolds will be transferred to orbifolds. We briefly mention them here as a “review”

and develop them for orbifolds later (mostly for 2-dimensional orbifolds ):

• Lie groups and group actions

• Pseudo-groups and G-structures

• Differential geometry: Riemanian manifolds, principal bundles, connec-

tions, and flat connections

We follow a coordinate-free approach to differential geometry. We do not need to

actually compute curvatures and so on.

Some of these are standard materials in a differentiable manifold course. We

will not give proofs in Chapters 2 and 3 but will indicate one when necessary.

2.1 The review of topology

We present a review of the manifold topology. We will find that many of these

directly can be generalized into the orbifold theory later.

2.1.1 Manifolds

The useful methods of topology come from taking equivalence classes and finding

quotient topology. Given a topological space X with an equivalence relation, we

give the quotient topology on X/ ∼ so that for any function f : X → Y inducing a

well-defined function f ′ : X/ ∼→ Y , f ′ is continuous if and only if f is continuous.

This translates to the fact that a subset U of X/ ∼ is open if and only if p−1(U) is

open in X for the quotient map p : X → X/ ∼.

A cell is a topological space homeomorphic to an n-dimensional open convex
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domain defined in Rn for n ≥ 0. We will mostly use cell-complexes (Hatcher,

2002). A cell-complex is a topological space that is a union of n-skeletons Xn

defined inductively. A 0-skeleton is a discrete set of points. Let I =
⋃
n≥0 In be the

collection of cells. An (n+ 1)-skeleton Xn+1 is obtained from the n-skeleton Xn as

a quotient space of Xn ∪⋃α∈In+1
Dn+1
α for a collection of (n+ 1)-dimensional balls

Dn+1
α for α ∈ In+1 with a collection of functions fα : ∂Dn+1

α → Xn so that the

equivalence relation is given by x ∼ fα(x) for x ∈ ∂Dn+1
α . To obtain the topology

of X, we use the weak topology that a subset U of X is open if and only if U ∩Xn

is open for every n. Most of the times, cell-complexes will be finite ones, i.e., have

finitely many cells.

A topological n-dimensional manifold (n-manifold) is a Hausdorff space with

a countable basis and charts to a Euclidean space En; e.g curves, surfaces, and 3-

manifolds. The charts could also go to a positive half-space Hn defined by x0 ≥ 0 in

Rn for a coordinate function x0 of Rn. Then the set of points mapping to {0}×Rn−1

under charts is well-defined and is said to be the boundary of the manifold. By the

invariance of domain theorem, we see that this is a well-defined notion.

For example, Rn and Hn themselves or open subsets of Rn or Hn are manifolds

of dimension n.

The unit sphere Sn in Rn+1 is a standard example. The quotient space Rn+1 −
{O} by the relation v ∼ w for v, w ∈ Rn+1 if v = sw for s ∈ R− {O} is called the

real projective space RPn and is another example.

An n-ball is a manifold with boundary. The boundary is the unit sphere Sn−1.

Given two manifolds M1 and M2 of dimensions m and n respectively, we obtain

the product space M1 ×M2 a manifold of dimension m+ n.

An annulus is a disk removed with the interior of a smaller disk. It is also

homeomorphic to a circle times a closed interval.

A manifold M is a smooth manifold if it has an atlas of charts of form (U, φ)

where U is an open subset of M and φ is a homeomorphism from U to an open

subset of Rn or Hn and transition functions between charts are all smooth.

A smooth map f : M → N for two smooth manifolds M and N is a map

represented by smooth maps under coordinate systems of M and N ; i.e., φ◦f ◦ψ−1

is a smooth map from an open subset of Euclidean space or a half-space to another

Euclidean space for coordinate charts φ of N and ψ of M . A diffeomorphism

f : M → N of two smooth manifolds M and N is a smooth map with a smooth

inverse map f−1.

Example 2.1. The n-dimensional torus Tn is homeomorphic to the product

of n circles S1. (For 2-torus, see http://en.wikipedia.org/wiki/Torus for its

embeddings in R3 and so on.)

A group G acts on a manifold M if there is a differentiable map k : G×M →M

so that k(g, k(h, x)) = k(gh, x) and k(I, x) = x for x ∈ M and the identity I ∈ G.

Given an action of G on a manifold, one obtains a homomorphism G→ Diff(M) so

that an element g ∈ G goes to a diffeomorphism g′ : M → M sending x to k(g, x)
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where Diff(M) is the group of diffeomorphisms of M .

Given a group G acting on a manifold M , we obtain the quotient space M/ ∼
where ∼ is given by x ∼ y if and only if x = g(y), g ∈ G, which is denoted by M/G.

Let ei, i = 1, 2, . . . , n, denote the standard unit vectors in Rn. Let Tn be a group

of translations generated by Ti : x 7→ x+ ei for each i = 1, 2, . . . , n. Then Rn/Tn is

homeomorphic to Tn.

Example 2.2. We define the connected sum of two n-manifolds M1 and M2.

Remove the interior of the union of two disjointly and tamely embedded closed

balls from Mi for each i. Then each Mi has a boundary component homeomorphic

to Sn−1. We identify the spheres.

Take many 2-dimensional tori or projective planes and do connected sums. Also

remove the interiors of some disks. We can obtain all compact surfaces in this way.

(See http://en.wikipedia.org/wiki/Surface.)

2.1.2 Some homotopy theory

We will assume that our topological spaces here are path-connected, locally path-

connected and semi-locally simply connected unless we mention otherwise. Here,

the maps are always assumed to be continuous.

Let X and Y be topological spaces. A homotopy is a map F : X × I → Y

for an interval I. Two maps f and g : X → Y are homotopic by a homotopy

F if f(x) = F (x, 0) and g(x) = F (x, 1) for all x. The homotopic property is an

equivalence relation on the set of maps X → Y . A homotopy equivalence of two

spaces X and Y is a map f : X → Y with a map g : Y → X so that f ◦ g and g ◦ f
are homotopic to IY and IX respectively. (See the book [Hatcher (2002)] for details

of the homotopy theory presented here.)

The fundamental group of a topological space X is defined as follows: A path is

a map f : I → X for an interval I = [a, b] in R. We will normally use I = [0, 1]. An

endpoint of the path is f(0) and f(1).

Any two paths f, g : I → Rn are homotopic by a linear homotopy that is given

by F (t, s) = (1− s)f(t) + sg(t) for (t, s) ∈ [0, 1]2.

A homotopy class is an equivalence class of homotopic maps relative to endpoints.

The fundamental group π1(X,x0) at the base point x0 is the set of homotopy

class of paths with both endpoints x0.

The product in the fundamental group is defined by joining. That is, given two

paths f, g : I → X with endpoints x0, we define a path f ∗ g with endpoints x0

by setting f ∗ g(t) = f(2t) if t ∈ [0, 1/2] and f ∗ g(t) = g(2t − 1) if t ∈ [1/2, 1].

This induces a product [f ] ∗ [g] = [f ∗ g], which we need to verify to be well-defined

with respect to the equivalence relation of homotopy. The constant path c0 given

by setting c0(t) = x0 for all t satisfies [c0] ∗ [f ] = [f ] = [f ] ∗ [c0]. We denote

[c0] by Ix0
. Given a path f , we define an inverse path f−1 : I → X by setting

f−1(t) = f(1 − t). We also obtain [f−1] ∗ [f ] = Ix0
= [f ] ∗ [f−1]. By verifying
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[f ] ∗ ([g] ∗ [h]) = ([f ] ∗ [g]) ∗ [h] for three paths with endpoints x0, we see that the

fundamental group is a group.

If we change the base to another point y0 which is in the same path-component

of X, we obtain an isomorphic fundamental group π1(X, y0). Let γ be a path

from x0 to y0. Then we define γ∗ : [f ] ∈ π1(X,x0) 7→ [γ−1 ∗ f ∗ γ] which is an

isomorphism. The inverse is given by γ−1,∗. This isomorphism does depend on γ

and hence cannot produce a canonical identification.

Theorem 2.1.1. The fundamental group of a circle is isomorphic to Z.

This has a well-known corollary, the Brouwer-fixed-point theorem, that a self-

map of a disk to itself always has a fixed point.

Given a map f : X → Y with f(x0) = y0, we define a homomorphism f∗ :

π1(X,x0)→ π1(Y, y0) by f∗([h]) = [f ◦ h] for any path h in X with endpoints x0.

Theorem 2.1.2 (Van Kampen). We are given a path-connected space X covered

by open path-connected subsets Ai, i ∈ I, containing a common point x0 for an

index set I and such that every intersection of any two or three members is a

nonempty path-connected set. Then π1(X,x0) is a quotient group of the free product

∗i∈Iπ1(Ai, x0). The kernel is the normal subgroup generated by i∗j (a)i∗k(a)−1 for all

a in π1(Aj ∩Ak, x0).

A bouquet of n circles is the quotient space of a union of n circles with one point

from each identified with one another. Then the fundamental group at a basepoint

x0 is isomorphic to a free group of rank n.

For cell-complexes, this theorem is useful for computing the fundamental group:

If a space Y is obtained from X by attaching the 2-cells, then π1(Y, y0) is isomorphic

to π1(X, y0)/N where N is the normal subgroup generated by “boundary curves”

of the attaching maps where y0 is a basepoint in Y .

We will later compute the fundamental groups of surfaces using this method.

2.1.3 Covering spaces and discrete group actions

Given a manifold M , we define a covering map p : M̃ →M from another manifold

M̃ to be a surjective map such that each point of M has a neighborhood O such

that p|p−1(O) : p−1(O) → O is a homeomorphism for each component of p−1(O).

Normally M̃ is assumed to be connected. (See Chapter 5 of the book [Massey

(1987)].)

Consider S1 as the set of unit length complex numbers. The coverings of a circle

S1 are given by f : S1 → S1 defined by x 7→ xn. These are finite to one covering

maps. Define R→ S1 by t 7→ exp(2πti). Then this is an infinite covering.

Example 2.3 (Standard Example). Consider a closed disk with interiors of a

finite number of disjoint smaller disks removed. Then draw mutually disjoint arcs
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from the boundary of the disk to all the boundary curves of the smaller disks. We

remove mutually disjoint open regular neighborhoods of the disjoint arcs. Call these

strips. Let D, I1, I2, . . . , In denote the closures of the complement of the union of

the strips and the strips themselves. Let α+
i , α

−
i the two boundary arcs of the strip

Ii parallel to the arcs in the counter-clock wise direction. We take a product with

a discrete countable set F and label them by Di, Ii1, l
i
2, . . . , I

i
n for i ∈ F . Then we

select a permutation kj : F → F for each j = 1, 2, . . . , n. For each i, we glue Di

with Iij over the arc α+
i and then we glue Dkj(i) with Iij over α−i . We do this for

all arcs. Suppose that we obtain a connected space. By sending Di → D, Iij → Ij
by projections, we obtain a covering.

Another good example is the join of two circles: See pages 56-58 of the book

[Hatcher (2002)].

An important property of homotopy with respect to the covering space is the

homotopy lifting property: Let M̃ be a covering of M . Given two homotopic maps

f and g from a space X to M , we find that if f lifts to M̃ , then so does g. If we

let F : X × I → M be the homotopy, the map lifts to F̃ : X × I → M̃ . This is

completely determined if the lift of f is specified.

For example, one can consider a path to be a homotopy for X equal to a point.

Any path in M lifts to a unique path in M̃ once the initial point is assigned.

Moreover, if two paths f and g are homotopic relative to endpoints, and their

initial point f̃(0) and g̃(0) of the lifts f̃ and g̃ are the same, then f̃(1) = g̃(1). Using

this idea, we prove:

Theorem 2.1.3. Let M be a manifold. Let p : M̃ →M be a covering map and x0

a base point of M . Given a map f : Y → M with f(y0) = x0, and a point x̃0 ∈
p−1(x0), we can uniquely lift f to f̃ : Y → M̃ so that f̃(y0) = x̃0 if f∗(π1(Y, y0)) ⊂
p∗(π1(M̃, x̃0)).

An isomorphism of two covering spaces X1 with a covering map p1 : X1 → X

and X2 with p2 : X2 → X is a homeomorphism f : X1 → X2 so that p2◦f = p1. The

automorphism group of a covering map p : M ′ →M is a group of homeomorphisms

f : M ′ → M ′ so that p ◦ f = p. We also use the term the deck transformation

group. Each element is a deck transformation or a covering automorphism.

Let x0 be a base point of M . Let p : M̃ → M be a covering map. The

fundamental group π1(M,x0) acts on M̃ on the right by path-liftings: we choose

an inverse image x̃0 in M̃ . For a path γ in M with endpoints x0, we define x̃0 ·
γ = γ̃(1) for the lift γ̃ of γ with initial point γ̃(0) = x̃0. This gives us a right-

action π1(M,x0) × p−1(x0) → p−1(x0), called a monodromy action, since we have

x̃0 · (γ ∗ δ) = (x̃0 · γ) · δ.
A covering p : M ′ →M is regular if the covering map p : M ′ →M is a quotient

map under the action of a discrete group Γ acting properly discontinuously and

freely. Here M is homeomorphic to M ′/Γ.
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Given a covering map p : M̃ → M , we obtain a subgroup p∗(π1(M̃, x̃0)) ⊂
π1(M,x0). Conversely, given a subgroupG of π1(M,x0), we can construct a covering

M̃ containing a point x̂0 and a covering map p : M̃ →M so that p∗(π1(M̃, x̂0)) = G

and p(x̂0) = x0.

One classifies covering spaces of M by the subgroups of π1(M,x0). That is, two

coverings M1 with basepoint m1 and the covering map p1 and M2 with basepoint

m2 and covering map p2 of M with p1(m1) = p2(m2) = x0 are isomorphic with

a map sending m1 to m2 if we have p1∗(π1(M1,m1)) = p2∗(π1(M2,m2)). Thus,

the set of covering spaces is ordered by inclusion relations of the subgroups. If the

subgroup is normal, the corresponding covering is regular.

A manifold has a universal covering; a covering space whose fundamental group

is trivial. A universal cover covers every other covering of a given manifold.

The universal covering M̃ of a manifold M has the covering automorphism group

Γ isomorphic to π1(M,x0). A manifold M is homeomorphic to M̃/Γ for its universal

cover M̃ where Γ is the deck transformation group.

For example, let M̃ be R2 and T 2 be a torus. Then there is a map p : R2 → T 2

sending (x, y) to ([x], [y]) where [x] = x mod 2π and [y] = y mod 2π.

Let M be a surface of genus 2. M̃ is homeomorphic to a disk, identified with a

hyperbolic plane. The deck transformation group can be realized as isometries of a

hyperbolic plane. We will see this in more details later.

-3 -2 -1 1 2 3

-0.6

-0.4

-0.2

0.2

0.4

0.6

Fig. 2.1 Some orbit points of a translation group of rank two

2.1.4 Simplicial manifolds

In this section, we will try to realize manifolds as simplicial sets.

An affine space An is a vector space Rn where we do not remember the origin.

More formally, An equals Rn as a set but has an operation Rn×An given by sending

(a, b) 7→ a + b for a ∈ Rn and b ∈ An and satisfies (a + (b + c)) = (a + b) + c for

a, b ∈ Rn and c ∈ An. We can define the difference b − a of two affine vectors a, b
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by setting b− a to equal c ∈ Rn such that c+ a = b.

If one takes a point p as the origin, we can make An into a vector space Rn by

a map a 7→ a− p for all a ∈ An.

A set of n+1 points v1, v2, . . . , vn+1 in Rn is affinely independent if the set vi−v1

for i = 2, . . . , n+1 is linearly independent as vectors. An n-simplex is a convex hull

of the set of affinely independent (n+ 1)-points. An n-simplex is homeomorphic to

a closed unit ball Bn in Rn.

A simplicial complex is a locally finite collection S of simplices so that any face

of a simplex is a simplex in S and the intersection of two elements of S, if not empty,

is a face of the both. The union is a topological set, which is said to be a polyhedron.

We can define barycentric subdivisions by taking a barycentric subdivision for each

simplex. A link of a simplex σ is the simplicial complex made up of simplicies

disjoint from σ in a simplex containing σ.

An n-manifold X can be constructed by gluing n-simplices by face-

identifications: Suppose that X is an n-dimensional triangulated space. If the

link of every p-simplex is homeomorphic to a sphere of dimension (n− p− 1), then

X is an n-manifold. If X is a simplicial n-manifold, we say that X is orientable if

we can give an orientation on each n-simplex so that over the common faces the

orientations extend one another.

2.1.4.1 Surfaces

We begin with a construction of a compact surface. Given a polygon with

even number of sides, we assign an identification pattern by labeling by

a1, a2, . . . , ag, a
−1
1 , a−1

2 , . . . , a−1
g so that ai means an edge labelled by ai oriented

counter-clockwise and a−1
i means an edge labelled by ai oriented clockwise, and if

a pair ai and ai or a−1
i occurs, then we identify them respecting the orientations.

• We begin with a bigon. We divide the boundary into two edges and identify

by labels a, a−1. Then the result is a surface homeomorphic to a 2-sphere.

• We divide the boundary into two edges and identify by labels a, a. Then

the result is homeomorphic to a projective plane.

• Suppose now that we have a quadrilateral with labels a, b, a−1, b−1. We

identify the top segment with the bottom one and the right side with the

left side. The result is homeomorphic to a 2-torus.

Any closed surface can be represented in this manner.

Let us be given a 4n-gon. We label edges

a1, b1, a
−1
1 , b−1

1 , a2, b2, a
−1
2 , b−1

2 , . . . , an, bn, a
−1
n , b−1

n .

The result is a connected sum of n tori and is orientable. The genus of such a

surface is n.

Suppose that we are given a 2n-gon. We label edges a1a1a2a2 . . . anan. The

result is a connected sum of n projective planes and is not orientable. The genus of



July 30, 2012 15:46 World Scientific Book - 9.75in x 6.5in msjbooksub0729

12 Geometric structures on 2-orbifolds: Exploration of discrete symmetry

−1

−1

−1

−1

2

2

2

2
1

1

1

1

b

a

b

a b

a

b

a

Fig. 2.2 A genus 2 surface as a quotient space of a disk

Fig. 2.3 A genus 2-surface patched up

such a surface is n.

We can remove the interiors of disjoint closed balls from the surfaces. The results

are surfaces with boundary.

By the Van Kampen theorem, we compute the fundamental group of a surface

using this identification. A surface is a cell complex starting from a 1-complex which

is a bouquet of circles and attached with a cell. Therefore, we have the fundamental

group π1(S, x) for a basepoint x is presented as

〈a1, b1, . . . , ag, bg|[a1, b1][a2, b2] . . . [ag, bg]〉

for an orientable surface S of genus g, g ≥ 1, where the notation implies that the

group is isomorphic to a free group generated by a1, b1, . . . ag, bg quotient by the

normal subgroup generated by the word [a1, b1][a2, b2] . . . [ag, bg].
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The Euler characteristic of a 2-dimensional simplicial complex is given by

F − E + V where F denotes the number of 2-dimensional cells, E the number of

1-dimensional cells, and V the number of 0-dimensional cells. This is a topological

invariant. We count from the above identification picture that the Euler character-

istic of an orientable compact surface of genus g with n boundary components is

2− 2g − n.

By a simple curve in a surface, we mean an embedded interval. A simple closed

curve in a surface is an embedded circle. They play important roles in studying

surfaces as Dehn and Nielson first discovered.

Let a 2-sphere be given a triangulation. A pair-of-pants is the topological space

homeomorphic to the complement of the interior of the union of three disjoint closed

simplicial 2-cells in the sphere. It has three boundary components homeomorphic

to circles. Moreover, a pair-of-pants is obtained by identifying two hexagons in their

alternating segments in pairs.

In fact, a closed orientable surface of genus g, g > 1, contains 3g − 3 disjoint

simple closed curves so that the complement of its union is a disjoint union of open

pairs-of-pants, i.e., spheres with three holes. Hence, the surface can be obtained by

identifying boundary components of the pairs-of-pants.

1
H

H H H H

HHHHH

2 3 4 5

6 7
109

8

Fig. 2.4 A genus n surface is obtained by doubling a planar surface. That is, we take two
copies of this but identify the boundary of the planar surfaces indicated as thick closed arcs. The

planar surface is divided into hexagons denoted by Hi by thin lines. Then the doubled hexagons

correspond to pairs-of-pants. This process is actually doubling of orbifolds if the boundary is
silvered here. (See Section 4.6.1.2 for details on doubling.)

A pair-of-pants P can have a simple closed curve embedded in it but such a

circle, if not homotopically trivial, always bounds an annulus containing a boundary

component of P . Hence, a pair-of-pants can be built from a pair-of-pants and

annuli by identification along circles. One cannot but build a pair-of-pants from a

surface other than annuli and a single pair-of-pants. Therefore, a pair-of-pants is

an “elementary” surface in that any closed surface can be built from these types of

pieces by identifying boundary components where we regard annuli as being trivial

elements of the constructions.
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2.2 Lie groups

2.2.1 Manifolds and tangent spaces

We regard any manifold as being smoothly embedded in some Euclidean space. A

tangent vector to a manifold M is a vector tangent to a point of M . The tangent

space Tx(M) at a point x of M is the vector space of vectors tangent to M at

x. The tangent bundle of M is the space {(x, v)|x ∈ M,v ∈ Tx(M)} with natural

topology. For example, if M is an open subspace of Rn, the tangent vectors are

ordinary vectors based at a point of M and the tangent bundle is diffeomorphic to

M × Rn.

At the moment this notion depends on the embedding of M ; however, there are

definitions showing that these spaces are well-defined.

A smooth map f : M → N induces a smooth map Df : T (M) → T (N)

restricting to a linear map Dxf : Tx(M) → Tf(x)(N) of the vector spaces at each

x ∈M defined by

d

dt
(f ◦ α)

∣∣∣∣
t=t0

= Dfx0

(
d

dt
α(t)

∣∣∣∣
t=t0

)

for x0 = α(t0). Df is said to be a differential of f .

2.2.2 Lie groups

A Lie group can be thought of as a space of symmetries of some space. More

formally, a Lie group is a manifold with a group operation ◦ : G × G → G that

satisfies

• ◦ is smooth.

• the inverse ι : G→ G is smooth also.

From ◦, we form a homomorphism G → Diff(G) given by g 7→ Lg and Lg :

G → G is a diffeomorphism given by a left-multiplication Lg(h) = gh. Since we

have Lgh = Lg ◦ Lh, this is a homomorphism.

As examples, we have:

• The permutation group of a finite set forms a 0-dimensional Lie group,

which is a finite set, and a countable infinite group with the discrete topol-

ogy is a 0-dimensional Lie group.

• R or C with + as an operation. (R+ with + is merely a Lie semigroup.)

• R− {O} or C− {O} with × as an operation.

• Tn = Rn/Γ with + as an operation and O as the equivalence class of

(0, 0, . . . , 0) and Γ is a group of translations by integral vectors. (The last

three are abelian ones.)

We go to the noncommutative groups.
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• The general linear group is given by

GL(n,R) = {A ∈Mn(R)|det(A) 6= 0} :

Here, GL(n,R) is an open subset of Mn(R) = Rn2

. The multiplication is

smooth since the coordinate product has a polynomial expression.

• The special linear group is given as

SL(n,R) = {A ∈ GL(n,R)|det(A) = 1} :

The restriction by a system of polynomial equations gives us a smooth

submanifold of GL(n,R). The multiplication is also a restriction.

• The orthogonal group is given by

O(n,R) = {A ∈ GL(n,R)|ATA = I}.
This is another submanifold formed by a system of polynomial equations.

• The Euclidean isometry group is given by

Isom(Rn) = {T : Rn → Rn|T (x) = Ax+ b for A ∈ O(n,R), b ∈ Rn}.

Let us state some needed facts.

• A product of Lie groups forms a Lie group where the product operation is

obviously defined.

• A covering space of a connected Lie group forms a Lie group. Here, we

need to specify which element of the inverse image of the identity is the

identity element.

• A Lie subgroup of a Lie group is a closed subgroup that is a Lie group with

the induced operation and is a submanifold. For example, consider

– SO(n,R) ⊂ SL(n,R) ⊂ GL(n,R).

– O(n,R) ⊂ Isom(Rn).

A homomorphism f : G→ H of two Lie groups G and H is a smooth map that

is a group homomorphism. The above inclusion maps are homomorphisms. The

kernel of a homomorphism is a closed normal subgroup. Hence it is a Lie subgroup

also. f induces the unique homomorphism of the Lie algebra of G to that of H

which equals the differential Def of f at the identity e of G and conversely. (See

Subsection 2.2.3 for the definition of the Lie algebras and their homomorphsms.)

2.2.3 Lie algebras

A Lie algebra is a real or complex vector space V with a bilinear operation [, ] :

V × V → V that satisfies:

• [x, x] = 0 for every x ∈ V (thus, [x, y] = −[y, x]),

• and the Jacobi identity: [x, [y, z]]+[z, [x, y]]+[y, [z, x]] = 0 for all x, y, z ∈ V .

As examples, we have:
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• Sending V × V to the zero-element O form a Lie algebra. This is defined

to be the abelian Lie algebras.

• The direct sum of Lie algebras is a Lie algebra.

• A subalgebra is a subspace closed under the bracket [, ].

• An ideal K of V is a subalgebra such that [x, y] ∈ K for x ∈ K and y ∈ V .

A homomorphism of a Lie algebra is a linear map preserving [, ]. The kernel of

a homomorphism is an ideal.

2.2.4 Lie groups and Lie algebras

Let G be a Lie group. For an element g ∈ G, a left translation Lg : G→ G is given

by x 7→ g(x). A left-invariant vector field of G is a vector field X so that the left

translation leaves it invariant, i.e., DLg(X(h)) = X(gh) for g, h ∈ G.

• The set of left-invariant vector fields forms a vector space under addition

and scalar multiplication and is a vector space isomorphic to the tangent

space at I. Moreover, the bracket [, ] is defined as vector-fields brackets.

This forms a Lie algebra.

• The Lie algebra of G is the Lie algebra of the left-invariant vector fields on

G.

A Lie algebra of an abelian Lie group is abelian.

The Lie algebra η of a Lie subgroup H is clearly a Lie subalgebra of the Lie

algebra of G: A vector tangent to H at a point h0 is realizable as a path in H passing

h0. A left-invariant vector field tangent to H at some point is always tangent to

H at every point of H since H is closed under left-multiplications by elements of

H. The Lie bracket operation is viewed as the derivative of the commutator of two

flows generated by two left-invariant vector fields. Therefore, the Lie bracket is a

closed operation for any tangent left-invariant vector fields of H.

Let gl(n,R) denote the Mn(R) with [, ] : Mn(R) ×Mn(R) → Mn(R) given by

[A,B] = AB − BA for A,B ∈ Mn(R). The Lie algebra of GL(n,R) is isomorphic

to gl(n,R):

• For X in the Lie algebra of GL(n,R), we can define a flow generated by X

and a path X(t) along it where X(0) = I for the identity I.

• We obtain an element of gl(n,R) by taking the derivative of X(t) at 0 seen

as a matrix.

• Now, we show that the brackets are preserved. That is, a vector-field

bracket becomes a matrix bracket by the above map. (See the book [Bishop

and Crittendon (2002)] for these computations.)

Thus, for any Lie algebra of any finite quotient Lie group of a Lie subgroup of

GL(n,R), the bracket is computed by matrix brackets.
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Given X in the Lie algebra g of G, we find an integral curve X(t) through I. We

define the exponential map exp : g → G by sending X to X(1). The exponential

map is defined everywhere, smooth, and is a diffeomorphism near O. With some

work, we can show that the matrix exponential defined by

A 7→ eA =
∞∑

i=0

1

k!
Ak

is the exponential map exp : gl(n,R)→ GL(n,R) from the computation

d

dt

(
etA
)∣∣
t=1

= eAA = LeA(A) = D(LeA)(A)

for A ∈ gl(n,R). Hence, this holds for any Lie subgroup of GL(n,R) and corre-

sponding Lie subalgebra.

(See for example the books [Warner (1983); Bishop and Crittendon (2002)].)

2.2.5 Lie group actions

A left Lie group G-action on a smooth manifold X is given by a smooth map

k : G × X → X so that k(e, x) 7→ x and k(gh, x) = k(g, k(h, x)). Normally,

k(g, x) is simply written g(x). In other words, denoting by Diff(X) the group

of diffeomorphisms of X, k gives us a homomorphism k′ G → Diff(X) so that

k′(gh)(x) = k′(g)(k′(h)(x)) and k′(I) = IX . This is said to be the left-action. (We

will not use notations k and k′ in most cases.)

• A right action satisfies (x)(gh) = ((x)g)h or more precisely, (gh)(x) =

(h(g(x)).

• Define χ(X) to be the real vector space of vector fields on X. Each Lie

algebra element corresponds to a vector field on X by a homomorphism

χ(X,G) : g→ χ(X) defined by χ(X,G)(η) = ~v satisfying

d

dt

∣∣∣∣
t=0

k(exp(tη), x) = ~v(x) for all x ∈ X.

• The action is faithful if g(x) = x for all x, then g is the identity element

of G. This means that only e corresponds to the identity on X. (If this is

true in particular, then the correspondence χ(X,G) is injective.)

• The action is transitive if given two points x, y ∈ X, there is g ∈ G such

that g(x) = y.

As examples, consider

• GL(n,R) acting on Rn − {O} faithfully and transitively.

• PGL(n+ 1,R) acting on RPn faithfully and transitively.
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2.3 Pseudo-groups and G-structures

In this section, we introduce pseudo-groups. Topological manifolds and its subman-

ifolds are very wild and complicated objects to study as the topologist in 1950s and

1960s found out. The pseudo-groups will be used to put “calming” structures on

manifolds.

Often the structures will be modeled on some geometries. We are mainly inter-

ested in classical geometries. We will be concerned with a Lie group G acting on

a manifold M . Most obvious ones are Euclidean geometry where G is the group

of rigid motions acting on the Euclidean space Rn. The spherical geometry is one

where G is the group O(n + 1) of orthogonal transformations acting on the unit

sphere Sn.

Topological manifolds form too large a category to understand sufficiently. To

restrict the local property, we introduce pseudo-groups. A pseudo-group G on a

topological space X is the set of homeomorphisms between open sets of X so that

the following statements hold:

• The domains of g ∈ G cover X.

• The restriction of g ∈ G to an open subset of its domain is also in G.

• The composition of two elements of G when defined is in G.

• The inverse of an element of G is in G.

• If g : U → V is a homeomorphism for open subsets U, V of X, and if U is

a union of open sets Uα for α ∈ I for some index set I such that g|Uα is in

G for each α, then g is in G.

Let us give some examples:

• The trivial pseudo-group is one where every element is a restriction of the

identity X → X to an open subset.

• Any pseudo-group contains a trivial pseudo-group.

• The maximal pseudo-group of Rn is TOP formed from the set of all home-

omorphisms between open subsets of Rn.

• The pseudo-group Cr, r ≥ 1, is formed from the set of Cr-diffeomorphisms

between open subsets of Rn.

• The pseudo-group PL is formed from the set of piecewise linear homeomor-

phisms between open subsets of Rn.

• A (G,X)-pseudo-group is defined as follows. Let G be a Lie group acting on

a manifold X faithfully and transitively. Then we define the pseudo-group

as the set of all pairs (g|U,U) for g ∈ G where U is an open subset of X.

• The group Isom(Rn) of rigid motions acting on Rn or the orthogonal group

O(n+ 1,R) acting on Sn gives examples.
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2.3.1 G-manifolds

A G-manifold is obtained as a manifold with special type of gluing only in G: Let

G be a pseudo-group on a manifold X. A G-manifold is an n-manifold M with a

maximal G-atlas.

A G-atlas is a collection of charts (embeddings) φ : U → X where U is an open

subset of M such that whose domains cover M and any two charts are G-compatible.

• Two charts (U, φ), (V, ψ) are G-compatible if the transition map satisfies

γ = ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ) ∈ G.

A set of G-atlases is a partially ordered set under the ordering given by the

inclusion relation. Two G-atlases are compatible if any two charts in the atlases are

G-compatible. In this case, the union is another G-atlas. One can choose a locally

finite G-atlas from a given maximal one and conversely. We obtain that the set of

compatible G-atlases has a unique maximal G-atlas.

Under the compatibility relation, we obtain that the set of all G-structures is

partitioned into equivalence classes. We define the G-structure on M as a maximal

G-atlas or as an equivalence class in the above partition.

The manifold X is trivially a G-manifold if G is a pseudo-group on X. A topologi-

cal manifold has a TOP-structure. A Cr-manifold is a manifold with a Cr-structure.

A differentiable manifold is a manifold with a C∞-structure. A PL-manifold is a

manifold with a PL-structure.

A G-map f : M → N for two G-manifolds is a local homeomorphism or even an

immersion so that if f sends a domain of a chart φ into a domain of a chart ψ, then

ψ ◦ f ◦ φ−1 ∈ G.
That is, f is an element of G locally up to charts.

Given two manifolds M and N , let f : M → N be a local homeomorphism. If

N has a G-structure, then so does M so that the map is a G-map. A G-atlas is

given on M by taking open sets so that they map into open sets with charts in N

under f and then use the induced charts. This G-structure is said to be the induced

G-structure.

Suppose that M has a G-structure. Let Γ be a discrete group of G-

homeomorphisms of M acting properly and freely. Then M/Γ has a G-structure.

The charts will be the charts of the lifted open sets. The G-structure here is said to

be the quotient G-structure. (Sullivan and Thurston (1983) explain a class of such

examples such as θ-annuli and π-annuli that arise in the study of complex projective

and real projective surfaces. )

The torus Tn has a Cr-structure and a PL-structure since so does Rn and the

each element of the group of translations all preserves these structures.

Given a pair (G,X) of Lie group G acting on a manifold X, we define a (G,X)-

structure as a G-structure and a (G,X)-manifold as a G-manifold where G is the

(G,X)-pseudo-group.
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A Euclidean manifold is an (Isom(Rn),Rn)-manifold.

A spherical manifold is an (O(n+ 1),Sn)-manifold.

2.4 Differential geometry

We wish to understand geometric structures in terms of differential geometry, i.e.,

methods of bundles, connections, and so on, since such an understanding helps us to

see the issues in different ways. Actually, this is not central to the book. However,

we should try to relate to the traditional fields where our subject can be studied in

another way.

2.4.1 Riemannian manifolds

A differentiable manifold has a Riemannian metric, i.e., an inner-product at each

tangent space that is smooth with respect coordinate charts. Such a manifold is

said to be a Riemannian manifold.

An isometric immersion (embedding) of a Riemannian manifold to another one

is a (one-to-one) map that preserves the Riemannian metric. We will be concerned

with isometric embeddings of M into itself usually. A length of an arc is the value

of an integral of the norm of tangent vectors to the arc. This gives us a metric

on a manifold. An isometric embedding of M into itself is always an isometry. A

geodesic is an arc minimizing length locally.

The sectional curvature K(p) of a Riemannian metric along a 2-plane at a point

p is given as the rate of area growth of r-balls on a disk D(p) composed of geodesics

from p tangent to a 2-plane:

K(p) = lim
r→0+

12
πr2 −A(r)

πr4

where A(r) is the area of the r-ball centered at p in D(p) with the induced metric.

(See Page 133 of the book [Do Carmo (1992)]. This is the Bertrand-Diquet-Puiseux

theorem.)

A constant curvature manifold is one whose sectional curvature is identical to a

constant in every planar direction at every point.

• A Euclidean space En with the standard norm metric of a constant curva-

ture = 0.

• A sphere Sn with the standard induced metric from Rn+1 has a constant

curvature = 1.

• Given a discrete torsion-free subgroup Γ of the isometry group of En (resp.

Sn. we obtain En/Γ (resp. Sn/Γ) a manifold with a constant curvature

= 0 (resp. 1).
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2.4.2 Principal bundles and connections: flat connections

Let M be a manifold and G a Lie group. A principal fiber bundle P over M with a

group G is the object satisfying

• P is a manifold.

• G acts freely on P on the right given by a smooth map P ×G→ P .

• M = P/G and the map π : P →M is differentiable.

• P is locally trivial. That is, there is a diffeomorphism φ : π−1(U)→ U ×G
for at least one neighborhood U of any point of M .

We say that P is the bundle space, M is the base space, and π−1(x) is a fiber which

also equals π−1(x) = {ug|g ∈ G} for any choice of u ∈ π−1(x). G is said to be the

structure group.

As an example, consider L(M): the set of all frames of the tangent bundle

T (M). One can give a topology on L(M) so that sending a frame to its base point

is the smooth quotient map L(M) → M . GL(n,R) acts freely on L(M). We can

verify that π : L(M)→M is a principal bundle.

Given a collection of open subsets Uα covering M , we construct a bundle by a

collection of mappings

{φβ,α : Uα ∩ Uβ → G}
satisfying

φγ,α = φγ,β ◦ φβ,α, φα,α = I

for any triple Uα, Uβ , Uγ . Then form Uα ×G for each α. For any pair Uα ×G and

Uβ ×G, identify by φ̃β,α : Uα×G→ Uβ ×G given by (x, g) 7→ (x, φβ,α(x)(g)). The

quotient space is a principal bundle over M .

A principal bundle over M with the structure group G is often denoted by

P (G,M). Given two Lie groups G and G′, and a monomorphism f : G′ → G, we

call a map f : P (G′,M) → P (G,M) inducing identity M → M a reduction of the

structure group G to G′. There may be many reductions for given G′ and G. We

say that P (G,M) is reducible to P (G′,M) if and only if φα,β can be taken to be in

G′. (See the books [Kobayashi and Nomizu (1997); Bishop and Crittendon (2002)]

for details.)

2.4.2.1 Associated bundles

Let F be a manifold with a left-action of G. G acts on P × F on the right by

g : (u, x)→ (ug, g−1(x)), g ∈ G, u ∈ P, x ∈ F.
Form the quotient space E = P ×G F with a map πE : E → M induced from the

projection π : P ×F →M and we can verify that π−1
E (U) is identifiable with U ×F

up to making some choices of sections on U to P . The space E is said to be the

associated bundle over M with M as the base space. The structure group is the same
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G. The induced quotient map πE : E → M has a fiber π−1
E (x) diffeomorphic to F

for any x ∈M .

Here E can also be built from a cover Uα of M by taking Uα × F and pasting

by appropriate diffeomorphisms of F induced by elements of G as above.

The tangent bundle T (M) is an example. GL(n,R) acts on Rn on the left. Let

F = Rn. We obtain T (M) as L(M)×GL(n,R)Rn. A tensor bundle T rs (M) is another

example. GL(n,R) acts on the space of (r, s)-tensors T rs (Rn), and let F be T rs (R).

Then we obtain T rs (M) as L(M)×GL(n,R) T
r
s (Rn).

2.4.2.2 Connections

Let P (M,G) be a principal bundle. A connection is a decomposition of each Tu(P )

for each u ∈ P so that the following statements hold:

• Tu(P ) = Gu ⊕Qu where Gu is a subspace tangent to the fiber. (Gu is said

to be the vertical space and Qu the horizontal space.)

• Qug = R∗g(Qu) for each g ∈ G and u ∈ P .

• Qu depends smoothly on u.

Let g denote the Lie algebra of G. More formally, we define a connection as

a g-valued form ω on P is given as Tu(P ) → Gu obtained by taking the vertical

component of each tangent vector of P : We could define a connection as a smooth

g-valued form ω.

• ω(A∗) = A for every A ∈ g and A∗ the fundamental vector field on P

generated by A, i.e., the vector field tangent to the one parameter group of

diffeomorphisms on P generated by the action of exp(tA) ∈ G at t = 0.

• (Rg)
∗ω = Ad(g−1)ω.

A horizontal lift of a piecewise-smooth path τ onM is a piecewise-smooth path τ ′

lifting τ so that the tangent vectors are all horizontal. A horizontal lift is determined

once the initial point is given.

• Given a curve on M with two endpoints, we find that the lifts of the curve

define a parallel displacement between fibers above the two endpoints (com-

muting with the right G-actions).

• Fixing a point x0 onM , these parallelisms along closed loops with endpoints

at x0 form a holonomy group that is identifiable with a subgroup of G acting

on the left on the fiber at x0.

• The curvature of a connection is a measure of how much the horizontal lift

of a small loop in M differs from a loop in P . A connection is flat if the

curvatures are zero identically.

• For the flat connections, we can lift homotopically trivial loops inM to loops

in P . Thus, the flatness is equivalent to local lifting of small coordinate

charts of M to horizontal sections in P .
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• A flat connection on P gives us a smooth foliation of dimension n transversal

to the fibers where n is the dimension of M . A flat bundle is a bundle with

a flat connection.

The associated bundle E also inherits a connection, i.e., a splitting of the tangent

space of E into vertical space and horizontal space. Here again, the vertical spaces

are obtained as tangent spaces to fibers. Again given a curve on M , horizontal

liftings and parallel displacements between fibers in E make sense . The flatness is

also equivalent to the local lifting property, and the flat connection on E gives us a

smooth foliation of dimension n transversal to the fibers.

An affine frame in a vector (or affine) space Rn is a set of n + 1 points

a0, a1, . . . , an so that a1 − a0, a2 − a0, . . . , an − a0 form a linear frame. These

assignments give us the canonical map from the space of affine frames A(Rn)

to linear frames L(Rn). An affine group A(n,R) acts on A(Rn) also by sending

(a0, a1, . . . , an) to (L(a0), L(a1), . . . , L(an)) for an affine automorphism L : Rn →
Rn.

An affine connection on a manifold M is defined as follows. An affine frame over

M is an affine frame on a tangent space of a point of M , treating as an affine space.

The set of all affine frames over a manifold forms a manifold of higher dimension.

Let A(M) be the space of affine frames over M with the affine group A(n,R) acting

on it fiberwise on the left.

• The Lie algebra a(n,R) is a semi-direct product of Mn(R) and Rn.

• There is a natural map A(M) → L(M) where L(M) is the set of linear

frames over M and is given by the natural map A(Rn)→ L(Rn).

• An affine connection on M is a linear connection plus the canonical Rn-

valued 1-form. The curvature of the affine connection is the sum of the

curvature of the linear connection and the torsion.

A nice example is when M is a 1-manifold, say an open interval I. Then P is

I × G, and the associated bundle is I × X. A connection is simply given as an

infinitesimal way to connect each fiber by a left multiplication by an element of G.

In this case, a connection is flat always and I × G and I ×X are fibered by open

intervals transversal to the fibers.

If M is a circle, then P becomes a mapping circle with fiber X and E a mapping

circle with fiber E:

G→ P

↓
S1.

Now, such spaces are classified by a map π1(S1)→ G.

For the affine connections, let M be an interval I, and let G = A(1,R) and

X = R. Then E is now a strip I × R. An affine connection gives a foliation on the

strip transversal to R and is invariant under translation in the R-direction.
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Even for higher-dimensional manifolds, we can think of a connection as the

collection of 1-dimensional ones over each path. The local dependence on paths is

measured by the curvature.

2.4.2.3 The principal bundles and (G,X)-structures.

Given a manifold M of dimension n and a Lie group G acting on a manifold X of

dimension n, we form a principal bundle P over a manifold M and the associated

bundle E fibered by X with a flat connection. Suppose that we can choose a

section f : M → E which is transverse everywhere to the foliation given by the flat

connection. This gives us a (G,X)-structure. The main reason is that the section

f sends an open set of M to a transversal submanifold to the foliation. Locally, the

foliation gives us a projection to X. The composition gives us charts. The charts

are compatible since E has a left-action.

Conversely a (G,X)-structure gives us a principal bundle P , the associated

bundle E, the flat connection and a transverse section f .

We will elaborate this later when we are studying orbifolds and geometric struc-

tures in Chapter 6.

2.5 Notes

Chapter 0 and 1 of the book [Hatcher (2002)] and the books [Munkres (1991);

Warner (1983)] are good source of preliminary knowledges here. The books [Do

Carmo (1992); Kobayashi and Nomizu (1997); Bishop and Crittendon (2002)] give

us good knowledge of connections, curvature, and Riemannian geometry. Also, the

book [Thurston (1997)] is a source for studying (G,X)-structures and pseudo-groups

as well as geometry and Lie groups presented here. Goldman’s book [Goldman

(1988)] treats materials here also in a more abstract manner.


